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ABSTRACT

We prove in this paper that every semilinear set is a finite union of disjoint linear
sets, using elementary combinatorial-topological lemmas.

This paper gives a positive answer to an open problem proposed by Seymour
Ginsburg in his book ([2], p. 195).

Let N denote the nonnegative integers and R denote the real numbers. For each
integern 2> | let R* = R X -» Xx Rand N®* = N X -+ X N (n times). A linear set
L(c; py -+, p;)isasubset {x | x = ¢ -+ 3°_, k;p, for nonnegative integers &; ,1 = 1,..., 7}
of N, where ¢, p, ,..., p, are elements of N”. We call ¢ the constant and p, ,..., p, the
periods of the linear set. In particular we denote by L(c) a linear set whose periods are
all zero vectors (i.e. consisting of single element c) and regard as » = 0. A subset of
N7 is called semilinear if it is a finite union of linear sets.

Let L{c; py ..., p;) C N™ be a linear set. We say that the linear set is of s-dimension,
if the periods p ,..., p, span a s-dimensional vector space in R", and that the linear
set is fundamental if s = r. (i.e. py ,..., p, are linearly independent in R"). In this paper
the empty set is regarded also as a (—1)-dimensional fundamental linear set.

By Lemma A.1.a ([2] p. 212), every lincar set is a finite union of fundamental
linear sets.

In fact, we prove the following:

THEOREM 1. Let A = L(c; py ..., ps) and B = L(d; ¢, ,..., q,) be two fundamental
linear sets. Then A — B is a finite union of disjoint fundamental linear sets of dimension
<.

THEOREM 2.  Every semilinear set is a finite union of disjoint fundamental linear sets.

* The author is grateful to the refree who pointed out that the result was obtained indepen-
dently and perhaps at an earlier date by Eilenberg and Schutzenberger ([/]), but that the
present method of proof differs from theirs.
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Let us begin with notations relating with combinatorial topology, (see [3], [4]).
Some of them are used only in the proof of Lemma 1.

A s-simplex (s > 0) S in R” is the convex hull of s - 1 linearly independent points.
We call the points vertices, and say that they span S. If S is any simplex, we shall use
I(S) to stand for the open simplex of interior points. We shall use S for the boundary
of S. A simplex T spanned by a subset of the vertices is called a face of S, written
T < 8. Simplexes S, 7T are joinable if their vertices are linearly independent. If S, T
are joinable we define the join ST to the simplex spanned by the vertices of both.

A (simplical) complex K in R" is a finite collection of simplexes such that

(i) if S € K, then all the faces of .S are in K,
(i) if S, T € K, then S N T is empty or a common face.

A partition 7K of a complex K is a complex, each of whose open simplexes is con-
tained in a single open simplex of K and which coincides with K as a point set.

The star and link of a simplex S € K are defined:

st(S, K} ={7;8 < T}, k(S K)={T;STeK}
Two complexes K, L in R* are joinable provided:

(i) if Se K, T'eL then S, T are joinable
(ii) if S, S’e Kand T, T' €L, then ST'N S’T" is empty or a common face.
If K, L are joinable, we define the join KL == K UL U [ST; SeK, Tel].
Choose a point P in the interior of a simplex S e K. Let
oK = (K —st(S, K)) u P+ S - Ik(S, K)
Then oK is a partition of K, and we say oK is obtained from K by starring S (at P).

The operation of starring a simplex will be called a simple subdivision. The resultant
of successive simple subdivisions will be called a stellar subdivision.

A convex cell S in R" is a nonempty compact subset given by

linear equations f; = 0,..., f, = 0 and
linear inequalities g, > 0,...,g, =2 0
A face T of S is a cell obtained by replacing some of the inequalities g; > 0 by equa-
tions g; = 0.
A cell complex K is a finite collection of cells such that
(1) if S € K, then all the faces of S are in K
(ii) if S, T € K, then S N T is empty or a common face.

Let @ and b be two points of R®. Then a * b is the line segment joining a and &,
and:ab is the half line through b starting with a. Let X be a subset of R™ such that
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X Na = @.Then, by a x X we denote the finite cone{y | ¥ € a % x, where x € X} and
by aX the infinite cone {y | y € ax, where x € X}. ‘

Let A = L(c; py ,.-» ps) be a fundamental lincar set in N*. By 4 we denote the
subset {x | x = ¢ - Y;_, x:p; , where x; > 0,7 = 1,..., s. are reals} of R".

