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Abstract 

We establish a bijection between Hermitian functionals on the linear space of Laurent polynomials and functionals on 
:~ × ~ satisfying some orthogonality conditions ( ~  denotes the linear space of polynomials with real coefficients). This 
allows us to study some topics about sequences (q~,) of orthogonal polynomials on the unit circle from a new point of 
view. Whenever the polynomials q~,, have real coefficients, we recover a well known result by Szegf. (~) 1998 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

In this paper we are concerned with an algebraic method introduced in [1] in order to study poly- 
nomial modifications of  Hermitian functionals 5¢ defined on the linear space of Laurent polynomials 
and, as consequence, properties of the corresponding orthogonal polynomials (OP) on the unit circle 
T. The basic idea is the well known Szeg6's result about the connection between OP on T and OP 
on the interval [ -1 ,  1], (see [6, Section 11.5] and also [2, Section V.1] or [3, 9.1]); in this situation, 
since the orthogonality measure on T is symmetric, the associated OP have real coefficients. We 
will analyze a relation such as Szeg6's one, valid for OP on T with complex coefficients. 
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Now, we proceed with some notations. In what follows, we denote ~ = ~[x] the linear space of  
polynomials with real coefficients, ~, is the subspace of  polynomials whose degree is less than or 
equal to n and ~,,# the subset of  ~ of  polynomials whose degree is exactly n. Besides, /7 denotes 
the vector space C[z] of  complex polynomials, and /7,, its subspace of  all polynomials of  degree 
less than or equal to n. We let L be the class of  Laurent polynomials, that is 

,, }} 
L =  Z ~ k z ~ ; ~ k E C l m ' n E N U { O  " 

The paper is organized as follows: In Section 2, we give a bijective correspondence between 
Hermitian functionals Lf on L and a class of  functionals ,Jh ~ on ~ × ~ ;  also, we construct a basis of 

× ~ (which we call semi-orthogonal basis) satisfying some orthogonality conditions with respect 
to ~ .  Section 3 is devoted to prove that the elements of  the semi-orthogonal basis satisfy recurrence 
formulas connected with recurrence formulas for orthogonal matrix polynomials. In Section 4, the 
relation between OP on 1]- and the semi-orthogonal basis is analyzed. In the last Section, we give 
an application of  the above method to a modification of  the functional 50. 

Next, we show some technical results that we shall use later. 
For zE  C\{0},  let us write x = ( z + z  1)/2 and y = ( z - z  1)/2i; therefore z = x + i y ,  z i = x - i y ,  

and x 2 + y2 = 1. Notice that if z = ¢0, (0 E R), then x = cos 0 and y = sin 0. In any case, we can 
express z in terms of  x with, as usually, x /~  - 1 > 0 when x > 1. 

Let us consider a polynomial @ of  degree 2 n -  1, n/> 1, @(z)= O ~ 2 n _ l Z 2 n - l ÷  " ' "  ÷(X0, where ~k E C. 
We define f , g  ' C\{0} ~ C, by means of  

f ( x )  = 2-"z-"[z@(z) + @*(z)], 

g(x) = - i 2  " z - " [ z@(z ) -  @*(z)], 
(1) 

where @*(z)=z2"-~@(z t) is the so-called reversed polynomial. 

Lemma 1.1. Let  cb be a monic polynomial o f  degree 2n - 1 (n >~ 1 ) and f ,  g defined in ( 1 ). Then, 
there exist unique polynomials R~ E ~,,#, R2 E ~,,, 2, S~ E ~,, ~ and $2 E ~,#_~, such that 

f ( x )  = R l ( x )  + v/1 -- xZR2(x), 

g(x) = S,(x) ÷ v/1 - x2S2(x). 

