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ABSTRACT 

We prove in this paper that every semilinear set is a finite union of disjoint linear 
sets, using elementary combinatorial-topological lemmas. 

This  paper  gives a positive answer to an open problem proposed by Seymour  
Ginsburg  in  his book ([2], p. 195). 

Let N denote  the nonnegat ive  integers and R denote the real numbers .  For  each 

integer n ~ 1 let R" ---- R • "" • R and  N "  = N • " .  • N (n times). A linear set 
L(c; Pl ,..., Pr) is a subset  {x ] x = c + Y'~=I kip~ for nonnegat ive  integers k~, i = 1,..., r} 

of N n, where c, P l  ..... Pr are elements  of  N" .  We call c the constant and Pl ..... Pr the 
periods of the l inear set. In  part icular we denote by L(c) a l inear  set whose periods are 
all zero vectors (i.e. consisting of single e lement  c) and regard as r = 0. A subset  of 
N "  is called semilinear if it is a finite u n i o n  of l inear sets. 

Let  L(c; Pl .... , p~) C N "  be a l inear set. We say that the l inear  set is of s-dimension, 
if the periods Pa ,--., Pr span a s -d imensional  vector space in R n, and  that the linear 
set is fundamental if s : -  r. (i.e. Pl  .... , Pr are l inearly independen t  in  R"). In  this paper  
the empty  set is regarded also as a ( - - l ) - d i m e n s i o n a l  fundamenta l  l inear set. 

By L e m m a  A. 1. a ([2] p. 212), every linear set is a finite un ion  of fundamenta l  
linear sets. 

In  fact, we prove the following: 

THEOREM I. Let A ~- L(c; Pa ..... p,~) and B = L(d; ql ..... qt) be two fundamental 
linear sets. Then A -- B is a finite union of disjoint fundamental linear sets of dimension 
~ s .  

THEOREM 2. Every semilinear set is a finite union of disjoint fundamental linear sets. 

* The author is grateful to the refree who pointed out that the result was obtained indepen- 
dently and perhaps at an earlier date by Eilenberg and Schutzenberger ([1]), but that the 
present method of proof differs from theirs. 
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Let us begin with notations relating with combinatorial topology, (see [3], [4]). 
Some of them are used only in the proof of Lemma 1. 

A s-simplex (s >~ O) S in R" is the convex hull of s § 1 linearly independent points. 
We call the points vertices, and say that they span S. If  S is any simplex, we shall use 
I(S) to stand for the open simplex of interior points. We shall use S for the boundary 
of S. A simplex T spanned by a subset of the vertices is called a face of S, written 
T < S. Simplexes S, 7' are joinable if their vertices are linearly independent. If  S, T 
are joinable we define the join S T  to the simplex spanned by the vertices of both. 

A (simplical) complex K in R n is a finite collection of simplexes such that 

(i) if S e K, then all the faces of S are in K, 

(ii) if S, T e K, then S (~ T is empty or a common face. 

A partition zrK of a complex K is a complex, each of whose open simplexes is con- 
tained in a single open simplex of K and which coincides with K as a point set. 

The  star and link of a simplex S e K are defined: 

st(S, K) = {T; S < T}, lk(S, K) = {T; S T e  K) 

Two complexes K, L in R" are joinable provided: 

(i) if S e K, T e L then S, T are joinable 

(ii) if S, S '  e K and T, T '  eL ,  then S T  n S 'T '  is empty or a common face. 

I f  K, L are joinable, we define the join KL :-= K w L u [ST; S e K, TEL].  
Choose a point P in the interior of a simplex S e K. Let 

aK =- (K -- st(S, K)) u P .  ,.~. lk(S, K)  

Then  aK is a partition of K, and we say oK is obtained from K by starring S (at P). 
The operation of starring a simplex will be called a simple subdivision. The resultant 

of successive simple subdivisions will be called a stellar subdivision. 

A convex cell S in R n is a nonempty compact subset given by 

linear equations f t  ~ 0,..., fr = 0 and 

linear inequalities gl ~ 0 ..... g~ ~ 0 

A face T of S is a eell obtained by replacing some of the inequalities gi ~ 0 by equa- 
tions gi = 0. 

