
Developmental Cell

Article
VEGF-Induced Vascular Permeability
Is Mediated by FAK
Xiao Lei Chen,1,5 Ju-Ock Nam,1,4,5 Christine Jean,1 Christine Lawson,1 Colin T. Walsh,1 Erik Goka,1,6 Ssang-Taek Lim,1

Alok Tomar,1 Isabelle Tancioni,1 Sean Uryu,1 Jun-Lin Guan,3 Lisette M. Acevedo,2 Sara M. Weis,2 David A. Cheresh,2

and David D. Schlaepfer1,*
1Department of Reproductive Medicine
2Department of Pathology

Moores UCSD Cancer Center, La Jolla, CA 92093, USA
3Department of Internal Medicine-MMG, University of Michigan Medical School, Ann Arbor, MI 48108, USA
4Kyungpook National University, 386 Gajang-dong, Sangju-si, Gyeongsangbuk-Do 742-711, Korea
5These authors contributed equally to this work
6Present address: Miller School of Medicine, University of Miami, Miami, FL 33136, USA

*Correspondence: dschlaepfer@ucsd.edu

DOI 10.1016/j.devcel.2011.11.002
SUMMARY

Endothelial cells (ECs) form cell-cell adhesive junc-
tional structures maintaining vascular integrity. This
barrier is dynamically regulated by vascular endothe-
lial growth factor (VEGF) receptor signaling. We
created an inducible knockin mouse model to study
the contribution of the integrin-associated focal
adhesion tyrosine kinase (FAK) signaling on vascular
function. Herewe show that genetic or pharmacolog-
ical FAK inhibition in ECs prevents VEGF-stimulated
permeability downstream of VEGF receptor or Src
tyrosine kinase activation in vivo. VEGF promotes
tension-independent FAK activation, rapid FAK
localization to cell-cell junctions, binding of the FAK
FERM domain to the vascular endothelial cadherin
(VE-cadherin) cytoplasmic tail, and direct FAK phos-
phorylation of b-catenin at tyrosine-142 (Y142) facili-
tating VE-cadherin-b-catenin dissociation and EC
junctional breakdown. Kinase inhibited FAK is in
a closed conformation that prevents VE-cadherin
association and limits VEGF-stimulated b-catenin
Y142 phosphorylation. Our studies establish a role
for FAK as an essential signaling switch within ECs
regulating adherens junction dynamics.

INTRODUCTION

Vascular barrier integrity can be disrupted by a variety of soluble

permeability factors, and changes in barrier function can exacer-

bate tissue damage during cancer and ischemia (Weis and

Cheresh, 2005). Endothelial cell-cell contacts create a vascular

barrier that is regulated in part by the stability of cell-cell adhe-

rens junctional protein complexes (Nelson, 2008). Adherens

junction (AJ) proteins such as VE-cadherin, b-catenin, p120-

catenin, and a-catenin are critically involved in controlling

vascular permeability (Dejana et al., 2008). Enhanced phosphor-

ylation, endocytosis, S-nitrosylation, or cleavage of AJ proteins
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facilitates endothelial cell (EC) barrier breakdown that can be

triggered by growth factor receptor activation (Dejana et al.,

2009; Harris and Nelson, 2010).

Vascular endothelial growth factor (VEGF) promotes vascular

leak, angiogenesis, and the tyrosine phosphorylation of VE-cad-

herin and b-catenin (Dejana et al., 2008; Ferrara et al., 2003;

Lilien and Balsamo, 2005). Mechanistically, knockout and phar-

macological inhibitor studies point to the importance of Src-

family protein-tyrosine kinase (PTK) activation by VEGF in

promoting AJ phosphorylation (Eliceiri et al., 1999; Weis et al.,

2004a). Interestingly, Src-family PTKs are also activated by

integrin receptors that cross-talk with VEGF in the control of

vascular permeability (De et al., 2005; Wang et al., 2006). The

regulation of AJ stability is complicated as Src-mediated phos-

phorylation of VE-cadherin at tyrosine (Y) Y658, Y731 (Adam

et al., 2010), or b-catenin phosphorylation at Y654 (Tominaga

et al., 2008) are not singularly sufficient to disrupt barrier func-

tion. However, b-catenin Y142 phosphorylation disrupts a-cate-

nin binding and mutation of this site prevents AJ formation

(Piedra et al., 2003; Tominaga et al., 2008). Although Fer, Fyn,

and PTK6 can phosphorylate b-catenin Y142 in vitro (Palka-

Hamblin et al., 2010; Piedra et al., 2003), the regulation of

Y142 b-catenin phosphorylation in vivo remains unknown.

Another PTK activated by VEGF and integrins is focal adhesion

kinase (FAK) (Abedi and Zachary, 1997). FAK is comprised of an

N-terminal FERM (band 4.1, ezrin, radixin, moesin homology

(FERM) domain, central PTK region, and a C-terminal domain

that links FAK to integrins (Mitra et al., 2005). VEGF can increase

FAK phosphorylation at Y397, Y407, and Y861 through unde-

fined mechanisms (Abu-Ghazaleh et al., 2001; Herzog et al.,

2011) and VEGF-stimulated FAK Y397 phosphorylation occurs

independently of Src (Liang et al., 2010). FAK phosphorylation

at Y576 in the kinase domain activation loop is a marker of FAK

activation (Mitra et al., 2005). In culture, VEGF triggers FAK

binding to paxillin, FAK localization to nascent adhesions, and

the formation of a FAK/avb5 integrin signaling complex associ-

ated with the generation of actin-myosin tension and increased

cell motility (Avraham et al., 2003; Birukova et al., 2009; Eliceiri

et al., 2002). Expression of dominant-negative FAK prevents

VEGF-stimulated permeability in vitro and in coronary vessels

ex vivo through undetermined mechanisms (Wu et al., 2003).
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Figure 1. FAK Activity within ECs Is Required for

VEGF-Initiated Vascular Permeability in Mice

(A) Progeny from FAKfl/fl SCL-Cre-ER(T) and heterozygous

FAKKD/WT crosses are treated with tamoxifen to induce

Cre expression to create mice with hemizygous FAK-WT

or FAK-KD expression in ECs.

(B) Tamoxifen treatment of Cre-ER(T)-positive FAKfl/WT

and FAKfl/KD mice results in reduced FAK pY397 and FAK

pY576 phosphorylation but no changes in Pyk2 expres-

sion or Pyk2 pY402 phosphorylation in FAKfl/KD compared

to FAKfl/WT mice by immunoblotting of heart lysates.

