Bilinear Forms and (Hyper-) Determinants

Giandomenico Boffi*
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy

Received July 3, 1994

1. INTRODUCTION

useful in the study of the hyperdeterminant of A (in the sense of [4]). One finds among the above multihomogeneous components many instances of the Cayley-Koszul complexes introduced in [4].

It is the purpose of this paper to describe (with different degrees of completeness) the homology of \mathbf{K}_{A}, in the case $n=2$. Such a description is of intrinsic interest and will hopefully lend itself to generalization to the cases $n \geqslant 3$. As far as possible, we work over any ground ring R_{0}, not just over \mathbf{C}.

The article is organized as follows. Section 2 (any R_{0}) contains some preliminaries together with the definition of the complexes $\mathbf{B}(a, b ; A)$. Section 3 shows that over \mathbf{C}, the bihomogeneous components of \mathbf{K}_{A} are expressible in terms of the complexes $\mathbf{B}(a, b ; A)$. Section 4 (any R_{0}) completely describes all $H .(\mathbf{B}(a, b ; A))$, under the assumption that A is a square and invertible matrix. Section 5 derives from Section 4 a description of $H .\left(\mathbf{K}_{A}\right)$ over \mathbf{C}, in case A is invertible, and provides some clues on $H .\left(\mathbf{K}_{A}\right)$, when A is not a square invertible matrix.

Many thanks are due to J. Weyman for several helpful conversations during the preparation of this work.

2. PRELIMINARIES

Let R_{0} be any commutative ring, F_{0} and G_{0} two finitely generated free R_{0}-modules of ranks f and g, respectively, and R the symmetric algebra

[^0]$S\left(F_{0}^{*} \oplus G_{0}^{*}\right) \cong R_{0}\left[x_{i}, y_{j}\right], 1 \leqslant i \leqslant f, 1 \leqslant j \leqslant g$. As usual, we think of $\left\{x_{i}\right\}$ and of $\left\{y_{j}\right\}$ as of bases of F_{0}^{*} and G_{0}^{*}, respectively, dual to some bases $\left\{f_{i}\right\}$ and $\left\{g_{i}\right\}$ of F_{0} and G_{0}, respectively, fixed once and for all.

We denote by A the bilinear form $\sum_{i, j} a_{i j} x_{i} y_{j} \in R_{0}\left[x_{i}, y_{j}\right]$, and by F and G the R-modules $F_{0} \otimes R$ and $G_{0} \otimes R$, respectively. By abuse of notation, $f_{i} \otimes 1$ and $g_{j} \otimes 1$ will still be indicated by f_{i} and g_{j}, respectively.

Let us consider the maps

$$
\psi: R \rightarrow F \oplus G, \quad \text { by } \quad \psi(1)=\sum_{i} x_{i} f_{i}+\sum_{j} y_{j} g_{j}
$$

and

$$
\begin{aligned}
\varphi: F \oplus G \rightarrow R, \quad \text { by } \quad \varphi\left(f_{i}\right)=\frac{\partial A}{\partial x_{i}}, & 1 \leqslant i \leqslant f, \\
\varphi\left(g_{j}\right)=-\frac{\partial A}{\partial y_{j}}, & 1 \leqslant j \leqslant g .
\end{aligned}
$$

We denote by M the cokernel of ψ.
Clearly, the composite $\varphi \circ \psi$ is zero. Therefore the morphism φ factors through M, inducing a map $\bar{\varphi}: M \rightarrow R$.

Definition 1. \mathbf{K}_{A} is the Koszul complex

$$
0 \rightarrow \Lambda^{f+g} M \rightarrow \Lambda^{f+g-1} M \rightarrow \cdots \rightarrow \Lambda^{2} M \rightarrow M \underset{\vec{\varphi}}{\longrightarrow} R .
$$

In order to study $H .\left(\mathbf{K}_{A}\right)$, we make the following preparations.
For each $k \in\{1, \ldots, f+g\}$, consider the complex $\boldsymbol{\Lambda}^{k} \psi$, that is the Schur complex $\mathbf{L}_{\lambda}(\psi)$ (cf. [2]) with $\lambda=(k)$. Because of [2], Theorem V.1.17, $\boldsymbol{\Lambda}^{k} \psi$ is acyclic. But since ψ provides a finite presentation of M, [2], Proposition V.2.2, tells us that $\Lambda^{k} \psi$ is in fact a resolution of $\Lambda^{k} M$. We wish to build a double complex \mathbf{D} of the kind

$$
\begin{equation*}
0 \rightarrow \boldsymbol{\Lambda}^{f+g} \psi \rightarrow \boldsymbol{\Lambda}^{f+g-1} \psi \rightarrow \cdots \rightarrow \boldsymbol{\Lambda}^{2} \psi \rightarrow \psi \rightarrow R \tag{1}
\end{equation*}
$$

where R is thought of as a complex concentrated in degree 0 . It is easy to check that suitable arrows in (1) can be provided by truncations of the Koszul complex

$$
0 \rightarrow \Lambda^{f+g}(F \oplus G) \rightarrow \cdots \rightarrow \Lambda^{2}(F \oplus G) \longrightarrow F \oplus G \underset{\varphi}{\longrightarrow} R .
$$

Explicitly, the double complex D looks like

For later reference, we stipulate that rows are numbered from top to bottom, the row index is u, and the top row corresponds to $u=0$. As for columns, they are numbered right to left, the column index is v, and the rightmost column corresponds to $v=0$.

