ELSEVIER

Journal of Computational and Applied Mathematics 99 (1998) 3-14

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Semiorthogonal functions and orthogonal polynomials on the unit circle

Manuel Alfaro^{a,*,1}, María José Cantero^{b,2}, Leandro Moral^{b,2}

^a Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain ^b Departamento de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 7 November 1997; received in revised form 5 May 1998

Abstract

We establish a bijection between Hermitian functionals on the linear space of Laurent polynomials and functionals on $\mathscr{P} \times \mathscr{P}$ satisfying some orthogonality conditions (\mathscr{P} denotes the linear space of polynomials with real coefficients). This allows us to study some topics about sequences (Φ_n) of orthogonal polynomials on the unit circle from a new point of view. Whenever the polynomials Φ_n have real coefficients, we recover a well known result by Szegő. \bigcirc 1998 Elsevier Science B.V. All rights reserved.

AMS classification: 42C05

Keywords: Hermitian functionals; Orthogonal polynomials; Recurrence formulas

1. Introduction

In this paper we are concerned with an algebraic method introduced in [1] in order to study polynomial modifications of Hermitian functionals \mathscr{L} defined on the linear space of Laurent polynomials and, as consequence, properties of the corresponding orthogonal polynomials (OP) on the unit circle \mathbb{T} . The basic idea is the well known Szegő's result about the connection between OP on \mathbb{T} and OP on the interval [-1,1], (see [6, Section 11.5] and also [2, Section V.1] or [3, 9.1]); in this situation, since the orthogonality measure on \mathbb{T} is symmetric, the associated OP have real coefficients. We will analyze a relation such as Szegő's one, valid for OP on \mathbb{T} with complex coefficients.

^{*} Corresponding author. E-mail: alfaro@posta.unizar.es.

¹ This research was supported by DGES PB96-0120-C03-02.

² This research was supported by UZ97-CIE-10 (Universidad de Zaragoza).

^{0377-0427/98} – see front matter © 1998 Elsevier Science B.V. All rights reserved. PII: S0377-0427(98)00140-X

Now, we proceed with some notations. In what follows, we denote $\mathscr{P} = \mathbb{R}[x]$ the linear space of polynomials with real coefficients, \mathscr{P}_n is the subspace of polynomials whose degree is less than or equal to n and $\mathscr{P}_n^{\#}$ the subset of \mathscr{P}_n of polynomials whose degree is exactly n. Besides, Π denotes the vector space $\mathbb{C}[z]$ of complex polynomials, and Π_n its subspace of all polynomials of degree less than or equal to n. We let L be the class of Laurent polynomials, that is

$$L = \left\{ \sum_{k=-m}^{n} \alpha_k z^k; \alpha_k \in \mathbb{C} | m, n \in \mathbb{N} \cup \{0\} \right\}.$$

The paper is organized as follows: In Section 2, we give a bijective correspondence between Hermitian functionals \mathscr{L} on L and a class of functionals \mathscr{M} on $\mathscr{P} \times \mathscr{P}$; also, we construct a basis of $\mathscr{P} \times \mathscr{P}$ (which we call semi-orthogonal basis) satisfying some orthogonality conditions with respect to \mathscr{M} . Section 3 is devoted to prove that the elements of the semi-orthogonal basis satisfy recurrence formulas connected with recurrence formulas for orthogonal matrix polynomials. In Section 4, the relation between OP on \mathbb{T} and the semi-orthogonal basis is analyzed. In the last Section, we give an application of the above method to a modification of the functional \mathscr{L} .

Next, we show some technical results that we shall use later.

For $z \in \mathbb{C} \setminus \{0\}$, let us write $x = (z + z^{-1})/2$ and $y = (z - z^{-1})/2i$; therefore z = x + iy, $z^{-1} = x - iy$, and $x^2 + y^2 = 1$. Notice that if $z = e^{i\theta}$, $(\theta \in \mathbb{R})$, then $x = \cos\theta$ and $y = \sin\theta$. In any case, we can express z in terms of x with, as usually, $\sqrt{x^2 - 1} > 0$ when x > 1.

