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Abstract: It is shown that for any piecewise-linear closed orientable manifold K of odd dimension there exits an 
invariantly defined metric on the determinant line of cohomology det(H* (K; E)), where E is an arbitraa'y flat bundle 
over K (here E is not required to be unimodular). The construction of this metric (called Poincard-Reidemeister 
metric) is purely combinatorial; it combines the standard Reidemeister's construction with the Poincar6 duality. 

The main properties of the Poincax6-Reidemeister metric consist in the lbliowing: (a) the Poincar6- 
Reidemeister metric can be computed starting from any polyhedral cell decomposition of the manifold in purely 
combinatorial terms; (b) the Poincar~-Reidemeister metric coincides with the Reidemeister metric when the latter 
is correctly defined (i.e., when the bundle E is unitary or unimodular). (c) The construction of Ray and Singer, which 
uses zeta-fimction regularized determinants of Laplacians, produces the metric on the determinant of cohomoiogy, 
which coincides (via the De Rham isomorphism) with the Poincard-Reidemeister metric. This is the main result 
of the paper, showing that the Poincar6-Reidemeister metric computes combinatorially the Ray-Singer mctric. 
(d) The Poincar6-Reidemeister metric behaves well with respect to natural correspondences between determinant 
lines which are discussed in the paper. 

It is s',lown also that the Ray-Singer metrics on some relative determinant lines can be computed combinatt~rially 
(including the evenodimensional case) m terms of the metrics determined by correspondences. 

Kc;~,words: 'li~rsion, analytic torsion, coml~inatoriai torsion. 

MS t'lassilict:tion: 57Rt)9, 

1, Introduction 

Let K denote a closed odd-dimensional smooth manifold and let E be a flat vector bundle over 
K. In this situation the construction of Ray and Singer I131 gives a metric on the determinant 
line of the cohomology det H*(M; E) which is a smooth invariant of the manifold M and the 
flat bundle E. (Note that if the dimension of K is even then the Ray-Singer metric depends on 
the choice of a Riemannian metric on K and of a Hermitian metric on E). The famous theorem 
which was proved by J. Cheeger 141 and W. MUller 1101, states that assuming that the flat vector 
bundle E is unitary (i.e., E admits a flat Hermitian metric), the Ray-Singer metric coincides 
with the Reidemeister metric, which is defined using finite dimensional linear algebra by the 
combinatorial structure of K. 
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The construction of the Reidemeister metric works also under a weeker assumption that the 
fiat bundle E is unimodular, i.e., the line bundle det(E) admits a flat metric. In a recent paper W. 
Miiller [ 11 ] proved that in this case the Ray-Singer metric again coincides with the Reidemeister 
metric. 

Without the assumption that the fiat bundle E is unimodular, the standard construction of 
Reidemeister metric is ambiguous (it depends on different choices made in the process of its 
construction). In this general situation J.-M. Bismut and W. Zhang [2] computed the deviation 
of the Ray-Singer metric from so called Milnor metric, cf. [2]; the result of their computation is 
given in a form of an integral of a Chern-Simons current which compensates the ambiguity of 
the Milnor metric and depends on the Riemannian metric on K and on the metric on E. 

In this paper I show that for any piecewise-linear closed orientable manifold K of odd 
dimension there exits an invariantly defined metric on the determinant line of cohomology 
det(H*(K; E)), where E is an arbitrary flat bundle over K. The construction of this metric 
is purely combinatorial. I call this metric Poincar6-Reidemeister metric since it is defined by 
combining the standard Reidemeister's construction with the Poincar6 duality. 

The idea to use the Poincar6 duality in order to construct an invariantly defined metric on 
the determinant line was prompted by the Theorem 4.1 of D. Burghelea, L. Friedlander, and T. 
Kappeler [3], expressing the analytic torsion through some torsion invariants (depending on the 
Riemannian metric) associated with a Morse function. 

The main properties of the Poincar6-Reidemeister metric consist in the following: 
(a) the Poincar6-Reidemeister metric can be computed starting from any polyhedral cell 

decomposition of the manifold and using purely combinatorial terms, cf. 4.3. 
(b) the Poincar~=Reidemeister metric coincides with the Reidemeister metric when the latter 

is correctly defined; 
(c) The construction of Ray and Singer, which uses zeta-function regularized determinants of 

Lapla¢ians, produces the metric on the determinant of cohomology, which coincides (via the De 
Rham isomorphism) with the Poincar~-Reidemeister metric; this is the main result of the paper, 
formulated as Theorem 6.2; 

(d) The Poincar~=Reidemeister metric behaves well with respect to natural correspondences 
between determinant lines which are discussed in Section I, cf. Prop. 4.8. 

Another interesting observation made here consists in finding that Ray-Singer metrics on some 
relative determinant lines can be computed combinatorially (including the even-dimensiom~l 
case) in terms of the metrics determined by correspondences, cf. Theorems 5. I, 5.2 and 5.3. 

The work technically is based on the fundamental Theorem (0.2) of J.-M. Bismut and 
W. Zhang I21 and uses actually a very special corollary of it which is proved by cancelling all 
complicated terms in the Bismut-Zhang theorem (cf. Theorem 5.1 below). Note, that even weeker 
Theorem 5.3 allows to identify completely the Ray--Singer norm (cj~ proof of Theorem 6.2) in 
terms of the PoincarE-Reidemeister norm in the odd-dimensional case. Most of the paper consists 
in careful elementary analysis of the tbundations: we tried to study separately different duality re- 
latiolls which exist among the determinant lines, duality between homology and cohomology and 
the Poincar6 duality, and also correspondences induced by isomorphisms of the volume bundles. 