(C) VEGF-stimulated dermal vascular permeability (VP)

was measured in Cre-ER(T)-positive FAKfl/WT and FAKfl/KD

mice with or without tamoxifen pretreatment. Leakage of

circulating Evans blue dye was measured after 30 min.

Shown are mean values ± SEM (***p < 0.001).

(D) Representative images of dermal dye leakage. VEGF or

PBS injection sites are circled. Scale bar represents

0.5 cm.

(E) Quantification of VP. Data is plotted as a VEGF/PBS

ratio of individualmice from two independent experiments.

Box-whisker plots show the distribution of the data: black

square, mean; bottom line, 25th percentile; middle line,

median; top line, 75th percentile; and whiskers, 5th and

95th percentiles (**p < 0.01). See also Figure S1.
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Global or EC-specific FAK knockout mice show develop-

mental vascular defects (Braren et al., 2006; Ilic et al., 2003;

Shen et al., 2005). Vascular morphogenesis abnormalities are

also associated with Y397 FAK deleted (Corsi et al., 2009) or

FAK kinase-dead (KD) knockin mice (Lim et al., 2010a; Zhao

et al., 2010). Although pharmacological FAK inhibition (Weis

et al., 2008) or conditional FAK knockout in ECs (Tavora et al.,

2010) prevents VEGF-associated angiogenesis and tumor-

induced vascular permeability (Lee et al., 2010), the signaling

connections for FAK in mediating these effects remain unclear.

However, as basal VE-cadherin Y658 phosphorylation was

reduced by loss of FAK expression or activity within ECs in

culture (Zhao et al., 2010), we set out to define the role of FAK

activity in VEGF-stimulated permeability.
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Here, we report the generation of a knockin

mouse model hemizygous for FAK wild-type

(WT) or FAK-KD expression within adult ECs.

FAK-KD vessels are phenotypically normal,

but genetic or pharmacological FAK inhibition

prevents VEGF-induced vascular permeability.

VEGF triggers FAK activation in vivo leading to

FAK FERM binding to VE-cadherin at cell-cell

junctions and direct phosphorylation of b-cate-

ninY142associatedwithAJdisassembly. These

studies establish the importance of FAK activity

in AJ regulation and support the use of FAK

inhibitors in the treatment of vascular disease.

RESULTS

Creation of an Inducible FAK-KD Knockin
Mouse
To assess the role of FAK signaling in vivo, we

used a Cre/loxP strategy to create a conditional
FAK-KD knockin within adult mouse ECs. This was accom-

plished by crossing homozygous floxed (fl) FAK mice containing

an estrogen receptor tamoxifen [ER(T)] fusion driven by the 50

endothelial enhancer of the stem cell leukemia locus (Weis

et al., 2008) with heterozygous FAK-KD knockin (FAKKD/WT)

mice (Figure S1A available online). Mouse model functionality

was verified by staining for b-galactosidase (b-gal) in whole or

sectioned hearts of mice crossed onto a Rosa26 LacZ reporter

background (Figures S1B and S1C). EC-specific b-gal expres-

sion was detected only in tamoxifen-treated Cre-ERT mice.

Tamoxifen promotes Cre-mediated excision of the floxed FAK

allele, yielding mice with hemizygous FAK-WT or FAK-KD

expression in ECs (Figure 1A). Phosphospecific blotting of heart

lysates (enriched in ECs) was used to determine changes in FAK
6–157, January 17, 2012 ª2012 Elsevier Inc. 147



Figure 2. FAK-KD Prevents VEGF-Stimulated FAK Activation, FAK Association with VE-Cadherin, and b-Catenin Y142 Phosphorylation

In Vivo

Hearts of tamoxifen-treated FAKfl/WT (FAK-WT) or FAKfl/KD (FAK-KD) mice were analyzed 2 min after VEGF (0.2 mg/kg) or PBS tail vein injections.

(A) VEGF-R2 immunoprecipitation (IP) shows equal phosphotyrosine (pY) content after VEGF administration. Reduced FAK Y397 and Y576 phosphorylation after

VEGF stimulation of FAK-KD compared to FAK-WT mice.

(B) Heart sections were analyzed by combined staining for ECs (CD31, green) and activated FAK (pY576, red). Shown are merged images with FAK activation

occurring within ECs (yellow) upon VEGF stimulation of FAK-WT but not FAK-KD mice. Scale bar represents 20 mm.

(C) Mean correlation of pixel intensities of CD31 to pY576 FAK staining from ten full frame images of experimental groups in (B) (± SEM, ***p < 0.001).

(D) Increased VE-cadherin/FAK association after VEGF stimulation in FAK-WT but not FAK-KD heart lysates.

(E) A VE-cadherin/b-catenin complex is maintained in heart lysates upon VEGF stimulation of FAK-KD but not FAK-WT mice by IP analyses.

(F) FAK-KD blocks basal and VEGF-stimulated b-catenin Y142 but not basal Y654 phosphorylation in heart lysates by anti-pY IP analyses. See also Figure S2.
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activation since FAK-KD is not tagged. Upon tamoxifen treat-

ment, FAKfl/KD mice exhibited reduced FAK Y397 and Y576

phosphorylation compared to FAKfl/WT mice (Figure 1B). In

tamoxifen-treated FAKfl/WT and FAKfl/KD mice, there were no

differences in total FAK, Pyk2, or Pyk2 phosphorylation in heart

lysates (Figure 1B) or blood vessel density, size, or branching

as determined by fluorescent lectin staining (Figure S1D). These

results show that FAK-KD expression in adult mice inhibits FAK

phosphorylation in vivo without gross alterations in vascular

structure.

FAK-KD in ECs Prevents VEGF-Induced Vascular
Permeability
As conditional loss of FAK expression decreases tumor- (Lee

et al., 2010) and VEGF-induced (Weis et al., 2008) vascular

permeability (VP), Cre-ERT-positive FAKfl/WT and FAKfl/KD mice

with or without tamoxifen pretreatment were evaluated for

dermal blood vessel-associated changes in VEGF-induced VP

(Figure 1C). The leak of circulating Evan’s blue dye in the skin

of mice was increased 2-fold by local injection of recombinant

VEGF compared to control PBS injections (Figure 1D). Notably,

tamoxifen-treated FAKfl/KD (FAK-KD) mice exhibited significantly

reduced leak compared to FAKfl/WT (FAK-WT) mice (Figure 1C,
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p < 0.001). Independent experiments revealed a 2-fold greater

VEGF-stimulated leak in tamoxifen-treated FAK-WT compared

to FAK-KD mice (Figure 1E, p < 0.01). These results support

the importance of FAK signalingwithin ECs for VP initiation in vivo

by VEGF.

