Every Semilinear Set is a Finite Union of Disjoint Linear Sets*

Ryuichi Ito
Department of Mathematics, School of Education, Waseda University, Tokyo, Japan

Received November 20, 1968

Abstract

We prove in this paper that every semilinear set is a finite union of disjoint linear sets, using elementary combinatorial-topological lemmas.

This paper gives a positive answer to an open problem proposed by Seymour Ginsburg in his book ([2], p. 195).

Let N denote the nonnegative integers and R denote the real numbers. For each integer $n \geqslant 1$ let $R^{n}=R \times \cdots \times R$ and $N^{n}=N \times \cdots \times N$ (n times). A linear set $L\left(c ; p_{1}, \ldots, p_{\tau}\right)$ is a subset $\left\{x \mid x=c+\sum_{i=1}^{r} k_{i} p_{i}\right.$ for nonnegative integers $\left.k_{i}, i=1, \ldots, r\right\}$ of N^{n}, where c, p_{1}, \ldots, p_{r} are elements of N^{n}. We call c the constant and p_{1}, \ldots, p_{r} the periods of the linear set. In particular we denote by $L(c)$ a linear set whose periods are all zero vectors (i.e. consisting of single element c) and regard as $r=0$. A subset of N^{n} is called semilinear if it is a finite union of linear sets.

Let $L\left(c ; p_{1}, \ldots, p_{r}\right) \subset N^{n}$ be a linear set. We say that the linear set is of s-dimension, if the periods p_{1}, \ldots, p_{r} span a s-dimensional vector space in R^{n}, and that the linear set is fundamental if $s:=r$. (i.e. p_{1}, \ldots, p_{r} are linearly independent in R^{n}). In this paper the empty set is regarded also as a (-1)-dimensional fundamental linear set.

By Lemma A. 1. a ([2] p. 212), every linear set is a finite union of fundamental linear sets.

In fact, we prove the following:
Theorem 1. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L\left(d ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets. Then $A-B$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant s$.

Theorem 2. Every semilinear set is a finite union of disjoint fundamental linear sets.

[^0]Let us begin with notations relating with combinatorial topology, (see [3], [4]). Some of them are used only in the proof of Lemma 1.

A s-simplex $(s \geqslant 0) S$ in R^{n} is the convex hull of $s+1$ linearly independent points. We call the points vertices, and say that they span S. If S is any simplex, we shall use $I(S)$ to stand for the open simplex of interior points. We shall use \bar{S} for the boundary of S. A simplex T spanned by a subset of the vertices is called a face of S, written $T<S$. Simplexes S, T are joinable if their vertices are linearly independent. If S, T are joinable we define the join $S T$ to the simplex spanned by the vertices of both.

A (simplical) complex K in R^{n} is a finite collection of simplexes such that
(i) if $S \in K$, then all the faces of S are in K,
(ii) if $S, T \in K$, then $S \cap T$ is empty or a common face.

A partition πK of a complex K is a complex, each of whose open simplexes is contained in a single open simplex of K and which coincides with K as a point set.
The star and link of a simplex $S \in K$ are defined:

$$
\operatorname{st}(S, K)=\{T ; S<T\}, \quad \operatorname{lk}(S, K)=\{T ; S T \in K\}
$$

Two complexes K, L in R^{n} are joinable provided:
(i) if $S \in K, T \in L$ then S, T are joinable
(ii) if $S, S^{\prime} \in K$ and $T, T^{\prime} \in L$, then $S T \cap S^{\prime} T^{\prime}$ is empty or a common face.

If K, L are joinable, we define the join $K L=K \cup L \cup[S T ; S \in K, T \in L]$.
Choose a point P in the interior of a simplex $S \in K$. Let

$$
\sigma K=(K-\operatorname{st}(S, K)) \cup P \cdot \bar{S} \cdot \operatorname{lk}(S, K)
$$

Then σK is a partition of K, and we say σK is obtained from K by starring S (at P).
The operation of starring a simplex will be called a simple subdivision. The resultant of successive simple subdivisions will be called a stellar subdivision.

A convex cell S in R^{n} is a nonempty compact subset given by
linear equations $f_{1}=0, \ldots, f_{r}=0$ and
linear inequalities $g_{1} \geqslant 0, \ldots, g_{s} \geqslant 0$
A face T of S is a cell obtained by replacing some of the inequalities $g_{i} \geqslant 0$ by equations $g_{i}=0$.

A cell complex K is a finite collection of cells such that
(i) if $S \in K$, then all the faces of S are in K
(ii) if $S, T \in K$, then $S \cap T$ is empty or a common face.

Let a and b be two points of R^{n}. Then $a * b$ is the line segment joining a and b, and"ab is the half line through b starting with a. Let X be a subset of R^{n} such that
$X \cap a=\varnothing$. Then, by $a * X$ we denote the finite cone $\{y \mid y \in a * x$, where $x \in X\}$ and by aX the infinite cone $\{y \mid y \in \mathbf{a x}$, where $x \in X\}$.

Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ be a fundamental linear set in N^{n}. By \hat{A} we denote the subset $\left\{x ; x=c+\sum_{i=1}^{s} x_{i} p_{i}\right.$, where $x_{i} \geqslant 0, i=1, \ldots, s$. are reals $\}$ of R^{n}.

Let $A=-L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L\left(c ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets in N^{n} with the same constant c. If $s \geqslant 1$ and $t \geqslant 1$, let $S(A)$ and $S(B)$ be $(s-1)$ simplex and $(t-1)$-simplex which are intersections of \hat{A} and \hat{B} respectively with a suitable ($n-1$)-hyperplane.

The parts (1) and (2) of Lemma 1 are well known in combinatorial topology (see [3], [4]).

Lemma 1. (1) $S(A) \cap S(B)$ is subdivided into a simplicial complex K without introducing any more vertices, if it is not empty.
(2) Some stellar subdivision $\sigma S(A)$ gives partition πK such that πK is a subcomplex of $a S(A)$.
(3) Let f be a vertex of K. Then there exists a point $d \neq c$ on cf such that the vector $d-c$ is a linear combination with nonnegative integer coefficients both of p_{1}, \ldots, p_{s} and of q_{1}, \ldots, q_{t}.
(4) Let f be a vertex of $\sigma S(A)($ in (2)). Then there exists a point $d \neq c$ on of such that $d-c$ is a linear combination of p_{1}, \ldots, p_{s} with nonnegative integer coefficients.

Proof. (1) If $S(A) \cap S(B) \neq \varnothing, S(A) \cap S(B)$ is a convex cell and also a cell complex. Order the vertices of the cell complex $S(A) \cap S(B)$. Write each cell X as a finite cone $X=x * Y$ where x is the first vertex. Subdivide the cells inductively in order of increasing dimension. The induction begins trivially with the vertices. From the inductive step, we have already defined the subdivision Y^{\prime} of Y, and so define X^{\prime} to be the finite cone $X^{\prime}=x * Y^{\prime}$. The definition is compatible with subdivision Z^{\prime} of any face Z of X containing x, because since x is the first vertex of X, it is also the first vertex of Z. Therefore each cell and hence $S(A) \cap S(B)$ is subdivided into a simplicial complex of K.
(2) If a vertex x of K is in any open i-simplex $I(X)$ of $S(A)(i>0)$, we apply the simple subdivision (X, x) to $S(A)$. Repeating this process, we obtain a stellar subdivision of $S(A)$ having all the vertices of K as vertices. Let a partition of each i-simplex of K be a subcomplex of $\sigma S(A)$ for $i=1, \ldots, k$. If there is a ($k+1$)-simplex of K which is not covered exactly by a subcomplex of $\sigma S(A)$, let there be precisely r such simplexes and let Y be any one of them. Then $I(Y)$ meets some open simplex $I(X)$ of $\sigma S(A)$ which is not contained in $I(Y)$. If the intersection $Y \cap X$ is not a single point, it is a convex domain, bounded by a polyhedron Π. Any vertex of Π which is on \bar{Y}, say y, is also a vertex of X. Otherwise y would be in some open i-simplex of X say $I(Z)$, where $i>0$. Since a partition of \bar{Y} is a subcomplex of $\sigma S(A)$, the open simplex $I(Z)$
would be contained in an open simplex of \bar{Y} and would be altogether in Π. Then y would not be a vertex of Π. If all the vertices of Π were vertices of X, then Π would be the boundary of a simplex and $Y \cap X$ would be a simplex of X. This is not the case. Therefore at least one vertex of Π is not a vertex of X. Being a point of $I(Y)$, this vertex is the complete intersection of $I(Y)$ with some open simplex of X. Therefore at least one open simplex of $\sigma S(A)$ (e.g. $I(X)$ or an open simplex of X) intersects $I(Y)$ in a single point without being contained in $I(Y)$. Let there be precisely m such open simplexes, and let $I(Z)$ be any one of them. If $z=Y \cap Z$, apply the simple subdivision (Z, z) to $\sigma S(A)$. Then each new open simplex (except the open simplex z) has z on its boundary, and being flat, meets $I(Y)$ in a flat l space, $l>0$, if at all. Therefore the proof of (2) follows from induction on m, r and $h-k$, where h is the maximum dimensionality of the simplexes in K.
(3) Since f is a vertex of K, the half line cf is the complete intersection of $\mathrm{c} \Delta_{1}$ with $\mathbf{c} \Delta_{2}$, where Δ_{1} and Δ_{2} are faces of $S(A)$ and $S(B)$ respectively. Let $p_{i_{1}}^{\prime}, \ldots, p_{i_{u}}^{\prime}$ and $q_{i_{1}}^{\prime}, \ldots, q_{i_{\nu}}^{\prime}$ be the vertices of Δ_{1} and Δ_{2} respectively such that $p_{i_{\alpha}}^{\prime} \in \mathbf{c}\left(\mathbf{c}+\mathbf{p}_{i_{\alpha}}\right), \alpha=1, \ldots, \mu$ and $q_{j_{\beta}}^{\prime} \in \mathbf{c}\left(\mathbf{c}+\mathrm{q}_{i_{\beta}}\right), \beta=1, \ldots, \nu$. Then $\mathbf{c f}$ consists of the points