A cell complex K is a finite collection of cells such that 

(i) if S e K, then all the faces of S are in K 

(ii) if S, T e K, then S n T is empty or a common face. 

Let a and b be two points of R'h Then  a * b is the line segment joining a and b, 
and ' ab  is the half line through b starting with a. Let X be a subset of R ~ such that 
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X n a ~- ~ .  Then,  by a * X we denote the finite cone {y [ y ~ a �9 x, where x ~ X} and 
by a X  the infinite cone {y f y e ax,  where x 6 X}. 

Let  A = L(c;pl  ..... p~) be a fundamental  linear set in N ". By A we denote the 
' -L- s 

subset {x i x = c , ~i=a xipi ,  where x i > /0 ,  i - -  1 ..... s. are reals} of R ". 
Let A =- L(c ;p  1 ..... p.~) and B = L(c; qa ..... qt) be two fundamental  linear sets in 

N n with the same constant c. I f  s ~ 1 and t ~ 1, let S(A)  and S(B) be (s - -  1)- 
simplex and (t - -  l)-simplex which are intersections of .4 a n d / )  respectively with a 
suitable (n - -  l )-hyperplane.  

The parts (1) and (2) of Lemma 1 are well known in combinatorial topology 
(see [3], [4]). 

LEMMA 1. (I)  S ( A ) n  S(B) is subdivided into a simplicial complex K without 
introducing any more vertices, i f  it is not empty. 

(2) Some stellar subdivision aS(A)  gives partition ~rK such that 7rK is a subcomplex 

of  aS(A). 

(3) Let f be a vertex of K.  Then there exists a point d ~ c on of  such that the vector 
d -- c is a linear combination with nonnegative integer coefficients both o f p  1 ..... Ps and 

of qi ,..., qt . 

(4) Let f be a vertex of aS(A)( in  (2)). Then there exists a point d =/= c on ef  such 
that d --  c is a linear combination of p 1 .... , ps with nonnegative integer coefficients. 

Proof. ( l )  I f  S(A)  n S(B) ~= ~ ,  S (A)  n S(B)  is a convex cell and also a cell 
complex. Order  the vertices of the cell complex S(A)  n S(B).  Write  each cell X as 
a finite cone X - -  x ~ Y where x is the first vertex. Subdivide the cells inductively in 
order of increasing dimension. The  induction begins trivially with the vertices. F rom 
the inductive step, we have already defined the subdivision Y'  of Y, and so define X '  
to be the finite cone X '  =- x �9 Y'. The  definition is compatible with subdivision Z '  of 
any face Z of X containing x, because since x is the first vertex of X,  it is also the first 
vertex of Z. Therefore  each cell and hence S(A)  n S(B) is subdivided into a simplicial 

complex of K.  

(2) I f  a vertex x of K is in any open / - s implex  I ( X )  of S(A)  (i > 0), we apply the 
simple subdivision (X, x) to S(A).  Repeating this process, we obtain a stellar sub- 
division of S(A)  having all the vertices of K as vertices. Let a parti t ion of each/-simplex 
of K be a subcomplex of aS(A)  for i = 1 ..... h. I f  there is a (h + l)-s implex of K 
which is not covered exactly by a subcomplex of aS(A), let there be precisely r such 
simplexes and let Y be any one of them. Then I ( Y )  meets some open simplex I (X )  of 
aS(A)  which is not contained in I (Y ) .  I f  the intersection Y n X is not a single point, 
it is a convex domain, bounded by a po lyhedron/7 .  Any vertex of H which is on Y, say 
y, is also a vertex of X. Otherwise y would be in some open / - s implex  of X say I(Z),  
where i > 0. Since a partition of Y is a subcomplex of aS(A),  the open simplex I (Z)  

