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1. INTRODUCTION

In [5], Subsection 4.6, to every C-n-linear form A it is associated a cer-
tain Koszul complex, which we denote by KA . The multihomogeneous
components of KA are parts of some twisted complexes F(L), which are
useful in the study of the hyperdeterminant of A (in the sense of [4]). One
finds among the above multihomogeneous components many instances of
the Cayley�Koszul complexes introduced in [4].

It is the purpose of this paper to describe (with different degrees of com-
pleteness) the homology of KA , in the case n=2. Such a description is of
intrinsic interest and will hopefully lend itself to generalization to the cases
n�3. As far as possible, we work over any ground ring R0 , not just over C.

The article is organized as follows. Section 2 (any R0) contains some
preliminaries together with the definition of the complexes B(a, b ; A).
Section 3 shows that over C, the bihomogeneous components of KA are
expressible in terms of the complexes B(a, b ; A). Section 4 (any R0)
completely describes all H . (B(a, b ; A)), under the assumption that A is a
square and invertible matrix. Section 5 derives from Section 4 a description
of H . (KA) over C, in case A is invertible, and provides some clues on
H . (KA), when A is not a square invertible matrix.

Many thanks are due to J. Weyman for several helpful conversations
during the preparation of this work.

2. PRELIMINARIES

Let R0 be any commutative ring, F0 and G0 two finitely generated free
R0-modules of ranks f and g, respectively, and R the symmetric algebra
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S(F0*�G0*)$R0[xi , yj ], 1�i� f, 1� j�g. As usual, we think of [xi]
and of [ yj] as of bases of F0* and G0*, respectively, dual to some bases [ fi]
and [gi] of F0 and G0 , respectively, fixed once and for all.

We denote by A the bilinear form �i, j aijxi yj # R0[xi , yj], and by F and
G the R-modules F0�R and G0 �R, respectively. By abuse of notation,
fi �1 and gj�1 will still be indicated by fi and gj , respectively.

Let us consider the maps

� : R � F�G, by �(1)=:
i

xi fi+:
j

yj gj

and

. :F�G � R, by .( fi)=
�A
�xi

, 1�i� f,

.( gj)=&
�A
�yj

, 1� j�g.

We denote by M the cokernel of �.
Clearly, the composite . b � is zero. Therefore the morphism . factors

through M, inducing a map .� : M � R.

Definition 1. KA is the Koszul complex

0 � 4 f +gM � 4 f +g&1M � } } } � 42M � M w�
.�

R.

In order to study H . (KA), we make the following preparations.
For each k # [1, ..., f +g], consider the complex 4k�, that is the Schur

complex L*(�) (cf. [2]) with *=(k). Because of [2], Theorem V.1.17, 4k�
is acyclic. But since � provides a finite presentation of M, [2], Proposi-
tion V.2.2, tells us that 4k� is in fact a resolution of 4kM. We wish to build
a double complex D of the kind

0 � 4 f +g� � 4 f +g&1� � } } } � 42� � � � R, (1)

where R is thought of as a complex concentrated in degree 0. It is easy to
check that suitable arrows in (1) can be provided by truncations of the
Koszul complex

0 � 4 f +g(F�G ) � } } } � 42(F�G ) w� F�G w�
.

R.
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Explicitly, the double complex D looks like

} } } .

} } }

4 f +g(F�G ) w� 4 f +g&1(F�G) w� } } } w� 42(F�G ) w� F�G w�
.

R

4 f +g&1(F�G ) w� 4 f +g&2(F�G) F�G R

4 f +g&2(F�G ) w� 4 f +g&3(F�G) R

b b

R

For later reference, we stipulate that rows are numbered from top to bot-
tom, the row index is u, and the top row corresponds to u=0. As for
columns, they are numbered right to left, the column index is v, and the
rightmost column corresponds to v=0.

The idea we have in mind is to somehow study the bihomogeneous com-
ponents of KA in terms of those of D.

One more ingredient is necessary. For every pair of nonnegative integers
a and b, we define a complex B(a, b ; A) of R0-modules in the following
manner.