Let us consider a polynomial Φ of degree 2n-1, $n \ge 1$, $\Phi(z) = \alpha_{2n-1}z^{2n-1} + \cdots + \alpha_0$, where $\alpha_k \in \mathbb{C}$. We define $f, g: \mathbb{C} \setminus \{0\} \to \mathbb{C}$, by means of

$$f(x) = 2^{-n} z^{-n} [z \Phi(z) + \Phi^*(z)],$$

$$g(x) = -i 2^{-n} z^{-n} [z \Phi(z) - \Phi^*(z)],$$
(1)

where $\Phi^*(z) = z^{2n-1}\overline{\Phi}(z^{-1})$ is the so-called reversed polynomial.

Lemma 1.1. Let Φ be a monic polynomial of degree 2n-1 $(n \ge 1)$ and f, g defined in (1). Then, there exist unique polynomials $R_1 \in \mathcal{P}_n^{\#}$, $R_2 \in \mathcal{P}_{n-2}$, $S_1 \in \mathcal{P}_{n-1}$ and $S_2 \in \mathcal{P}_{n-1}^{\#}$, such that

$$f(x) = R_1(x) + \sqrt{1 - x^2}R_2(x),$$

$$g(x) = S_1(x) + \sqrt{1 - x^2}S_2(x).$$

Conversely, given $R_1 \in \mathscr{P}_n^{\#}$, $R_2 \in \mathscr{P}_{n-2}$, $S_1 \in \mathscr{P}_{n-1}$ and $S_2 \in \mathscr{P}_{n-1}^{\#}$ with R_1 and S_2 monic polynomials, then there is a unique monic polynomial $\Phi \in \Pi$ of degree 2n - 1, such that

$$R_1(x) + \sqrt{1 - x^2} R_2(x) = 2^{-n} z^{-n} [z \Phi(z) + \Phi^*(z)],$$

$$S_1(x) + \sqrt{1 - x^2} S_2(x) = -i 2^{-n} z^{-n} [z \Phi(z) - \Phi^*(z)]$$

Proof. From (1) we have

$$f(x) = 2^{-n} z^{-n} \sum_{k=0}^{2n-1} (\alpha_k z^{k+1} + \overline{\alpha}_k z^{2n-k-1})$$

= $T_n(x) + \sum_{j=0}^{n-1} 2^{j-n} \operatorname{Re}(\alpha_{n+j-1} + \alpha_{n-j-1}) T_j(x) - \sqrt{1-x^2}$
 $\times \sum_{i=1}^{n-1} 2^{-j} \operatorname{Im}(\alpha_{2n-j-1} - \alpha_{j-1}) U_{n-j-1}(x),$

where T_j and U_j are respectively the *j*th Tchebychev polynomials of the first and second kind (see [6, p.3]). So, keeping in mind that Im $\alpha_{2n-1} = 0$, we can put

$$f(x) = \sum_{k=0}^{n} a_k T_k(x) + \sqrt{1-x^2} \sum_{k=0}^{n-2} b_k U_k(x).$$

with $a_n = \text{Re} \alpha_{2n-1} = 1$.

Then, the desired expression for f is obtained if we take $R_1(x) = \sum_{k=0}^n a_k T_k(x)$ and $R_2(x) = \sum_{k=0}^{n-2} b_k U_k(x)$. The uniqueness is obvious.

The proof for g is similar.

To deduce the converse, it suffices to expand the polynomials R_1 and S_1 (respectively, R_2 and S_2) in terms of Tchebychev polynomials of the first (respectively, second) kind and the proof follows straightforward. \Box

Note that if Φ has real coefficients, then $R_2(x) \equiv 0$ and $S_1(x) \equiv 0$. Moreover, if Φ is in addition a polynomial orthogonal on \mathbb{T} with respect to a weight function w, then by Szegő's theory, R_1 and S_2 are orthogonal on [-1, 1] with respect to the weight functions $w(x)/\sqrt{1-x^2}$ and $w(x)\sqrt{1-x^2}$, respectively.