57I/3/2-8 
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would be contained in an open simplex of Y and would be altogether in H. Then y 
would not be a vertex of H. If  all the vertices of H were vertices of X, then H would 
be the boundary of a simplex and Y c3 X would be a simplex of X. This is not the 
case. Therefore at least one vertex of H is not a vertex of X. Being a point of I(Y), 
this vertex is the complete intersection o f / ( Y )  with some open simplex of X. Therefore 
at least one open simplex of aS(A) (e.g. I(X) or an open simplex of ~ )  intersects I(Y) 
in a single point without being contained in I(Y). Let there be precisely m such open 
simplexes, and let I(Z) be any one of them. If  z -~ Y t3 Z, apply the simple sub- 
division (Z, z) to oS(A). Then each new open simplex (except the open simplex z) has 
z on its boundary, and being flat, meets I(Y) in a flat l space, l > 0, if at all. Therefore 
the proof of (2) follows from induction on m, r and h - -  k, where h is the maximum 
dimensionality of the simplexes in K. 

(3) Since f is a vertex of K, the half line c f  is the complete intersection of cA 1 
with cA2, where A 1 and A s are faces of S(A) and S(B) respectively. Letp~ 1 ..... p~ and 
q~ .... , q~ be the vertices ofA 1 and A, respectively such thatp~ ~ c (c  + P i ) ,  a = 1,~..., 

i t u . e l .  

and qi a ~ e(e + q / ) , / 3  = 1,..., v. Then  c f  consxsts of the pomts 

o<=1 B = l  

where (xq ..... x i ,  Y~'I ..... y~.) are nonnegative solutions of the linear equation 

a - - 1  B = l  

Since every component of all vectors p ~ ,  qJa' ~t : 1 .... ,/~, fl : 1 ..... v is nonnegative 
integer, there exists a solution (xq ,..., x i ,  Ys, ..... y j )  of (E) such that x~ , x~ 

a 
~t : 1,...,/~, fl -~- 1,..., v are nonnegative integers and are not all zero. Hence, there 
exist a point d :~  c on cf  such 

i ' d -  c = kup~, = ~ l,~q,~ 
u=l  v ~ l  

w h e r e  k u , l~ a r e  n o n n e g a t i v e  i n t e g e r s  f o r  u = | , . . . ,  s, v : ] .... , t .  

(4) I f f  is a vertex of either K or S(A) this proposition is clearly true. Hence it 
suflices to prove the result for a vertex f of ~S(A) which is a vertex of neither K nor 
S(A). Let f l  ,...,f,~ be the order in which the vertices of ~S(A) except those of S(A) 
and K are i.ntroduced as in the proof of (2) of this lemma. We assume that f l  ,..., fv 
(v < w) satisfy the proposition of (4) and let ,1S(A) be the stellar subdivision of S(A) 
whenf~ has been just introduced. Then  cf~§ 1 is the complete intersection of cA 1 with 
cA 2 where d 1 is a simplex of oaS(A ) and A s is a simplex of K. Let gl ..... gu be the 
vertices of d 1 and let h 1 .... , h~ be the vertices of A 2 . Then there are points g'~ =7/=: c and 
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h~ 3& c on  cgi and chj  respectively such that g~ - -  c and h~ - -  c are linear combinat ions  
of Pa ..... p.~ with nonnegat ive integer  coefficients for i = I ..... /z and j = l , . . . , v .  
Hence  every componen t  ofg~ - -  c and  h~ - -  c are nonnegat ive  integers. On  the other 
hand cfv) l  consists of the points 

c + ~ x i ( g ; - - c )  = c q  ~ y ~ ( h ; - - c )  
i=1 ,i=1 

where x 1 ,..., x~,  Yl ,..., Y~ are nonnegat ive .  F rom the same a rgumen t  of the proof of 
(3) there is a point  dv+l =?6 c on cry+ 1 such that d~+ 1 - -  c is a l inear combina t ion  ofg~ - -  c 
i = 1 ,...,/z with nonnegat ive  integer coefficients. Hence  d~+l - - c  is also a linear 

combina t ion  of P l  ,..., P ,  with nonnegat ive  integer coefficients. Therefore  (4) follows 
from induc t ion  on  w - -  v. 

