
Theoretical Computer Science 41 (1985) 331-339
North-Holland

331

NOTE

ALTERNATING O N - L I N E T U R I N G M A C H I N E S WITH
ONLY U N I V E R S A L STATES A N D S M A L L S P A C E B O U N D S

Katsushi INOUE
Department of Electronics, Faculty of Engineering, Yamaguchi University, Ube, 755 Japan, and
Lehrstuhl C ffir lnformatik, lnstitut fdr Theoretische und Praktische lnformatik, Technische Universitiit
Braunschweig, 3300 Braunschweig, Fed. Rep. Germany

Itsuo TAKANAMI
Department of Electronics, Faculty of Engineering, Yamaguchi University, Ube, 755 Japan

Roland VOLLMAR
Lehrstuhl C ffir Inforrnatilg Institut fiir Theoretische und Praktische Informatilg Technische Universitiit
Braunschweig, 3300 Braunschweig, Fed. Rep. Germany

Communicated by M.A. Harrison
Received August 1983
Revised May 1984

Abstract. Let .S°[AONTM(L(n))] be the class of sets accepted by L(n) space bounded alternating
on-line Turing machines, and ~[UONTM(L(n))] be the class of sets accepted by L(n) space
bounded alternating on-line Turing machines with only universal states. This note first
shows that, for any L(n) such that L(n)>~loglogn and limn_,~[L(n)/logn]=O,
(i) .~[UONTM(L(n))] ~ .~[AONTM(L(n))], (ii) .~[UONTM(L(n))] is not closed under com-
plementation, and (iii) .~[UONTM(L(n))] is properly contained in the class of sets accepted by
L(n) space bounded alternating Turing machines with only universal states. We then show that
there exists an infinite hierarchy among .Z[UONTM(L(n))]'s with log log n <<. L(n) <~ log n.

1. Introduction

Alternating Turing machines were introduced and investigated in [1, 2, 5, 6, 8-14]
as a mechanism to model parallel computation. Recently [4, 7], several properties
of alternating Turing machines with only universal states have been given. This note
continues to investigate some properties of alternating on-line Turing machines with
only universal states and with small space bounds. Let Le[AONTM(L(n))] be the
class of sets accepted by L(n) space bounded alternating on-line Turing machines,
and ~ [UONTM(L(n))] be the class of sets accepted by L(n) space bounded
alternating on-line Turing machines with only universal states. It is shown [4]
that for any L(n) such that L(n)>~logn and lim,..~[L(n)/n]=O, (i)

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

332 K. Inoue, I. Takanarai, R. VoUmar

~ [U O N T M (L (n))] ~ Ze[AONTM(L(n))], and (ii) ~ [U O N T M (L (n))] is not closed
under complementation. Section 3 of this note shows that, for any L(n) such
that L(n) >I log log n and lim,_,oo [L(n)/log n] = 0, (i) ~ [U O N T M (L (n))]
~ [A O N T M (L (n))] , (ii) ~ [U O N T M (L (n))] is not closed under complementation,
and (iii) ~ [U O N T M (L (n))] is properly contained in the class of sets accepted by
L(n) space bounded alternating Turing machines with only universal states. Section
3 also shows that there exists an infinite hierarchy among the Le[UONTM(L(n))] 's
with log log n <~ L(n) <~ log n.

2. Preliminaries

To make this paper self-contained, we first give full definitions of alternating
Turing machines.

Definition 2.1. An alternating Turing machine (ATM) is a seven-tuple M =
(Q, U, F, 2;, 8, qo, F) , where (1) Q is a finite set of states, (2) U ~ Q is the set of
universal states, (3) F is a finite storage tape alphabet (B ~ F is the blank symbol),
(4) 2; is a finite input alphabet (¢ ~t 2; is the left endmarker, and $ ~ 2; is the right
endmarker), (5) 8 c_ (Q x (2; u {g, $}) x F) x (Q x (F -{B}) x {left, no move, right} 2)
is the next move relation, (6) qo ~ Q is the initial state, and (7) F c_ Q is the set of
accepting states. A state q in Q - U is said to be existential

The ATM M has a read-only input tape with the left and right end-markers ¢
and $, and one semi-infinite storage tape, initially blank. A step of M consists of
reading one symbol from each tape, writing a symbol on the storage tape, moving
the input and storage heads in specified directions, and entering a new state, in
accordance with the next move relation 8. Note that the machine cannot write the
blank symbol.