2. Functionals on $\mathscr{P} \times \mathscr{P}$ induced by Hermitian functionals on \mathscr{P}

We denote $\Sigma = \mathscr{P} \times \mathscr{P}$, which with the product:

$$(P_1, Q_1) \cdot (P_2, Q_2) = (P_1P_2 + (1 - x^2)Q_1Q_2, P_1Q_2 + P_2Q_1)$$

is a commutative algebra with identity element. For each $n \ge 0$, we write $\Sigma_n = \mathscr{P}_n \times \mathscr{P}_{n-1}$ with the convention $\mathscr{P}_{-1} = \{0\}$; Σ_n is a subspace of Σ such that dim $\Sigma_n = 2n + 1$. Notice that, the mapping $(P,Q) \rightarrow P + \sqrt{1-x^2}Q$ establish a bijective correspondence between Σ and $\mathscr{P} + \sqrt{1-x^2}\mathscr{P}$ which preserves the product; so, in the sequel some times we will use the expression $P + \sqrt{1-x^2}Q$ to denote elements of Σ .

For every Hermitian functional on L, we can define a linear functional on Σ in the following way:

Definition 2.1. Let \mathscr{L} be a Hermitian functional on L, then $\mathscr{M}_{\mathscr{L}}: \Sigma \to \mathbb{R}$ given by

$$\mathscr{M}_{\mathscr{L}}[(P,Q)] = \mathscr{L}\left[P\left(\frac{z+z^{-1}}{2}\right) + \left(\frac{z-z^{-1}}{2i}\right)Q\left(\frac{z+z^{-1}}{2}\right)\right]$$

is a linear functional on Σ . We call it, the functional induced by \mathscr{L} .

Observe that, if \mathscr{L} is definite positive and μ is the corresponding orthogonality measure on \mathbb{T} (see [3, 4]), we can write:

$$\mathscr{M}_{\mathscr{G}}[(P,Q)] = \int_{-1}^{1} P(x) d(v_1 + v_2)(x) + \int_{-1}^{1} \sqrt{1 - x^2} Q(x) d(v_1 - v_2)(x),$$

where v_1 and v_2 are the measures on [-1, 1] given by

$$\begin{cases} dv_1(x) = -d\mu(\theta), & 0 \le \theta < \pi, \\ dv_2(x) = d\mu(\theta), & \pi \le \theta < 2\pi, \end{cases} \quad x = \cos \theta.$$

Using the induction method, it is easy to deduce:

Proposition 2.2. (i) Any set B_n inductively defined by

$$B_0 = \{1\}, \quad B_n = B_{n-1} \cup \{h_n^{(1)}, h_n^{(2)}\}, \quad n \ge 1,$$
(2)

where $h_n^{(1)} \in \mathscr{P}_n^{\#} \times \mathscr{P}_{n-2}$, $h_n^{(2)} \in \mathscr{P}_{n-1} \times \mathscr{P}_{n-1}^{\#}$ is a basis of Σ_n . (ii) Any set B defined by means of

$$B = \{1\} \cup \left(\bigcup_{n \ge 1} \{h_n^{(1)}, h_n^{(2)}\}\right),$$

where $h_n^{(1)}$, $h_n^{(2)}$ are as in (i), is a basis of Σ .