LEMMA 2. Let A be an (e -- l)-simplex with vertices fx ..... f ,  lying in S(A)  n S(B)  
such that there is a point di =~ c on each half line el i  such that the vector di -- c is a linear 
combination with nonnegative integer coefficients both of p 1 ..... p ,  and of ql ..... qt �9 Then 
each of the following sets (1), (2), (3), (4), (5) and  (6) is either a finite union of disjoint 
fundamental linear sets of e-dimension or the empty set. 

(1) A n c A 

(3) (A n B) n ca  

(5) (A --  B) n c a  

where I (c  A) denotes el(A) - -  c. 

(2) A n ] (ca )  
(4) (A n B) n / ( cA)  
(6) (A -- B) n / ( c a )  

Proof. (1) By the assumption of the lemma each di is an e lement  of A n B. For  
any element  x ~ A ~ cA, x - -  c is wr i t ten  un ique ly  as x - -  c = ~ - i  x,(di - -  c) with 
nonnegat ive  rat ional  coefficients x i ,  i = 1,..., e, since d 1 - - c , . . . ,  d ~ -  c are l inearly 

independen t  and  x -  c, d 1 - - c  are all l inear combinat ions  of P l  , . . . ,Ps with n o n -  
negative integer coefficients. Let  {c 1 = c ..... ca) be the set of  all x ~ A ~ cA satisfying 

0 ~< x~ < I f o r / =  1,..., e. 
Now 

i=1 i=1 

where [ ] is Gauss ian  bracket. Moreover  we may write 

x - - e =  ~ x , ( d , -  c ) =  ~ kup, 
i=l u-I 

i <> : i , . , .  
i--1 u--I 
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where ku ,  l~ are nonnegat ive  integers. Since the point  c + ~ - 1  (xi - -  [xi])(di - -  c) = 
c + ~ - t  ( k , , -  l~,)p u lies in A, k ~ -  l u is a nonnegat ive integer for u = 1,..., s. 

e 
Hence  c + Y. i - t  (xi - -  [xi])(di - -  c) is conta ined in A and equals to one of c s , 
j = 1,..., A, say c j .  Therefore  x e L i  = L(c~ ; dl - -  c,..., d~ - -  c). Conversely each 
L j . , j : :  1 ..... A is a set contained in A t 3 c A .  S i n c e L ~ , j ~  1 .... ,A have the same 

periods d a - -  c,..., d e - -  c and different constants  lying in the set 

l y l y = c + y , (d i  - -  c), where <~0 < 1  

L i , j  -= 1 ..... A are mutua l ly  disjoint. There fore  A ~ cA is a finite un ion  [,.)~=xLj of 
disjoint fundamen ta l  linear sets with the same periods, d a - -  c ..... de - -  c. 

(2) Let c~ = c + ~ = l Y J i ( d i  - -  c) (0 ~ y ~  < 1) be the cons tant  of L~, and let 

i x,..., i ,  be all i such that Y~i ---- 0. T h e n  c* - cj + (d h - -  c) -~ . . . .  + (d~u - -  c) is a 
point  of L~ ~ / ( c A ) ,  and L* ---- L(c* ; d t - -  c ..... d~ - -  c) is a subset  of La n / ( c A ) .  
These  L*, j = 1 ..... h are mutual ly  disjoint.  Let  x be an element  of Lj n I(eA).  T h e n  

x = cj + ~ k i ( d , -  c ) - - e  + ~ (Y~i + k i ) ( d , - - c )  
i = 1  i ~ l  

w h e r e y ~ i + k i > 0  for i =  1 ..... e. T h e n  k q ~  1, s i n c e y i i  ~ : 0  for ~ - -  1, . . . ,~ .  

Hence  

x - -  ~ + (u, ,  - ~) -: . . . .  + ( a , .  - ~) + ~ (k,~ - l ) (d,~ - -  c) + E k . ( e , ,  - -  c) 
a = l  h / i x . . . . .  i ~  

a = l  h = # i  I . . . . .  i u 

T h u s  Lj n / ( c A )  ~ L~. Therefore A n / ( c A )  = U~- IL~ ,  comple t ing  the proof for 

(2). 