Definition 2.2. An instantaneous description (ID) of an ATM M = (Q , U,F,
2;, 8, qo, F) is an element of

2;* x (N u {0}) x SM,

where SM = Q x (F - {B})* x N, and N denotes the set of all positive integers. The
first and second components, x and i, of an ID I = (x, i, (q, a, j)) represent ~ the
input (excluding the left and right endmarkers ¢ and $) and the input head position,
respectively. The third component (q, a , j) (~Su) of I represents the state of the
finite cOntrol, the nonblank contents of the storage tape, and the storage head
position. An element of SM is called a storage state of M. If q is the state associated
with an ID I, then I is said to be a universal (existential, dccepting) ID if q is a

t We note that 0 ~ < i~[xl+l, and l~j~la]+l, where for any string w, Iw[denotes the length o f w

(with I~1 = 0).

Alternating on-line Turing machines 333

universal (existential, accepting) state. The initial ID of M on x is IM(x)=
(x, 0, (qo, A, 1)), where A is the null word.

Definition 2.3. Given M = (Q , U,F,,Y, 8, qo, F) , we write I~-I' and say I ' is a
successor of I if an ID I ' follows from an ID I in one step, according to the transition
rules 3. The reflexive transitive closure of ~- is denoted ~-*. A computation path of

M on input x is a sequence Io~-I1~-" • "~-In (n >I 0), where Io = IM(x). A computation
tree of M is a finite, nonempty labeled tree with the following properties:

(1) each node 7r of the tree is labeled with an ID, l(w),
(2) if w is an internal node (a non-leaf) of the tree, l(w) is universal and

{I I l(Tr)~-I} = {Ib • • •, Ik}, then ~r has exactly k children p~, . . . , Pk such that l(p,) = Ii,
(3) if 7r is an internal node of the tree and l(~r) is existential, then ~r has exactly

one child p such that l(Tr)~l(p).
A computation tree of M on input x is a computation tree of M whose root is

labeled with IM(x). An accepting computation tree of M on x is a computation tree
of M on x whose leaves are all labeled with accepting ID's. We say that M accepts
x if there is an accepting computation tree of M on x. Define T(M) = {x ~ Z*lM
accepts x}.

An alternating on-line Turing machine (AONTM) [6] is an ATM whose input

head cannot move to the left. In this note, we are interested in an ATM (AONTM)

with only universal states, i.e., with no existential state. We denote such an ATM

(AONTM) by UTM (UONTM).
With each ATM (AONTM, UTM, or UONTM) M, we associate a space complexity

function SPACE which takes ID's to natural numbers. That is, for each ID I =
(x, i, (q, a,j)), let SPACE(l) be the length of a. Let L: N-> R be a function, where

R denotes the set of all nonnegative real numbers. We say that M is L(n) space
bounded if, for each n and for each input x of length n, if x is accepted by M, then

there is an accepting computation tree of M on x such that for each
node ~r of the tree, SPACE(/(~r)) <--- [L(n)] . 2 By ATM(L(n)) (UTM(L(m)) ,

AONTM(L,(n)) ,UONTM(L(n))) we denote an L(n) space bounded ATM

(UTM, AONTM, UONTM). For each X ~ {A, U, AON, UON}, define

~[XTM(L(n))]= {T I T= T(M) for some XTM(L(n)) M}.

3. Results

In this section we first show that for any L(n) such that L (n) ~ l o g log n

and l imn_~[L(n)/logn]=O, (i) .T[UONTM(L(n))]~.~[AONTM(L(n))], (ii)
. ~ [U O N T M (L (n))] ~ - T [U T M (L (n))] , and (iii) .~ [UONTM(L(n))] is not closed

under complementation.
The following is the key lemma.