Notations, K will denote a finite polyhedron given by its polyhedral cell decomposition (cf. 
il41). We will consider fiat vector bundles E over K; this we understand in the following way: 
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the structure group of E has been reduced to a descrete group. We will also identify flat vector 
bundles with the locally constant sheaves of their flat sections. 

Given a polyhedral cell decomposition r of K, one constructs the chain complex C, (M, r, E) 
as follows: the basis of Cq(M, r, E) form pairs (Aq; s), where Aq is an oriented q-dimensional 
cell of r and s is a flat section of E over A q. The boundary operator 

0 : Cq(M, r, E) --> Cq_l(M, r, E) 

is defined by the usual formula 0(Aq; s) = ~ E[A q, A q - 1 ] ( A  q- l  , s'),  where E[Aq, A q-1 ] is the 
sign 4-1 determined by the orientations and s' is the restriction of s on Aq-1 and the sum runs 
over all (q - 1)-dimensional cells A q-1 C ~'q. 

We will denote by T : det(C,(M, r, E)) -~ det(H,(M; E)) the canonical isomorphism 
between the determinant lines, cf. [1]. Sometimes we will write T~ instead of T in order to 
emphasize dependance on the polyhedral cell decomposition r. 

Warning. In this paper, like in most of the literature, we neglect signs of isomorphism between 
determinant lines. To be more precise, we will work in the category whose objects are one- 
dimensional vector spaces (over ~ or over C) and whose morphisms are linear maps, such that 
f and - f  are considered as representing the same morphism. 

I, Correspondences between determinant lines 

1.1. Suppose that we are given two flat vector bundles E and F (real or complex) over a finite 
polyhedron K and an isomorphism of the determinant flat line bundles ~b : det(E) ---> det(F). 
We will show in this section that these data determine canonically an isomorphism between the 
corresponding determinant lines 

qJ' det H,(K; E) ~-~ det H,(K; F). 

This map q~ will be called correspondence between the determinant lines determined by ~k. 
Let r be a polyhedral cell decomposition ot' K. According to the definition above, the vector 

space C,t(M, r, E) is the direct sum of the spaces of flat sections F(A; E), where A runs over all 
oriented q-dimensional cells of K. 'rims one can identify the determinant line det Cq(K, r, E) 
with the tensor product of determinant lines (~),x det F(A; E). On the other hand, for any cell 
A we have the canonical isomorphism det P(A; E) = F(A; det(E)). Therefore we obtain the 
canonical isomorphisms 

det(C,(K, r, E)) = (~q det(Cq(K, r, E)) (-I)' = (~) F(A, det(E)) ~(A), (I) 

where E (A) denotes ( -1 )  dim('a). We may consider the similar canonical decomposition for the 

flat bundle F as well and then one defines the map 

q~ : det(C,(K, r, E)) --+ det(C,(K, r, F)) (2) 

as the tensor product the maps F'(A, det(E)) ~ I"(A, det(F)), induced by the map ¢) if the 
dimension dim(A) is even, and induced by the contragradient map ~ : (det(E))* ~ (det(F))* 
(inverse to the adjoint) if the dimension dim(A) is odd. Finally we define the map ~ which 
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a p ~ e s  in the commutative diagram 

det(C,(K, r, E)) > det(C,(K, r, F)) 

T' 1 r, l (3) 

det(H,(K, E)) > det(H,(K, F)) 

Recall that the vertical maps Tr are the canonical maps, cf.[ 1 ]. The above definition of ~) is justified 
by combinatorial invariance property, similar to combinatorial invariance of the Reidemeister 
tol'sion [6]: 

1.2. Proposition (Combinatorial Invariance). The map ~ does not depend on the polyhedral cell 
decomposition r of K. More precisely, the above constnlction gives the same map ~ between 
the determinant lines for any pair of polyhedral cell decompositions of K having a common 
subdivision. 

Proof. Let r '  be a subdivision of the polyhedral cell decomposition r. We have the natural 
inclusion of the chain complexes i • C,(K, r, E) ~ C,(K, r ' ,  E); let D,(r ' ,  r, E) denote the 
factor complex. It is acyclic and so there is correctly defined a volume 

a ( r ' ,  r, E) ~ det(D,(r ' ,  r, E)). (4) 

The spaces of chains of the complex D, = D, (r', r, E) are the factor-spaces Dq which appear 
in the exact sequence 

#= 

o ~ ~ F (A ,  E) . . . . .  ~ ~ a ,  I ' (A ' ,  E) -+ D,, .-> O: 

Ilei'i~ A i=uns over all cells of r which are not cells of r '  and A' i'llns liver all cells of r '  which are 
not cells of t .  The map r is given by restriction of thit sections. Therel'ore we obtain 

del(D, lr ' ,  r, E)) = l~) A, F(A', det(E)Y ~A'I (~)^ F(A, det(E)Y lal+l . (5) 

In the hlst formula again A runs over all cells of r which are not cells of r '  and A' runs over all 
cells of r '  which are not cells of r. 

Now suppose that we are given two flat bundles E and F over the complex K and a 
bundle isomorphism 0 ' det(E) ~ det(F). We may construct the corresponding factor- 
complexes D,(r ' ,  r, E) and D,(r ' ,  r, F) and consider their volume elements ¢l(r', r, E) 
det(D,(r ' ,  r, E)) and a ( r ' ,  r, F) ~ det(D,(r ' ,  r, F)). From formula (5) for their determinants 
it is clear that ¢, delines an isomorphism ~ • det(D,(r ' ,  r, E)) ~ det(D,(r ' ,  r, F)) which 
(as above) is the product of the maps F(A', det(E)) ~ F(A', det(F)) and P(A, det(E)) --+ 
F(A, det(F)) induced by 0 or their contragradient maps. 