(3) Any  e lement  x ~ ( A n  B) n cA can be wri t ten uniquely  as 

x = c + ~ x,(d, - -  c) 
i = l  

where x i ,  i = 1 , . . . ,  e are nonnegat ive  rationals. Let  {z t = c ..... z~} be the set of all 
x ~ (A n B)  n cA satisfying 0 ~ xi < 1 for i = 1 ..... e. T h e n  {z 1 ..... z~} is a subset  

of {c 1,.. . ,  ca}. Hence  we may assume that  z l  = cl .... , z~ ~ c~(v ~ ,~). Since 

x c + ~ i ~ x  (xi  [x,])(d, - -  c) t ~.i=l[x,](d, - -  c) and c E,=x (xi - -  [xi])(di s 
is one of z~ ,  h ~ 1 ..... v, say z~ :~ c , ,  x ~ L , .  Therefore (A c~ B) n cA ~ U ~ I L ^ ,  
complet ing the proof for (3). 
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(4) Since 

( A n  B) n / ( c a )  = { ( A n  B) n ca} n { A n / ( c a ) }  

the proof for (4) is complete. 

(5) Since 

v ~ �9 

= ( U 2 )  : U 

(A --  B) n c a  = A n c a  --  (.4 r i B )  n c a  

= O Lj -- O Lh = 0 Lj 
j ~ l  h = l  j = v + l  

the proof for (5) is complete. Note that (A --  B) n cA = ~ ,  if v = ,~. 
(6) Since 

(A --  B) n / ( c a )  = A n / ( c a )  - -  ( A n  B) n 1(cA) 

j = l  hffil j~ t ,+ l  

the proof for (6) is complete. Note that (A --  B) n I ( ca )  = ~ ,  if v = ,L 

LEMMA 3. Let  A = L(c; Pl . . . . .  Ps) and B == L(c; ql ..... qt) be two fundamental  

linear sets with the same constant c. Then A c3 B is a finite union of  disjoint fundamental  

linear sets o f  dimension <~ min (s, t). 

Proof. If  either A or B is 0-dimensional, A n B is either one element or empty. 
Thus the lemma is trivial. Thus  we may assume that s ~ 1 and t >/ 1. I f  
S ( A )  n S ( B )  = ~ , A n B = c and the lemma is trivial. Therefore we may assume 
that S ( A )  n S ( B )  is a convex cell and by Lemmas 1(1) it can be subdivided into a 
simplicial complex K without introducing any more vertices. Let A be any simplex of 
K and f l  .... , fe be the vertices of A. By Lemma 1 (3) there exists a point di ~ c on eli 
such that d~ - -  c is a linear combination both of Px .... , Ps and of ql ..... qt with non- 
negative integer coefficients. Then by Lemma 2(4), ( A n  B) n I ( ea )  is a finite union 
of disjoint fundamental linear sets of dimension ~< e. Since each element of A n B 
except c lies in / (cA)  for a single simplex tx of K, A ~ B is a union of the fundamental 
linear sets lying in Uz~lc(cA) and L(c). These fundamental linear sets are mutually 
disjoint and of dimension ~< min(s, t). Thus  the proof of Lemma 3 is complete. 

Lemma 4. Le t  A = L(c; Px ..... Ps) and B =: L(c; ql .... , qt) be two fundamental  

linear sets of  dimension ~ 1 with the same constant c. Then (.4 - -  B)  ~ ( ~  n a~) is a 

finite union of  disjoint fundamental  linear sets of  dimension ~ min(s, t). 
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Proof. By the same argument as lemma 3 we can apply Lemma 1 (3) and Lemma 2 
(6). Therefore (A - -  B) ~ I (c~)  is a finite union of disjoint fundamental linear sets for 
any simplex A of K. Since each element of (A --  B) n (~  ~ ~)  lies i n / ( cA)  for a 
single simplex A of K, (A --  B) n (_~ n / ~ )  is a union of the fundamental linear sets 
lying in U ~ r I ( c ~ ) .  These fundamental linear sets are mutually disjoint and are of 
dimension .~ rain(s, t). Thus the proof of Lemma 4 is complete. 