2 [r] m e a n s the smallest integer greater than or equa l to r.

334 K. Inoue, I. Takanami, R. VoUmar

Lemma 3.1. Let L~ = {bin(l) # bin(2) # - • • # bin(n)2wcw'~ {0, 1, 2, c, #}+In I> 2 &
(w, w'~ {0, 1} +) & twl=lw'l= [log n] & w~ w'}, 3 where, for each positive integer
i >I 1, bin(i) denotes the string in {0, 1} + that represents the integer i in binary notation
(with no leading zeros). Then:

(i) L~ ~ ~[AONTM(Iog log n)],
(ii) L1 ~ ~[UTM(Iog log n)], and

(iii) L~g~[UONTM(L(n))] for
lim,_,~o [L(n)/ log n] = O.

any function L: N -* R such that

Proof. (i) The set L~ will be acceptedby an AOTNM(Iog log n) M~ which acts as
follows. Suppose that an input string

CY~ # Y2 ~ " " " ~ y,,2wcw'$,

where n I> 2, and the yi's, w, and w' are all in {0, 1} +, is presented to M~. (Input
strings in different form from the above can easily be rejected by M~.) In the first
phase, M~ marks off log log n storage-tape cells when yi = bin(i) for each 1 <~ i <~ n.
This can be done using the successive values bin(l), b in (2) , . . . , bin(n) that are
supposed to occur in the input. That is, M~ will check that these values actually do
occur (i.e., y~ =bin(i) , 1 ~< i<~ n) and in doing so it will construct the storage-tape
space log log n. By using universal branches only, M1 can check in a way described
below that these values are actually found in successive blocks of the input. MI
compares the value Yi in the ith block with the value y~+~ in the (i + 1)st block and
verifies that y~+~ represents in binary notation a number which is one more than
that represented by yi. In doing so, M~ will compare the j th symbol of these two
values, for all appropriate j. Observe that when y~+~ is one more than y,, then
Yi+l = xl0m and y~ = xO1 m, where x is a string (starting with 1) over {0, 1} and m is
some positive integer, or y~+~ = 10 m and y~ = 1 m, again with m some positive integer.
M~ starts by writing the binary representation of one in its storage-tape space and
performing a universal branch. In one branch it compares the first symbol of the
two strings. In the other branch it increases the value in the storage-tape space by
one and goes on to compare the remaining symbols. In general, let us suppose that
M~ has the value j written in binary notation in its storage-tape space. I t performs
a universal branch. In one branch it compares the j th symbol of the two strings. (It
determines whether they should be identical or not by scanning the remaining
symbols of the first of the two strings. If the remaining symbols are all 1, then the
symbols should be opposite; otherwise, they should be the same.) In the other
branch, it adds one to the storage-tape value and continues to compare the remaining
symbols. In this way, M~ can check the successive values in the input. Also, in
comparing the last two strings yn-~ and Yn it will create a string in its storage-tape
of length log log n, since the length of the last string yn is log n (if yn= bin(n)) and
M~ needs only remember a position in this string in binary notation. If M~ success-
fully completes this first phase, then it checks that Iwl--Iw'l-- Flog n] and w # w'.

3 From here on, logarithms are base 2.

Alternating on-line Turing machines 335

The check of"lwl = Iw' l = [log n 1" can deterministically be done using the storage-
tape space log log n constructed above. The check of "w # w"' can easily be done
by existentially choosing some i (1<~ i<~ [log n]) and then checking that w(i)#
w'(i). 4 This check is also done using the log log n storage-tape cells constructed
above.

(ii) L1 is accepted by a UTM(log log n) M2 which acts as follows. Suppose that
an input string described in the proof of (i) is presented to M2. By using the technique
in the proof of (i), M2 first marks off log log n storage-tape cells when yi =bin(i)
for each 1 <~ i <~ n. If, in the first phase, M2 successfully marks off log log n storage-
tape cells, then M2 deterministically checks that [w[= [w'[= [log n] and w # w'. The
check of "w # w"' can be done by sending its input head back and forth to compare
the corresponding symbols in w and w'. Of course, the comparison is done using
log log n storage-tape space constructed above.