We claim now that the constructed map ~ preserves the volume; in other words, 

~(o~(r', r, E)) = a ( r ' ,  r, F). (6) 

We will prove this fact assuming that r '  is obtained from r by dividing one q-dimensional cell 
e of r into two q-dimensional cells e+ and e_ and introducing a (q - I )-dimensional cell eo, of. 
Figure I. The general statement follows from this special case by induction. 
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l e 
Fig. 1. 

Under this our assumption the chain complexes D,(3' ,  3, E) and D,(3' ,  r, F) are partic- 
ularly simple. They have only chains in dimensions q - 1 and q and can be described as 
follows. The space D, t = Dq(3', 3, E) can be identified with Dq = I " ( e + ,  E ) ,  the q - 1- 
dimensional chains D,~-! can be identified with Dq-I = l"(eo, E) and the boundary homomor- 
phism 0 • Dq ----> Oq-1 can be identified with the restriction map r • l"(e+, E) ~ l"(eo, E). Thus 
the volume a(3 ' ,  3, E) ~ det(D,(3', 3, E)) is represented by the determinant of the restriction 
map r 

det(r) • F(e+, det(E)) ~ l"(eo; det(E)). 

A similar description is valid for the bundle F. Now, the claim that ~(ot(3', 3, E)) = ot(3', 3, F) 
is precisely equivalent to the commutativity of the diagram 

r 

l"(e+, det(E)) - - ~  F(eo, det(E)) 

°l °1 
r 

F(e+, det(F)) w_~  r(eo, det(F)) 

which is obvious. This finishes the proof that ~ is volume preserving. 
Let us now define a map 

S~,., 'det(C,(K, r', E)) -~, det(C,(K, 3, E)). (7) 

We have the canonical identification 

U • det(C,(K, 3', E)) --~ det(C,(K, r, E)) ® det(D,(K, r ' ,  r)). 

For x E det(C,(K, 3', E)) set 

Sr'.r(x) = U(x)/tz(3', 3, E). (8) 

Then, on one hand, we have the following commutative diagram 

STt,r 
det(C,(K, r ' ,  E)) - -  ¢ det(C,(K, r, E)) 

det(H,(K, E)) ~ ~ det(H,(K, E)). 

(9) 

To justify (9) one may refer to [5]; Theorem 1.3 of [5] implies (9) immediately. On the other 
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hand, for any bundle isomorphism ¢ • det(E) ~ det(F) we have the commutative diagram 

Srl,r 
det(C,(K, r ' ,  E)) ) det(C,(K, r, E)) 

STI,r 
det(C,(K, r ' ,  F)) ~ det(C,(K, r, F)). 

(!0) 

It follows from the definition (8) and the fact established above (cf. (6)) that the induced map ~ • 
det(D,(r ' ,  r, E)) ~ det(D,(r ' ,  r, F)) preserves the volumes: ~(u( r ' ,  r, E)) = c~(r', r, F). 

This proves independence of the constructed map ~ on the triangulation. [] 

1.3. Proposition (Functorial property). Suppose that E, F, and G are three flat vector bundles 
over K and let c~ • det(E) ~ det(F) and ~ • det(F) --~ det(G) be two isomorphisms. Then 

A 
~r o4} = ~ o ~"  det(H,(M; E)) --+ det(H,(M; G)). (11) 

Proof. It is clear from the construction. 

1.4. Remark.  Suppose that 4} " det(E) ~ det(F) is an isomorphism of flat vector bundles. Let 
X be a number. Then 

(12) 

where X (K) denotes the Euler characteristic of K. 
It follows from this remark that under the assumption that X (K) = 0, the isomorphism 

does not depend on q~ (it only requires existence of an isomorphism det(E) ~ det(F)). 

I.S. Correspondces between determinant lines appear also in the following version, 
Let E be a fiat vector bundle (over the field k = C or 11~) and let det+(E) denote the flat 

bundle with fibre !~+ obtained as follows, First consider the complement of the zero section of 
det(E) as a principal k'-bundle; then form the associated bundle with fibre I~+ corresponding to 
the action of k" on I~+ given by o~. x = Iotl. x for o~ e k*, x e I1~+. 

Suppose now that we have two fiat vector bundles E and F over a polyhedron K and an 
isomorphism ~ : det+ (E) ~ det+ (F) of fiat bundles. In terms of the fiat bundles det(E) and 
det(F) this means that for simply-connected open sets U c K 4} determines an isomorphism 
V(U, det(E)) ~ I"(U, det(F)) up to multiplication by a number with norm 1. Repeating the 
construction of Section 1. I we obtain that ~ determines a correspondence 

~ • det H,(K; E) --~ det H,(K; F) 

up to multiplication by a number with norm i, 

Yet another version of correspondences between the determinant lines can be constructed as 
follows, 

1.6. Proposition. Suppose that E and F are two.Oat vector bundles over a compact poly- 
hedron K. AnyJlat section (metric) on the flat line bundle det(E) ®det(F) determines canonically 
an element of  (or a metric on, correspondingly) the product of  the determinant lines 

det(H,(g,  E)) ® det(H,(K, F)). 
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Proof. The construction is quite similar to the one described above. We first remark that the line 
det(H,(K, E)) ® det(H,(K, E*)) can be identified with the product 

1 I I u ( A ,  det(E)) ® F(A,  det(F))] ~A~ 

and each term of this product has a section (or a metric) induced by the data. Then one shows 
(using arguments similar to given above) that the constructed metric does not depend on the 
particular triangulation. [] 

1,7. Remark.  The metric constructed in Proposition 1.6 can also be obtained using the standard 
construction of Reidemeister metric (cf. 4.5) by first observing that det(E ~ F) = det(E) ® 
det(F) and so the data determine a fiat metric on this bundle; then the standard construction 
produces a metric on the determinant line det(H,(K, E ~ F) which is canonically isomorphic to 
the product det(H, (K, E) ®det(H, (K, F)). It is easy to see that the constructed metric coincides 
with the one given by Proposition 1.6. 