For every v=0, 1, ..., (B(a, b ; A))v=(L+$(v) (F0*�G0*))a+ f &v, b+g&v ,
where the righthand side of the equality stands for the part of the Schur
functor L+$(v)(F0*�G0*) having F0*-content a+ f &v and G0*-content
b+g&v, and +$(v) is the conjugate partition of the hook (a+b+1&v,
1 f +g&1&v). We agree that when both a+b+1&v and f +g&1&v are 0,
(B(a, b ; A))v=0. (The only case of this kind with a+f&v�0 and
b+g&v�0 corresponds to a=g&1 and b= f &1.)

As for the nonzero boundary morphisms, for each v= f +g&1,
f+g&2, ..., �v : (B(a, b ; A))v�(B(a, b; A))v&1 is induced by �v

t
: 4+$(v)(F0*�G0*)

� 4+$(v&1)(F0*�G0*) such that

�v
t

(c1� } } } �ca+b+1&v)

=(&1)v&1 :
i, j

aij (xi 7 c1 �c2� } } } �ca+b+1&v�yj

&yj 7 c1�c2 � } } } �ca+b+1&v�xi).

(For notations and properties of Schur functors, cf. [2], Chapter II.)
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One should remark that when R0=C, if a�g&1 and b� f &1, and
(a&g+1, b& f +1){(0, 0), then B(a, b ; A) coincides with the Cayley�
Koszul complex C . (m1 , m2; A) of [4], where m1=a&( g&1) and
m2=b&( f &1) (their term C p(m1 , m2 ; A) corresponds to our
(B(a, b ; A))f +g&1&p).

3. THE BIHOMOGENEOUS COMPONENTS OF KA

Let D(a, b) denote the bihomogeneous component of D of bidegree
(a, b), a�0 and b�0. In this section, we prove the following result.

Proposition 2. Assume that R0 is a field of characteristic zero. Then for
all pairs of nonnegative integers a and b, the complex induced by D(a, b) on
the 0 th homology modules of its columns precisely coincides with B(a, b; A),
except for the following case : when a=g and b=f, the complex obtained is
0 � R0 �/ B(a, b ; A), with R0 in degree v= f + g and /=0.

Proof. Since R=S(F0*�G0*)$�a�0, b�0(Sa F0*�SbG0*), for every
fixed nonnegative a and b we can construct D(a, b) starting from
Sa F0*�SbG0* , which is in coordinates (u, v)=(0, 0). What we find in
generic position (u, v) is

:
s+t=v&u

(4sF0 �4tG0)� (Sa&t&uF0*�Sb&s&u G0*).

(Notice that v&u�0 since D is triangular.)
One should remark that we are using 4k(F�G)=4k(F0�G0)�R0

R
together with 4k(F0 �G0)$�s+t=k 4sF0 �R0

4tG0 .
Now, keeping in mind the filtration of L+$(v)(F0*�G0*) described in [2],

Theorem II.4.11, and the usual identifications 4sF0$4 f&sF0* and
4tG0$4 g&tG0*, one can check that the boundary maps of the complex
induced by D(a, b) on the 0th homology modules do coincide with those
of B(a, b ; A), and with / when appropriate.

Thus the real point of the proof is showing that in bidegree (a, b),
H0(4v�) yields (B(a, b ;A))v . Since R0 is a field of characteristic zero, we
may assume that all the terms of D and of each B(a, b ; A) are direct sums
of irreducible GL(F0)_GL(G0)-representations. Then for each v, it
suffices to show that the irreducibles of �s+t=v(4

sF0�4tG0)�

(Sa&tF0*�Sb&sG0*), which are not canceled by those occurring in
4v&1(F�G), are precisely those belonging to (B(a, b ; A))v , and to the
isolated R0 when appropriate.
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Now Lemma 3 below states that when v� f +g&1, H0(4v�) always
yields (B(a, b ; A))v .

In Lemma 4 below, one reads that when v=f +g, H0(4v�) yields 0,
except for a=g and b= f, in which case one gets S0 F0*�S0G0*=R0 .
(Recall that (B(a, b ; A)) f +g=0 always.)