Let A = L(c; py 5.y ps) and B = L{c; ¢y ..., ;) be two fundamental linear sets in
N7 with the same constant ¢. If s > 1 and ¢ > 1, let S(4) and S(B) be (s — 1)-
simplex and (¢ — 1)-simplex which are intersections of 4 and B respectively with a
suitable (n — 1)-hyperplane.

The parts (1) and (2) of Lemma 1 are well known in combinatorial topology

(see [3], [4D-

Lemma 1. (1) S(A) N S(B) is subdivided into a simplicial complex K without
introducing any more vertices, if it is not empty.

(2) Some stellar subdivision aS(A) gives partition nK such that nK is a subcomplex
of aS(4).

(3) Let f be a vertex of K. Then there exists a point d 7= ¢ on cf such that the vector
d — ¢ is a linear combination with nonnegative integer coefficients both of p, ,..., p, and

Of G150+ Gt -
(4) Let f be a vertex of 0S(A)(in (2)). Then there exists a point d 5= ¢ on cf such
that d — c is a linear combination of py ,..., p, with nonnegative integer coefficients.

Proof. (1) If S(4) N S(B) # @, S(4) N S(B) is a convex cell and also a cell
complex. Order the vertices of the cell complex S(4) N S(B). Write each cell X as
a finite cone X == x x ¥ where x is the first vertex. Subdivide the cells inductively in
order of increasing dimension. The induction begins trivially with the vertices. From
the inductive step, we have already defined the subdivision Y’ of Y, and so define X’
to be the finite cone X’ = x * Y. The definition is compatible with subdivision Z’ of
any face Z of X containing x, because since x is the first vertex of X, it is also the first
vertex of Z. Therefore each cell and hence S(4) N S(B) is subdivided into a simplicial
complex of K.

(2) If a vertex x of K is in any open i-simplex I(X) of S(A4) (¢ > 0), we apply the
simple subdivision (X, x) to S(4). Repeating this process, we obtain a stellar sub-
division of S(A4) having all the vertices of K as vertices. Let a partition of each i-simplex
of K be a subcomplex of aS(4) for i = 1,..., k. If there is a (k 4 1)-simplex of K
which is not covered exactly by a subcomplex of 0S(4), let there be precisely r such
simplexes and let ¥ be any one of them. Then I(Y') meets some open simplex I(X) of
05(4) which is not contained in I(Y). If the intersection ¥ N X is not a single point,
it is a convex domain, bounded by a polyhedron I1. Any vertex of IT which is on Y, say
y, is also a vertex of X. Otherwise y would be in some open z-simplex of X say I(Z),
where 7 > 0. Since a partition of Y is a subcomplex of ¢S(4), the open simplex I(Z)

571/3/2-8
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would be contained in an open simplex of Y and would be altogether in II. Then y
would not be a vertex of IT. If all the vertices of IT were vertices of X, then IT would
be the boundary of a simplex and ¥ N X would be a simplex of X. This is not the
case. Therefore at least one vertex of IT is not a vertex of X. Being a point of I(Y),
this vertex is the complete intersection of I(¥") with some open simplex of X. Therefore
at least one open simplex of 6.5(4) (e.g. I(X) or an open simplex of X) intersects I(Y)
in a single point without being contained in I(Y'). Let there be precisely m such open
simplexes, and let I(Z) be any one of them. If 2 = Y N Z, apply the simple sub-
division (Z, 2) to 0S(A4). Then each new open simplex (except the open simplex 2) has
z on its boundary, and being flat, meets I(Y) in a flat [ space, I > 0, if at all. Therefore
the proof of (2) follows from induction on m, r and A — k, where £ is the maximum
dimensionality of the simplexes in K.