1.8. Corollary. For anyflat vector bundle E over the polyhedron K there is a canonical element 
in the line det(H,(K, E)) ® det(H,(K, E*)), (defined up to a sign) where E* denotes the dual 
flat vector bundle. This element determines a canonical metric (which will be denoted by {. ) E) 
on the above line. 

The next proposition describes the relation between two constructions which apeared in this 
section: between the correspondences q~ and the metrics (, .)E on the products of the determinant 
lines. 

1.9. Proposition. Suppose that E and F are two flat vector bundles over K and let cp • dot(E) -> 
dot(F) be an isomorphism offlat bundles. Denote by 1/i : det(F*) ---, det(E*) the adjoint bundle 
isomorphism. Then ,for any x ~ det ( H, ( K, E ) ) and y c det ( H , ( K, F* )) the .]bllowin g formula 
holds: 

(x ® t]/(y))t,, = (~'],(x) ® Y)r'; (13) 

here ~ ' detH,(K; E) =-, detH,(K; F) and tp • det(H,(K; F*)) -~. det(H,(K; E*)) are 
constructed as explained in 1. I and (.) F, and (.) I." denote the canonical metrics on lhe producls 
det H,(K; E) ®det H,(K; E*) attd det H,(K; F) ®det H,(K; F*) respectively, constructed 
in 1.8. !:1 

2. Correspondences between cohomoiogical determinants 

2.1. Let K be a finite polyhedron and let E be a (real or complex) fiat vector bundle over K. 
To simplify our notations the determinant of the homology of K with coefficients in E will be 
denoted L°(E)  = det(H,(K, E)). Similarly, we will denote by L°(E) = det(H*(K, E)) the 
determinant of the cohomology; the latter can be understood as the cohomology of the locally 
constant sheaf determined by E. 

2.2. There is the canonical pairing 

{' ," }e : L. (E)  ® L°(E *) --, C (14) 
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which is determined by the evaluation maps Hi(K; E) ® H'(K; E*) --+ C. This gives a natural 
isomorphism 

L'(E) --~ L.(E*)*; (15) 

Using it we will reformulate the results of the previous section using cohomological determinants. 

2.3. Suppose that E and F are two flat vector bundles and let ~ : det(E) ~ det(F) be an 
isomorphism of flat bundles. Consider the adjoint ~* which acts 4:  : det(F*) ~ det(E*); via 
the construction above, it induces the correspondence (q~*) • L°(F*) --+ L°(E*) and the adjoint 
of the latter gives the correspondence L.(E*)* ~ L.(F*)*. Using the canonical isomorphism 
(14) we can interpret the last map as 

~" L ' ( E ) - +  L°(F).  (16) 

We will refer to it as to the cohomological correspondence determined by 4~. 

2.4. The cohomological correspondence has properties similar to the homoiogical one. Namely, 
(1) l f  x ( K )  = 0 then (b • L ' (E)  ~ L°(F) does not depend on dp. 
( 2 ) Suppose that E, F, and G are three flat vector bundles over K and let qb " det( E) ~ det(F) 

and ~ • det(F) --~ det(G) be two isomorphisms. Then 

¢, "o4  = . L ' ( E )  C(O') .  

(3) Any flat section (metric) on the flat line bundle det(E)otimes det(F) determines canoni- 
cally an element (or a metric, correspondingly) on the product L ' (  E) ® L°( F). Indeed, any fiat 
section (metric) on the line bundle det(E) ® det(F) determines the obvious metric on the dual 
bundle det(E*) ® det(F*) and the latter by the construction of Proposition i.6 gives an element 
(metric, correspondingly) on the line L.(E*) ® L . ( F ' ) .  The latter clearly determines an element 
(or metric) on L*(E) ® L*(F). 

In particular, for any flat line bundh, E we obtain a canonical metric on the line L ' ( E )  ® 
L'(E*);  this metric will be denoted (')E. 

(4) There is also the relation similar to (13). Suppose that E and F are two flat vector 
bundles over K and let ¢b " dot(E) --,, det(F) be an isomorphism of  flat bundles. Denote by 

' det(F") ~. det(E ' )  the adjoint bundle isomorphism. Then we have the combinatorial 
correspondences ~ " L*( E) -+ L*( F) and ~ • L°( F *) ---, L ' (  E*), andJbr any x E L°( E) and 
y E L°(F *) thefoUowingformula holds 

<x ® ,7,(y)>e - ® (17) 

3. Poincar6 duality for determinant lines 

In this section K will denote a closed oriented piecewise-linear manifold of  odd dimension. 
E will denote a fiat k-vector bundle over K, where k is R or C. 