Conversely, given R1 E ~#, R2 E ~,~-2, Sl E '~,,-I and $2 E 'J~,,#-i with Ri and $2 monic polynomials, 
then there is a unique monic polynomial @ E H o f  degree 2 n -  1, such that 

RI (x) + x/1 - x 2 R 2 ( x ) =  2-"z-"[z@(z) + q~*(z)], 

SL(X) + X/1 -- x2S2(x) = - i2 "z "[z45(z) - @*(z)]. 
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Proof. From (1) we have 

2 n -  1 

f ( x ) = 2 - " z - "  ~ (az.z k+l +~kz 2n-k ') 
k = 0  

n--I 

= r,(x)  + ~ 2/-n Re(~n+/_, + en-/- ,  )T/(x) - vfi - - x: 
/ = 0  

n-- I 

x ~ 2-iIm(~2,, i , - ~ i  ,)U. i ,(x), 
/ =  1 

where T/ and ~ are respectively the j th Tchebychev polynomials of  the first and second kind (see 
[6, p.3]). So, keeping in mind that Im ~2n-i =0 ,  we can put 

n 2 

f ( x )  = akTk(x) + l~/-(--S~--x2 Z bkUk(x). 
k = 0  k = 0  

with an = Re a2n- l = 1. 
Then, the desired expression for f is obtained if we take R l (x )=  ~['=oa~Tk(x) and R2(x) 

n 2 = ~ = 0  bhU~.(x). The uniqueness is obvious. 
The proof for g is similar. 
To deduce the converse, it suffices to expand the polynomials RI and Sl (respectively, R2 and $2) 

in terms of  Tchebychev polynomials of  the first (respectively, second) kind and the proof follows 
straightforward. [] 

Note that if • has real coefficients, then R2(x) ~ 0 and Sl(x) = O. Moreover, if 4~ is in addition a 
polynomial orthogonal on 7]- with respect to a weight function w, then by Szeg6's theory, R~ and $2 
are orthogonal on [ -1 ,  1] with respect to the weight functions w ( x ) / v / 1 - x  2 and w ( x ) v / 1 - x  2, 
respectively. 

2. Functionals on ~ × ~ induced by Hermitian functionals on 

We denote Z = ~ × ~ ,  which with the product: 

(PI,Q,)" (Pz, Qz)=(P1P2 ÷ (1 - xZ)Q, Q2,PIQ2 + PeQ,) 

is a conmutative algebra with identity element. For each n ~>0, we write X, = ~ x ~_~ with the 
convention J?_l = {0}; 2~n is a subspace of  Z such that dim Z, = 2 n  + 1. Notice that, the mapping 
(P, Q) --~ P + v/1 - x2Q establish a bijective correspondence between 2; and ~ + v/1 - x2,~ which 
preserves the product; so, in the sequel some times we will use the expression P + v ~  - x 2 Q  to 
denote elements of X. 

For every Hermitian functional on L, we can define a linear functional on X in the following way: 
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Definition 2.1. Let ~ be a Hermitian functional on L, then J/,~, : S ~ R given by 

is a linear functional on 2;. We call it, the functional induced by LP. 

Observe that, if 2f is definite positive and # is the corresponding orthogonality measure on 7 
(see [3, 4]), we can write: 

/ 1  L I  
JC/,,[(P, Q)] = P(x)d(vl  + v2)(x) + v/1 - x2O(x )d (v ,  - v2)(x), 

- I  1 

where vj and v2 are the measures on [ -1 ,  1] given by 

{ d v l ( x ) = - d # ( 0 ) ,  O<~O<n, cos0. 
x =  

dv2(x)=d#(O), r t~0<2r t ,  

Using the induction method, it is easy to deduce: 

Proposition 2.2. (i) Any set B~ inductively defined by 

Sl,(I ) /,,(2 ) ~. B0={1},  B , = B , _ I U v ,  . ,,,, j, n>~l, 

where hl, l)E~,# x ~,, 2, h~2) E~,  i x ~,#_l is a basis o f  2;,. 
(ii) Any set B defined by means o f  

B={1}u  h,, , h ,  , 

kn~>l / 

where h~ II, h(, 2) are as in (i), is a basis o f  2;. 

(2) 

It is well known that L~ defines a bilinear Hermitian functional: (., .)e, :/7 x / 7  ~ C by means of 

= )). 