FAK-KD Prevents VEGF-Stimulated FAK Activation
In Vivo
To determine the molecular basis for FAK-KD effects on VEGF-

induced VP, in vivo signaling assays were performed by immu-

noblotting or staining of hearts harvested after tail vein injection

of VEGF or PBS (Figure 2). Equal VEGF receptor (VEGF-R2) tyro-

sine phosphorylation occurred in FAK-WT and FAK-KD mice

whereas basal and VEGF-stimulated FAK Y397 and Y576 phos-

phorylationwere reduced in FAK-KDmice (Figure 2A). VEGF trig-

gered FAK activation within ECs as detected by costaining

of heart sections with EC-specific (anti-CD31) and pY576 FAK

antibodies (Figures 2B and S2A). Image analyses revealed

a significant increase in overlapping CD31-pY576 FAK staining

in heart tissues upon VEGF administration to FAK-WT mice (Fig-

ure 2C, p < 0.001). In FAK-KD mice, pY576 FAK levels were

low and did not change upon VEGF stimulation (Figures 2B

and 2C). Unexpectedly, neither Src nor Pyk2 phosphorylation
er Inc.



Figure 3. Pharmacological FAK Inhibition Prevents

VEGF-Initiated VP and FAK Modulation of VE-Cad-

herin-b-Catenin Complex Formation and Phos-

phorylation In Vivo

(A) Quantification of dermal VP after VEGF (400 ng) or PBS

injection (two sites each per mouse) with or without

pretreatment with FAK inhibitor (PF271, 30 mg/kg). Evan’s

Blue dye leakage is plotted as a VEGF/PBS ratio. Box-

whisker plots show the distribution of the data: black

square, mean; bottom line, 25th percentile; middle line,

median; top line, 75th percentile; and whiskers, 5th and

95th percentiles (*p < 0.05).

(B) Representative images of dye leakage. VEGF or PBS

injection sites are circled. Scale bar represents 0.5 cm.

(C–E) Hearts of vehicle or FAK inhibitor (FAK-I) pretreated

mice were analyzed 2 min after VEGF (0.2 mg/kg) or PBS

tail vein injections by IP and immunoblotting. (C) FAK-I

blocks FAK Y397 phosphorylation but not FAK expres-

sion. (D) VEGF-stimulated FAK/VE-cadherin association

and VE-cadherin/b-catenin dissociation is prevented by

FAK-I administration as determined by co-IP analyses. (E)

FAK-I treated mice exhibit loss of b-catenin Y142 phos-

phorylation by anti-pY IP analyses. Increased basal but

prevention of VEGF-stimulated b-catenin Y654 phos-

phorylation by FAK-I. See also Figure S3.
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were inhibited by FAK-KD expression in ECs (Figure S2B). Addi-

tionally, VEGF promoted elevated FAK Y861 phosphorylation

in both FAK-WT and FAK-KD mice (Figures S2B–S2E). FAK

Y397 is an autophosphorylation site, FAK Y576 is within the

kinase domain activation loop, and FAK Y861 is in the C-terminal

domain and a substrate for Src and other PTKs. Together, these

results show that the FAK-KD mutation selectively prevents FAK

activation within ECs associated with the inhibition of FAK Y397

and FAK Y576 but not FAK Y861 phosphorylation.

FAK-KD Blocks VEGF-Stimulated Regulation of AJ
Proteins In Vivo
VEGF-induced VP results in part by rapid tyrosine phosphoryla-

tion of AJ proteins triggering disassembly (Dejana et al., 2008),

but a direct role for FAK in this process has not been appreci-

ated. We find that VEGF promoted a FAK/VE-cadherin complex

as detected in FAK-WT but not FAK-KD in mouse heart lysates

(Figure 2D). Correspondingly, VEGF triggered VE-cadherin/
Developmental Cell 22, 14
b-catenin dissociation in FAK-WT but not FAK-

KD mice (Figure 2E). FAK-KD mice showed

reduced basal and VEGF-stimulated levels of

b-catenin Y142 phosphorylation (Figure 2F). In

contrast, FAK-KD mice showed normal basal

levels of b-catenin phosphorylation on Y654

but this did not increased in response to VEGF

as detected in FAK-WT mice (Figure 2F).

To assess b-catenin as a putative FAK

substrate, in vitro kinase assays showed that

recombinant FAK could readily phosphorylate

b-catenin from human umbilical cord endothe-

lial cells (HUVECs) and recombinant b-catenin

was equally phosphorylated by FAK or Src

(Figures S3A and S3B). Mass spectrometry

analyses revealed that FAK phosphorylated
b-catenin at Y142 whereas Src phosphorylated b-catenin at

Y654 (Figures S3C and S3D). Previous studies established that

phosphorylation of b-catenin leads to disruption of cell adhesion:

phosphorylation at Y142 disrupts a-catenin binding (Piedra et al.,

2003) and phosphorylation at Y654 disrupts E-cadherin binding

(Roura et al., 1999). Our results support the hypothesis that

VEGF-stimulated FAK activation triggers FAK recruitment to

a VE-cadherin complex whereby FAK phosphorylation of b-cat-

enin at Y142 enhances junctional disassembly and VP.

Small Molecule FAK Inhibition Prevents VEGF-Initiated
VP In Vivo
Although pharmacological FAK inhibition is linked to the preven-

tion of VEGF-stimulated angiogenesis (Weis et al., 2008), alter-

ations in VP precede angiogenesis. Pretreatment of mice with

a small molecule FAK inhibitor (FAK-I) PF-262,271 (Roberts

et al., 2008) significantly prevented (p < 0.05) VEGF-induced

dermal VP compared to vehicle control (Figures 3A and 3B). In
6–157, January 17, 2012 ª2012 Elsevier Inc. 149
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analyzing heart lysates after tail vein injection of VEGF, FAK-I

blocked FAK Y397 phosphorylation (Figure 3C), FAK/VE-

cadherin association, b-catenin dissociation from VE-cadherin

(Figure 3D), and Y142 b-catenin phosphorylation (Figure 3E).

Mice treated with FAK-I showed increased basal b-catenin

Y654 phosphorylation, but this did not change upon VEGF

addition (Figure 3E). Taken together, both genetic and pharma-

cological results support the importance of FAK activity in the

regulation of VP and b-catenin Y142 phosphorylation in mice.