It is well known that the Poincar6 duality induces some isomorphisms between the determinant 
lines, of. [7,15,2]. Our aim in this section is to introduce the notations and establish relations 
between the correspondences @ and @ introduced in the previous sections and the isomorphisms 
determined by the Poincar(: duality. The result of this section will be used in Section 4 to define 
the Poincar~-Reidemeister metric. 
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3.1. Since the orientation of the manifold K is supposed to be fixet!, for any integer q we have a 
nondegenerate intersection form I!&, (K: E) @I H,,+, (K, E*) -+ k, where n = dim K is supposed 
to be odd. The above pairing allows one to identify Hy (K, E) with the dual of H,I_,I (K, E*). 
Since q and tz - q are of opposite parity, it defines an isomorphism 

DE : L.(E) -+ L.(E*). (18) 

3.2. Another {description of the Poincare duality map DE can be given as follows. Consider a 
triangulation t of K and the dual cell decomposition t*. There is the intersection pairing on the 
chain level C,(K, t, E) 8 C,,_,(K, t*, E*) --+ k. Let A be a q-dimensional simplex of t and 
let A* be the dual (n - q)-dimensional cell of t*. Then the above intersection form splits into 
an orthogonal sum of partial pairings P(A) E) @ r (A’, E*) -+ k, which assign to a pair of 

flat sections s E P(A, E) and s’ E P(A*, E*) the number (s’(x). s(x)) E k, where x denotes 
the common point of A and A*. The last pairing is non-degenerate and defines an isomorphism 

@A : r(A. E) -+ r( A*, E*)*. Thus we obtain the maps 

det(aA) : r(A, det(E)) --+ r(A*, det(E*))*. (1% 

We claim that the following diagram commutes 

nA r(A, det(E))“fA) 

Tr 
1 

L(E) 

dct(cY*))‘(*) 
fl,. r(A*, det( E*))C(A*) 

1 
T,* WV 

LW*). 

ves another characterization of the duality map L,( E”). 
claim is a special case of the following general algebraic remark. Let C be a chain complex 

of finite dimensional vector spaces and let II be 811 odd integer. Form a new complex II = (D, , S), 

C,T_ j NKI S 1 Dj + Di-1 is the dual of i) 1 Qp,,., i+I + 6’+a,i. For iUly index i WC 

huve the canonical map clli : Cj -+ B;f_+ (the identity) and det(slli) : dcl(C,) -+ dct( 

&t(Q)“-‘)’ = det(8) 

G? 
1 

det(H, (0) 

‘li, 
1 

W) 

c 
N detW,(W 

where the vertical maps 7’~ and 7’~ are the canonical maps and the horizontal map C is determined 

by the obvious maps Hi(C) -+ H,I_i (D)*. The proof of this elementary fact can be obtained 

directly from the definitions. 

The duulity isomorphism IIE bus the following properties: 
* : L,(E*) -+ L,(E**) = L(E) is inverse to DI,-. 

(2) Let E and I’ he two jlat vector bundles over K und let (;II : det(E) -+ det( F) be m 
isomorphism ofj!at bundles. Denote by I,,+ : det(F)* = det(F*) -tndet(E*) = det(E)* the 
map adjoint to @. Then there are two combinatorial correspondences 4 : L. ( E) -+ L, (0 and 
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" L. (F*) --~ L° (E*) and the following diagram 

commutes. 

L.(E)  > L.(F)  

L°(E*) ~ L°(F*) 

(22) 

Proof. The first property above follows immediately from the symmetry of the intersection 
numbers. The second property follows from the second description of the map DE given above 
and from the commutative diagram 

det(ota) 
r ( A ,  det(E)) > (r(A*,det(E*)))* 

F(A, det(F)) ~ (F(A*, det(F*)))*. 

This completes the proof. [] 

3.4. For any closed oriented manifold K of odd dimension and a flat vector bundle E over K there 
is the Poincar~ duality map De : L°(E) --* L°(E *) acting on cohomological determinant lines. 
It can be defined as follows. Using the canonical pairings (13), I ' , '  }E : Lo(E) ® L°(E *) --~ C, 
and the similar pairing for the dual flat vector bundle E*, we will define the map ~D F.. : L ° (E*) --~ 
L"(E "')  = L°(E) by the requirement 

{~)t;(x) ® 23E.(y)}t~. = {x ® Y}t~ (23) 

for any x c L.(E) and y c L°(E*), 
It is clear that the above duality map 'Dt¢ : L°(E) ~ L ' (E  *) can also be described 

as the map between the determinant lines of the cohomology induced by the isomor- 
phisms Hi(K, E) ~. (H"='(K,  E*))*, comming from the nondegenerate intersection forms 
H~(K, E) ® H"='(K, E*) -~ k, 

3.5. Note that if the dimension of the manifold K is even then the Poincar6 duality determines 
an element of the line ::De ~ L*(E) ® L°(E*). It can be shown that (©E)E = I; thus, 
in the even-dimensional case the Poincar6 duality i )e  determines the canonical pairing (.)to. 
Compare [151, 

4. Poincar~--Reidemeister metric 

In this section K will denote an odd-dimensional closed oriented manijbM. We will construct 
canonical metrics, which we call Poincard-Reidemeister metrics, on the determinant lines Lo (E) 
and L ' (E )  for any flat vector bundle. 

4.1, Let E be a flat vector bundle over K. By Corollary 1,8 there is a canonical metric on the 
line L.(E)  ® L.(E*) which we will denote by (.)E. On the other hand, there is defined the 
duality map ~De : L.(E)  --~ L.(E*), cf. 3.1. 
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[PR Definition. The Poincar6-Reidemeister metric II • L.tE~ on the line L°(E) is defined by 

Ilxll pR - (x ® ~DE(x)) !/2 L.(E) 

for x E L(E). 

(24) 

First, we want to show that the Poincar6-Reidemeister metric behaves well with respect to 
the correspondences ~ between the determinant lines. 