$$
c+\sum_{\alpha=1}^{\mu} x_{i_{\alpha}} p_{i_{\alpha}}=c+\sum_{\beta=1}^{\nu} y_{i_{\beta}} q_{i_{\beta}},
$$

where $\left(x_{i_{1}}, \ldots, x_{i_{\mu}}, y_{j_{1}}, \ldots, y_{j_{v}}\right)$ are nonnegative solutions of the linear equation

$$
c+\sum_{\alpha=1}^{\mu} x_{i_{\alpha}} p_{i_{\alpha}}=c+\sum_{\beta=1}^{v} y_{j_{\beta}} q_{j_{\beta}} \cdots(E)
$$

Since every component of all vectors $p_{i_{\alpha}}, q_{j_{\beta}}, \alpha=1, \ldots, \mu, \beta=1, \ldots, \nu$ is nonnegative integer, there exists a solution ($x_{i_{1}}, \ldots, x_{i_{\mu}}, y_{j_{1}}, \ldots, y_{j_{\nu}}$) of (E) such that $x_{i_{\alpha}}, x_{j_{\beta}}$ $\alpha=1, \ldots, \mu, \beta=1, \ldots, \nu$ are nonnegative integers and are not all zero. Hence, there exist a point $d \neq c$ on cf such

$$
d-c=\sum_{u=1}^{s} k_{u} p_{u}=\sum_{v=1}^{t} l_{v} q_{v}
$$

where k_{u}, l_{v} are nonnegative integers for $u=1, \ldots, s, v=1, \ldots, t$.
(4) If f is a vertex of either K or $S(A)$ this proposition is clearly true. Hence it suffices to prove the result for a vertex f of $\sigma S(A)$ which is a vertex of neither K nor $S(A)$. Let f_{1}, \ldots, f_{w} be the order in which the vertices of $\sigma S(A)$ except those of $S(A)$ and K are introduced as in the proof of (2) of this lemma. We assume that f_{1}, \ldots, f_{v} ($v<w$) satisfy the proposition of (4) and let $\sigma_{1} S(A)$ be the stellar subdivision of $S(A)$ when f_{v} has been just introduced. Then $\mathbf{c f}_{v+1}$ is the complete intersection of $\mathbf{c} \Delta_{1}$ with $\mathbf{c} \Delta_{2}$ where Δ_{1} is a simplex of $\sigma_{1} S(A)$ and Δ_{2} is a simplex of K. Let g_{1}, \ldots, g_{μ} be the vertices of Δ_{1} and let h_{1}, \ldots, h_{y} be the vertices of Δ_{2}. Then there are points $g_{i}^{\prime} \neq c$ and
$h_{j}^{\prime} \neq c$ on $\mathbf{c g}_{i}$ and ch_{j} respectively such that $g_{i}^{\prime}-c$ and $h_{j}^{\prime}-c$ are linear combinations of p_{1}, \ldots, p_{s} with nonnegative integer coefficients for $i=1, \ldots, \mu$ and $j=1, \ldots, \nu$. Hence every component of $g_{i}^{\prime}-c$ and $h_{j}^{\prime}-c$ are nonnegative integers. On the other hand $\mathbf{c f}_{v+1}$ consists of the points

$$
c+\sum_{i=1}^{\mu} x_{i}\left(g_{i}^{\prime}-c\right)=c+\sum_{j=1}^{\nu} y_{j}\left(h_{j}^{\prime}-c\right)
$$

where $x_{1}, \ldots, x_{\mu}, y_{1}, \ldots, y_{\nu}$ are nonnegative. From the same argument of the proof of (3) there is a point $d_{v+1} \neq c$ on $\mathbf{c f}_{v+1}$ such that $d_{v+1}-c$ is a linear combination of $g_{i}^{\prime}-c$ $i=1, \ldots, \mu$ with nonnegative integer coefficients. Hence $d_{v+1}-c$ is also a linear combination of p_{1}, \ldots, p_{s} with nonnegative integer coefficients. Therefore (4) follows from induction on $w-v$.