This bilinear functional is called quasi-definite (positive definite) when the restriction of (., .)~, to 
/7, ×/7,  is quasi-definite (positive definite), for each n. This definition is equivalent to the fact 
that all principal minors of  the moment matrix ((z~,zJ)u.)~=0 are different from zero ( > 0 ) .  So the 
Gram-Schmidt procedure guarantees the existence of  a sequence of  monic orthogonal polynomials 
(SMOP) {4~,}nc~ such that (q~,,,~n)~#O ( > 0 ) .  

Our main purpose is to carry over these results to the set of  bilinear functionals on Z, via an 
orthogonalization procedure. 

Definition 2.3. Let J / /E  2;*, where 2;* denotes the algebraic dual space of 2;. We define the sym- 
metric bilinear form (., . ) / / : Z  × S---~ R by 

( F , G } # = J P I ( F . G ) ,  F, GE2;. 
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We say that J /  is quasi-definite (positive definite) if the restriction of (,) .u to 2;, × 2;, is quasi- 
definite (positive definite), for each n E ~. 

Notice that the definition of the positivity of Jg  is similar to the one given for Hermitian func- 
tionals. However, the quasi-definiteness of J / /does  not imply that (F,F),a ¢ 0 for all F E ~/ ,  F ¢ 0. 

Theorem 2.4 (Orthogonalization procedure). Let ~I  E Z* be a quasi-definite (positive definite) 
functional. Then, for each n ¢ ~, there exists a unique basis B, o f  Z=, given by 

B o = l ,  B n = B . _ l U { f . , g . } ,  

¢'~(1) '~(2)~e~,.-J ×~.#-1, with R~. I) and S~ 2J monic where f =tO(1)l.~,.n '--nR(2)] gZ:~n#.' _ x ~._,. and g~ = .~ .  ,~. , 
polynomials, such that 

J g ( f , . x k ) = - J [ ( g = . x k ) = O ,  O<~k <.n - 1, 

~#(f=" v/1 - x 2xk) = JC(gn" ~ x  ~) = O, O ~ k ~ n - 2 .  
(3) 

Besides, the matrix 

( ~//(fn 2 ) ~[(fngn ) ) 
c .  = ~,#(y=g=) ~(g2o) 

is quasi-definite (positive definite. ). 

Proof. Let dg E S* be quasi-definite (positive definite). For n = 1, we consider, according to (2), 
the following basis { 1 , f , g l }  of Zi given by 

f ( x ) : ( x  + Cl,0), g,(x) = (C'l, 1). 

Let o g ( f  ) = ~ff/(g~ ) = O. Then, 

.ffg(f ) = J t (x )  + c, ~ ' (  1 ) = O, 

J/C'(gl ) ~--~ C'l ~////( 1 ) q- ./~ ( ~ )  = 0  

but J / ( 1 ) # 0 ,  because of the quasi-definiteness of (., .).// on 2;0. Thus we have uniqueness for ct, 
~ in the above system. 

Moreover, the matrix 

~#(f) ~ (A  ~) ~ ( f g ' )  = o c, 
~ ( g , )  . # ( f g , )  ~ '(g~) 

is quasi-definite (positive definite) because of the quasi-definiteness (positivity) of J/g. Thus C~ is 
quasi-definite (positive definite). By applying induction, the proof follows straightforward. [] 
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If J&Y is induced by a positive 
‘unusual’ orthogonality conditions: 
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definite functional, formulas (3) in Theorem 2.4 leads to four 

Theorem 2.5. Let J&Y be a functional on C induced by a Hermitian positive definite junctional d;p. 

Let u be the Bore1 positive measure on U associated with _F’ and vI and v2 the measures on 

[- 1, I] given by dv,(x) = -d,u( O), 0 < 0 < rc:, and dv2(x) = dp( Q), rt < 8 < 27c, with x = cos 8. Then, 

the polynomials RI,‘) and Rj,=j, introduced in Theorem 2.4, satisfv 

’ R!)(x)x" d(v, + vz)(x) + J Rj~)(x)x’~~d(vr - v=)(x)=O, O<k<n - 1, 
-I 

.I_‘, R;“(x)x”(l - x’)d(v, + v?)(x) + l’, R;,‘)(x)x”md(v, - v=)(x) = 0, O<k<n-2. 

Two analogous formulas are true jar the polynomials A’:,‘) and S,(:‘. 