FAK Inhibition Prevents VEGF-Induced Permeability
In Vitro
Human pulmonary aortic endothelial cells (HPAECs) and

HUVECs grown on Boyden chamber tissue culture inserts will

form a tight cell monolayer that blocks the passage ofmacromol-

ecules. VEGF-induced HUVEC permeability to high molecular

weight dextran was prevented by FAK-I in a dose-dependent

manner (Figure S4, p < 0.001) and FAK-I prevented VEGF-

induced HPAEC paracellular permeability to IgG within 5 and

15 min (Figure 4A, p < 0.001). Notably, FAK-I also increased

basal barrier strengthening within 15 to 30 min (Figure 4A, p <

0.05). These differences in basal and VEGF-stimulated perme-

ability were verified by electrical resistance measurements of

HPAECs (Figure 4B). Biochemically, FAK-I addition did not affect

VEGF-induced VEGF-R2 or Src PTK activation under conditions

where FAK Y397 phosphorylation was inhibited (Figure 4C).

Staining of HUVECs for VE-cadherin revealed gaps in the cell

monolayer after 60 min with VEGF that was prevented in the

presence of FAK-I (Figure 4D).

Consistent with our findings in FAK-KD mouse hearts (Figures

2 and 3), pretreating HUVECs with FAK-I prevented VEGF-

induced FAK/VE-cadherin association, blocked b-catenin Y142

phosphorylation, and inhibited VEGF-induced b-catenin Y654

phosphorylation (Figure 4E). FAK-I prevented VE-cadherin/

b-catenin dissociation upon VEGF addition to confluent HUVECs

(Figure 4F) consistent with the inhibition of paracellular perme-

ability. VEGF is also known to trigger the formation of integrin-

associated focal adhesions and increased cellular tension in

coordination with the disassembly of AJs in culture (Abedi and

Zachary, 1997). Increased paxillin tyrosine phosphorylation is

a marker of focal adhesion formation and VEGF effects on

paxillin phosphorylation were blocked by FAK-I addition (Fig-

ure 4F). Treatment of cells with the myosin IIA inhibitor blebbis-

tatin prevents cellular tension generation, limits focal adhesion

formation, and prevents paxillin tyrosine phosphorylation

(Pasapera et al., 2010). Interestingly, blebbistatin did not affect

VEGF-stimulated FAK/VE-cadherin association or increased

FAK Y397 phosphorylation under conditions where blebbistatin

prevented VEGF-induced paxillin tyrosine phosphorylation

(Figure 4G). These findings show that FAK activation and VE-

cadherin association are separable from VEGF-initiated cyto-

skeletal tension-mediated changes in ECs.

FAK-KD ECs Establish a Barrier but Lack a Permeability
Response to VEGF
Establishment of FAK null ECs is problematic due to growth and

apoptosis defects in culture (Zhao et al., 2010). To study the role

of FAK activity in EC barrier function in vitro, primary heart and

lung ECs were isolated from 4- to 6-week-old mice and treated
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with lentiviral Cre to create hemizygous FAK-WT and FAK-KD

ECs (Figure S5A). These cells exhibited rapid uptake of acety-

lated low-density lipoprotein (Figure S5B) and showed equal

surface expression of EC markers CD31 and ICAM-2 (Fig-

ure S5C). There was no overt difference in actin organization or

VE-cadherin distribution at cell-cell junctions between FAK-WT

and FAK-KD ECs (Figure S5D). Thus, in contrast to problems

associated with FAK null ECs, FAK-KD expression allows for

the growth of ECs in culture.

Although both FAK-WT and FAK-KD ECs grow to confluence

and form a nonpermeable barrier to high molecular weight

dextran, only FAK-WT ECs produced vascular leak in response

to VEGF (Figure 5A). In FAK-KD ECs, FAK Y397 was inhibited

despite normal VEGF-induced activation of VEGF-R2 and Src

(Figure 5B). Inhibition of VEGF-initiated cell permeability in

FAK-KD ECs was paralleled by the lack of VEGF-induced FAK/

VE-cadherin association, VE-cadherin/b-catenin dissociation,

and b-catenin Y142 phosphorylation (Figure 5C). The transient

association of FAK and VE-cadherin at 5 and 15 min after VEGF

stimulation was prevented by FAK-I addition (Figure 5D). These

results support an essential role for FAK activity downstream of

VEGF-R2 and Src in the control of paracellular permeability.

Although transfection of cells with mutants of b-catenin can

prevent epithelial junctional formation (Tominaga et al., 2008),

the role of b-catenin tyrosine phosphorylation in regulating

VE-cadherin association remains undetermined. VE-cadherin/

b-catenin association was equivalent in unstimulated HUVECs

expressing His-tagged WT b-catenin versus Y142F or Y654F

nonphosphorylatable b-catenin mutants (Figure 5E). VEGF

stimulation disrupted the VE-cadherin/b-catenin complex in

cells expressing WT b-catenin, but Y142F or Y654F b-catenin

mutants remained associated with VE-cadherin (Figures 5E

and 5F). These results support the importance of Y142 and

Y654 b-catenin phosphorylation in destabilizing VE-cadherin

binding to b-catenin in response to VEGF.

Rapid FAK Localization to AJs in Response to VEGF
VE-cadherin is a transmembrane protein localized to cell-cell

junctions and internalized upon VEGF stimulation to allow break-

down of junctional contacts (Dejana et al., 2008). FAK is a cyto-

plasmic PTKwith an intracellular distribution influenced by integ-

rin and growth factor receptor signals (Mitra et al., 2005). In

confluent and quiescent HUVEC monolayers, FAK exhibits

a cytoplasmic, nuclear, and adhesion site distribution as deter-

mined by confocal microscopy (Figure 6A). FAK staining did

not detectably overlap with VE-cadherin at cell-cell junctions

in quiescent HUVECs. However, VEGF stimulation triggers

increased FAK accumulation at cell-cell junctions within 5 min

that overlaps with VE-cadherin (Figure 6B). Real time imaging

of a green fluorescent protein (GFP) fusion with FAK (GFP-

FAK) revealed rapid accumulation at cell-cell contact sites within

30 to 60 s after VEGF addition (Figure 6C). Together, these anal-

yses show that VEGF triggers FAK localization to cell-cell

contacts and binding to VE-cadherin in the regulation of junc-

tional stability.

Conformation-Regulated Binding of FAK to VE-Cadherin
The molecular mechanisms controlling FAK activation are intri-

cate and involve the release of inhibitory intramolecular FAK
er Inc.



Figure 4. VEGF-Stimulated Paracellular Permeability and Adherens Junction Regulation Are Prevented by Pharmacological FAK-I Addition

to Human ECs

(A) Time course (5–60 min) of VEGF-increased human pulmonary artery endothelial cells (HPAEC) permeability to HRP-conjugated IgG. Inhibition of basal

(*p < 0.05) and VEGF-stimulated (***p < 0.001) permeability by 1 mM PF271 (FAK-I) addition. Data is the mean ± SD of 12 experimental points from two inde-

pendent experiments.