It is well known that \mathscr{L} defines a bilinear Hermitian functional: $\langle \cdot, \cdot \rangle_{\mathscr{Q}} : \Pi \times \Pi \to \mathbb{C}$ by means of

$$\langle \Phi, \Psi \rangle_{\mathscr{L}} = \mathscr{L}(\Phi(z)\Psi(z^{-1})).$$

This bilinear functional is called quasi-definite (positive definite) when the restriction of $\langle \cdot, \cdot \rangle_{\mathscr{Y}}$ to $\Pi_n \times \Pi_n$ is quasi-definite (positive definite), for each *n*. This definition is equivalent to the fact that all principal minors of the moment matrix $(\langle z^k, z^j \rangle_{\mathscr{Y}})_{k,j=0}^{\infty}$ are different from zero (>0). So the Gram-Schmidt procedure guarantees the existence of a sequence of monic orthogonal polynomials (SMOP) $\{\Phi_n\}_{n \in \mathbb{N}}$ such that $\langle \Phi_n, \Phi_n \rangle_{\mathscr{Y}} \neq 0$ (>0).

Our main purpose is to carry over these results to the set of bilinear functionals on Σ , via an orthogonalization procedure.

Definition 2.3. Let $\mathcal{M} \in \Sigma^*$, where Σ^* denotes the algebraic dual space of Σ . We define the symmetric bilinear form $\langle \cdot, \cdot \rangle_{\mathcal{M}} : \Sigma \times \Sigma \to \mathbb{R}$ by

$$\langle F, G \rangle_{\mathcal{M}} = \mathcal{M} (F \cdot G), \quad F, G \in \Sigma.$$

We say that \mathcal{M} is quasi-definite (positive definite) if the restriction of $\langle , \rangle_{\mathcal{M}}$ to $\Sigma_n \times \Sigma_n$ is quasidefinite (positive definite), for each $n \in \mathbb{N}$.

Notice that the definition of the positivity of \mathcal{M} is similar to the one given for Hermitian functionals. However, the quasi-definiteness of \mathcal{M} does not imply that $\langle F, F \rangle_{\mathcal{M}} \neq 0$ for all $F \in \mathcal{M}$, $F \neq 0$.

Theorem 2.4 (Orthogonalization procedure). Let $\mathcal{M} \in \Sigma^*$ be a quasi-definite (positive definite) functional. Then, for each $n \in \mathbb{N}$, there exists a unique basis B_n of Σ_n , given by

$$B_0 = 1,$$
 $B_n = B_{n-1} \cup \{f_n, g_n\},$

where $f_n = (R_n^{(1)}, R_n^{(2)}) \in \mathscr{P}_n^{\#} \times \mathscr{P}_{n-2}$ and $g_n = (S_n^{(1)}, S_n^{(2)}) \in \mathscr{P}_{n-1} \times \mathscr{P}_{n-1}^{\#}$, with $R_n^{(1)}$ and $S_n^{(2)}$ monic polynomials, such that

$$\mathcal{M}(f_n \cdot x^k) = \mathcal{M}(g_n \cdot x^k) = 0, \quad 0 \le k \le n - 1, \mathcal{M}(f_n \cdot \sqrt{1 - x^2} x^k) = \mathcal{M}(g_n \cdot \sqrt{1 - x^2} x^k) = 0, \quad 0 \le k \le n - 2.$$
(3)

Besides, the matrix

$$C_n = \begin{pmatrix} \mathcal{M}(f_n^2) & \mathcal{M}(f_ng_n) \\ \mathcal{M}(f_ng_n) & \mathcal{M}(g_n^2) \end{pmatrix}$$

is quasi-definite (positive definite.).

Proof. Let $\mathcal{M} \in \Sigma^*$ be quasi-definite (positive definite). For n = 1, we consider, according to (2), the following basis $\{1, f_1, g_1\}$ of Σ_1 given by

$$f_1(x) = (x + c_1, 0), \qquad g_1(x) = (\tilde{c}_1, 1).$$

Let $\mathcal{M}(f_1) = \mathcal{M}(g_1) = 0$. Then,

$$\mathcal{M}(f_1) = \mathcal{M}(x) + c_1 \mathcal{M}(1) = 0,$$

$$\mathcal{M}(g_1) = \tilde{c}_1 \mathcal{M}(1) + \mathcal{M}\left(\sqrt{1 - x^2}\right) = 0$$

but $\mathcal{M}(1) \neq 0$, because of the quasi-definiteness of $\langle \cdot, \cdot \rangle_{\mathcal{M}}$ on Σ_0 . Thus we have uniqueness for c_1 , \tilde{c}_1 in the above system.