(3) Since f is a vertex of K, the half line cf is the complete intersection of c,
with cA2 , where 4, and 4, are faces of S(4) and S(B) respectively. Let p, yerer pl and
q, ’" ,q, be the vertices of 4, and 4, respectively such that p; ec(c +p;_ ), =1y p
and q, € c(c+q s ), B = 1,...,v. Then cf consists of the points

u v
¢+ Z X;,Piy = € + Z YigQig
g1

a=1

where (%; .., %; , Yiy e ¥5) ar€ nonnegative solutions of the linear equation
[ v

u v
c+ Y X pi=c+ Y Vi (E)
aml B=1
Since every component of all vectors Pip Q= l,..., , B = 1,..., v is nonnegative
integer, there exists a solution (x; ,..., X5 s Piy reees y,) of (E) such that X s g
a=l,.,p B=1,.,vare nonnegatxve mtegers and are not all zero. Hence, there
exist a point d # ¢ on cf such

8 t
d—c= Z kypy = Z lqu

u=1 v=1
where &, , I, are nonnegative integers for u = 1,...,5, v = 1,.., 2.

(4) If f is a vertex of either K or S(A4) this proposition is clearly true. Hence it
suffices to prove the result for a vertex f of 0.5(4) which is a vertex of neither K nor
S(A4). Let f; ,..., fi, be the order in which the vertices of 6S(4) except those of S(A4)
and K are introduced as in the proof of (2) of this lemma. We assume that f ,..., f,
(v < w) satisfy the proposition of (4) and let 0, S(A4) be the stellar subdivision of S(A4)
when f, has been just introduced. Then cf,, is the complete intersection of cA; with
cl, where 4, is a simplex of 0,8(A4) and 4, is a simplex of K. Let g, ,..., g, be the
vertices of 4, and let A, ,..., ki, be the vertices of 4, . Then there are points g; 7 ¢ and
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k; 7 ¢ on cg; and ch, respectively such that g; — ¢ and ; — ¢ are linear combinations
of py,..., ps with nonnegative integer coeflicients for 7 = 1,...,u and j = I,..., v
Hence every component of g; — ¢ and k] — ¢ are nonnegative integers. On the other
hand cf,,, consists of the points

4 +Z ,(g,—c)—c—f Zy,(h —C)
j=1
where % ,..., ¥, , ¥ ,-.., J, are nonnegative. From the same argument of the proof of
(3) there is a pomt d,,+1 # concf,,, such thatd,,, — cisalinear combination of g; — ¢
i = 1,...,, p with nonnegative integer cocfhicients. Hence d,,; — ¢ is also a linear
combmauon of py ..., p, with nonnegative integer coeflicients. Therefore (4) follows
from induction on w — v.

LEMMA 2. Let 4 be an (e — 1)-simplex with vertices f, ,..., f, lying in S(4) N S(B)
such that there is a point d; = ¢ on each half line cf; such that the vector d; — c is a linear
combination with nonnegative integer coefficients both of py ..., ps and of ¢, ,..., g, . Then
each of the following sets (1), (2), (3), (4), (5) and (6) is either a finite union of disjoint
Jfundamental linear sets of e-dimension or the empty set.

(1) AncA ) 4 N I(ch)
() (ANnB)ncA  (4) (4N B)NI(cA)
(5) (A —B)ncA  (6) (4 — B) N I(cA)

where I(cA) denotes cI(A) — c.

Proof. (1) By the assumption of the lemma each d; is an element of 4 N B. For
any element x € A N cA, x — ¢ is written uniquely as x — ¢ = X;_; x(d; — ¢) with
nonnegative rational coefficients x;, £ = 1,..., ¢, since d; — ¢,..., d, — ¢ are linearly
independent and x — ¢, d; — ¢ are all linear combinations of p, ,..., p, with non-
negative integer coefficients. Let {¢;, = «¢,..., ¢,} be the set of all x € 4 N cA satisfying
O0<x, <lfori=1,.,e
Now

x=c+ Z (% — [¥D(d; — o) + Z [x)(d; — ©)

§=1 i=1
where [ ] is Gaussian bracket. Moreover we may write
é

x—0=2xi(‘1’a‘_‘)= z k.p.

=1 u=1

i [xi'](di - C) = Zs: lupu

fe1 u=1
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where &, , [, are nonnegative integers. Since the point ¢ <~ Y5y (%; — [%:])(d; — ¢) =
¢+ (ky — 1) p, lies in A, k, — I, is a nonnegative integer for u = 1,..., 5.
Hence ¢ + Yoo, (x; — [*:])(d; — ¢) is contained in 4 and equals to onc of ¢;,
j=1,., A say ¢;. Therefore x€L; = L(c; ; d; — c,...,d, — ¢). Conversely each
L;,j-=1,.,A1s a set contained in 4 N cA. Since L;, j == 1,..., A have the same
periods d; — ¢,..., d, — ¢ and different constants lying in the sct

Y1y =t Y oldi—0, whee <0y <,
i=1

L;,j = 1,...,, A are mutually disjoint. Therefore 4 M cA is a finite union UL,‘L,- of

disjoint fundamental linear sets with the same periods, d; — ¢,..., d, — ¢.