Lemma 5. Le t  A : L(c; px ,..., P~) and B .= L(c; qt ..... qt) be two fundamental  
linear sets o f  dimension ~ 1 with the same constant c. Then A n ( A  - -  f l )  is a finite 

union of  disjoint fudamental  linear sets o f  dimension ~ s. 

Proof. By Lemma 1 (2), (4) and the special case of Lemma 2 (2) (where B ~= -4), 
A n I(cA) is a finite union of disjoint fundamental linear sets for each open simplex 
I (A)  of o S ( A )  - -  rrK. Therefore A t~ (A - - /~)  is a finite union of the fundamental 
linear sets lying in I(c/~) over all the open simplex I (A)  of orS(A) - -  rrK. These fun- 
damental linear sets are mutually disjoint and of dimension ~ s, because S ( A )  is 
(s --  l)-simplex. Thus  the proof of Lemma 5 is complete. 

Lemma 6. Le t  A = L(c; Px ,-.., P,) be a fundamental  linear set. Pu t  

A*----L (c + f ,p,) 

where ki , i = I ..... s are nonnegative integers. Then A is a f inite union A *  t.) (1~a A t  of  
disjoint fundamental  linear sets, where A t , f  = 1 ..... iz are of  dimension <~ s - -  1 

Proof. Consider the following family of (s --r)-dimensional  fundamental linear 
subsets of A, 

, . . . , j , / ,  (l;, ,..., = + Z k,p, + ; 
i :~Jx  . . . . .  i r  ct--1 

all the Pi except for p j ,  o~ ----- 1 ..... r) 

for r = 0,...,s, all the r combinations (Jl ,..., Jr) of (1,2 ..... s) and integers 
0 ~ 1 ~  < ~ k j  - - 1 ,  a = 1 ..... r. When we put r = 0 ,  the linear set above is A*. 
For each element x = c + Y~i~t x ,p i  of .4, x belongs to L{(jx ..... jr), (xj 1 ..... x~)} 
if and only i f j , ,  a = 1,..., r are all the index i such that 0 ~< xi ~< ki - -  1. In partic- 
ular, those linear sets are mutually disjoint, and ~/is the union of the family. Let denote 
by A t ,  f = 1 ..... /z the fundamental linear sets considered except A*. Then 
A = A *  t.) (-)t-t A I ,  where A t , f = 1 .... ,/~ are fundamental linear sets of dimen- 
sion ~< s - -  1. 
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THEOREM 1. Let A = L(c; Pz ..... Ps) and B = L(d; qx .... , qt) be two fundamental 
linear sets. Then A -- B is a finite union of disjoint fundamental linear sets of dimension 
~ s .  

Proof. By Lemma 4 and Lemma 5 it is assumed that A and B have different 
constants, i.e. c : #  d. We shall prove the theorem by induction on the pair (s, t). If  

s = 0, then A consists of one element c. Hence A --  B is either empty or L(c). Thus 

the theorem is true for any t, if s = 0. If  t = 0, and s :?6 0, then A = L(c; Pz ,..., Ps) 
and B = L ( d ) .  If  A n B ---- ~ then A - -  B ---- A and the theorem is true. 

If  A n B = B = L ( d ) ,  we may write d = c + ~ . i h i p i  where, h i i = I ..... s are 
g* 

nonnegative integers. Put h i + I ----- k~, then by Lemma 6, A = A* u Ut-z  A t ,  
where A l , f - -  1 .... , ff are fundamental  linear sets of dimension ~ s - -  I. Moreover 

B = L ( d )  is one of A/ of 0-dimension say A s .  Hence A -- B = A*  u Or247  
completing the proof for t = 0, and s :/:  0. Now we assume that the theorem is true 

for the pair (s', t') such that either s' < s, t' ~ t or s' ~ s, t' < t. Let us prove the 
theorem assuming s ~ 1, t ~> 1. If  A ~ B = ~ ,  then A - -  B = A and we have 
nothing to prove. Therefore we assume that A n B contains an element, say 
z : c + ~.'i-z kips = d + ~.~-x l~qj. Consider the fundamental  linear sets 