(B) Significant inhibition of VEGF-stimulated change in HPAEC cell index (cell monolayer electrical resistance) at 90 min by 1 mM FAK-I addition (p < 0.0001) as

measured by the Roche xCELLigence system. Values are normalized to DMSO controls and are means ± SD from four independent Xcelligence chambers.

(C) FAK-I blocks FAK (pY397) but not Src (pY416) or VEGF-R2 tyrosine phosphorylation after VEGF addition (50 ng/ml, 5 min) of human umbilical vein endothelial

cells (HUVEC) lysates.

(D) VEGF (50 ng/ml, 60min) addition promotes cellular gaps (arrows) in a HUVECmonolayer that is prevented by FAK-I (1 mM) addition. Shown is anti-VE-cadherin

(green) and actin (phalloidin, red) staining. Scale bar represents 10 mm.

(E) FAK/VE-cadherin association, b-catenin Y142 phosphorylation, but not b-catenin Y654 phosphorylation is blocked by FAK-I addition to HUVECs.

(F) FAK-I prevents VEGF-stimulated VE-cadherin/b-catenin complex dissociation and increased paxillin phosphorylation by IP and immunoblotting analyses.

(G) VEGF-stimulated FAK/VE-cadherin binding and increased FAK Y397 but not paxillin Y31 tyrosine phosphorylation occurs in the presence of the nonmuscle

myosin IIA inhibitor blebbistatin (20 mM). See also Figure S4.

Developmental Cell

FAK Control of Vascular Permeability

Developmental Cell 22, 146–157, January 17, 2012 ª2012 Elsevier Inc. 151



Figure 5. Genetic Inhibition of FAK Prevents VEGF-Stimulated Permeability Independent of Src

(A) FAK-KD ECs establish a barrier to FITC-dextran but lack a permeability response to VEGF. Values are means ± SD from one of two independent experiments

(***p < 0.001).

(B) No differences in VEGF-R2, Pyk2 Y402, and Src Y416 tyrosine phosphorylation upon VEGF (50 ng/ml, 15 min) addition to FAK-WT and FAK-KD ECs by IP and

immunoblotting analyses. FAK-WT but not FAK-KD phosphorylation at Y397 after VEGF addition.

(C) FAK-KD mutation prevents FAK/VE-cadherin association, VE-cadherin/b-catenin dissociation, and b-catenin Y142 phosphorylation after VEGF stimulation.

(D) FAK-I prevents VEGF-stimulated FAK/VE-cadherin association by co-IP analyses.

(E) Mutation of b-catenin Y142 prevents VE-cadherin dissociation after VEGF stimulation. b-catenin constructs were transfected into HUVECs and VE-cadherin

association determined by co-IP analyses.

(F) Percent of VE-cadherin association with His-tagged b-catenin as determined by densitometry. Values are means ± SD from two samples (p < 0.05). See also

Figure S5.
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FERM domain contacts with the FAK kinase region (Frame et al.,

2010). Structural studies show that FAK FERM domain muta-

tions (Y180A, M183A) can prevent this restraint, resulting in

constitutively-active FAK (Lietha et al., 2007). These mutations

were introduced into GFP-FAK-WT and GFP-FAK-KD and

analyzed for effects on VE-cadherin binding in HUVECs (Fig-

ure 7A). As expected, VEGF promoted FAK-WT but not FAK-

KD association with VE-cadherin. FAK FERM domain mutations

(Y180A, M183A) in FAK-WT resulted in increased FAK Y397

phosphorylation and VEGF-independent association with VE-

cadherin (Figure 7A). Notably, the same FAK FERM domain

mutations in FAK-KD did not enhance FAK Y397 phosphoryla-

tion but resulted in VEGF-independent FAK-KD/VE-cadherin

association (Figure 7A). These results support the notion that

FAK is conformationally-activated in response to VEGF and

that FAK-KD is locked in a closed conformation that prevents

VE-cadherin association.

The FAK FERM Domain Binds to VE-Cadherin and
Localizes to Cell-Cell Contacts
Since VEGF stimulation of ECs promotes rapid FAK accumula-

tion at cell-cell contacts and association with VE-cadherin,
152 Developmental Cell 22, 146–157, January 17, 2012 ª2012 Elsevi
analyses were performed to determine if this represents a direct

binding interaction. In vitro translation of various FAK constructs

combined with pull-down assays using a glutathione-S-trans-

ferase fusion protein encompassing the VE-cadherin cyto-

plasmic domain (621–784), revealed direct binding of FAK-WT,

FAK-FERM, but not the FAK C-terminal domain to VE-cadherin

(Figure 7B). Additionally, GFP-FAK FERM expression in HUVECs

formed a VEGF-independent complex with VE-cadherin (Fig-

ure 7C) and FAK-FERM was distributed in the cell nucleus (Lim

et al., 2008) as well as colocalized with VE-cadherin at cell-cell

junctions (Figure 7D). Together, these results support the

conclusion that VEGF stimulation of cells activates FAK in

a conformational manner triggering FAK FERM binding to VE-

cadherin at cell-cell junctions where FAK phosphorylates b-cat-

enin at Y142 to promote junctional disassembly in vitro and

vascular permeability in vivo.

DISCUSSION

During development, there is a complex interplay between

receptors for angiogenic growth factors, integrins, and cadher-

ins in the processes of vasculogenesis and angiogenesis (Hynes,
er Inc.



Figure 6. VEGF-Stimulated Recruitment of FAK to EC Adherens Junctions

(A) Staining for endogenous FAK (green) reveals nuclear, cytoplasmic, and focal adhesion distribution within starved HUVECs without overlap with VE-cadherin

(red) at cell-cell junctions. Scale bar represents 10 mm.

(B) VEGF (50 ng/ml, 5 min) promotes FAK (green) and VE-cadherin (red) colocalization in HUVECs at cell-cell junctions (yellow, merge). Scale bar represents

10 mm. Fluorescence intensity profiles of the indicated boxed region were obtained using ImageJ (v1.43).

(C) Live-cell confocal microscopy (medial focal plane) reveals rapid VEGF-stimulated GFP-FAK accumulation (arrows) at HUVEC cell-cell junctions. Image

montage (�30 to 120 s) before and after VEGF (50 ng/ml) addition. Scale bar represents 10 mm.
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2007). FAK is activated by both growth factors and integrins and

functions as a signaling nexus between these pathways. FAK

knockout (Ilic et al., 2003) or FAK-KD knockin prevent functional

blood vessel formation (Lim et al., 2010a; Zhao et al., 2010).