Moreover, the matrix

$$\begin{pmatrix} \mathcal{M}(1) & \mathcal{M}(f_1) & \mathcal{M}(g_1) \\ \mathcal{M}(f_1) & \mathcal{M}(f_1^2) & \mathcal{M}(f_1g_1) \\ \mathcal{M}(g_1) & \mathcal{M}(f_1g_1) & \mathcal{M}(g_1^2) \end{pmatrix} = \left(\frac{\mathcal{M}(1) \mid \mathbf{0}}{\mathbf{0} \mid C_1}\right)$$

is quasi-definite (positive definite) because of the quasi-definiteness (positivity) of \mathcal{M} . Thus C_1 is quasi-definite (positive definite). By applying induction, the proof follows straightforward. \Box

If \mathcal{M} is induced by a positive definite functional, formulas (3) in Theorem 2.4 leads to four 'unusual' orthogonality conditions:

Theorem 2.5. Let $\mathcal{M}_{\mathscr{L}}$ be a functional on Σ induced by a Hermitian positive definite functional \mathscr{L} . Let μ be the Borel positive measure on \mathbb{T} associated with \mathscr{L} and v_1 and v_2 the measures on [-1,1] given by $dv_1(x) = -d\mu(\theta), \ 0 \le \theta < \pi$, and $dv_2(x) = d\mu(\theta), \ \pi \le \theta < 2\pi$, with $x = \cos \theta$. Then, the polynomials $R_n^{(1)}$ and $R_n^{(2)}$, introduced in Theorem 2.4, satisfy

$$\int_{-1}^{1} R_n^{(1)}(x) x^k \, \mathrm{d}(v_1 + v_2)(x) + \int_{-1}^{1} R_n^{(2)}(x) x^k \sqrt{1 - x^2} \, \mathrm{d}(v_1 - v_2)(x) = 0, \quad 0 \le k \le n - 1,$$

$$\int_{-1}^{1} R_n^{(2)}(x) x^k (1 - x^2) \, \mathrm{d}(v_1 + v_2)(x) + \int_{-1}^{1} R_n^{(1)}(x) x^k \sqrt{1 - x^2} \, \mathrm{d}(v_1 - v_2)(x) = 0, \quad 0 \le k \le n - 2$$

Two analogous formulas are true for the polynomials $S_n^{(1)}$ and $S_n^{(2)}$.

Corollary 2.6. Let $\mathcal{M} \in \Sigma^*$ be quasi-definite (positive). Then there is a unique basis B of Σ such that

$$B=\{1\}\cup\left(\bigcup_{n\geq 1}\{f_n,g_n\}\right),$$

where f_n and g_n are as in (3). Besides, the matrix associated with $\langle \cdot, \cdot \rangle_{\mathcal{M}}$ (with respect to B) is the diagonal-block matrix:

1.	$\mathcal{M}(1)$	0	0	•••	
Ĺ	0	C_1	0	• • •	
	0	0	C_2	•••	
	•••	• • •	• • •		

Definition 2.7. Given $\mathcal{M} \in \Sigma^*$ quasi-definite, we say that the basis *B* of Σ from Corollary 2.6 is a semi-orthogonal basis with respect to \mathcal{M} .

3. Recurrence formulas

Let us consider a quasi-definite linear functional \mathcal{M} on Σ and let $B = \{1\} \cup (\bigcup_{n \ge 1} \{f_n, g_n\})$ be the corresponding semi-orthogonal basis.