(2) Let ¢; = ¢ + Y51 ¥;(d; — ) (0 < y;; < 1) be the constant of L;, and let
i ..., i, be all 7 such that y;; = 0. Then ¢} =¢; + (di, —¢) = =+ 4 (d;, —0) isa
point of L; N I(cA), and L¥ = L(cF; dy — ¢,...,d, — ¢) is a subset of L; N I(cA).
These Lf, j = 1,..., A are mutually disjoint. Let x be an element of L; N I(cA). Then

[ [
x=c;+ ) k{di—c)=c+} (3 +k)d —0)
=1 1-=1
where y;;, + k; >0 for i = 1,...,e. Then &, > 1, since y;; =0 for o = I,..., .
Hence ¢

sty [ — ) T Y e Dl — O+ Y kady—0)

=) + i (ki — (i, —c) = Y . kyd, —c)eL}

a=1 LR ST i,

Thus L;nI(cA) = L¥. Therefore A N I(cA) = U;_l L¥, completing the proof for
.
(3) Any element x € (4 N B) N cA can be written uniquely as

€

x=c- ) xd; —c)
i1
where x;,7 = 1,..., ¢ are nonnegative rationals. Let {2, = ¢,..., 2,} be the set of all
x€ (4 N By N cA satisfying 0 < x; << 1 for i = 1,..., &. Then {2, ,..., 3,} is a subset
of {¢;,.., ¢;}- Hence we may assume that 2z, = ¢ ,.., 8, = ¢(v < A). Since
x =+ iy (o — [x)di — ) + Lialx:](di — ¢) and ¢ + T7_, (% — [x])(di — ©)
isoneof 25, A = 1,...,»,5ay 3, = ¢, ,x€L, . Therefore (AN B)NcA = J,_,Ln,
completing the proof for (3).
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(4) Since
(AN Bynli(cd) ={(AdnB)yncAjn {4 nli(cp)}
=(Ym)n(Yz) = g

the proof for (4) is complete.

(5) Since
(A—B)NncA=4ncA—-(ANnB)Nnca
A v A
=UL-UL= U L
j=1 h=1 j=v+1

the proof for (5) is complete. Note that (4 — B)NcA = g, ifv = A,
(6) Since

(4 — B)n I(cA) = A N I(cA) — (4 N B) N I(cA)

A v A
i=1

A=l Fe=v4l

the proof for (6) is complete. Note that (4 — B)y N I{cA) = @, if v = A,

Lemma 3. Let A = L(c; pyyerr ps) and B ==L(c; qy ..., ¢;) be two fundamental
linear sets with the same constant ¢. Then A N B is a finite union of disjoint fundamental
linear sets of dimension < min (s, t).

Proof. If either A or B is 0-dimensional, 4 N B is either one element or empty.
Thus the lemma is trivial. Thus we may assume that s > 1 and ¢t > 1. If
S(4)N S(B) = @, AN B = ¢ and the lemma is trivial, Therefore we may assume
that S(4) N S(B) is a convex cell and by Lemmas I(1) it can be subdivided into a
simplicial complex K without introducing any more vertices. Let 4 be any simplex of
K and f ,..., f, be the vertices of 4. By Lemma 1 (3) there exists a point d; % ¢ on cf;
such that d; — ¢ is a linear combination both of p, ,..., p, and of ¢ ,..., ¢; with non-
negative integer coefficients. Then by Lemma 2(4), (4 N B) N I(cA) is a finite union
of disjoint fundamental linear sets of dimension < e. Since each element of 4 N B
except ¢ lies in I{cA) for a single simplex A of K, 4 N B is a union of the fundamental
linear sets lying in (J4ex(cA) and L(c). These fundamental linear sets are mutually
disjoint and of dimension <{ min(s, t). Thus the proof of Lemma 3 is complete.