The idea we have in mind is to somehow study the bihomogeneous components of \mathbf{K}_{A} in terms of those of \mathbf{D}.

One more ingredient is necessary. For every pair of nonnegative integers a and b, we define a complex $\mathbf{B}(a, b ; A)$ of R_{0}-modules in the following manner.

For every $v=0,1, \ldots, \quad(\mathbf{B}(a, b ; A))_{v}=\left(L_{\mu^{\prime}(v)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)\right)_{a+f-v, b+g-v}$, where the righthand side of the equality stands for the part of the Schur functor $L_{\mu^{\prime}(v)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)$ having F_{0}^{*}-content $a+f-v$ and G_{0}^{*}-content $b+g-v$, and $\mu^{\prime}(v)$ is the conjugate partition of the hook $(a+b+1-v$, $1^{f+g-1-v}$). We agree that when both $a+b+1-v$ and $f+g-1-v$ are 0 , $(\mathbf{B}(a, b ; A))_{v}=0$. (The only case of this kind with $a+f-v \geqslant 0$ and $b+g-v \geqslant 0$ corresponds to $a=g-1$ and $b=f-1$.)

As for the nonzero boundary morphisms, for each $v=f+g-1$, $f+g-2, \ldots, \partial_{v}:(\mathbf{B}(a, b ; A))_{v} \rightarrow(\mathbf{B}(a, b ; A))_{v-1}$ is induced by $\widetilde{\partial_{v}}: \Lambda_{\mu^{\prime}(v)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)$ $\rightarrow \Lambda_{\mu^{\prime}(v-1)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)$ such that

$$
\begin{aligned}
\tilde{\partial_{v}}\left(c_{1} \otimes\right. & \left.\cdots \otimes c_{a+b+1-v}\right) \\
= & (-1)^{v-1} \sum_{i, j} a_{i j}\left(x_{i} \wedge c_{1} \otimes c_{2} \otimes \cdots \otimes c_{a+b+1-v} \otimes y_{j}\right. \\
& \left.-y_{j} \wedge c_{1} \otimes c_{2} \otimes \cdots \otimes c_{a+b+1-v} \otimes x_{i}\right) .
\end{aligned}
$$

(For notations and properties of Schur functors, cf. [2], Chapter II.)

One should remark that when $R_{0}=\mathbf{C}$, if $a \geqslant g-1$ and $b \geqslant f-1$, and $(a-g+1, b-f+1) \neq(0,0)$, then $\mathbf{B}(a, b ; A)$ coincides with the CayleyKoszul complex $C \cdot\left(m_{1}, m_{2} ; A\right)$ of [4], where $m_{1}=a-(g-1)$ and $m_{2}=b-(f-1)$ (their term $C^{p}\left(m_{1}, m_{2} ; A\right)$ corresponds to our $\left.(\mathbf{B}(a, b ; A))_{f+g-1-p}\right)$.

3. THE BIHOMOGENEOUS COMPONENTS OF \mathbf{K}_{A}

Let $\mathbf{D}(a, b)$ denote the bihomogeneous component of \mathbf{D} of bidegree $(a, b), a \geqslant 0$ and $b \geqslant 0$. In this section, we prove the following result.

Proposition 2. Assume that R_{0} is a field of characteristic zero. Then for all pairs of nonnegative integers a and b, the complex induced by $\mathbf{D}(a, b)$ on the 0 th homology modules of its columns precisely coincides with $\mathbf{B}(a, b ; A)$, except for the following case: when $a=g$ and $b=f$, the complex obtained is $0 \rightarrow R_{0} \rightarrow{ }_{\chi} \mathbf{B}(a, b ; A)$, with R_{0} in degree $v=f+g$ and $\chi=0$.

Proof. Since $R=S\left(F_{0}^{*} \oplus G_{0}^{*}\right) \cong \sum_{a \geqslant 0, b \geqslant 0}\left(S_{a} F_{0}^{*} \otimes S_{b} G_{0}^{*}\right)$, for every fixed nonnegative a and b we can construct $\mathbf{D}(a, b)$ starting from $S_{a} F_{0}^{*} \otimes S_{b} G_{0}^{*}$, which is in coordinates $(u, v)=(0,0)$. What we find in generic position (u, v) is

$$
\sum_{s+t=v-u}\left(\Lambda^{s} F_{0} \otimes \Lambda^{t} G_{0}\right) \otimes\left(S_{a-t-u} F_{0}^{*} \otimes S_{b-s-u} G_{0}^{*}\right)
$$

(Notice that $v-u \geqslant 0$ since \mathbf{D} is triangular.)
One should remark that we are using $\Lambda^{k}(F \oplus G)=\Lambda^{k}\left(F_{0} \oplus G_{0}\right) \otimes_{R_{0}} R$ together with $\Lambda^{k}\left(F_{0} \oplus G_{0}\right) \cong \sum_{s+t=k} \Lambda^{s} F_{0} \otimes_{R_{0}} \Lambda^{t} G_{0}$.