Lemma 2. Let Δ be an $(e-1)$-simplex with vertices f_{1}, \ldots, f_{e} lying in $S(A) \cap S(B)$ such that there is a point $d_{i} \neq c$ on each half line cf_{i} such that the vector $d_{i}-c$ is a linear combination with nonnegative integer coefficients both of p_{1}, \ldots, p_{s} and of q_{1}, \ldots, q_{t}. Then each of the following sets (1), (2), (3), (4), (5) and (6) is either a finite union of disjoint fundamental linear sets of e-dimension or the empty set.
(1) $A \cap c \Delta$
(2) $A \cap I(\mathbf{c} \Delta)$
(3) $(A \cap B) \cap c \Delta$
(4) $(A \cap B) \cap I(c \Delta)$
(5) $(A-B) \cap c \Delta$
(6) $(A-B) \cap I(c \Delta)$
where $I(\mathrm{c} \Delta)$ denotes $\mathrm{cI}(\Delta)-c$.
Proof. (1) By the assumption of the lemma each d_{i} is an element of $A \cap B$. For any element $x \in A \cap \mathrm{c} \Delta, x-c$ is written uniquely as $x-c=\sum_{i=1}^{e} x_{i}\left(d_{i}-c\right)$ with nonnegative rational coefficients $x_{i}, i=1, \ldots, e$, since $d_{1}-c, \ldots, d_{d}-c$ are linearly independent and $x-c, d_{1}-c$ are all linear combinations of p_{1}, \ldots, p_{s} with nonnegative integer coefficients. Let $\left\{c_{1}=c, \ldots, c_{\lambda}\right\}$ be the set of all $x \in A \cap c \Delta$ satisfying $0 \leqslant x_{i}<1$ for $i=1, \ldots, e$.
Now

$$
x=c+\sum_{i=1}^{e}\left(x_{i}-[x]\right)\left(d_{i}-c\right)+\sum_{i=1}^{e}\left[x_{i}\right]\left(d_{i}-c\right)
$$

where [] is Gaussian bracket. Moreover we may write

$$
\begin{aligned}
x-c=\sum_{i=1}^{e} x_{i}\left(d_{i}-c\right) & =\sum_{u=1}^{s} k_{u} p_{u} \\
\sum_{i=1}^{e}\left[x_{i}\right]\left(d_{i}-c\right) & =\sum_{u=1}^{s} l_{u} p_{u}
\end{aligned}
$$

where k_{u}, l_{u} are nonnegative integers. Since the point $c \uparrow \sum_{i=1}^{e}\left(x_{i}-\left[x_{i}\right]\right)\left(d_{i}-c\right)=$ $c+\sum_{u=1}^{s}\left(k_{u}-l_{u}\right) p_{u}$ lies in $\hat{A}, k_{u}-l_{u}$ is a nonnegative integer for $u=1, \ldots, s$. Hence $c+\sum_{i=1}^{e}\left(x_{i}-\left[x_{i}\right]\right)\left(d_{i}-c\right)$ is contained in A and equals to one of c_{j}, $j=1, \ldots, \lambda$, say c_{j}. Therefore $x \in L_{j}=L\left(c_{j} ; d_{1}-c, \ldots, d_{e}-c\right)$. Conversely each $L_{j}, j==1, \ldots, \lambda$ is a set contained in $A \cap \mathbf{c} \Delta$. Since $L_{j}, j=1, \ldots, \lambda$ have the same periods $d_{1}-c, \ldots, d_{e}-c$ and different constants lying in the set

$$
\left\{y_{i} y=c+\sum_{i=1}^{e} y_{i}\left(d_{i}-c\right), \quad \text { where } \leqslant 0 y_{i}<1\right\}
$$

$L_{j}, j=1, \ldots, \lambda$ are mutually disjoint. Therefore $A \cap \mathrm{c} \Delta$ is a finite union $\bigcup_{j=1}^{\lambda} L_{j}$ of disjoint fundamental linear sets with the same periods, $d_{1}-c, \ldots, d_{e}-c$.
(2) Let $c_{j}=c+\sum_{i=1}^{e} y_{j i}\left(d_{i}-c\right)\left(0 \leqslant y_{j i}<1\right)$ be the constant of L_{j}, and let i_{1}, \ldots, i_{μ} be all i such that $y_{j i}=0$. Then $c_{j}^{*}=c_{j}+\left(d_{i_{1}}-c\right)-\cdots+\left(d_{i_{\mu}}-c\right)$ is a point of $L_{j} \cap I(\mathbf{c} \Delta)$, and $L_{j}^{*}=L\left(c_{j}^{*} ; d_{1}-c, \ldots, d_{e}-c\right)$ is a subset of $L_{j} \cap I(c \Delta)$. These $L_{j}^{*}, j=1, \ldots, \lambda$ are mutually disjoint. Let x be an element of $L_{j} \cap I(c \Delta)$. Then

$$
x=c_{j}+\sum_{i=1}^{e} k_{i}\left(d_{i}-c\right)=c+\sum_{i=1}^{e}\left(y_{j i}+k_{i}\right)\left(d_{i}-c\right)
$$

where $y_{j i}+k_{i}>0$ for $i=1, \ldots, e$. Then $k_{i_{\alpha}} \geqslant 1$, since $y_{j i_{\alpha}}=0$ for $\alpha=1, \ldots, \mu$. Hence