Corollary 2.6. Let ,A’ E C” be quasi-dejinite (positive). Then there is a unique basis B of C such 

that 

B={l}‘J u{&,gn} 3 
( ) ,I2 I 

,Yhere f, and g,, are as in (3). Besides, the matrix associated with (., .),,, (with respect to B) is 

the diagonal-block matrix: 

i J&!(l) . 0 0 . . . c, 0 0 . . . c, 0 0 . ... ... ... . . . !- 
Definition 2.7. Given ,,K E C” quasi-definite, we say that the basis B of C from Corollary 2.6 is a 
semi-orthogonal basis with respect to .,&‘. 

3. Recurrence formulas 

Let us consider a quasi-definite linear functional ;,K on C and let B = { 1 } U(U,,, , {J;1, g,,}) be the 
corresponding semi-orthogonal basis. 

We denote 

&=(l,O)T, F,, =(fn,g,7)T, (n3 1). 

Also, for pI, p2, ql, q? E C, we write 

P=(p,, P21T, 
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We define {P, Q} : 2; 2 x 2; 2 ~ ~(z2) by 

( p , Q ) = ( ~ # ( p , q l )  M/(p,q2) ) 
Jg(p:ql) J//(p2q2) " (4) 

Notice that (Q ,p )=(p ,Q)V  and ( fP ,  Q)=(P ,  f Q )  V f  EX. 
Now, we consider xFn, n>~ 1. It is obvious that xf,, xg, E Sn+t and according to (3), we have 

.~/(xf~(x).xk)=o#(xg,,(x).x~)=O, O<~k<~n- 2, 

J///(xf~(x) .xkv/1-- x2)=J//(xg,(x).xkv/1 - - x 2 ) = 0 ,  O<<.k <~n - 3. 

That is, Xfn and xgn belong to the orthogonal complement of S,_2 with respect to S,,+~. So, there 
exist matrices E,, An, M, E ~2,2) such that 

xF,,=FnFn+I+A,Fn+MnF,,_t, n>~l 

holds. By identification of the coefficients of x "+~ and x " v / 1  - x 2, we have that Fn is the 2 × 2 

identity matrix and so we get 

xF,,=Fn+I+A,,F,,+MnFn I, n>~l. (5) 

In a similar way, VII - xZf,, v/-( - xZyn E S,+l and 

J//(x/1 - x2 f~ (x ) . xk )=J /g (v~-x29n(x  ) . x k ) = 0 ,  O<~k<<.n - 2, 

~(xf , (x) .xkv/1--X2)=Jg(Xy,(X) .XkX/1--X2)=O, O<<.k<~n- 3. 

Proceeding as above, we get that there exist two matrices An, M, E ~2.2) such that 

v~-x2F,,=JFn+~ +.4nFn +MnF,,_~, n>~l, (6) 

where (01) 
J =  - 1  0 " 

Taking into account that {Fn, Fm)= Cn6n.m (n,m >~ 1), we can obtain, after simple calculations: 

{XFn. rn+ ) = 

{V/1 - X2Fn. Fn+ } =JCn+,. 

{xFn.F.) =AnC..  

(x/1 - x2F,,Fn) =AnC,, , 

(xrn+,. rn} = Cn , 

(v/1-x2F,+~,F,)=Mn+~Cn . 

So, the coefficients for the recurrence relations (5) and (6) are determined by (C,),,~1, in the 
following way: 

An = (xFn, F,)Cff' Mn+~ ---- Cn+, C[' 
(n~> 1). (7) 

A,, = (v/1 - x2gn,Fn)C; ', m,,+, = - Cn+,JC,~-', 
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Formulas (5) and (6) does not determine completely M~ and M~. Relations (7) remain true if the 
initial conditions M~ = {J / (1  )}-1C1 and M1 = {J/C(1 )} ~C~J ~ are given. 

Summing up we have shown 

Theorem 3.1. Let all/E S* be quasi-definite and let B be the associated semi-orthogonalbasis. 
Then, there are matrices An, M,, An, Mn E ~2,2) such that (5 ) - (7 )  hold. Besides 3/1, and M,, are 
regular matrices. When the functional all/ is positive, then the eigenvalues of  M, are positive. 