Now, keeping in mind the filtration of $L_{\mu^{\prime}(v)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)$ described in [2], Theorem II.4.11, and the usual identifications $\Lambda^{s} F_{0} \cong \Lambda^{f-s} F_{0}^{*}$ and $\Lambda^{t} G_{0} \cong \Lambda^{g-t} G_{0}^{*}$, one can check that the boundary maps of the complex induced by $\mathbf{D}(a, b)$ on the 0 th homology modules do coincide with those of $\mathbf{B}(a, b ; A)$, and with χ when appropriate.

Thus the real point of the proof is showing that in bidegree (a, b), $H_{0}\left(\boldsymbol{\Lambda}^{v} \psi\right)$ yields $(\mathbf{B}(a, b ; A))_{v}$. Since R_{0} is a field of characteristic zero, we may assume that all the terms of \mathbf{D} and of each $\mathbf{B}(a, b ; A)$ are direct sums of irreducible $G L\left(F_{0}\right) \times G L\left(G_{0}\right)$-representations. Then for each v, it suffices to show that the irreducibles of $\sum_{s+t=v}\left(\Lambda^{s} F_{0} \otimes \Lambda^{t} G_{0}\right) \otimes$ $\left(S_{a-t} F_{0}^{*} \otimes S_{b-s} G_{0}^{*}\right)$, which are not canceled by those occurring in $\Lambda^{v-1}(F \oplus G)$, are precisely those belonging to $(\mathbf{B}(a, b ; A))_{v}$, and to the isolated R_{0} when appropriate.

Now Lemma 3 below states that when $v \leqslant f+g-1, H_{0}\left(\boldsymbol{\Lambda}^{v} \psi\right)$ always yields $(\mathbf{B}(a, b ; A))_{v}$.

In Lemma 4 below, one reads that when $v=f+g, H_{0}\left(\boldsymbol{\Lambda}^{v} \psi\right)$ yields 0 , except for $a=g$ and $b=f$, in which case one gets $S_{0} F_{0}^{*} \otimes S_{0} G_{0}^{*}=R_{0}$. (Recall that $(\mathbf{B}(a, b ; A))_{f+g}=0$ always.)

So the proof of the proposition is complete, once we prove the two lemmas.

Lemma 3. When $v \leqslant f+g-1, H_{0}\left(\boldsymbol{\Lambda}^{v} \psi\right)$ yields $(\mathbf{B}(a, b ; A))_{v}$ in every bidegree (a, b).

Proof. Let

$$
\left(L_{\left(f-s, 1^{a-t}\right)} F_{0}^{*} \oplus L_{\left(f-s+1,1^{a-t-1}\right)} F_{0}^{*}\right) \otimes S_{b-s} G_{0}^{*} \otimes \Lambda^{g-t} G_{0}^{*}
$$

be abbreviated by

$$
\left[\left(f-s, 1^{a-t}\right) \oplus\left(f-s+1,1^{a-t-1}\right) \|\left(1^{b-s}\right) \otimes(g-t)\right] .
$$

Recalling $\Lambda^{s} F_{0} \cong \Lambda^{f-s} F_{0}^{*}, \Lambda^{t} G_{0} \cong \Lambda^{g-t} G_{0}^{*}$, and Pieri formula, one sees that for every bidegree (a, b), the acyclic complex $\boldsymbol{\Lambda}^{v} \psi$ looks as follows:

$$
\begin{aligned}
& {\left[\left(f-v, 1^{a}\right) \oplus \underline{\left(f-v+1,1^{a-1}\right)} \|\left(1^{b-v}\right) \otimes(g)\right] \quad(v+1 \text { terms })} \\
& \oplus\left[\left(f-v+1,1^{a-1}\right) \oplus \underline{\left(f-v+2,1^{a-2}\right)} \|\left(1^{b-v+1}\right) \otimes(g-1)\right] \\
& \oplus \ldots \ldots \oplus\left[\left(f-2,1^{a-v+2}\right) \oplus \underline{\left(f-1,1^{a-v+1}\right)} \|\left(1^{b-2}\right) \otimes(g-v+2)\right] \\
& \oplus\left[\left(f-1,1^{a-v+1}\right) \oplus \underline{\left(f, 1^{a-v}\right)} \|\left(1^{b-1}\right) \otimes(g-v+1)\right] \\
& \oplus[\left(f, 1^{a-v}\right) \oplus \underbrace{\left(f+1,1^{a-v-1}\right)}_{0} \|\left(1^{b}\right) \otimes(g-v)] \\
& \uparrow \\
& {[\underbrace{[\left(f-v+1,1^{a-1}\right) \oplus(\underbrace{\left(f-v+2,1^{a-2}\right)} \|\left(1^{b-v}\right) \otimes(g)] \quad(v \text { terms })}} \\
& \oplus[\underbrace{\left(f-v+2,1^{a-2}\right) \oplus \underbrace{\left(f-v+3,1^{a-3}\right.})} \|\left(1^{b-v+1}\right) \otimes(g-1)] \\
& \oplus \ldots \ldots \oplus[\underbrace{\left(f-1,1^{a-v+1}\right) \oplus\left(f, 1^{a-v}\right)} \|\left(1^{b-2}\right) \otimes(g-v+2)] \\
& \oplus[\underbrace{\left(f, 1^{a-v}\right) \oplus \underbrace{\left(f+1,1^{a-v-1}\right) \|\left(1^{b-1}\right)} \otimes(g-v+1)]}
\end{aligned}
$$

$[\overbrace{\left(f-v+2,1^{a-2}\right)}^{\left(f\left(f-v+3,1^{a-3}\right) \|\left(1^{b-v}\right) \otimes(g)\right] \quad \quad(v-1 \text { terms })}$
$\oplus[\overbrace{\left(f-v+3,1^{a-3}\right)}^{\left(f\left(f-v+4,1^{a-4}\right) \|\left(1^{b-v+1}\right) \otimes(g-1)\right]}$
$\oplus \ldots \ldots \oplus[\underbrace{\left(f, 1^{a-v}\right)}_{0} \oplus \underbrace{\left(f+1,1^{a-v-1}\right)} \|\left(1^{b-2}\right) \otimes(g-v+2)]$

Notice that we have underlined the summands which cancel out.
Again recalling the filtration of [2], Theorem II.4.11, one sees that the summands which survive in the top summation add up precisely to $(\mathbf{B}(a, b ; A))_{v}$, as required.

One should remark that when $v=a+f$, no F_{0}^{*} occurs in $\boldsymbol{\Lambda}^{v} \psi$, so that the above does not strictly apply. But it is easy to check that a similar pattern still holds, and the statement is true.

Lemma 4. When $v=f+g, H_{0}\left(\boldsymbol{\Lambda}^{v} \psi\right)$ is equal to a copy of R_{0}, occurring in bidegree $(a, b)=(g, f)$.

Proof. When either $a<g$ or $b<f, \Lambda^{f+g} \psi$ is identically zero in bidegree (a, b), for one finds in degree u the term

$$
\begin{aligned}
& \quad \sum_{s+t=f+g-u}\left(\Lambda^{s} F_{0} \otimes \Lambda^{t} G_{0}\right) \otimes\left(S_{a-t-u} F_{0}^{*} \otimes S_{b-s-u} G_{0}^{*}\right) \\
& \quad=\sum_{i+j=u}\left(\Lambda^{f-i} F_{0} \otimes \Lambda^{g-j} G_{0}\right) \otimes\left(S_{a-g+j-u} F_{0}^{*} \otimes S_{b-f+i-u} G_{0}^{*}\right) .
\end{aligned}
$$

When $(a, b)=(g, f), \Lambda^{f+g} \psi$ is concentrated in degree $u=0$, and equals $S_{0} F_{0}^{*} \otimes S_{0} G_{0}^{*}=R_{0}$.

When $a \geqslant g, b \geqslant f$, and $(a, b) \neq(g, f)$, the complex $\boldsymbol{\Lambda}^{f+g} \psi$ in bidegree (a, b) looks like

$$
\begin{aligned}
& [\underbrace{\left(0,1^{a-g}\right.}_{0}) \oplus \underline{\left(1,1^{a-g-1}\right)} \|\left(1^{b-f}\right) \otimes(0)] \\
& \uparrow \\
& [\underbrace{\left(0,1^{a-g}\right.}_{0}) \oplus \underbrace{\left(1,1^{a-g-1}\right)} \|\left(1^{b-f-1}\right) \otimes(1)] \\
& \quad \oplus\left[\underline{\left(1,1^{a-g-1}\right) \oplus\left(2,1^{a-g-2}\right)} \|\left(1^{b-f}\right) \otimes(0)\right]
\end{aligned}
$$

(notations as in the proof of Lemma 3), and $H_{0}\left(\mathbf{\Lambda}^{f+g} \psi\right)$ turns out to be zero in the indicated bidegrees.

Also in this proof, the case $v=a+f$ is not covered by the above. But one can easily make the necessary adjustments.