$$
\begin{aligned}
x & =c_{j}+\left(d_{i_{1}}-c\right)+\cdots+\left(d_{i_{\mu}}-c\right)+\sum_{\alpha=1}^{\mu}\left(k_{i_{\alpha}}-1\right)\left(d_{i_{\alpha}}-c\right)+\sum_{h \neq i_{1} \ldots \ldots i_{\mu}} k_{h}\left(d_{h}-c\right) \\
& =c_{j}^{*}+\sum_{\alpha=1}^{\mu}\left(k_{i_{\alpha}}-1\right)\left(d_{i_{\alpha}}-c\right)-\sum_{h \neq i_{1}, \ldots, i_{\mu}} k_{h}\left(d_{h}-c\right) \in L_{j}^{*}
\end{aligned}
$$

Thus $L_{j} \cap I(\mathbf{c} \Delta)=L_{j}^{*}$. Therefore $A \cap I(\mathbf{c} \Delta)=\bigcup_{j=1}^{\lambda} L_{j}^{*}$, completing the proof for (2).
(3) Any element $x \in(A \cap B) \cap \mathrm{c} \Delta$ can be written uniquely as

$$
x=c-\sum_{i=1}^{e} x_{i}\left(d_{i}-c\right)
$$

where $x_{i}, i=1, \ldots, e$ are nonnegative rationals. Let $\left\{z_{1}=c, \ldots, z_{\nu}\right\}$ be the set of all $x \in(A \cap B) \cap c \Delta$ satisfying $0 \leqslant x_{i}<1$ for $i=1, \ldots, e$. Then $\left\{z_{1}, \ldots, z_{\nu}\right\}$ is a subset of $\left\{c_{1}, \ldots, c_{\lambda}\right\}$. Hence we may assume that $z_{1}=c_{1}, \ldots, z_{\nu}=c_{\nu}(\nu \leqslant \lambda)$. Since $x=c+\sum_{i=1}^{e}\left(x_{i}-\left[x_{i}\right]\right)\left(d_{i}-c\right)+\sum_{i=1}^{e}\left[x_{i}\right]\left(d_{i}-c\right)$ and $c+\sum_{i=1}^{e}\left(x_{i}-\left[x_{i}\right]\right)\left(d_{i}-c\right)$ is one of $z_{h}, h=1, \ldots, \nu$, say $z_{\mu}=c_{\mu}, x \in L_{\mu}$. Therefore $(A \cap B) \cap c \Delta=\bigcup_{h=1}^{\nu} L_{h}$, completing the proof for (3).
(4) Since

$$
\begin{aligned}
(A \cap B) \cap I(\mathbf{c} \Delta) & =\{(A \cap B) \cap \mathbf{c \Delta}\} \cap\{A \cap I(\mathbf{c \Delta})\} \\
& =\left(\bigcup_{h=1}^{\nu} L_{h}\right) \cap\left(\bigcup_{j=1}^{\lambda} L_{j}^{*}\right)=\bigcup_{h=1}^{\nu} L_{h}^{*}
\end{aligned}
$$

the proof for (4) is complete.
(5) Since

$$
\begin{aligned}
(A-B) \cap \mathbf{c \Delta} & =A \cap \mathbf{c \Delta}-(A \cap B) \cap \mathbf{c} \Delta \\
& =\bigcup_{j=1}^{\lambda} L_{j}-\bigcup_{n=1}^{\nu} L_{h}=\bigcup_{j=v+1}^{\lambda} L_{j}
\end{aligned}
$$

the proof for (5) is complete. Note that $(A-B) \cap \mathbf{c \Delta}=\varnothing$, if $\nu=\lambda$.
(6) Since

$$
\begin{aligned}
(A-B) \cap I(\mathbf{c} \Delta) & =A \cap I(\mathbf{c} \Delta)-(A \cap B) \cap I(\mathbf{c} \Delta) \\
& =\bigcup_{j=1}^{\lambda} L_{j}^{*}-\bigcup_{n=1}^{\nu} L_{n}^{*}=\bigcup_{j=\nu+1}^{\lambda} L_{j}^{*}
\end{aligned}
$$

the proof for (6) is complete. Note that $(A-B) \cap I(\mathbf{c} \Delta)=\varnothing$, if $\nu=\lambda$.
Lemma 3. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B==L\left(c ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets with the same constant c. Then $A \cap B$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant \min (s, t)$.