Lemma 4. Let A =L(c;py,....ps) and B = L(c; qy,..., q;) be two fundamental
linear sets of dimension > 1 with the same constant c. Then (A — BYyn (AN B) is a
finite union of disjoint fundamental linear sets of dimension < min(s, ).



228 ITO

Proof. By the same argument as lemma 3 we can apply Lemma | (3) and Lemma 2
(6). Therefore (A — B) N I(cA) is a finite union of disjoint fundamental linear sets for
any simplex 4 of K. Since each element of (4 — B) N (4 N B) lies in I(cA) for a
single simplex 4 of K, (4 — B) N (4 N B) is a union of the fundamental linear sets
lying in (Jacx I(cA). These fundamental linear sets are mutually disjoint and are of
dimension =< min(s, ). Thus the proof of Lemma 4 is complete.

Lemma 5. Let A = L(c; py .., ps) and B = L(¢; ¢y ,..., q;) be two fundamental
linear sets of dimension > | with the same constant c. Then A N\ (A — B) is a finite
union of disjoint fudamental linear sets of dimension < s.

Proof. By Lemma 1 (2), (4) and the special case of Lemma 2 (2) (where B == 4),
A N I(cA) is a finite union of disjoint fundamental linear sets for each open simplex
I(4) of 0S(A) — 7K. Therefore 4 N (4 — B) is a finite union of the fundamental
linear sets lying in I(cA) over all the open simplex I(d) of 6S(A4) — wK. These fun-
damental linear sets are mutually disjoint and of dimension < s, because S(4) is
(s — I)-simplex. Thus the proof of Lemma 5 is complete.

Lemma 6. Let A = L(c; py »-.., P,) be a fundamental linear set. Put

A* =L (C - i BiDis 1 Ps) )

i=1

where k; ,i = 1,..., s are nonnegative integers. Then A is a finite union A* U \J,_, 4, of
disjoint fundamental linear sets, where A, , f = 1,..., p are of dimension <s — ]

Proof. Consider the following family of (s — r)-dimensional fundamental linear
subsets of 4,

L{(]l r"rjf)v (lil ey li,)} = L(C + Z k,-P.' =+ z limpia H
j j o=l

$FE G iy

all the p; except for p; ,a = 1,...,7)

for r =0,..,s, all the r combinations (j,..,j,) of (I,2,.,s) and integers
0<l <k —1, a=1,.,7r. When we put r = 0, the linear set above is 4*.
For each element x = ¢ + i1 x.p: of A, x belongs to L{(Jy ,.-r) fu)s CTR x;)}
ifand only if j, , « = 1,..., r are all the index ¢ such that 0 < x; < k; — 1. In partic-
ular, those linear sets are mutually disjoint, and 4 is the union of the family. Let denote
by 4,, f = 1,..., p the fundamental linear sets considered except A* Then
A4 =A%V, 4,, where 4,, f = 1,..., p are fundamental linear sets of dimen-
sion < s — 1.
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Tureorem 1. Let A = L(c; py .- ps) and B = L(d; gy ,..., §;) be two fundamental
hinear sets. Then A — B is a finite union of disjoint fundamental linear sets of dimension
<8,

Proof. By Lemma 4 and Lemma 5 it is assumed that 4 and B have different
constants, i.e. ¢ 7 d. We shall prove the theorem by induction on the pair (s, £). If
s = 0, then A4 consists of one element ¢. Hence 4 — B is either empty or L(c). Thus
the theorem is true for any t, if s = 0. If £ = 0, and s £ 0, then 4 = L(c; py ..., ps)
and B =Ld). If An B =g then 4 — B = A and the theorem is true.
If An B = B = L(d), we may write d = ¢ +Z:_1 h;p; where, h; i = 1,..., s are
nonnegative integers. Put h; 4+ 1 = &, , then by Lemma 6, 4 = A* U (Ji; 4,,
where 4, , f == 1,..., p are fundamental linear sets of dimension < s — 1. Moreover
B = L(d) is one of 4, of O-dimension say 4,. Hence 4 — B = A4* U {J, ., 4y,
completing the proof for t = 0, and s 54 0. Now we assume that the theorem is true
for the pair (s', ¢') such that either s <Cs, ¢’ <t or s" <5, t' < ¢t. Let us prove the
theorem assuming s > 1, t > 1. If AN B = g, then 4 — B = A4 and we have
nothing to prove. Therefore we assume that 4 N B contains an element, say
2 =c+ i kpi = d+ Z:-1 lig; . Consider the fundamental linear sets
A* = L(2; py y--rr ps)y B* = L(2; ¢y 5., ¢¢)- Then, by lemma 6, A is a finite union
A* U ;o 4, of disjoint fundamental linear sets, where 4,, f = l,...,u are of
dimension < s — 1. The same is true for B, and B = B* U (J,_, B, where B,,
£ = l,...,, v are of dimension < t — 1. Therefore