So the proof of the proposition is complete, once we prove the two
lemmas. K

Lemma 3. When v� f +g&1, H0(4v�) yields (B(a, b ; A))v in every
bidegree (a, b).

Proof. Let

(L( f &s, 1a&t) F0*�L( f &s+1, 1a&t&1)F0*)�Sb&sG0*�4 g&tG0*

be abbreviated by

[( f &s, 1a&t)� ( f&s+1, 1a&t&1) & (1b&s)� ( g&t)].

Recalling 4sF0$4 f&sF0*, 4tG0$4g&tG0* , and Pieri formula, one sees
that for every bidegree (a, b), the acyclic complex 4v� looks as follows:

[( f &v, 1a)� ( f &v+1, 1a&1) & (1b&v)� ( g)] (v+1 terms)

�[( f &v+1, 1a&1)� ( f &v+2, 1a&2) & (1b&v+1)� ( g&1)]

� . . . . . .�[( f &2, 1a&v+2)� ( f &1, 1a&v+1) & (1b&2)� ( g&v+2)]

�[( f &1, 1a&v+1)� ( f, 1a&v) & (1b&1)� ( g&v+1)]

�[( f, 1a&v)� ( f +1, 1a&v&1)

0

& (1b)� ( g&v)]

[( f &v+1, 1a&1)� ( f &v+2, 1a&2)
�wwwwwwwww�

& (1b&v)� ( g)] (v terms)

�[( f &v+2, 1a&2)� ( f &v+3, 1a&3)
�wwwwwwwww�

& (1b&v+1)� ( g&1)]

� . . . . . .�[( f &1, 1a&v+1)� ( f, 1a&v)
�wwwww�

& (1b&2)� ( g&v+2)]

�[( f, 1a&v)� ( f +1, 1a&v&1)

0

& (1b&1)� ( g&v+1)]
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[ ( f &v+2, 1a&2)
�wwwwwwwww�

� ( f &v+3, 1a&3) & (1b&v)� ( g)] (v&1 terms)

�[ ( f &v+3, 1a&3)
�wwwwwwwww�

� ( f &v+4, 1a&4) & (1b&v+1)� ( g&1)]

� . . . . . .�[ ( f, 1a&v)
�wwww�

� ( f +1, 1a&v&1)

0

& (1b&2)� ( g&v+2)]

b

[( f &2, 1a&v+2)� ( f &1, 1a&v+1) & (1b&v)� ( g)] (3 terms)

�[( f &1, 1a&v+1)+( f, 1a&v) & (1b&v+1)� ( g&1)]

�[( f, 1a&v)� ( f +1, 1a&v&1)

0

& (1b&v+2)� ( g&2)]

[( f &1, 1a&v+1)� ( f, 1a&v)
= = ===

& (1b&v)� ( g)] (2 terms)

�[( f, 1a&v)� ( f +1, 1a&v&1)

0

& (1b&v+1)� ( g&1)]

[( f, 1a&v)
= = ===

� ( f +1, 1a&v&1)

0

& (1b&v)� ( g)] (1 term)

0

Notice that we have underlined the summands which cancel out.
Again recalling the filtration of [2], Theorem II.4.11, one sees that the

summands which survive in the top summation add up precisely to
(B(a, b; A))v , as required.

One should remark that when v=a+ f, no F 0* occurs in 4v�, so that the
above does not strictly apply. But it is easy to check that a similar pattern
still holds, and the statement is true. K

Lemma 4. When v= f + g, H0(4v�) is equal to a copy of R0 , occurring
in bidegree (a, b)=( g, f ).

Proof. When either a< g or b< f, 4 f + g� is identically zero in bidegree
(a, b), for one finds in degree u the term
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:
s+t= f + g&u

(4sF0�4tG0)� (Sa&t&uF 0*�Sb&s&u G0*)

= :
i+ j=u

(4 f &iF0 �4 g& jG0)� (Sa& g+ j&uF 0*�Sb& f +i&uG0*).