Proof. If either A or B is 0 -dimensional, $A \cap B$ is either one element or empty. Thus the lemma is trivial. Thus we may assume that $s \geqslant 1$ and $t \geqslant 1$. If $S(A) \cap S(B)=\varnothing, A \cap B=c$ and the lemma is trivial. Therefore we may assume that $S(A) \cap S(B)$ is a convex cell and by Lemmas I(1) it can be subdivided into a simplicial complex K without introducing any more vertices. Let Δ be any simplex of K and f_{1}, \ldots, f_{e} be the vertices of Δ. By Lemma 1 (3) there exists a point $d_{i} \neq \boldsymbol{c}$ on $\mathbf{c f}_{i}$ such that $d_{i}-c$ is a linear combination both of p_{1}, \ldots, p_{s} and of q_{1}, \ldots, q_{t} with nonnegative integer coefficients. Then by Lemma 2(4), $(A \cap B) \cap I(c \Delta)$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant e$. Since each element of $A \cap B$ except c lies in $I(\mathrm{c} \Delta)$ for a single simplex Δ of $K, A \cap B$ is a union of the fundamental linear sets lying in $\bigcup_{\Delta \in K}(c \Delta)$ and $L(c)$. These fundamental linear sets are mutually disjoint and of dimension $\leqslant \min (s, t)$. Thus the proof of Lemma 3 is complete.

Lemma 4. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L\left(c ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets of dimension $\geqslant 1$ with the same constant c. Then $(A-B) \cap(\hat{A} \cap \hat{B})$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant \min (s, t)$.

Proof. By the same argument as lemma 3 we can apply Lemma 1 (3) and Lemma 2 (6). Therefore $(A-B) \cap I(c \Delta)$ is a finite union of disjoint fundamental linear sets for any simplex Δ of K. Since each element of $(A-B) \cap(\hat{A} \cap \hat{B})$ lies in $I(c \Delta)$ for a single simplex Δ of $K,(A-B) \cap(\hat{A} \cap \hat{B})$ is a union of the fundamental linear sets lying in $\bigcup_{\Delta \in K} I(c \Delta)$. These fundamental linear sets are mutually disjoint and are of dimension $\leqslant \min (s, t)$. Thus the proof of Lemma 4 is complete.

Lemma 5. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L\left(c ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets of dimension $\geqslant 1$ with the same constant c. Then $A \cap(\hat{A}-\hat{B})$ is a finite union of disjoint fudamental linear sets of dimension $\leqslant s$.

Proof. By Lemma 1 (2), (4) and the special case of Lemma 2 (2) (where $B=A$), $A \cap I(c \Delta)$ is a finite union of disjoint fundamental linear sets for each open simplex $I(\Delta)$ of $\sigma S(A)-\pi K$. Therefore $A \cap(\hat{A}-\hat{B})$ is a finite union of the fundamental linear sets lying in $I(\mathbf{c} \Delta)$ over all the open simplex $I(\Delta)$ of $\sigma S(A)-\pi K$. These fundamental linear sets are mutually disjoint and of dimension $\leqslant s$, because $S(A)$ is ($s-1$)-simplex. Thus the proof of Lemma 5 is complete.

Lemma 6. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ be a fundamental linear set. Put

$$
A^{*}=L\left(c+\sum_{i=1}^{s} k_{i} p_{i} ; p_{1}, \ldots, p_{s}\right),
$$

where $k_{i}, i=1, \ldots$, s are nonnegative integers. Then A is a finite union $A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}$ of disjoint fundamental linear sets, where $A_{f}, f=1, \ldots, \mu$ are of dimension $\leqslant s-1$

Proof. Consider the following family of $(s-r)$-dimensional fundamental linear subsets of A,

$$
\begin{gathered}
L\left\{\left(j_{1}, \ldots, j_{r}\right),\left(l_{j_{1}}, \ldots, l_{j_{r}}\right)\right\}=L\left(c+\sum_{i \neq j_{1}, \ldots, j_{r}} k_{i} p_{i}+\sum_{\alpha=1}^{r} l_{j_{\alpha}} p_{j_{\alpha}} ;\right. \\
\text { all the } \left.p_{i} \text { except for } p_{j_{\alpha}}, \alpha=1, \ldots, r\right)
\end{gathered}
$$

for $r=0, \ldots, s$, all the r combinations $\left(j_{1}, \ldots, j_{r}\right)$ of $(1,2, \ldots, s)$ and integers $0 \leqslant l_{j_{\alpha}} \leqslant k_{j_{\alpha}}-1, \alpha=1, \ldots, r$. When we put $r=0$, the linear set above is A^{*}. For each element $x=c+\sum_{i=1}^{s} x_{i} p_{i}$ of A, x belongs to $L\left\{\left(j_{1}, \ldots, j_{r}\right),\left(x_{j_{1}}, \ldots, x_{j}\right)\right\}$ if and only if $j_{\alpha}, \alpha=1, \ldots, r$ are all the index i such that $0 \leqslant x_{i} \leqslant k_{i}-1$. In particular, those linear sets are mutually disjoint, and A is the union of the family. Let denote by $A_{f}, f=1, \ldots, \mu$ the fundamental linear sets considered except A^{*}. Then $A=A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}$, where $A_{f}, f=1, \ldots, \mu$ are fundamental linear sets of dimension $\leqslant s-1$.