Proposition 3.2. Let d/l, ~ E Z* be quasi-definite. I f  all/ and Jff have the same semi-orthogonal 
associated basis B, then there is ~ C E\{O} such that 

J I ( F )  = ~Jff(F) VF E 2;. 

Proof. Let B={1}U(U.>~{f , , , ,g .}) .  For each F E Z ,  there exist ak, bk, cE  ~ such that 

F = c  + ~ a k f  + ~ b/9 / 
k i 

holds. But.  B is a semi-orthogonal basis with respect to J /  and Jff, and this fact implies ~ ' ( F ) =  
cJg(1),  ~ ( F ) = c J g ( 1 ) .  So, it suffices to take ~ = ~ ' ( 1 ) ( ~ 7 ( 1 ) )  1. [] 

The above proposition determines a unique quasi-definite functional ~ / E  2;* (except for a factor 

4. Orthogonal polynomials and semi-orthogonal basis 

Let 50 be a quasi-definite Hermitian functional on L. Assume that 50 is normalized, i.e., 50( 1 ) = 1. 
We denote by {~,}n~0 the SMOP associated with 50. 

For each n~> 1, we can define, as in (1) the functions: 

fn(X) = 2-nZ -"[Zq~2n-l(Z) + q~*n_l(Z)], 

gn(x) = -- i2-nZ-n[Z~2,-I(Z) -- ~*n l(Z)]' 
(8) 

where x = (z + z -i )/2. 
(Whenever 50 is symmetric and, hence, the coefficients of ~2,-J are real, formulas (8) should be 

compared with those given by Szeg6 [6; (11.5.2)]. 
Obviously, { 1 } U {f,, gn},,~>~ constitutes a basis of Z, according to Lemma 1.1 and Proposition 2.2. 

Theorem 4.1. Consider B =  {1} U(U,>~,{f,,g,}), where f~, gn are given by (8). Then B is a semi- 
orthogonal basis with respect to the functional d/[~, E 2;* defined in Definition 2.1. Besides, d/[~, is 
quasi-definite and, when 50 is positive definite, then d[~ is positive definite. 
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Proof .  We will write the matrix o f  the bilinear form (., .)f,~ with respect to the basis B. Thus we 
have 

J / e , ( f . )  = 5( ' [2- 'z  n(Z(]~2n_l(Z ) -'}- ( ]~ ;n_l (Z)) ]  = O, gn >/1, 

LW [2-"z " i - ' ( z ~ 2 . - i ( z ) -  ~*._l(z))]  = 0 ,  gn>~ 1 

because of  the orthogonali ty of  {~,}n~-0. Also ~ / z (1  ) =  £~(1 ) =  1. 
Now  for n >~m ~> 1, it follows that 

:g --m Jga,(f,,f.,) = 2 "-mLt'(z-'[zCb>,_l(z) + ~J)En_I(Z)]Z [Z~2m_I (Z  ) -{- ~ ; m _ l ( Z ) ] )  

• Z--n--m+l = 2-n-m,.~(fI)2n_l(Z)~2m_l(Z) • Z-n-m+2 _{_ ~l)2n_l(Z)fl)2m_l(Z) 

• Z n--m+l :~ g Z-n m -~- C1~2n_l(Z)~ff2m_l(Z ) . J- CI)2n_l(Z)CI)2m_l(Z ) " ). 

When m < n, since 

~ ' (q i2 ._ l (z ) .z -k) - -Sz ' (q~* .  l ( z ) . z  (k+l) )=0,  k = 0  . . . . .  2 n - 2 ,  

then ~g~,'(f, fm ) = O. 
In a similar way, we can obtain that, for m < n 

ogg'( fngm ) = o/[4f~'(gmfm ) = d//z(g~g~, ) = O. 

When n = m, it results that 

~/e,(f,, 2) = 2 2"Sa(q~2._,(Z)~2n_I(Z)" Z -2n+2)  

Jr- 2 -2n+l  ~<P(~2n_I(Z)~;n_I(Z)"  Z -2n+l  ) + 2-2"L*(g~*._,(z)4 ~*, ,(z)z -2,,). 