When (a, b)=( g, f ), 4 f + g� is concentrated in degree u=0, and equals
S0 F 0*�S0G0*=R0 .

When a�g, b� f, and (a, b){( g, f ), the complex 4 f + g� in bidegree
(a, b) looks like

[(0, 1a& g)
0

� (1, 1a& g&1) & (1b&f )� (0)]

[(0, 1a& g)
0

� (1, 1a& g&1)
�wwwww�

& (1b& f &1)� (1)]

�[(1, 1a& g&1)� (2, 1a& g&2)
�wwwww�

& (1b& f )� (0)]

b

(notations as in the proof of Lemma 3), and H0(4 f + g�) turns out to be
zero in the indicated bidegrees.

Also in this proof, the case v=a+ f is not covered by the above. But one
can easily make the necessary adjustments. K

4. DISASSEMBLING THE COMPLEXES B(a, b; A)

Proposition 2 has reduced the study of the homology of KA to that of
H . (B(a, b; A)), a�0 and b�0, provided R0 is a field of characteristic zero.
We discuss H . (B(a, b; A)) partly in this section and partly in the next one. We
point out that the contents of this section are valid over every ground ring R0 .

Theorem 5. If f = g and the matrix (aij) is invertible, then B(a, b; A) is
always exact, except for the pairs (a, b)=(h, h), where 0�h� f &1. When
h # [0, 1, ..., f &1], H . (B(h, h; A)) is equal to R0 in (top) degree v=2h.

Proof. We begin by filtering B(a, b; A), a�b, in the following way:

0�X0(a, b; A)�X1(a, b; A)� } } } �Xt(a, b; A)

� } } } �Xf &1(a, b; A)=B(a, b; A);
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recalling the filtration of (B(a, b; A))v given in [2], Theorem II.4.11, by
definition (Xt(a, b; A))v is spanned by all tableaux of (B(a, b; A))v whose
F 0*-part has first row of length � f &t. Clearly, the boundary morphism of
B(a, b; A) is compatible with this definition. And the conditions f = g and
a�b rule out the possibility that B(a, b; A) may contain tableaux with no
F 0*-part.

We denote Xt(a, b; A)�Xt&1(a, b; A) by Qt(a, b; A) (assuming that
X&1(a, b; A)=0). Notice that Qt(a, b; A)=0, whenever t�b+1.

Explicitly, a nonzero Qt(a, b; A) looks like

0 � [( f &t, 1a+t+1& f & g) & (1b&t)� (1+t& f )]

� [( f &t, 1a+t+2& f& g) & (1b&t)� (2+t& f )]

� } } } � [( f &t, 1a+t+1) & (1b&t)� ( g&1+t)]

� [( f &t, 1a+t) & (1b&t)� ( g+t)],

where we use the abbreviated notation introduced in the proof of Lemma 3.
Recalling the well known short exact sequence of modules

0 � L( f &t+1, 1a+t&v&1) F 0* � Sa+t&v F 0*�4 f &tF 0* � L( f &t, 1a+t&v)F 0* � 0

(cf., e.g., [1], Theorem 3.3), one easily checks that for b�1, there is a
short exact sequence of complexes

0 � Qt&1(a&1, b&1; A)(&1)

� 4 f &tF 0*�W(a, A)(&t)�Sb&t G0* � Qt(a, b; A) � 0, (2)

where up to sign, W(a, A) coincides with the Schur complex
L(1a)(G0 �(aij) F 0*), which is independent of both b and t. (As usual, given
a complex Y and an integer l, we denote by Y(l ) the complex defined by
(Y(l ))i=Yl+i .)

By [2], Corollary V.1.15, the assumptions of the theorem imply that
W(a, A) is exact for every a�1. Hence the short exact sequence (2) says
that the exactness of B(a, b; A) follows from that of Q0(a&t, b&t; A)=
X0(a&t, b&t; A), 0�t�min[b, f &1].