Theorem 1. Let $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L\left(d ; q_{1}, \ldots, q_{t}\right)$ be two fundamental linear sets. Then $A-B$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant s$.
Proof. By Lemma 4 and Lemma 5 it is assumed that A and B have different constants, i.e. $c \neq d$. We shall prove the theorem by induction on the pair (s, t). If $s=0$, then A consists of one element c. Hence $A-B$ is either empty or $L(c)$. Thus the theorem is true for any t, if $s=0$. If $t=0$, and $s \neq 0$, then $A=L\left(c ; p_{1}, \ldots, p_{s}\right)$ and $B=L(d)$. If $A \cap B=\varnothing$ then $A-B=A$ and the theorem is true. If $A \cap B=B=L(d)$, we may write $d=c+\sum_{i=1}^{*} h_{i} p_{i}$ where, $h_{i} i=1, \ldots, s$ are nonnegative integers. Put $h_{i}+1=k_{i}$, then by Lemma $6, A=A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}$, where $A_{f}, f=1, \ldots, \mu$ are fundamental linear sets of dimension $\leqslant s-1$. Moreover $B=L(d)$ is one of A_{f} of 0 -dimension say A_{α}. Hence $A-B=A^{*} \cup \bigcup_{f \neq \alpha} A_{f}$, completing the proof for $t=0$, and $s \neq 0$. Now we assume that the theorem is true for the pair $\left(s^{\prime}, t^{\prime}\right)$ such that either $s^{\prime}<s, t^{\prime} \leqslant t$ or $s^{\prime} \leqslant s, t^{\prime}<t$. Let us prove the theorem assuming $s \geqslant 1, t \geqslant 1$. If $A \cap B=\varnothing$, then $A-B=A$ and we have nothing to prove. Therefore we assume that $A \cap B$ contains an element, say $z=c+\sum_{i=1}^{s} k_{i} p_{i}=d+\sum_{j=1}^{t} l_{j} q_{j}$. Consider the fundamental linear sets $A^{*}=L\left(z ; p_{1}, \ldots, p_{s}\right), B^{*}=L\left(z ; q_{1}, \ldots, q_{t}\right)$. Then, by lemma $6, A$ is a finite union $A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}$ of disjoint fundamental linear sets, where $A_{f}, f=1, \ldots, \mu$ are of dimension $\leqslant s-1$. The same is true for B, and $B=B^{*} \cup \bigcup_{g-1}^{\nu} B_{g}$ where B_{g}, $g=1, \ldots, \nu$ are of dimension $\leqslant t-1$. Therefore

$$
\begin{aligned}
A \cap B & =\left(A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}\right) \cap B \\
& =\left(A^{*} \cap B\right) \cup\left(\bigcup_{f=1}^{\mu} A_{f} \cap B\right) \\
& =\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{j=1}^{v} B_{g}\right) \cup\left(\bigcup_{f=1}^{\mu} A_{f} \cap B\right)
\end{aligned}
$$

where $A^{*} \cap B^{*}, A^{*} \cap \bigcup_{f=1}^{v} B_{g}, \bigcup_{g=1}^{\mu} A_{f} \cap B$ are mutually disjoint. Therefore

$$
\begin{aligned}
A-B & =A^{*} \cup \bigcup_{f=1}^{\mu} A_{f}-(A \cap B) \\
& =\left\{A^{*}-\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{g=1}^{v} B_{g}\right)\right\} \cup\left(\bigcup_{f=1} A_{f}-\bigcup_{f=1}^{\mu} A_{f} \cap B\right) \\
& =\left\{A^{*}-\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{g=1}^{v} B_{g}\right)\right\} \cup \bigcup_{f=1}^{\mu}\left(A_{f}-B\right)
\end{aligned}
$$

where $A^{*}-\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{j-1}^{\nu} B_{g}\right)$ and $A_{f}-B, f=1, \ldots, \mu$ are mutually disjoint. At first, for each $f, A_{f}-B$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant s-1$, by the assumption of induction, since A_{f} is of dimension $\leqslant s-1$ and B is of t-dimension. It suffices to prove that

$$
A-\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{g-1}^{\nu} B_{g}\right)
$$

is a finite union of disjoint fundamental linear sets of dimension $\leqslant s$. Since

$$
\begin{aligned}
A^{*}= & \left\{A^{*} \cap\left(\hat{A}^{*} \cap \hat{B}^{*}\right)\right\} \cup\left\{A^{*} \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)\right\}, \\
& A^{*}-\left(A^{*} \cap B^{*}\right) \cup\left(A^{*} \cap \bigcup_{g=1}^{\nu} B_{g}\right) \\
= & \left\{A^{*} \cap\left(\hat{A}^{*} \cap \hat{B}^{*}\right)-A^{*} \cap B^{*}\right\} \cup\left\{A^{*} \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)-A^{*} \cap \bigcup_{g=1}^{\nu} B_{g}\right\} \\
= & \left\{\left(A^{*}-B^{*}\right) \cap\left(\hat{A}^{*} \cap \hat{B}^{*}\right)\right\} \cup\left\{A^{*} \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)-\bigcup_{g=1}^{\nu} B_{g}\right\}
\end{aligned}
$$