4. DISASSEMBLING THE COMPLEXES B $(a, b ; A)$

Proposition 2 has reduced the study of the homology of \mathbf{K}_{A} to that of $H .(\mathbf{B}(a, b ; A)), a \geqslant 0$ and $b \geqslant 0$, provided R_{0} is a field of characteristic zero. We discuss $H .(\boldsymbol{B}(a, b ; A))$ partly in this section and partly in the next one. We point out that the contents of this section are valid over every ground $\operatorname{ring} R_{0}$.

Theorem 5. If $f=g$ and the matrix $\left(a_{i j}\right)$ is invertible, then $\mathbf{B}(a, b ; A)$ is always exact, except for the pairs $(a, b)=(h, h)$, where $0 \leqslant h \leqslant f-1$. When $h \in\{0,1, \ldots, f-1\}, H .(\mathbf{B}(h, h ; A))$ is equal to R_{0} in (top) degree $v=2 h$.

Proof. We begin by filtering $\mathbf{B}(a, b ; A), a \geqslant b$, in the following way:

$$
\begin{aligned}
\mathbf{0} & \subseteq \mathbf{X}_{0}(a, b ; A) \subseteq \mathbf{X}_{1}(a, b ; A) \subseteq \cdots \subseteq \mathbf{X}_{t}(a, b ; A) \\
& \subseteq \cdots \subseteq \mathbf{X}_{f-1}(a, b ; A)=\mathbf{B}(a, b ; A)
\end{aligned}
$$

recalling the filtration of $(\mathbf{B}(a, b ; A))_{v}$ given in [2], Theorem II.4.11, by definition $\left(\mathbf{X}_{t}(a, b ; A)\right)_{v}$ is spanned by all tableaux of $(\mathbf{B}(a, b ; A))_{v}$ whose F_{0}^{*}-part has first row of length $\geqslant f-t$. Clearly, the boundary morphism of $\mathbf{B}(a, b ; A)$ is compatible with this definition. And the conditions $f=g$ and $a \geqslant b$ rule out the possibility that $\mathbf{B}(a, b ; A)$ may contain tableaux with no F_{0}^{*}-part.

We denote $\mathbf{X}_{t}(a, b ; A) / \mathbf{X}_{t-1}(a, b ; A)$ by $\mathbf{Q}_{t}(a, b ; A)$ (assuming that $\left.\mathbf{X}_{-1}(a, b ; A)=\mathbf{0}\right)$. Notice that $\mathbf{Q}_{t}(a, b ; A)=\mathbf{0}$, whenever $t \geqslant b+1$.

Explicitly, a nonzero $\mathbf{Q}_{t}(a, b ; A)$ looks like

$$
\begin{aligned}
0 & \rightarrow\left[\left(f-t, 1^{a+t+1-f-g}\right) \|\left(1^{b-t}\right) \otimes(1+t-f)\right] \\
& \rightarrow\left[\left(f-t, 1^{a+t+2-f-g}\right) \|\left(1^{b-t}\right) \otimes(2+t-f)\right] \\
& \rightarrow \cdots \rightarrow\left[\left(f-t, 1^{a+t+1}\right) \|\left(1^{b-t}\right) \otimes(g-1+t)\right] \\
& \rightarrow\left[\left(f-t, 1^{a+t}\right) \|\left(1^{b-t}\right) \otimes(g+t)\right]
\end{aligned}
$$

where we use the abbreviated notation introduced in the proof of Lemma 3.
Recalling the well known short exact sequence of modules

$$
0 \rightarrow L_{\left(f-t+1,1^{a+t-v-1}\right)} F_{0}^{*} \rightarrow S_{a+t-v} F_{0}^{*} \otimes \Lambda^{f-t} F_{0}^{*} \rightarrow L_{\left(f-t, 1^{a+t-v)}\right.} F_{0}^{*} \rightarrow 0
$$

(cf., e.g., [1], Theorem 3.3), one easily checks that for $b \geqslant 1$, there is a short exact sequence of complexes

$$
\begin{align*}
\mathbf{0} & \rightarrow \mathbf{Q}_{t-1}(a-1, b-1 ; A)(-1) \\
& \rightarrow \Lambda^{f-t} F_{0}^{*} \otimes \mathbf{W}(a, A)(-t) \otimes S_{b-t} G_{0}^{*} \rightarrow \mathbf{Q}_{t}(a, b ; A) \rightarrow \mathbf{0} \tag{2}
\end{align*}
$$

where up to sign, $\mathbf{W}(a, A)$ coincides with the Schur complex $\mathbf{L}_{\left(1^{a}\right)}\left(G_{0} \rightarrow_{\left(a_{i j}\right)} F_{0}^{*}\right)$, which is independent of both b and t. (As usual, given a complex \mathbf{Y} and an integer l, we denote by $\mathbf{Y}(l)$ the complex defined by $\left.(\mathbf{Y}(l))_{i}=\mathbf{Y}_{l+i}.\right)$

By [2], Corollary V.1.15, the assumptions of the theorem imply that $\mathbf{W}(a, A)$ is exact for every $a \geqslant 1$. Hence the short exact sequence (2) says that the exactness of $\mathbf{B}(a, b ; A)$ follows from that of $\mathbf{Q}_{0}(a-t, b-t ; A)=$ $\mathbf{X}_{0}(a-t, b-t ; A), 0 \leqslant t \leqslant \min \{b, f-1\}$.