Then, we have, after straightforward calculations: 

~ ( ~ 2 n  I ( Z ) ~ 2 n - I ( Z ) ' Z - 2 n + 2 ) :  - - e 2 n - l ~ 2 n ( 0 ) ,  

~(¢2 ,_ l (Z)¢* ,_ l (Z  ) .Z -2"+' ) = e2,_,, 

L~'(O*_l(z)O*,_,(z)"  z -z ' )  = - e2._,~2.(0), 

where e ,  = LW(O, (z ) .  z - " )  # O, and thus 

• J/[~,(fn 2 ) = 2-(2"-1)e2._, {1 - Re ~2,,(0)}, 

.~/L~,(f.y.) = - 2-{2"-l)e2n_,Im qb2.(0), 

~11e,(92.) = 2-(2"-1)e2,,_, {1 + Re q~2.(0)}. 

(9) 
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So, B constitutes a semi-orthogonal basis, according to Definition 2.7. Besides, the matrix of 
(., .)//~ with respect to B is 

( Jd<~( 1 ) 0 0 . . .  

0 Ci 0 . . .  

0 0 C2 . . .  ' 

where 

( 1 - R e ~ 2 , , ( 0 )  - Im~2n(0)  ) 
C, =2-2'~+le2n I 

- I m  ¢b2,(0) 1 + Re 42,,(0) 

i.e., each Cn is quasi-definite (positive definite) if and only if L/~ is quasi-definite (positive). [] 

Proposition 4.2. For each n >~ 1 the functions f ,  and g, can be expressed as 

f , , ( x )  = 
(1 - ¢b2,,(O))¢b2,,(z) + (1 - ¢b2,,(O))cb*,(z) 

2"z"(1 -1~2.(o)12) 

g . ( x )  = 
(1 + ~2,,(O))~,,(z) - (1 + ¢b2,,(O))cb~,,(z) 

2"z"i(1 -l~2.(O)l 2) 

Proof. It is an easy consequence of formula (8) and Szeg6's recurrence formulas. [] 

(10) 

Proposition 4.3. The S M O P  related to cd, can be expressed as 

4s2n_l(z) = 2"-'z '~-~ {f,(x) + ig,,(x)}, 

• 2n(z) =2"  ~z"{(1 + ~2,(O)f,(x) + (1 - cb2,(O))ign(x)}. 

Proof. It suffices to eliminate ¢/i*,_l(z) in (8) and ~*,(z) in (10). [] 

In these conditions, Theorem 4.1 has the following converse: 

Theorem 4.4. Let all/E Z* be quasi-definite, such that trace C, ¢ 0 for  each n >~ 1. Then, there 
exists just one quasi-definite Hermitian functional : f  E L*, such that ~I  is induced by +f , that is, 
J / =  .g/u'. Moreover, S is positive definite i f  and only i f  .rig is positive definite. 

Proof. Consider a semi-orthogonal basis B =  {1} U(U~>l{f, ,g,}) related to J / .  Without loss of 
generality, we can assume that J/Z(1)= 1. Then the matrix of (-,-It/ with respect to B is 

1 0 0 . . . '~  
0 CI 0 " " ]  .o...o. :::) 
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with 

Cn = (='{//(L 2 ) ~¢g(fngn) ) .  

..#(g,,f,,) 

We will obtain a Hermitian functional 5 ° such that the associated SMOP satisfy formulas (9). 
This system provides that 

e2n_ , = 22n-2{j//(fn2 ) q- J/[(g2n) } 

with e2n-~ ~ 0  because of trace C, ~ 0  ( > 0 ) .  Now, the quasi-definiteness of .//g implies that 

0 ¢ Det Cn = ~ ( f 2 ) j f f ( g 2  n) ~ /  2 - (fngn) =e~,1_,22-4"(1 I  n(O)l 

then [~2n(0)l 5~1 and, when ./// is positive, l 2,(0)l < 1. 
So, once e2n-t is known, formulas (9) give us 4)2n(0) and, because of Proposition 4.3, we have 

{ ~ , } n ~ .  Thus, this sequence {~,} is uniquely determined by the matrix sequence (C,) .  Now, 
Favard's theorem guarantees the existence of a unique Hermitian, quasi-definite (positive) functional 
(except for a non-zero factor) 50 E Z* such that {cbn} ,~  is the related SMOP. Besides, ~g is induced 
by ~ in the sense of Definition 2.1. 