Because FAK null ECs exhibit increased apoptosis (Braren

et al., 2006; Ilic et al., 2003; Shen et al., 2005) and FAK loss trig-

gers compensatory Pyk2 PTK expression (Lim et al., 2010b;

Weis et al., 2008), it has been difficult to validate and confirm

FAK-specific signaling connections that are relevant in vivo.

Here, we have overcome the FAK-KD embryonic lethal

phenotype by creating an inducible mouse model resulting in

hemizygous WT or FAK-KD expression in ECs. Blocking FAK

activity in ECs prevented VEGF-stimulated vascular permeability

without gross alterations in vessel structure or barrier establish-

ment in vitro.We identified b-catenin Y142 as a substrate for FAK
Developm
and showed that VEGF-stimulated FAK activation promotes FAK

FERM-mediated binding to VE-cadherin at cell-cell junctions,

b-catenin Y142 phosphorylation, VE-cadherin/b-catenin disso-

ciation, and EC junctional breakdown associated with increased

paracellular permeability. We show via mutagenesis that FAK

FERM domain intramolecular restraints prevent FAK-KD and

VE-cadherin association in cells. Although the VEGF-initiated

signal that promotes FAK conformational activation remains

unknown, our results support a model as first proposed by

Frame et al. (2010) whereby FAK FERM interactions function to

promote FAK recruitment to a specific signaling complex (adhe-

rens junctions) and maintenance of an activated FAK state by

FERM-partner (VE-cadherin) binding. In addition to directly con-

necting FAK to the control of adherens junction dynamics, our

findings also support the emerging importance of FAK FERM
ental Cell 22, 146–157, January 17, 2012 ª2012 Elsevier Inc. 153



Figure 7. FAK FERM Mutations Release

Conformational Restraint in FAK and Allow

for Direct FAK FERM Binding to VE-Cad-

herin Cytoplasmic Domain

(A) FAK FERM F2 lobe mutations (Y180A, M183A)

promote VEGF-independent association of both

FAK-WT and FAK-KD with VE-cadherin. The indi-

cated GFP-FAK constructs were transfected in

HUVECs and associations determined by co-IP

analyses in starved or VEGF-stimulated cells. FAK

FERM Y180/183A mutations do not promote

phosphorylation of FAK-KD at Y397.

(B) FAK FERM binds directly to VE-cadherin.

In vitro translated GFP, FAK-WT, FAK-KD, GFP-

FAK FERM, and FAK C-terminal domain were

used in a direct binding assay with glutathione-

S-transferase (GST) or GST-fusions of the VE-

cadherin cytoplasmic domain (621–784). Strepta-

vidin-HRP analyses show the amount of FAK

bound (left) or 10% of input (right). GFP and GFP-

FAK FERM contain a tandem affinity probe tag.

(C) GFP-FAK FERM (1–402) associates with

endogenous VE-cadherin. Co-IP analyses were

performed using antibodies to GFP or VE-cadherin

in adenovirus (Ad) infected HUVECs.

(D) FAK FERM localizes to adherens junctions and

to the nucleus in HUVECs. Cells were analyzed for

VE-cadherin (red) and GFP-FAK-FERM (green)

and the merged image is shown. Inset, enlarged

area (boxed) shows colocalization at cell-cell

junctions (yellow) in the merged image. TO-PRO-3

iodide (642/661) was used as a nuclear marker.

Scale bar represents 10 mm.
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domain linkages in growth factor receptor signaling pathways

(Chen et al., 2011; Plaza-Menacho et al., 2011).

Another notably finding was that alterations in adherens

junction tyrosine phosphorylation by genetic or pharmacolog-

ical FAK inhibition occurred downstream of VEGF receptor or

Src PTK activation in vivo and in vitro. FAK inhibition prevented

b-catenin Y142 phosphorylation and also blocked VEGF-

stimulated b-catenin Y654 phosphorylation. In vitro, b-catenin

Y142 was phosphorylated by FAK whereas Y654 was phos-

phorylated by Src. b-catenin expression is required for EC

junctional formation and forms a linkage between VE-cadherin

and the actin cytoskeleton (Cattelino et al., 2003). Phosphory-

lation of b-catenin at Y142 disrupts a-catenin binding and

connections to actin whereas b-catenin Y654 phosphorylation

regulates binding to cadherins (Lilien and Balsamo, 2005;

Roura et al., 1999). We found that Y142F or Y654F b-catenin

mutations prevent VEGF-stimulated b-catenin dissociation

from VE-cadherin consistent with multiple phosphorylation

site control of adherens junction stability. Moreover, we spec-

ulate that loss of FAK catalytic activity and corresponding

inhibition of FAK Y397 phosphorylation may prevent the forma-

tion of a FAK-Src signaling complex important in regulating

cadherin internalization (Canel et al., 2010). It is possible that

the rapid relocalization of FAK to cell-cell junctions in response

to VEGF, coinciding with FAK Y397 auto-phosphorylation, may

serve as a platform for Src recruitment. As small molecule

inhibitor and mouse knockout studies support Src PTK impor-

tance in VEGF-mediated regulation of adherens junction tyro-

sine phosphorylation (Weis and Cheresh, 2005), it is likely
154 Developmental Cell 22, 146–157, January 17, 2012 ª2012 Elsevi
that combined or sequential actions of FAK and Src act to

control vascular permeability.

Changes in vascular permeability often precede or accom-

pany tumor progression (Weis andCheresh, 2005). Notably, acti-

vated FAK is localized to sites of vascular hyper-permeability

(Hiratsuka et al., 2011) and loss of EC-associated FAK expres-

sion inhibits glioma-associated permeability of the blood-brain

barrier (Lee et al., 2010). Previous studies support the impor-

tance of FAK activity in the regulation of Rho-family GTPase-

associated contractile cell changes needed for barrier perme-

ability and re-strengthening (Quadri, 2011; Thennes and Mehta,

2011). To this end, pharmacological FAK inhibition prevents

VEGF-stimulated paxillin tyrosine phosphorylation, a marker of

focal adhesion formation. However, inhibition of myosin-medi-

ated cell contractility did not affect VEGF-induced FAK associa-

tion with VE-cadherin and increased Y397 FAK phosphorylation

but did prevent VEGF-associated paxillin tyrosine phosphoryla-

tion. Thus, our findings point to distinct roles for FAK activity in

the control of adherens junction tyrosine phosphorylation and

cell contractility, both of which are important in the regulation

of vascular permeability.