(iii) Suppose that there exists a UONTM(L(n)) M accepting L1, where
lim,_,oo [L(n)/log n] = O. Let s and k be the numbers of states (of the finite control)
and storage-tape symbols of M, respectively. For each n I> 2, let

V(n)={b in(1)#b in(2)# . . .#b in (n)2wcw]we{O, 1} + &[w[= [log hi}.

For each x = b i n (l) # b i n (2) # - • • #bin(n)2wcw in V(n), let S(x) and C(x) be sets
of storage states of M defined as follows:

S(x) = {(q, a , j) [there exists a computation path IM(x) k-* (x, r(n),
(q', ot',j'))k-(x, r (n) + l , (q, a , j)) of M on x (that is, (x, r (n) + l , (q, a , j))
is an ID of M just after the point where the input head left the symbol "c"
of x)},

where r(n) = Ibin(1) # bin(2) # - • • # bin(n)21 + [log n 1 + 1;

C(x)={or~ S(x)lwhen, starting with the ID (x, r (n) + l , or), M proceeds to read
the last segment w$ or ¢x$, there exists a sequence of steps of M in which
M never enters an accepting state}.

(Note that, for each x in V(n), C(x) is not empty, since x is not in L~, and so not
accepted by M.) Then the following proposition must hold.

Proposition 3.2. For any two different strings x, y in V(n), C(x) n C(y)=0.

ProoL For otherwise, suppose that x = bin(l) # bin(2) # . • • # bin(n)2wcw, y =
b i n (1) # b i n (2) # . - . # b i n (n) 2 w ' c w ' , w # w', C (x) n C(y)#O, and or~ C (x) n
C(y) . Let z = b in(l) # bin(2) # . • • # bin(n)2wcw'. Since or ~ C(x), there is a compu-

tation path IM(z) t-* (z, r(n)+ 1, or). When, starting with the ID (z, r(n)+ 1, or), M
proceeds to read the last segment w'$ of gz$, there exists a sequence of steps of M
in which M never enters an accepting state since or e C(y). This means that z is
not accepted by M. This contradicts the fact that z is in LI = T(M). []

4 For each string w and each integer i (1 ~ i ~ [wl) , w(i) denotes the ith symbol (from the left) of w.

336 IC Inoue, L Takanami, R. Vollmar

Proof of Lemma 3.1 (continued). Clearly, IV(n)l=2r °g"l,5 and p(n)<~
sL(r(n) + [log n])k L¢'~")+0°g ,1), where p(n) denotes the number of possible storage
states of M just after the point where the input head left the symbol "c" of strings
in V(n). Since lim,_,oo[L(n)/log n] = 0, it follows that

lira [L(r(n)+ [log n])/log(r(n)+ [log n])] =0.
n - - ~ o o

(1)

It is easily seen that, for some constant c'~>0, r(n)+ [log n]<~ c'n log n, and thus
log(r(n) + [log n]) <~ log n + log log n + log c'. From this and equation (1), we have

lim [L(r(n) + [log n]) / (log n + log log n + log c')] = 0.
r l - ~ o o

From this, it follows that lim,,_,oo [L(r(n)+ [log n]) / log n] =0. Therefore, we have
I V(n)l > p(n) for large n, and so it follows that for large n there must be two different
strings x, y in V(n) such that C(x) fq C(y) # O. This contradicts Proposition 3.2, and
completes the proof of part (iii) of the lemma. []

From Lemma 3.1, we can derive the following theorem.

Theorem 3.3. Let L : N-> R be any function such that L(n) >~ log log n and
lim,_.oo[L(n)/log n] = 0 . Then, (i) ~ [U O N T M (L (n))] G ~ [AONTM(L(n))] , and
(ii) ~ [U O N T M (L (n))] G Le[UTM(L(n))].

Theorem 3.4. ~ [U O N T M (L (n))] is not closed under complementation for any function
L: N--> R such that lim,_,oo [L(n)/log n] = 0 and L(n) >~ log log n.