4.2, Proposition. Suppose that K is a closed oriented manifold of odd dimension. Let E and F 
be two flat bundles over K and let dp • det(E) ~ det(F) be an isomorphism of flat bundles. Let 

• L,  (E) --> Lo (F) be the induced correspondence between the determinant lines, cf. 1.1. Then 

the correspondence ~ preserves the Poincard-Reidemeister metrics: for any x ~ L, ( E) we have 

II~(x)  eR t,R IlL.(t:)----IIxlIL.(E) (25) 

where II II t'R and II pR • • II L .CF)  denote the Poincard-Reidemeister metrics on L.  (E) and Lo (F) L.(E) 
correspondingly. 

Proof. According to the definitions and using Prop. 1.9 and 3.3(2) we obtain II~(x)ll ~'R'2,,<z:> -- 
t'R,2 where (.)E and (.)t: 

denote the canonical metrics on the lines L,(E)  ® Lo(E*) and Lo(F) ® Lo(F*) respectively. 

4.3. Now I will describe a recipe computing the Poincar6-Reidemeister metric from the com- 

binatorial data. 
Let K denote a closed oriented odd-dimensional manifold and let E be a flat vector bundle 

over K. Let r be a triangulation of K. Given an element c~ ~ detC.(K, r, E) our task is to 
compute the PoincarE-Reidemeister metric of the corresponding element IITT(°t)ll pRt..It.:l, where 
Tr : det C.(K,  r, E) ---> det H.(K; E) is the canonical isomorphism. 

Let r* be the dual cell decomposition of K and let E* be the dual flat vector bundle. Choose 
two arbitrary non-zero elements ~ ~ detC,(K, r*, E) and y c de tC, (K,  r*, E*). We are 
going to define three positive real numbers lot 1/11~ 1, (l~, y), and c~/y. 

The first number [otl/I/~i = ~. > 0 is defined by the requirement l~(a) = :l:kTr.(:J), the 

equality taking place in the determinant line det H. (K; E). 
The second number is defined by 

(/~, r') = II{/~, , , ,  ×,,.1~., 
A* 

where the product is taken over all cells A* of the dual cell decomposition r* and where 
/~ = @/~a .  ~ @ l " ( A * , d e t ( E ) )  'ca') and y = (~)Ya. e C~)F(A*,det(E*)Y la'~. Here the 
brackets {., .}a. denote the absolute value of the canonical evaluation pairing on 

F(A*, det(E)) ' ta ') ® F(A*, det(E*)) ':ta'~. 

The third number a / y  is defined by the Poincar6 duality: if a = (~ota ~ F(A, det(E)) '~/x~ 

then 
a l y  = I I  ( a a : y a , )  

(A,A*) 
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A * 

Fig. 2. 

where the product is taken over all pairs (A, A*) of mutually dual cells and for any such pair 
the number (ota ' y,,,.) is the absolute value of the evaluation at the common point of A and A*, 
cf. Figure 2, of the flat sections ~ ,  ~ r(z~, det(E) '(a) and #,,,. ~ I"(A, det(E*) ~(~')+l . 

Now we can define the Poincar6-Reidemeister metric as the product of the constructed three 

numbers: 

t,R.2 _ [c~]/[/~] × (# ,y )  × e l y  (26) I I T ~ ( a ) I I L . ( E )  - 

The above definition clearly does not depend on the choice of fl and ~, and the result coincides 
with the definition (24). 

4.4. Proposition. Suppose that flat vector bundle E is unimodulat; i.e., there exists a.flat metric 
on the bundle det(E). Then there is defined the standard Reidemeister metric on the determinant 
line L°(E). We claim that in this case this Reidemeister metric coincides with the Poincard- 
Reidemeister metric con~tructed above. 

4.5. Let us first recall the construction of tile Reidemeister metric assuming that det(E) is 
unimodular. Let tz be a flat metric on the tlat bundle det(E). Fix a polyhedral cell decomposition 
r of K, For any cell A C K the fiat metric tt defines an element l,~x ~ dot i~'(A, E) = 
r ( A ,  dot(E)), determined up to multiplication by a number with norm I. The product of these 

I ~t A 'S, 
ttr'h'= r I  II~A), ~ ( A )  = (=~1) d"'i(A) 

A 

defines an element #r.t; • det C,(K, r, E) = l"[ dot [ '(A, E) '(A) and thus it defines an element 
Tr(IZr,~') ~ L . (E)  of the determinant line, determined again up to multiplication by a number 
with norm I, The later element correctly defines a metric I1" IIt,.(e) on the determinant line L . (E)  
by the requirement that IIZ~(t~,e)llt,.(L') ---- 1. If one choses another flat metric # '  = ~.# on 
det(E) then the constructed metric on L.(E)  does not change, since x(K)  = 0 by the Poincar6 
duality, 

One of the main properties of the Reidemeister metric is its combinatorial invariance. This 
means that for a pair of polyheral cell decompositions r and r '  of K having a common subdivision 
we have the diagram 

1; L, 
ttr i- C det(C,(K, r, E)) - - - +  det H.(K,  E) ~ - - -  det(C,(K, r', E)) 9 #~'.t.: 

and Tr(#r,e) : Tr,(#r,,t~) is a number of norm I. 

4.6. Proof of Proposition 4.4. Let # and l~ be a pair of mutually dual flat metrics on det(E) and 
det(E')  correspondingly. Let r be a triangulation of K and let r* be the dual cell decomposition. 
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Let/Zr.E 6 L°(E)  be the corresponding element as defined above in 4.5. To prove our statement 
we have to show that (T~(bt~,E) ® ©ETr(/z~,,e)}E = 1. 