We denote

 $F_0 = (1,0)^{\mathrm{T}}, \qquad F_n = (f_n, g_n)^{\mathrm{T}}, \quad (n \ge 1).$

Also, for p_1 , p_2 , q_1 , $q_2 \in \Sigma$, we write

$$P = (p_1, p_2)^{\mathrm{T}}, \qquad Q = (q_1, q_2)^{\mathrm{T}}, \quad (n \ge 1).$$

We define $\langle \boldsymbol{P}, \boldsymbol{Q} \rangle : \Sigma^2 \times \Sigma^2 \to \mathbb{R}^{(2,2)}$ by

$$\langle \boldsymbol{P}, \boldsymbol{Q} \rangle = \begin{pmatrix} \mathcal{M}(p_1 q_1) & \mathcal{M}(p_1 q_2) \\ \mathcal{M}(p_2 q_1) & \mathcal{M}(p_2 q_2) \end{pmatrix}.$$
(4)

Notice that $\langle \boldsymbol{Q}, \boldsymbol{P} \rangle = \langle \boldsymbol{P}, \boldsymbol{Q} \rangle^{\mathsf{T}}$ and $\langle f \boldsymbol{P}, \boldsymbol{Q} \rangle = \langle \boldsymbol{P}, f \boldsymbol{Q} \rangle \quad \forall f \in \Sigma.$

Now, we consider xF_n , $n \ge 1$. It is obvious that xf_n , $xg_n \in \Sigma_{n+1}$ and according to (3), we have

$$\mathcal{M}(xf_n(x) \cdot x^k) = \mathcal{M}(xg_n(x) \cdot x^k) = 0, \quad 0 \le k \le n - 2,$$
$$\mathcal{M}(xf_n(x) \cdot x^k \sqrt{1 - x^2}) = \mathcal{M}(xg_n(x) \cdot x^k \sqrt{1 - x^2}) = 0, \quad 0 \le k \le n - 2,$$

That is, $x f_n$ and xg_n belong to the orthogonal complement of Σ_{n-2} with respect to Σ_{n+1} . So, there exist matrices Γ_n , Λ_n , $M_n \in \mathbb{R}^{(2,2)}$ such that

3.

$$x\boldsymbol{F}_n = \Gamma_n \boldsymbol{F}_{n+1} + \Lambda_n \boldsymbol{F}_n + M_n \boldsymbol{F}_{n-1}, \quad n \ge 1$$

holds. By identification of the coefficients of x^{n+1} and $x^n\sqrt{1-x^2}$, we have that Γ_n is the 2×2 identity matrix and so we get

$$x\boldsymbol{F}_n = \boldsymbol{F}_{n+1} + \boldsymbol{\Lambda}_n \boldsymbol{F}_n + \boldsymbol{M}_n \boldsymbol{F}_{n-1}, \quad n \ge 1.$$
⁽⁵⁾

In a similar way, $\sqrt{1-x^2}f_n$, $\sqrt{1-x^2}g_n \in \Sigma_{n+1}$ and

$$\mathcal{M}(\sqrt{1-x^2}f_n(x)\cdot x^k) = \mathcal{M}(\sqrt{1-x^2}g_n(x)\cdot x^k) = 0, \quad 0 \le k \le n-2,$$

$$\mathcal{M}(xf_n(x)\cdot x^k\sqrt{1-x^2}) = \mathcal{M}(xg_n(x)\cdot x^k\sqrt{1-x^2}) = 0, \quad 0 \le k \le n-3.$$