where $\left(A^{*}-B^{*}\right) \cap\left(\hat{A}^{*} \cap \hat{B}^{*}\right)$ and $A^{*} \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)-\bigcup_{g=1}^{\nu} B_{g}$
are disjoint. By lemma 4, $\left(A^{*}-B^{*}\right) \cap\left(\hat{A}^{*} \cap \hat{B}^{*}\right)$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant \min (s, t)$. On the other hand, by lemma 5 , $A^{*} \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)$ is a finite union $\bigcup_{i=1}^{p} G_{i}$ of disjoint fundamental linear sets G_{i} of dimension $\leqslant s$. Therefore

$$
\begin{aligned}
A^{*} & \cap\left(\hat{A}^{*}-\hat{B}^{*}\right)-\bigcup_{g=1}^{\nu} B_{g} \\
& =\bigcup_{i=1}^{p} G_{i}-\bigcup_{g=1}^{\nu} B_{g}=\bigcup_{i=1}^{p}\left(G_{i}-\bigcup_{g=1}^{\nu} B_{g}\right)
\end{aligned}
$$

Now it remains only to prove that $G_{i}-\bigcup_{g=1}^{v} B_{g}$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant s$ for each i. We shall prove this by another induction on ν. If $\nu=1, G_{i}-B_{1}$ is a finite union $\bigcup_{j=1}^{\tau} I_{j}$ of disjoint fundamental linear sets of dimension $\leqslant s$ by the assumption of the induction of this theorem, since B_{g} is of dimension $\leqslant t-1$. Then

$$
\begin{aligned}
G_{i}-\bigcup_{g=1}^{\nu} B_{g} & =\left(G_{i}-B_{1}\right)-\bigcup_{g=2}^{\nu} B_{g} \\
& =\bigcup_{j=1}^{\tau} H_{j}-\bigcup_{g=2}^{\nu} B_{g}=\bigcup_{j=1}^{\tau}\left(H_{i}-\bigcup_{y=2}^{\nu} B_{g}\right)
\end{aligned}
$$

By the assumption of the induction on $v, H_{j}-\bigcup_{g=2}^{v} B_{g}$ is a finite union of disjoint fundamental linear sets of dimension $\leqslant s$ for each j. Hence $G_{i}-\bigcup_{g=\mathbf{1}}^{\nu} B_{g}$ is also afinite union of disjoint fundamental linear sets of dimension $\leqslant s$ for each i, completing the proof of this theorem.

Theorem 2. Every semilinear set is a finite union of disjoint fundamental linear sets.
Proof. Let S be a given semilincar set. By Lemma A. 1 ([2], p 212), S is a finite union $\bigcup_{i=1}^{\alpha} A_{i}$ of fundamental linear sets $A_{i}, i==1, \ldots, \alpha$. Let us prove the theorem by induction on α. If $\alpha=1$, the theorem is trivial. Suppose that the theorem holds for $\alpha^{\prime}, 1 \leqslant \alpha^{\prime}<\alpha$. Then $S=A_{1} \cup \bigcup_{i=2}^{\alpha} A_{i}$ and $\bigcup_{i=2}^{\alpha} A_{i}$ is a finite union $\bigcup_{i=1}^{\beta} B_{j}$ of disjoint fundamental linear sets by the assumption of induction. Write

$$
S=A_{1} \cup \bigcup_{j-1}^{\beta} B_{j}=A_{1} \cup \bigcup_{j=1}^{\beta}\left(B_{j}-A_{1}\right) .
$$

Then A_{1} and all $B_{j}-A_{1}, j=1, \ldots, \beta$ are mutually disjoint. By Theorem 1, each $B_{j}-A_{1}$ is a finite union $\bigcup_{h=1}^{\delta} D_{h}$ of disjoint fundamental linear sets. Therefore S is also a finite union of disjoint fundamental linear sets, completing the proof

Acknowledgment

The author wishes to thank Professor Hiroshi Noguchi for his valuable suggestions.

References

1. Eilenberg and Schttzenberger. Rational sets in commutative monoids, Journal of Algebra, (to appear).
2. S. Ginsburg. "The Mathematical Theory of Context Free Languages." McGraw-Hill, New York (1966).
3. J. H. C. Whitehead. On subdivisions of complexes, Proc. Cambridge Phil. Soc. 31, 69-75 (1935).
4. E. C. Zeeman. Seminar on combinatorial topology, (mimeographed), Inst. Hautes Etude Sci. Paris, (1963).

[^0]: * The author is grateful to the refree who pointed out that the result was obtained independently and perhaps at an earlier date by Eilenberg and Schutzenberger ($[1]$), but that the present method of proof differs from theirs.