First note that Tr(btT, E) = T~.(~,. ~-) by the combinatorial invariance property of the Rei- 
demeister metric under subdivisions, cf. 4.5. On the other hand ~DET,.(/z~. e) = T~(v,,E,), 
as one directly checks using the definitions. Thus we have {T~(l&,e) ® 7)eT~(lz~,e)}E = 
(Tr(lZr, e) ® Tr(vr, e*))e = 1 completing the proof. [] 

4.7. Let us now define a similar Poincard-Reidemeister metric (which we will denote I1" II ~R E)) on 
the cohomological determinant L°(E).  Here again K denotes a closed oriented odd-dimensional 
manifold and E a flat vector bundle over K. 

Recall that there is a canonical norm {, )E on the line L°(E) ® L°(E *) (cf. 2.4(3)) and there 
is the Poincare duality map fl3E : L°(E) --> L'(E*) (cf. 3.4). 

Definition. For x ~ L" (E) define 

I I P R ' 2  --  (X ~ ~DE(X)) (27) IIX,,L.(E ) - -  

Note that this Poincar6-Reidemeister metric on the cohomological determinant line is again 
a purely combinatorial invariant of K and E. 

The cohomological version of the Poincar6-Reidemeister metric has properties similar to the 
homological one. We will formulate them without proof: 

4.8. Proposition. (1) l f  a flat bundle E is unimodular (i.e., the flat line bundle det(E) admits 
a flat metric) then the Poincard-Reidemeister metric on L°(E) coincides with the standard 
Reidemeister metric; 

(2) Suppose that E and F are two flat bundles over K and let q~ : det(E) ---> det(F) be an iso- 
morphism o/flat bundles. Let (b " L°(E) -~ L°( F) denote the induced correapondence between 
the determinant lines, (I'.2.3. Then the correspondence ~ preserves the Poincard=Reidemeister 
metrics; in other words, Jot any x C L°(E) we have 

" II PR PR 114,(x),,L.~v~---Ilxllt..~,:.l. (28) 

5. Ray-Singer norm of the combinatorial correspondence between the determinant lines 

Let K denote a closed oriented smooth manijoid. Suppose that w,~ are given two flat vector 
bundles E and F over K and an isomorphism ~b : det(E) --+ det(F) between their flat determinant 
line bundles. As we have seen in Section 1, throe is the correspondence ~ • L°(E) --, L°(F) 
which is determined completely by the combinatorial structure of the initial data (K, E, F, ¢). 
The correspondence q~ determines a metric on the relative determinant line L°(F) ' L°(E), 
which is defined by the requirement that the norm of ~ is 1. 

In this section we use the main theorem of Bislrmt and Zhang 12, Theorem ().2] to show 
that the Ray-Singer construction of analytic torsion produces the same metric on this relative 

determinant. 
In the next section we will show that this theorem about the metrics on the relative determi- 

nants gives in the odd-dimensional situation an identification of the Ray-Singer metric with a 

combinatorially defined PoincarE-Reidemeister metric, defined in Section 4. 
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5.1. Theorem. Let K be a closed oriented smooth manifoM and let E and F be two flat vector 

bundles over K supplied with an isomorphism offlat bundles ~ : det(E) ~ det(F). Consider 
the correspondence ~ " L ' ( E )  ~ L ' (F)  (cJ~ Section 1) constructed by means of a smooth 
polyhedral cell decomposition of  K. Fix a Riemannian metric on K. Fix Hermitian metrics on 
the flat vector bundles E and F in such a way that the induced metrics on det(E) and det(F) are 
isomorphic via dp • det(E) --+ det(F). There are then defined the Ray-Singer metrics II " IIL-¢e)RS 
and I1" II Rs C'(F) on the determinant lines L°( E) and L ' (  F) respectively. We claim that the relative 
Ray-Singer metric on the line Hom(L°(E), L°(F))  = L°(F) ® L ' ( E )  * coincides with the 
metric, determined on this line by the correspondence ~. In other words, the correpondence 

preserves the Ray-Singer metrics: for any x ~ L ° (E) the following formula holds 

II~,(X)II~.S~F)- Ilxll Rs L'(E)" (29) 

Proof. The proof easily follows from Theorem (0.2) of Bismut and Zhang 12]. If we would 
have known that the cell decomposition associated with an arbitrary Morse function is a smooth 
polyhedral cell decomposition (in the sense of [14]) with respect to the smooth structure of K 
(which is not true in general) then we would be able to apply the theorem of Bismut and Zhang 
directly. Instead, we will proceed as follows. 

Fix a smooth triangulation of K (cf. I 12 l) and consider its second derived subdivision (cf. [ 141) 
which we will denote r. 

Choose a Riemanian metric on the manifold K. There is a Morse function f on K having the 
following properties: 

( I ) Any open simplex A of the triangulation r contains a unique critical point pa of f having 
index dim(A); 

(2) The unstable manifold of the critical point Pa coincides with A. Such function f can 
' ' S )  ' "  be constructed by considering the handle decomposition as, t crated with the triangulation r 

(of. 1141, Prop. 6.9), then by smoothing the corners of the handles (similarly to 191) and then 
by using the standard correspondence between glueing handles, elementary cobordisms and the 
Morse functions having precisely one critical point, of. 191. 

The Thom-Smale complex associated with the function f is now identical to the simplicial 
chain complex of K with respect the triangulation r. 