5. Application 

Let 50EL* be quasi-definite and J / / :=J / /~  its induced functional. If we define L,~EL * by: 
5S=(½(z + z  ' ) - a ) 5 0  with a E E ,  let J / : = J f f 2 E  Z* be given by 

~ff[(P, Q)] = L~[P + v/1 - x2Q] = 50[(x - a) (P  + v/1 - x2Q)] = ~#[(x - a)(P, Q)] 

V(P, Q)E  Z. So, J f f=  ( x -  a ) ~ '  is the associated functional of 5 zT, with the quasi-definiteness con- 
ditions given in Theorem 4.1. 

Assume that ~7 is quasi-definite, and let (F,,) the sequence of semi-orthogonal functions related 
to Jff, Fn = (Fn, Gn) T, n >~ 1. Then, we have 

J ~ ( x ~ F n ( x ) ) =  Jg(xk (x  - a ) F n ( x ) ) = O  (O<~k <~n - 1), 

..//(xk~/1 - x2F,,,(x))= J//(xk v/1 - x2(x - a)Fn(x))  = 0 (0 <<.k <<.n - 2) 

from here ( x -  a)F,, ( x -  a)G,, E Sn+l are orthogonal to Zn with respect to (., .)~/. Thus, there exist 
unique matrices An, B,  E R (2'2) such that 

(x - a)Fn =An f,+, + Bn Z .  

By comparing the coefficients o fx  n+l and vfi - -xZx n we obtain that A. = I .  So, if we assume that 
J// is quasi-definite, there exists a unique matrix Bn E ~(2,2) such that 

(x - a)F,  --f,+l + B, f , .  (11) 
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When [al¢ I, notice that f , (a )  has two determinations for ~z = a+  v/a 2 - 1 and ~-1 = a - ~ / a  2 - 1, 
that we denote by f ,+(a)  and f , - ( a ) ,  respectively. Then formula (11 ) becomes 

0 = [ f + , ( a ) ,  f ,+l(a)] + B , [ f , + ( a ) ,  f , - (a) ] .  

Thus, the quasi-definiteness of [ f ,+l(a),  f,+l(a)],  (n~>l) implies the existence of F,, (n~>l) 
verifiying (11) and, moreover, the quasi-definiteness of ~/ff. 

On the other hand, 

1 O~2n l ( ~ ) q - ~ 2 n - l (  ) ~b2n 1 (O~- -1 )±~2n- I (  O~ ) 

det[ f"+(a)' f"-(a)] = i2G aq)2._ , (~)-  ~*. - , (a)  a l ~ 2 . , - , ( a - ' ) -  q)*2,, ,,~a '~, 

1 ~ ,  I(°~) * _ -- (i~2n_l((X -1 ) 
¢ 0 .  

i22"-2 0~2,,-i(~) ~-1~2,,-1(7-1) 

If we claim that trace ~ ( F , , -  F r )  ~ 0, then the same relation for the even terms is obtained. That 
is, according to Theorem 4.4, &o is quasi-definite when 

D,(~) = ~*(~- '  ) ~ , ( ~ )  - q~*(00a-' ~ , (~- '  ) ¢ 0 (12) 

Vn >~ 1 and ~ ¢ ± 1. This requirement is the same given in [5] for the quasi-definiteness of A ̀7 in 
the particular case Lfi= Re(z - ~)Lf. 

By using formulas (8) and (11), we can obtain the relationship: 

(z 2 - 2az + 1)$,(z) = ~n+2(z) + r , z~ , ( z )  + s,,~,*(z), 

where (~ , )  is the SMOP associated with Z~. So, we derive the determinantal formula: 

(z 2 - 2az + 1 ) ~ , ( z ) =  D,(7) -1 

(z) 

') 

which gives (~ , )  in terms of ((bn), constrained to the condition (12). 
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