In summary, we show that VEGF promotes tension-

independent FAK activation, rapid FAK localization to cell-cell

junctions, binding of the FAK FERM domain to VE-cadherin,

and direct FAK phosphorylation of b-catenin Y142 associated

with VE-cadherin/b-catenin dissociation and EC junctional

breakdown. As genetic or pharmacological FAK inhibition

prevents VEGF-stimulated vascular permeability, these studies

establish the importance of FAK activity in adherens junction
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regulation and support the use of FAK inhibitors in the treatment

of vascular disease.

EXPERIMENTAL PROCEDURES

Mice

Floxed FAK mice (FAKfl/fl) with two loxP sites flanking exon 3 of the FAK gene

(Shen et al., 2005) and containing tamoxifen-inducible Cre-ER(T) driven by the

50 endothelial enhancer of the stem cell leukemia locus (Weis et al., 2008) were

crossed with heterozygous mice containing a FAK KDmutation within exon 18

(FAKKD/WT) (Lim et al., 2010a). FAKfl/KD, FAKfl/WT, FAKfl/KD Cre-ER(T), and

FAKfl/WT Cre-ER(T) progeny were identified by genotyping using PCR as

described (Lim et al., 2010a; Weis et al., 2008). FAKfl/fl Cre-ER(T) mice were

bred onto a Cre reporter strain (B6.129S4-Gt(ROSA)26Sortm1Sor/J) that

contains a loxP-flanked DNA stop sequence preventing LacZ expression

(Jackson Laboratory) to verify the efficacy of tamoxifen-induced Cre. Age-

matched littermates were used for all experiments. At 6 weeks of age,

FAKfl/KD Cre-ER(T) and FAKfl/WT Cre-ER(T) mice were treated with 2mg tamox-

ifen (Sigma) every 2 days (intraperitoneal injection in corn oil) for 2 weeks to

induce EC-specific Cre expression and FAK deletion. Mice were used for

experiments at 10 weeks of age. The UCSD Institutional Animal Care and

Use Committee approved all mouse procedures.

Antibodies and Reagents

Antibodies to Src, VEGF-R2, b-catenin, and phosphospecific b-catenin pY654

were from Santa Cruz Biotechnology. FAK and phosphotyrosine antibodies

were from Millipore. Antibodies to Pyk2, paxillin, CD31, VE-cadherin, and

ICAM-2 were from BD Biosciences. Phosphospecific antibodies (FAK Y397,

FAK Y576, FAK Y861, and Pyk2 Y402) and antibodies to b-galactosidase

were from Life Technologies. Phosphospecific antibodies to Src Y416, b-cat-

enin Y142, and paxillin Y31 were from Cell Signaling Technology, Abcam, and

BioSource, respectively. Antibodies to GFP and to His-tag were from Covance

and QIAGEN. Human VEGF-165 was from Peprotech. PF-262,271 FAK inhib-

itor (FAK-I) was synthesized as described (Roberts et al., 2008). Blebbistatin

was from Enzo Life Sciences. GFP-FAK expressing HUVECs and adenoviral

GFP-FAK FERM (1-402) were created as described (Lim et al., 2008). GST-

VE cadherin (621–784) was generated via PCR and cloned into pGEX4T1

vector for bacterial expression. The GFP fragment from pEGFPC1 was cloned

into pCDNA3.1/hygro TAP (tandem affinity purification) to createGFP-TAP tag.

pEGFP-C1 FAK Y180A/M138A and pEGFP-C1 FAK-KD Y180A/M138A

were created by mutagenesis (QuickChange XL, Agilent Technologies). All

constructs were verified by DNA sequencing.

Vascular Studies

Mice were intravenously injected with Alexa flour 568-labeled GSLI/BSLI

(endothelial specific) lectin (Invitrogen, 20 mg/mouse). After 15 min, mouse

tissues (heart and diaphragm) were dissected, and whole mounts analyzed

by laser scanning confocal microscopy (Nikon C1si, PlanApo 203 N.A.

0.75). A modified Miles assay was used to evaluate VEGF-induced Evan’s

blue dye leak in the skin as described (Eliceiri et al., 1999). Two injection sites

of recombinant VEGF (400 ng) or PBS were analyzed per mouse. FAK-I

(30 mg/kg) solubilized in 30% 2-hydroxypropyl-b-cyclodextrin and 2.5%

dextrose was administered twice-daily (BID) via oral gavage 36 hr prior to initi-

ation of Miles dermal vessel permeability or heart-associated signaling assays.

Signaling

Tamoxifen-treated FAKfl/KD Cre-ER(T) and FAKfl/WT Cre-ER(T) mice were tail

vein injected with VEGF (0.2 mg/kg in 100 ml PBS) or PBS alone and after

2 min, hearts were rapidly excised and either homogenized for protein lysates

(Weis et al., 2004b) or embedded in optimal cutting temperature (OCT, Tissue

Tech) compound and quickly frozen. Confluent HUVECs or mouse ECs were

starved for 6 hr in basal medium, and DMSO or FAK-I were added 1 hr prior

to VEGF addition (50 ng/ml). Transfections were performed with indicated

plasmids using JetPEI for HUVECs (Polyplus Transfection). Total protein

lysates were prepared in Extraction Buffer containing 50 mM HEPES,

pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1%

SDS, 10% glycerol, and protease inhibitors. For immunoprecipitation and

GST binding analyses, lysates were diluted 2-fold in HNTG buffer (50 mM
Developm
HEPES, pH 7.4, 150mMNaCl, 0.1%Triton, 10%glycerol), incubatedwith anti-

bodies (1 mg) or glutathione-agarose beads (Sigma) for 3 hr at 4�C, antibodies
collected with either Protein A or G Plus (Millipore) agarose beads, and beads

washed at 4�C in 1% Triton-only Extraction Buffer, followed by washes with

HNTG buffer, and resolved by SDS-PAGE. Sequential immunoblotting anal-

yses were performed as described (Lim et al., 2010a).

Tissue and Cell Staining

For X-gal staining, hearts were fixed in 0.25% glutaraldehyde and 2% parafor-

maldehyde in wash buffer (PBS with 2 mM MgCl2) for 60 min on ice. After

washing, hearts were incubated overnight at 37�C in PBS with 5 mM potas-

sium ferrocyanide, 5 mM potassium ferricyanide, and 1 mg/mL 5-bromo-4-

chloro-3-indolyl-b-D-galactopyranoside. Frozen heart sections in OCT were

prepared (6 mm, Leica CM1950), fixed in cold acetone (10 min), rehydrated

in PBS containing 0.5% BSA (5 min), and blocked with 1.25% normal goat

serum in PBS (30 min at RT). Samples were incubated with anti-FAK pY576

(1:50), anti-FAK pY861 (1:50), anti-b-galactosidase (1:2,000), and anti-CD31

(1:300) overnight at 4�C followed by Alexa Fluor-488 rat and Alexa Fluor-594

secondary antibodies (Invitrogen 1:500, 30min at RT). pY861 blocking peptide

was from Santa Cruz Biotechnology.