For any simplex A of r fix a volume element in det(F(A, E)) = F(A, det(E)). Then tix 
the volume element in det(F(A, F)) = F(A, det(F)) corresponding to the choice made for E 
under the bundle isomorphism ~ • det(E) ~ det(F), The above choices determine the metrics 
II ' ,,l~,~tc~"M'X and I1' II~r,'~x.~ via the canonical isomorphisms 

L ' (E )  ~ det(C,(K, r, E*)) -I (30) 

(of. (15)) and similarly for the bundle F; these metrics are called Miinor metrics in 121. According 
to our general construction in Section !, with the coherent choices (with respect to q~) as above 
made lbr the volume elements, we have 

M,X IIx "u'x - I I ~ ( x ) l l  (31) IIL,(F~) ~ L*(F) 

for x ~ L ' (E) ,  

Let us apply Theorem (0.2) of Bismut and Zhang 12] twice: once for the metrics I1" II as and 
L'(E) 
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M,X 
II • IIL.(e) on L ' ( E )  and the second time for the metrics II • II RsL (F~ and I1" II,M. •xL iF) on L°~,F). The 
right hand sides of the formula (0.8) of [2] in both cases will be the same because it depends 
only on the metric on the manifold K and the fiat connection and the metric on the determinants 
det(E) and det(F).  Thus, subtracting, we obtain 

ilxllRS Rs L.(e) IlYlIL.(F) 
u,x -- M,x (32) 

IIxllL.(E) IlYllL.tF~ 

foranyx  ~ L ° ( E ) a n d y  ~ L°(F) .Now,  sety = ~b(x);thenfrom(30)weobtainll~(x)ll Rs - L (F) 
IIx Rs IIL.(e) as stated. [] 

The following formulation is equivalent to Theorem 5.1. 

5.2. Theorem. Let K be a closed oriented smooth manifold and let E and F be two flat vector 
bundles over K such that the flat b~mdle det (E) ® det (F) admits a flat metric Ix. Then by 2.4(3) 
Ix determines (combinatorially) a metric I1" I1~, on the line L°(E) ® L°(F). Fix a Riemannian 
metric on K. Fix HermMan metrics on the flat vector bundles E and F in such a way that the 
induced metrics on det (E) ® det (F) is it. There are then defined the Ray-Sin ger metrics I1" II ~.s(E) 
and I1" IIRS L'(F> on the determinant lines L°(E) and L°( F) respectively. We claim that the product 
of  these Ray-Singer metrics coincides with the combinatorial metric I1" I1,~; more precisely Jbr 
any x ~ L ' ( E )  and y ~ L*(F) we have 

Ilxll~.~e~ Ilyll Rs - • L . ( F ~  - -  IIx ® yl l~ .  

We will formulate now a very special case of the above theorem, which will be used below• 
We will see later that this simple statement allows to identify completely the Ray-Singer metric 
in the odd-dimensional case. 

5.3. Theorem. Let K be a closed oriented manifold and let E be a flat vector bundle over K. 
By 2.4(3) there is a canonical metric (.)r, on the line L°(E) ® L°(E *) which is determined by 
the combinatorial structure of K and E. Choose a Riemamffan metrix on K and a Hermitian 

metric on the bundle E (which is not supposed to be flat). The latter determines a metric on the 
bundle E* 7"he construction of Ray and Singer produces now the metrics I1' II ~s(lc) and I1' II Rs • L ' ( E * )  

on the lines L°(E)  and L°(E *) correspondingly. Then their product is equal to the canonical 

combinatorial metric ( , )E on L°(E)  ® L°(E*). 

6. Ray-Singer metric coincides with the Poincar6--Reidemeister metric 

We will prove in this section that for any closed oriented odd-dimensional manifold K and for 
any flat vector bundle E over K the Ray-Singer norm on the determinant line of the cohomology 
L°(E) (constructed by using any Riemannian metric on K and a metric on E) coincides with the 
combinatorially defined Poincar6-Reidemeister metric• We will start with the following lemma. 

6.1. Lemma.  Let K be an odd-dimensional maniJbld and let E be a.flat vector bundle over 
K. Consider the map ~DF. " L°(E) --~ L°(E *) determined by the Poincare duality cf 3.4. Fix a 
Riemannian metric on K and a metric on the bundle E; the latter determines a metric on E*. 

Consider now the Ray-Singer metrics II II ~s and I[ Rs L • L • • • IIL.(E.) on the lines (E) and (E*) L'(E) 
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determined by the choices made above. Then the map DE preserves the Ray-Singer metrics: for 

any x E L ° (E) we have IIx II Rs L ' ( E ) -  II E(x)ll Rs L.(E,). 

Proof. This is well-known, cf. [2], page 35. 

6.2. Theorem. Let K be a closed oriented smooth odd-dimensional manifold and let E be a flat 

vector bundle over K. Consider the Poincard-Reidemeister metric II • L (E) on the determinant 

line of  the cohomology L ' (E) .  Choose an arbitrary Riemannian metric on K and an arbitrary 

Hermitian metric on E and consider the metric II • II Rs given by the construction of  Ray and L'(E) 
Singer [ 13]. Then these two metrics coincide. 

Proof. For x ~ L" (E) we obtain 

PR.2 --  (X ® ~DE(X)) E Ilx IIL.ttr) - 

_ IIxlIRS gs - -  L.(E) x IIDE(x)llL.te~ 
- Ilxll~S Rs - L.tE) × IlXlIL-(E) 

This completes the proof. [] 

by definition (27) 

by Theorem 5.3 

by Lemma 6. !. 

6.3. Remark .  Theorem 6.2 together with Proposition 4.8(1) clearly generalize the theorem 
of W. Mtiller [1 !]. On the other hand, proof of Theorem 6.2 can be based on the theorem of 
Mtiller {1 11 instead of using theorem of J.-M. Bismut and W. Zhang [21. Namely, if K is odd- 
dimensional then Theorem 5.3 follows from theorem of W. Miiller since the bundle E E~ E* 
is unimodular and the Reidemeister metric on L ' (E)  ® L'(E*) coincides with the canonical 
metric ( . )  I~. Using Proposition 4.8(2) one can obtain also Theorems 5.1 and Theorem 5.2 in the 
odd-dimensional case. 
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