AnB:(A*uOA,)nB
f=1

:(A*nB)u(C)A,nB)

r=1

=(A*nB*)u(A*nC)B,)u(OA,nB)

g=1 f=1

where 4* N B*, A* N Yy, B, , Uy-1 4; N B are mutually disjoint. Therefore

A—B=4*vl)4,—(4nB)

=1

A*—(A*nB*)u(A*nOB,);U(UA,—OA,nB)

g=1 f=1 f=1

:3A*—(A*nB*)u(A*ﬂC)Bg);UO(A/—B)
9=1 =1
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where 4* — (4* N B¥)U (4* N\ J,.; B,) and 4, — B, f = l,..., u are mutually
disjoint. At first, for each f, 4, — B is a finite union of disjoint fundamental linear
sets of dimension <{ s — 1, by the assumption of induction, since A4, is of dimension
< s — | and B is of ¢t-dimension. It suffices to prove that

4 —(A*nB*)u(A*mOBg)
g-1

is a finite union of disjoint fundamental linear sets of dimension < s. Since
A* = {A* 0 (A* 0 B¥)} U {4™ n (d* — B*),

A* —(A*nB*)u(A*m U B‘,)

g=1

:{A*m(/i*mB*)—A*r\B*}u}A*n(A"*——B*)—A*mUB,,z

g=1

— {(4* — B¥) N (4* n B U 3A* A@d* — B4 — () B,g

where (4* — B*) N (A* N B*)and 4* N (4* - B*) — | B,

g=1
are disjoint. By lemma 4, (4* — B*) N (4* N B*) is a finite union of disjoint fun-
damental linear sets of dimension <{ min (s, t). On the other hand, by lemma 5,
A* N (A* — B*) is a finite union (J5_; G; of disjoint fundamental linear sets G; of
dimension <C s. Therefore

A*n(4* — B* — | B,
g=1

P

U (Gi—" O Ba)

i=1 g=1

P v
= U G, — U B, =
i=1 g=1

Now it remains only to prove that G; — |J,_; B, is a finite union of disjoint fundamen-
tal linear sets of dimension <C s for each 7. We shall prove this by another induction
onv. If v = 1, G; — B is a finite union {J;_, II, of disjoint fundamental linear sets of
dimension <C s by the assumption of the induction of this theorem, since B, is of
dimension << ¢t — 1. Then

Gi—UBg:(Gi_Bl)_UBa
g=1 g=2

T

:UH:'“

j=1 g

C-

B, =

g (Ha' - C) B.a)

2 j=1 =2

[~
i
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By the assumption of the induction on v, H; — (J,.., B, is a finite union of disjoint
fundamental linear scts of dimension < s for each j. Hence G, — (J,; B, is also a
finite union of disjoint fundamental linear sets of dimension < s for each i, completing
the proof of this theorem.

THEOREM 2. Every semilinear set is a finite union of disjoint fundamental linear sets.

Proof. Let S be a given semilincar set. By Lemma A. 1 ([2], p 212), S is a finite
union (J;., 4; of fundamental linear sets 4, , ¢ == 1,..., «. Let us prove the theorem
by induction on a. If « = 1, the theorem is trivial. Suppose that the theorem holds for
«, 1 <o <a Then § = A4; Ui, 4, and (5, 4, is a finite union (J°_; B, of
disjoint fundamental linear scts by the assumption of induction. Write

8 8
LS':AIU UB] =.A1U U(BJ—AI)'
i-1 =1
Then 4, and all B; — 4,, j = 1,..., B are mutually disjoint. By Theorem 1, each
B; — A, is a finite union U:=1 D, of disjoint fundamental linear sets. Therefore S is
also a finite union of disjoint fundamental linear sets, completing the proof
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