Since $\mathbf{X}_{0}(a-t, b-t ; A) \cong \Lambda^{f} F_{0}^{*} \otimes \mathbf{W}(a-t ; A) \otimes S_{b} G_{0}^{*}$ and $\mathbf{W}(a-t ; A)$ is exact for $a-t \geqslant 1$, we are through provided $a-t \neq 0$. If $f-1<b$, clearly $t \leqslant f-1<b \leqslant a$ says $a \neq t$. If $f-1 \geqslant b, t \leqslant b \leqslant a$ says that $a=t$ can happen only when $a=b=t$. In fact $\mathbf{X}_{0}(0,0 ; A)$ is the module $\left(L_{(f+g)}\left(F_{0}^{*} \oplus G_{0}^{*}\right)\right)_{f, g}=\Lambda^{f} F_{0}^{*} \otimes \Lambda^{g} G_{0}^{*} \quad$ in degree $v=0$, and obviously $H .\left(\mathbf{X}_{0}(0,0 ; A)\right)=H_{0}\left(\mathbf{X}_{0}(0,0 ; A)\right) \cong R_{0}$.

Summarizing, we have proved the exactness of $\mathbf{B}(a, b ; A)$ whenever $a>b$, as well as the exactness of $\mathbf{B}(h, h ; A)$ whenever $h \geqslant f$.

As for $a<b$, we notice that another filtration of $\mathbf{B}(a, b ; A)$ exists, again given by [2], Theorem II.4.11, but ordering the basis $\left\{x_{i}\right\} \cup\left\{y_{j}\right\}$ of $F_{0}^{*} \oplus G_{0}^{*}$ by putting y_{1}, \ldots, y_{g} before x_{1}, \ldots, x_{f}. Then (2) is replaced by a short exact sequence involving $\mathbf{L}_{\left(1^{b}\right)}\left(F_{0} \rightarrow_{\left(a_{j j}\right)^{T}} G_{0}^{*}\right)$, which is exact since the transpose matrix $\left(a_{i j}\right)^{T}$ is invertible, too. So the argument given for $a>b$ translates into an argument for $b>a$, mutatis mutandis.

In order to complete the proof, we have to discuss $H .(\mathbf{B}(h, h ; A))$, $h=0,1, \ldots, f-1$. Clearly, $\mathbf{B}(0,0 ; A)=\mathbf{X}_{0}(0,0 ; A)$ and we have already seen that $H .(\mathbf{B}(0,0 ; A))=H_{0}(\mathbf{B}(0,0 ; A))=R_{0}$. As for $1 \leqslant h \leqslant f-1$, we examine the (nonzero) quotients $\mathbf{Q}_{h}(h, h ; A), \mathbf{Q}_{h-1}(h, h ; A), \ldots, \mathbf{Q}_{0}(h, h ; A)$. An argument involving (2) shows that the exactness of $\mathbf{Q}_{h-1}(h, h ; A), \ldots$, $\mathbf{Q}_{0}(h, h ; A)$ follows from that of the complexes $\mathbf{X}_{0}(h, h ; A), h \geqslant 1$, which we have already established. But a similar argument for $\mathbf{Q}_{h}(h, h ; A)$ breaks down at the very last step, for $\mathbf{B}(0,0 ; A)$ gets involved. More precisely, the long exact homology sequence induced by (2), and the exactness of $\mathbf{L}_{\left(1^{a}\right)}\left(G_{0} \rightarrow_{\left(a_{j j}\right)} F_{0}^{*}\right)$ say that for every v,

$$
\begin{aligned}
H_{v}\left(\mathbf{Q}_{h}(h, h ; A)\right) & =H_{v-1}\left(\mathbf{Q}_{h-1}(h-1, h-1 ; A)(-1)\right) \\
& =H_{v-2}\left(\mathbf{Q}_{h-1}(h-1, h-1 ; A)\right) .
\end{aligned}
$$

Hence $H_{v}\left(\mathbf{Q}_{h}(h, h, A)\right)=H_{v-2 h}\left(\mathbf{Q}_{0}(0,0 ; A)\right)$ for every $v \in\{2 h, 2 h-1, \ldots, h\}$ (this is the range where $\mathbf{Q}_{h}(h, h ; A)$ is not zero). Whenever $v<2 h$, the righthand side of the last equality is 0 , since $\mathbf{Q}_{0}(0,0 ; A)$ is 0 in negative degrees. But $H_{2 h}\left(\mathbf{Q}_{h}(h, h ; A)\right)=H_{0}\left(\mathbf{Q}_{0}(0,0 ; A)\right)=R_{0}$.