For cell staining, ECs were grown to confluency on 0.1% gelatin coated

glass coverslips, fixed in 3.7% paraformaldehyde (15 min at RT), permeabi-

lized with 0.1% Triton X-100 (3 min), incubated with anti-VE-cadherin (1:25)

or anti-FAK antibodies (1:50), followed by Alexa Fluor-488 or rhodamine-

labeled goat anti-mouse secondary antibodies (Jackson). Texas Red phalloi-

din (Invitrogen) and Hoechst 33342 (10 mg/ml, Invitrogen) were used visualize

actin and cell nuclei, respectively. Confluent and starved GFP-FAK expressing

HUVECs on glass bottom dishes (MatTek) were imaged every 10 s in a humid-

ified, 5% CO2 environment at 37�C prior to and immediately after 50 ng/ml

VEGF addition. Imaging was performed using an Olympus IX81 spinning

disk confocal microscope with zero drift compensation focus control, 603

PlanApo (N.A. 1.42), and Hamamatsu OrcaER camera controlled by Slidebook

software. Files were cropped, pseudo-colored, and contrast-adjusted using

Adobe Photoshop. Degree of association exhibited by patterns of fluores-

cence was measured on a pixel-by-pixel basis and calculated as a Pearson’s

correlation coefficient using the ‘‘measure correlations’’ module (Cell Profiler,

v2.0, Broad Institute). A value of 0 indicates no overlap and a value of 1 corre-

sponds to 100% colocalization.

Paracellular Permeability

Cells (1 3 105) were plated in Transwell chambers (Costar; 6.5 mm diameter,

0.4 mm pore size), grown for 3 days, and serum starved for 4 hr. HRP-conju-

gated IgG (4 mg/ml) and VEGF (100 ng/ml) were added to the upper chamber.

At 0, 5, 15, 30, and 60min, 10 ml of media was removed from the lower chamber

and the amount of horseradish peroxidase-conjugated IgG determined by

ELISA (Ultra TMB, Thermo) and 450 nm fluorescence measured by a plate

reader (TECAN). Transwell assays were also performed with FITC-labeled

dextran (2 million daltons). Control cells received serum and no VEGF.

Maximum values were determined without cells. Where indicated, FAK-I

was added to the upper chamber 1 hr prior to VEGF. For xCELLigence (Roche,

RTCA DP Station) electrical conductivity assays, HPAECs were grown to

confluence on gelatin-coated 16-well E-plates, starved for 2 hr prior to FAK

inhibitor or VEGF addition, and values normalized to DMSO addition. Values

represent the mean of triplicate points for all experiments.

b-Catenin Phosphorylation by FAK and Src

b-catenin was immunoprecipitated from starved HUVECs and incubated in

kinase buffer (20 mM Tris HCl, pH 7.5, 200 mM NaCl, 0.5 mM Na3VO4,

25 mM MgCl2, 5 mM MnCl2, 1 mM EDTA, 5 mM b-mercaptoethanol, and

200 mM ATP) in the presence or absence of recombinant FAK kinase domain

(Wu et al., 2008) for 15 min at 32�C. Recombinant b-catenin (2 mg, Abnova)

was phosphorylated in vitro by addition of recombinant FAK kinase domain

or full-length His-tagged Src as purified from baculovirus (Wu et al., 2008).

b-catenin was eluted from poly-acrylamide gels, digested by trypsin and endo-

proteinase GluC, and peptides were analyzed by LC-MS/MS using a QSTAR-

Elite hybrid mass spectrometer (Applied Biosystems). Peptide identifications

weremade using paragon algorithm executed in Protein Pilot 2.0 (Life Technol-

ogies) and MASCOT (Matrix Science) at the UCSD Core Proteomic facility.
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EC Isolation and Culture

Primary mouse heart and lung ECs were isolated from 4- to 6-week-old mice.

Early passage cells were immortalized by retroviral large T-antigen (Addgene)

expression and puromycin selection. Lentiviral Cre recombinase (Allele

Biotech) was used to inactivate floxed FAK as described (Lim et al., 2010b).

For floxed exon 3, a 1.5 Kb PCR product is WT, 1.6 KB is floxed, and Cre dele-

tion results in a 550 bp PCR product. For exon 18 within the FAK kinase

domain, a 550 bp PCR product is WT and 550 plus 600 bp products denote

FAK KD. EC phenotype was verified by 1,10-dioctadecyl-3,3,30,30-tetramethy-

lindocarbocyanine perchlorate-acetylated-low density lipoprotein (Dil-Ac-

LDL) uptake (10 mg/ml, for 4 hr) and evaluated for fluorescence. CD31 and

ICAM-2 flow cytometry were performed using FITC-conjugated rat anti-mouse

CD31 (1:100) and biotinylated rat anti-mouse ICAM-2 (1:100). APC-conjugated

streptavidin (1:100, Invitrogen) was used to detect biotinylated ICAM-2 anti-

body and cells were analyzed using a FACScalibur. HUVECs and HPAECs

were from Lonza and propagated as described (Weis et al., 2008). Experi-

ments used cells passage <8.

In Vitro Translation and Binding

FAK constructs (prey) in pCDNA3.1 (1 mg) were in vitro translated in the pres-

ence of biotin-lysine (TNT System, Promega) and diluted 50-fold into Binding

Buffer (50 mM HEPES pH7.4, 150 mM NaCl, 1% Triton X-100). Bait protein

GST or GST VE-cadherin (621–784) were expressed in bacteria, purified, pre-

bound to glutathione-agarose beads, and 10 mg incubated with in vitro trans-

lated constructs for 2 hr at 4�C. Beads were washed three times in Binding

Buffer, resolved by SDS-PAGE, transferred to PVDF membranes whereby

the bait protein was detected by Coomassie staining and the bound prey

detected by streptavidin-HRP immunoblotting.

Statistics

Differences between groups were determined using one-way ANOVA with

Tukey post hoc. Differences between pairs of data were determined using

an unpaired two-tailed Student’s t test. Analyses were performed using

GraphPad Prism (v5.0b).
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