Proof. Let L 2 = { b i n (1) # b i n (2) # . . .#bin(n)2wcw~{O, 1,2, c, #}+]n~>2& we
{0, 1} + & [w] = [log n]}. The set /-,2 is accepted by a UONTM(Iog log n) M which
acts as follows. Suppose that an input string

CYl # Y2 # " " " # y,2wcw'$,

where n I> 2, and the yi's, w, and w' are all in {0, 1} +, is presented to M. By using
the technique in the proof of Lemma 3.1(i), M first marks off log log n storage-tape
cells when Yi = bin(i) for each 1 ~ i ~< n. If in the first phase M successfully marks
off log log n storage-tape cells, then M checks by using universal branches that
[w[= Iw'l = [log n] and w(i) = w'(i) for each 1 <~ i ~< [log n]. Of course, in this phase,
M makes use of log log n storage-tape cells (constructed above) to count a number
between 1 and [log n]. It will be obvious that T(M) =/-.2. On the other hand, by
using the same technique as in the proof of Lemma 3.1(iii), we can show that/~2,
the complement of /.2, is not accepted by any UONTM(L(n)) such that
lim,_,oo[L(n)/log n] =0. (The proof is left to the readers as an exercise.) This
completes the proof of the theorem. []

s For any set S, IS I denotes the number of elements of S.

Alternating on-line Turing machines 337

Remarks. Together with the result in [7], Theorems 3.1 and 3.2 imply that, for
any function L : N - > R such that L (n) ~ l o g l o g n and lim,_,o~[L(n)/n]=O,
we have (i) ~[UONTM(L(n))]~ . .~[AONTM(L(n))] , (ii) .LF[UONTM(L(n))]~
~ [UTM (L(n))], and (iii) .Y[UO NTM (L(n))] is not closed under complementation.
It is obvious that ~[UONTM(L(n))] is closed under intersection for any L. It is,
however, unknown whether or not ~[UONTM(L(n))] is closed under union for
any L. It is also unknown whether or not L~[AONTM(L(n))] ~ ~[ATM(L(n))] for
any L such that L(n) >I log log n and lim,_,oo [L(n)/log n] = O. Note the fact [9] that
.~[ATM(L(n))]=.~[AONTM(L(n))] for any L(n)>-logn. Also note that
~[ATM(L(n))] is equal to the class of regular sets for any L such that
lim,_.~o [L(n)/ log log n] = 0, which is reported in [12, 131.

We conclude this section by showing that there exists an infinite hierarchy among
the ~[UONTM(L(n))] ' s with log log n <- L(n) <~ log n.

Definition 3.5. A function L: N--> R is fully constructible [3] if there exists a deter-
ministic L(n) space bounded Turing machine M such that, for all inputs of length
n, M eventually will halt having marked exactly [L(n)] storage-tape cells.

Theorem 3.6. Let f : N--> R be a fully constructible function such that 1 <~log log n <~
f ([log log n]) ~< log n for all n >I no (where no is some constant), and g: N--> R be a
nondecreasing function such that lim,_~o [g(2n) / f (n)] = O. Further, for each function
h : N--> R, let Lh : N--> R be the function such that Lh(n) = h([log log n]), n I> 1. Then
there exists a set in .~[U O N T M (Lf (n))], but not in ~[UONTM(Ls(n))].

Proof. Let S(f) be the following set depending on the function f in the theorem:

S(f) = {bin(l) # bin(2) # . • • # bin(n)2wcw'~ {0, 1, 2, c, #}+[n I> no

& (w, w'~ {0, 1} +) & Iwl-- Iw'l-- [L:(n)] & w ~ w'}
(where no is the constant in the theorem).