We remark that if under the assumptions of Theorem 5, one sets $E \cong$ $G_{0} \xrightarrow[\left(a_{i j}\right)]{\simeq} F_{0}^{*}$, the definition of the complex $\mathbf{Q}_{t}(a, b ; A)$ shows it to be isomorphic (up to $S_{b-t} G_{0}^{*}$) to the complex $C_{\gamma: q}^{*}$ of [3], with $\gamma=\left(1^{a+f-t}\right.$) and $q=f-t$. It then follows from [3], Corollary 3.4, that $H .\left(\mathbf{Q}_{t}(a, b ; A)\right)$ is concentrated in its leftmost position. Namely,

$$
H .\left(\mathbf{Q}_{t}(a, b ; A)\right)= \begin{cases}0 & \text { if } \quad a \geqslant g+1 \tag{3}\\ H_{a+t}\left(\mathbf{Q}_{t}(a, b ; A)\right) \cong \Lambda^{a+f-t} E & \text { if } \quad a \leqslant g\end{cases}
$$

(note that $\Lambda^{a+f-t} E \neq 0$ only if $a \geqslant t+1$). It is easy to derive from (3) another proof of Theorem 5 (one still needs to exchange the roles of F_{0}^{*} and G_{0}^{*} in the case $a<b$).

The reader will notice that Theorem 5 provides another proof of the following special case of [4], Theorem 2.1 (cf. the remark at the end of Section 2).

Corollary 6. If $\left(a_{i j}\right)$ is a square invertible matrix, it is exact every Cayley-Koszul complex $C^{\cdot}\left(m_{1}, m_{2} ; A\right)$ with m_{1} and m_{2} two nonnegative integers not both 0 .

5. THE HOMOLOGY OF \mathbf{K}_{A}

Throughout this section, we again assume that R_{0} is a field of characteristic zero. Putting together Proposition 2 and Theorem 5, we have the following statement.

Theorem 7. Assume that R_{0} is a field of characteristic zero, that $f=g$, and that $\left(a_{i j}\right)$ is an invertible matrix. Then

$$
H_{i}\left(\mathbf{K}_{A}\right)= \begin{cases}R_{0} & \text { if } i=0,2, \ldots, 2 f-2,2 f \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The bihomogeneous components of \mathbf{K}_{A} are equal to $\mathbf{B}(a, b ; A)$, except for $a=g=f=b$, when one has $0 \rightarrow R_{0} \rightarrow_{\chi} \mathbf{B}(f, f ; A), \chi=0$.
$H .(\mathbf{B}(f, f ; A))=0$ says that $H_{2 f}\left(\mathbf{K}_{A}\right)=R_{0}$.
$H .(\mathbf{B}(h, h ; A))=H_{2 h}(\mathbf{B}(h, h ; A))=R_{0}, 0 \leqslant h \leqslant f-1$, says that $H_{2 f-2}\left(\mathbf{K}_{A}\right)$ $=H_{2 f-4}\left(\mathbf{K}_{A}\right)=\cdots=H_{0}\left(\mathbf{K}_{A}\right)=R_{0}$.

What about $H .\left(\mathbf{K}_{A}\right)$ when $\left(a_{i j}\right)$ is not an invertible matrix (and possibly $f \neq g)$? We immediately have the following partial result.

Proposition 8. For every $\left(a_{i j}\right), H_{f+g}\left(\mathbf{K}_{A}\right)=R_{0}$ and $H_{0}\left(\mathbf{K}_{A}\right)=R / \operatorname{Im}(\varphi)$.
Proof. There is nothing to prove for H_{0}. (Notice that when $\left(a_{i j}\right)$ is invertible, $\operatorname{Im}(\varphi)=\left(x_{1}, \ldots, x_{f}, y_{1}, \ldots, y_{g}\right)$, so that $R / \operatorname{Im}(\varphi)=R_{0}$.)

As for H_{f+g}, given the upper lefthand corner of \mathbf{D} :

easy calculations show that $\operatorname{Im}(\eta) \subseteq \operatorname{Im}(\theta)$ and that $\zeta=\psi^{*}$; since $\operatorname{Im}\left(\psi^{*}\right)=$ $\left(x_{1}, \ldots, x_{f}, y_{1}, \ldots, y_{g}\right)$, it follows that $H_{f+g}\left(\mathbf{K}_{A}\right)=R_{0}$.

One should remark that the proof of Proposition 8 is in fact independent of the assumption that R_{0} is a field of characteristic zero.

Turning now to $H_{i}, 1 \leqslant i \leqslant f+g-1$, we are unable to fully describe the situation. But the following statement indicates that the simple pattern of Theorem 7 no longer holds. (Such a pattern is in fact equivalent to ($a_{i j}$) being a square invertible matrix.)

Proposition 9. $H_{1}\left(\mathbf{K}_{A}\right)=0$ if and only if $\left(a_{i j}\right)$ is a square invertible matrix.