Since X0(a&t, b&t; A)$4 fF 0*�W(a&t; A)�SbG0* and W(a&t; A)
is exact for a&t�1, we are through provided a&t{0. If f &1<b, clearly
t� f&1<b�a says a{t. If f&1�b, t�b�a says that a=t can
happen only when a=b=t. In fact X0(0, 0; A) is the module
(L( f + g)(F 0*�G0*))f, g=4 fF 0*�4 gG0* in degree v=0, and obviously
H . (X0(0, 0; A))=H0(X0(0, 0; A))$R0 .

Summarizing, we have proved the exactness of B(a, b; A) whenever a>b,
as well as the exactness of B(h, h; A) whenever h� f.
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As for a<b, we notice that another filtration of B(a, b; A) exists, again
given by [2], Theorem II.4.11, but ordering the basis [xi] _ [ yj] of
F 0*�G0* by putting y1 , ..., yg before x1 , ..., xf . Then (2) is replaced by a
short exact sequence involving L(1b)(F0 �(aij)T G0*), which is exact since the
transpose matrix (aij)

T is invertible, too. So the argument given for a>b
translates into an argument for b>a, mutatis mutandis.

In order to complete the proof, we have to discuss H . (B(h, h; A)),
h=0, 1, ..., f &1. Clearly, B(0, 0; A)=X0(0, 0; A) and we have already seen
that H . (B(0, 0; A))=H0(B(0, 0; A))=R0 . As for 1�h� f &1, we examine
the (nonzero) quotients Qh(h, h; A), Qh&1(h, h; A), ..., Q0(h, h; A). An
argument involving (2) shows that the exactness of Qh&1(h, h; A), ...,
Q0(h, h; A) follows from that of the complexes X0(h, h; A), h�1, which we
have already established. But a similar argument for Qh(h, h; A) breaks
down at the very last step, for B(0, 0; A) gets involved. More precisely, the
long exact homology sequence induced by (2), and the exactness of
L(1a)(G0 �(aij) F 0*) say that for every v,

Hv(Qh(h, h; A))=Hv&1(Qh&1(h&1, h&1; A)(&1))

=Hv&2(Qh&1(h&1, h&1; A)).

Hence Hv(Qh(h, h, A))=Hv&2h(Q0(0, 0; A)) for every v # [2h, 2h&1, ..., h]
(this is the range where Qh(h, h; A) is not zero). Whenever v<2h, the
righthand side of the last equality is 0, since Q0(0, 0; A) is 0 in negative
degrees. But H2h(Qh(h, h; A))=H0(Q0(0, 0; A))=R0 . K

We remark that if under the assumptions of Theorem 5, one sets E$

G0 w$�
(aij)

F 0*, the definition of the complex Qt(a, b; A) shows it to be
isomorphic (up to Sb&tG0*) to the complex C .

# :q of [3], with #=(1a+ f &t)
and q= f &t. It then follows from [3], Corollary 3.4, that H . (Qt(a, b; A))
is concentrated in its leftmost position. Namely,

H . (Qt(a, b; A))={0
Ha+t(Qt(a, b; A))$4a+ f &tE

if a� g+1
if a� g

(3)

(note that 4a+ f &tE{0 only if a�t+1). It is easy to derive from (3)
another proof of Theorem 5 (one still needs to exchange the roles of F 0*
and G0* in the case a<b).

The reader will notice that Theorem 5 provides another proof of the
following special case of [4], Theorem 2.1 (cf. the remark at the end of
Section 2).

Corollary 6. If (aij) is a square invertible matrix, it is exact every
Cayley�Koszul complex C .(m1 , m2 ; A) with m1 and m2 two nonnegative
integers not both 0. K
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5. THE HOMOLOGY OF KA

Throughout this section, we again assume that R0 is a field of charac-
teristic zero. Putting together Proposition 2 and Theorem 5, we have the
following statement.

Theorem 7. Assume that R0 is a field of characteristic zero, that f =g,
and that (aij) is an invertible matrix. Then

Hi (KA)={R0

0
if i=0, 2, ..., 2f&2, 2f
otherwise.

Proof. The bihomogeneous components of KA are equal to B(a, b; A),
except for a= g= f =b, when one has 0 � R0 �/ B( f, f ; A), /=0.