We will prove the theorem by showing that the set S(f) is accepted by some
UONTM(Ly(n)), but not accepted by any UONTM(Lg(n)). We consider a
UONTM(LI(n)) M which acts as follows. Suppose that an input string ¢Yl # Y2#
• • • # yn2wcw'$, where n I> no, and the yi's, w, and w' are all in {0, 1} +, is presented
to M. By using the technique in the proof of Lemma 3.1(i), M first marks off
[log log n] storage-tape cells when yi = bin(i) for each 1 <~ i <~ n. If in this phase M
successfully marks off [log log n] storage-tape cells, then, by making use of these
[log logn] storage-tape cells, M deterministically marks off [Ls(n)]=
If([log log n])] storage-tape cells. This action is possible because the function f is
fully constructible. M then checks by using the ILl(n)] storage-tape cells that
Iwl--Iw'l= [L:(n)] and w # w ' , and M accepts the input only if this check is
successful. It will be obvious that T (M) = S(f) . On the other hand, by using the
same technique as in the proof of Lemma 3.1(iii), we can show that S(f) is not

338 IC Inoue, I. Takanami, R. Vollmar

accepted by any UONTM(Ls(n)) , where g is a nondecreasing function such that
limn_.~ [g(2n)/f(n)] = 0. This completes the proof of the theorem. []

4. Discussion

One reads two distinct definitions for measuring space complexity in the literature.
These are: (i) an ATM (UTM, AONTM, UONTM) M is L(n) space bounded if
for each n and for each input x (of length n) accepted there is an accepting
computation tree of M on x such that M uses at most L(n) cells of its storage tape
on each computation path of the tree, and (ii) an ATM (UTM, AONTM, UONTM)
M is L(n) space bounded if for each n and for each input x of length n each
computation path of M on x uses at most L(n) cells of its storage tape.

In Sections 2 and 3 of this note we adopted (i) above. We now briefly investigate
what happens if we adopt (ii) above as the definition for measuring space complexity.
Let UONTM(L(n)) denote a UONTM which is L(n) space bounded in the sense
of (ii) above. We can easily show that if limn_,oo L(n)/log n = 0, then the class of
languages accepted by UONTM(L(n)) 's is equal to the class of regular languages.
The proof is left to the reader as an easy exercise.

Acknowledgment

The authors thank the anonymous referee for his (or her) useful comments.

References

[1] A.IC Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, Res. Rept. RC7489, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1978.

[2] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J.ACM 28 (1) (1981) 114-133.
[3] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).
[4] A. Ito, K. Inoue, I. Takanami and H. Taniguchi, Two-dimensional alternating Turing machines

with only universal states, Inform. and Control 55 (1-3) (1982) 193-221.
[5] IC Inoue, I. Takanami and H. Taniguchi, Two-dimensional alternating Turing machines, Proc. 14th

Ann. ACM Syrup. on Theory of Computing (1982) 37-46.
[6] K. Inoue, I. Takanami and H. Taniguchi, A note on alternating on-line Turing machines, Inform.

Process. Lett. 15 (4) (1982) 164-168.
[7] IC Inoue, I. Takanami, H. Taniguchi and A. Ito, A note on alternating on-line Turing machines

with only universal states, Trans. IECE Japan E-66 (6) (1983) 395-396.
[8] ICN. King, Measures of parallelism in alternating computation trees, Proc. 13th Ann. ACM Syrup.

on Theory of Computing (1981) 189-201.
[9] R.E. Ladner, P-J. Lipton and L.J. Stockmeyer, Alternating pushdown automata, Pro¢ 19th IEEE

Syrup. on Foundations of Computer Science, Ann Arbor, MI (1978) 92-106.
[10] W.J. Paul, EJ. Prauss and 1~ Reischuk, On alternation, Acta Inform. 14 (1980) 243-255.
[11] W.L. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci. 21 (1980) 218-235.

Alternating on-line Turing machines 339

[12] I.H. Sudborough, Efficient algorithms for path system problems and applications to alternating and
time-space complexity classes, Proc. 21st Ann. Symp. on Foundations of Computer Science (1980)
62-72.

[13] I.H. Sudborough, Bandwidth constraints on problems complete for polynomial time, Theoret.
Comput. ScL 26 (1983) 25-52.

[14] M. Tompa, An extension of Savitch's theorem to small space bounds, Inform. Process. Lett. 12 (2)
(1981) 106-108.