Proof. If $H_{1}\left(\mathbf{K}_{A}\right)=0$, it follows that $H_{1}(\mathbf{B}(1,0 ; A))=0=H_{1}(\mathbf{B}(0,1 ; A))$. $\mathbf{B}(1,0 ; A)$ is simply $G_{0} \rightarrow_{\left(a_{i j}\right)} F_{0}^{*}$, so that $\operatorname{Ker}\left(a_{i j}\right)=0$. Up to sign, $\mathbf{B}(0,1 ; A)$ is $F_{0} \rightarrow_{\left(a_{i j}\right)^{T}} G_{0}^{*}$, so that $\operatorname{Ker}\left(a_{i j}\right)^{T}=0$, i.e., $\left(a_{i j}\right)$ onto.

We have a parallel result concerning $H_{f+g-1}\left(\mathbf{K}_{A}\right)$.
Proposition 10. $\quad H_{f+g-1}\left(\mathbf{K}_{A}\right)=0$ if and only if $\left(a_{i j}\right) \neq 0$.
Proof. If $\left(a_{i j}\right)=0$, clearly

$$
H_{f+g-1}\left(\mathbf{K}_{A}\right)=\Lambda^{f+g-1} M=\sum_{\substack{a>c \\(a, b) \neq-1, b>f-1, f-1)}} S_{a-g+1} F_{0}^{*} \otimes S_{b-f+1} G_{0}^{*} \neq 0 .
$$

Let us assume now that $\left(a_{i j}\right) \neq 0$, and prove that ∂_{f+g-1} is injective for every (a, b) such that $a \geqslant g-1, b \geqslant f-1$, and $(a, b) \neq(g-1, f-1)$.

Let $m=a-g+1$ and $n=b-f+1$. Up to sign, ∂_{f+g-1} acts on a standard tableau as follows:

$\left(i_{1} \leqslant \cdots \leqslant i_{m}, j_{1} \leqslant \cdots \leqslant j_{n}\right.$, and the F_{0}^{*}-indices come before the G_{0}^{*}-ones $)$.
If $i>i_{1}$, the straightening law says that the above summation is equal to

$$
\left.\begin{array}{cccccc}
& & & i_{1} & j & \\
& & i_{1} & i & \\
& & & & & \vdots \\
& & & & \\
& & & & i_{m} & \\
& a_{i j} & (& & & - \\
& & j_{1} & &)
\end{array}\right) ;
$$

but if $i \leqslant i_{1}$ (or $m=0$), then it equals

$$
\begin{array}{ccccc}
& & & i & j \\
& & & & \\
& & & i_{1} & \\
& & & \\
\Sigma_{i, j} & a_{i j} & (& & \\
& & & & \\
& & & i_{m} & \\
& & & & \\
& & & j_{1} & \\
& & & & \\
& & & j_{n} & \\
& & & & \\
& & & &
\end{array}
$$

Let us order the standard bases involved, according to the lexicographic order of the sequences $\left(i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n}\right)$ and of the sequences $\left(i_{1}, \ldots, i, \ldots, i_{m}, j_{1}, \ldots, j_{n}, j\right),\left(i_{1}, \ldots, i_{m}, j_{1}, \ldots, j, \ldots, j_{n}, i\right)$, and $\left(i, i_{1}, \ldots, i_{m}, j_{1}\right.$, $\left.\ldots, j_{n}, j\right)$, but with the proviso that those of type $\left(i_{1}, \ldots, i_{m}, j_{1}, \ldots, j, \ldots, j_{n}, i\right)$ always come after those of the other two kinds. Then the matrix associated to ∂_{f+g-1} looks like

$$
\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
*_{21} & 0 & 0 \\
\vdots & \vdots & \vdots \\
*_{g 1} & 0 & 0 \\
*_{(g+1) 1} & a_{11} & 0 \\
{ }_{(g+2) 1} & * & 0 \\
\vdots & \vdots & \vdots \\
*_{(2 g) 1} & * & 0 \\
*_{(2 g+1) 1} & * & a_{11} \\
*_{(2 g}(2) 1 & * & * \\
\vdots & \vdots & \vdots
\end{array}\right) .
$$

Since $\left(a_{i j}\right) \neq 0$, at least one entry is different from zero. We can assume that we have ordered the bases of F_{0}^{*} and G_{0}^{*} in such a way that $a_{11} \neq 0$. Then the matrix above says that ∂_{f+g-1} is indeed injective.

REFERENCES

1. K. Akin and D. Buchsbaum, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), 149-200.
2. K. Akin, D. Buchsbaum, and J. Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), 207-278.
3. M. Artale and G. Boffi, On a subcomplex of the Schur complex, J. Algebra 176 (1995), 762-785.
4. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Adv. in Math. 96 (1992), 226-263
5. J. Weyman, Calculating discriminants by higher direct images, Trans. Amer. Math. Soc. 343 (1994), 367-389.

[^0]: * Partially supported by M.U.R.S.T., and a member of C.N.R.-G.N.S.A.G.A.