H . (B( f, f ; A))=0 says that H2f (KA)=R0 .
H . (B(h, h; A))=H2h(B(h, h; A))=R0 , 0�h� f &1, says that H2f &2(KA)

=H2f &4(KA)= } } } =H0(KA)=R0 . K

What about H . (KA) when (aij) is not an invertible matrix (and possibly
f { g)? We immediately have the following partial result.

Proposition 8. For every (aij), Hf + g(KA)=R0 and H0(KA)=R�Im(.).

Proof. There is nothing to prove for H0 . (Notice that when (aij) is
invertible, Im(.)=(x1 , ..., xf , y1 , ..., yg), so that R�Im(.)=R0 .)

As for Hf + g , given the upper lefthand corner of D:

4 f + g(F�G) ww�
'

4 f + g&1(F�G) ww� } } }

` %

4 f + g&1(F�G) ww� 4 f + g&2(F�G) ww� } } } ,

b b

easy calculations show that Im(')�Im(%) and that `=�*; since Im(�*)=
(x1 , ..., xf , y1 , ..., yg), it follows that Hf + g(KA)=R0 . K

One should remark that the proof of Proposition 8 is in fact independent
of the assumption that R0 is a field of characteristic zero.

Turning now to Hi , 1�i� f + g&1, we are unable to fully describe the
situation. But the following statement indicates that the simple pattern of
Theorem 7 no longer holds. (Such a pattern is in fact equivalent to (aij)
being a square invertible matrix.)
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Proposition 9. H1(KA)=0 if and only if (aij) is a square invertible
matrix.

Proof. If H1(KA)=0, it follows that H1(B(1, 0; A))=0=H1(B(0, 1; A)).
B(1, 0; A) is simply G0 �(aij) F 0*, so that Ker(aij)=0. Up to sign, B(0, 1; A)
is F0 �(aij)T G0*, so that Ker(aij)

T=0, i.e., (aij) onto. K

We have a parallel result concerning Hf + g&1(KA).

Proposition 10. Hf + g&1(KA)=0 if and only if (aij){0.

Proof. If (aij)=0, clearly

Hf + g&1(KA)=4 f + g&1M= :

(a, b){( g&1, f &1)
a� g&1, b� f &1

Sa& g+1F 0*�Sb& f +1G0*{0.

Let us assume now that (aij){0, and prove that �f + g&1 is injective for
every (a, b) such that a� g&1, b� f &1, and (a, b){( g&1, f &1).

Let m=a& g+1 and n=b& f +1. Up to sign, �f + g&1 acts on a
standard tableau as follows:

i1 i1 j i1 i
b b b

im im im

j1 [ 7i, j aij ( j1 & j1 )

b b b

jn jn jn

i j

(i1� } } } �im , j1� } } } � jn , and the F 0*-indices come before the G0*-ones).
If i>i1 , the straightening law says that the above summation is equal to

i1 j i1 i
b b

i im

7i, j aij ( b & j1 ) ;

im b

j1 j
b b

jn jn
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but if i�i1 (or m=0), then it equals

i j
i1

i2

7i, j aij ( b ) .

im

j1

b

jn

Let us order the standard bases involved, according to the lexicographic
order of the sequences (i1 , ..., im , j1 , ..., jn) and of the sequences
(i1 , ..., i, ..., im , j1 , ..., jn , j ), (i1 , ..., im , j1 , ..., j, ..., jn , i), and (i, i1 , ..., im , j1 ,
..., jn , j ), but with the proviso that those of type (i1 , ..., im , j1 , ..., j, ..., jn , i )
always come after those of the other two kinds. Then the matrix associated
to �f + g&1 looks like

a11 0 0

V21 0 0

b b b

Vg1 0 0

V( g+1)1 a11 0
V( g+2)1 V 0 et cetera .

b b b

V(2g)1 V 0
V(2g+1)1 V a11

V(2g+2)1 V V

b b b

Since (aij){0, at least one entry is different from zero. We can assume
that we have ordered the bases of F 0* and G0* in such a way that a11{0.
Then the matrix above says that �f + g&1 is indeed injective. K
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