A* = L(z; pz ,...,Ps), B* = L ( z ;  qz ..... qt). Then, by lemma 6, A is a finite union 
A* u O/-z  A/ of disjoint fundamental  linear sets, where A t ,  f = 1 ..... /~ are of 

v 
dimension ~ s - - l .  The same is true for B, and B = B * u U o _ z B r  where Bg, 
g = 1 ..... v are of dimension ~ t - -  I. Therefore 

A n B  = ( A * u  O A i )  n B  
I = 1  

g - 1  /~I 

v 
where A* n B*, A* n U/=I Bo, Uo-i A/n B are mutually disjoint. Therefore 

A - -  B = A * u O  A : - - ( A n B )  

= IA. (A*n 0 BOI (U A,- 0 A, 
g=1 I-I I=I 

9 = 1  = 
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where A* - -  (A* n B*) u (A* n U~-I Bo) and A I - -  B, f = 1,..., ~ are mutually 
disjoint. At first, for each f ,  A i -- B is a finite union of disjoint fundamental linear 
sets of dimension ~< s - -  1, by the assumption of induction, since A i is of dimension 

s --  1 and B is of t-dimension. It  suffices to prove that 

A -- (A* n B*) U (A* C~ O B,) 

is a finite union of disjoint fundamental linear sets of dimension ~< s. Since 

A* = {A* n (A* n ~*)} w {A* n (A* - ~)*)}, 

A* -- (A* n B*) u (A* n O B,) 
y = l  

= {A* 65 (~* n ~*) - A* 65 B~} ~ ]A* 65 (A* -- ~*)  -- A* (3 0 B.t 
I g = l  1 

i g = l  I 

where (A* --  B*) (3 (A* 65/)*) and A* 65 (A* - - /}*)  --  0 By 
g = l  

are disjoint. By lemma 4, (A* --  B *) 65 (A* (3/)*) is a finite union of disjoint fun- 
damental linear sets of dimension ~ rain (s, t). On the other hand, by lemma 5, 
A* 65 (A* /)*) is a finite union P 

- -  Ui=l Gi of disjoint fundamental linear sets Gi of 
dimension ~< s. Therefore 

A* n (A* - ~*) - 0 B~ 

p v p Y]~  
-- U - U , . o  = U 1"y 

i=1 = i=I g=l 

Now it remains only to prove that Gi --  U~=I By is a finite union of disjoint fundamen- 
tal linear sets of dimension <~ s for each i. We shall prove this by another induction 
on ~. If  v = I, G i -- B 1 is a finite union U~=l II~ of disjoint fundamental linear sets of 
dimension ~< s by the assumption of the induction of this theorem, since Bg is of 
dimension ~< t - -  1. Then 

g~l g=2 

j-I = j~l - 
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By the assumption of the induction on v, H i - -  U~-2 Ba is a finite union of disjoint 
fundamental linear sets of dimension ~ s for each j. Hence Gi - -  0~=1Bg is also a. 
finite union of disjoint fundamental linear sets of dimension ~ s for each i, completing 
the proof of this theorem. 

THEOREM 2. Every semilinear set is a finite union of disjoint futMamental linear sets. 

Proof. Let  S be a given semilinear set. By Lemma A. 1 ([2], p 212), S is a finite 
union U~-I -//i of fundamental linear sets A i ,  i : :  1,..., ~z. Let  us prove the theorem 
by induction on a. I f  = = 1,  the theorem is trivial. Suppose that the theorem holds for 

a ,  1 ~ a '  < cx. Then S = A 1 u Ui=2 A~ and 0i=o A i is a finite union (_Ji=l Bi of 
disjoint fundamental  linear sets by the assumption of induction. Write 

S = A 1 U  U B j  = A1 U U (B, - -  A1). 
j-1 j=I 

Then -//1 and all B i - -  A, , j = I ..... fl are mutually disjoint. By Theorem I, each 
B i - -  A 1 is a fimte umon (.Jh=x Dh of disjoint fundamental linear sets. Therefore S is 
also a finite union of disjoint fundamental  linear sets, completing the proof 
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