Proceeding as above, we get that there exist two matrices \widetilde{A}_n , $\widetilde{M}_n \in \mathbb{R}^{(2,2)}$ such that

$$\sqrt{1-x^2}\boldsymbol{F}_n = J\boldsymbol{F}_{n+1} + \widetilde{A}_n\boldsymbol{F}_n + \widetilde{M}_n\boldsymbol{F}_{n-1}, \quad n \ge 1,$$
(6)

where

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Taking into account that $\langle F_n, F_m \rangle = C_n \delta_{n,m}$ $(n, m \ge 1)$, we can obtain, after simple calculations:

$$\langle x \boldsymbol{F}_n, \boldsymbol{F}_{n+1} \rangle = C_{n+1}, \qquad \langle \sqrt{1 - x^2} \boldsymbol{F}_n, \boldsymbol{F}_n \rangle = \widetilde{A}_n C_n ,$$

$$\langle \sqrt{1 - x^2} \boldsymbol{F}_n, \boldsymbol{F}_{n+1} \rangle = J C_{n+1}, \qquad \langle x \boldsymbol{F}_{n+1}, \boldsymbol{F}_n \rangle = M_{n+1} C_n ,$$

$$\langle x \boldsymbol{F}_n, \boldsymbol{F}_n \rangle = A_n C_n, \qquad \langle \sqrt{1 - x^2} \boldsymbol{F}_{n+1}, \boldsymbol{F}_n \rangle = \widetilde{M}_{n+1} C_n$$

So, the coefficients for the recurrence relations (5) and (6) are determined by $(C_n)_{n \ge 1}$, in the following way:

$$\begin{aligned}
\Lambda_n &= \langle x \boldsymbol{F}_n, \boldsymbol{F}_n \rangle C_n^{-1}, & M_{n+1} &= C_{n+1} C_n^{-1}, \\
\widetilde{\Lambda_n} &= \langle \sqrt{1 - x^2} \boldsymbol{F}_n, \boldsymbol{F}_n \rangle C_n^{-1}, & \widetilde{M}_{n+1} &= -C_{n+1} J C_n^{-1},
\end{aligned} \tag{7}$$

Formulas (5) and (6) does not determine completely M_1 and \widetilde{M}_1 . Relations (7) remain true if the initial conditions $M_1 = \{\mathcal{M}(1)\}^{-1}C_1$ and $\widetilde{M}_1 = \{\mathcal{M}(1)\}^{-1}C_1J^T$ are given. Summing up we have shown

Theorem 3.1. Let $\mathcal{M} \in \Sigma^*$ be quasi-definite and let B be the associated semi-orthogonal basis. Then, there are matrices Λ_n , M_n , $\widetilde{\Lambda}_n$, $\widetilde{M}_n \in \mathbb{R}^{(2,2)}$ such that (5)–(7) hold. Besides M_n and \widetilde{M}_n are regular matrices. When the functional \mathcal{M} is positive, then the eigenvalues of M_n are positive.

Proposition 3.2. Let $\mathcal{M}, \ \widetilde{\mathcal{M}} \in \Sigma^*$ be quasi-definite. If \mathcal{M} and $\widetilde{\mathcal{M}}$ have the same semi-orthogonal associated basis B, then there is $\alpha \in \mathbb{R} \setminus \{0\}$ such that

$$\mathcal{M}(F) = \alpha \widetilde{\mathcal{M}}(F) \quad \forall F \in \Sigma.$$

Proof. Let $B = \{1\} \cup (\bigcup_{n \ge 1} \{f_n, g_n\})$. For each $F \in \Sigma$, there exist $a_k, b_k, c \in \mathbb{R}$ such that

$$F = c + \sum_{k} a_k f_k + \sum_{j} b_j g_j$$

holds. But, B is a semi-orthogonal basis with respect to \mathcal{M} and \mathcal{M} , and this fact implies $\mathcal{M}(F) =$ $c\mathcal{M}(1), \mathcal{M}(F) = c\mathcal{M}(1)$. So, it suffices to take $\alpha = \mathcal{M}(1)(\mathcal{M}(1))^{-1}$. \Box

The above proposition determines a unique quasi-definite functional $\mathcal{M} \in \Sigma^*$ (except for a factor $\alpha \in \mathbb{R} \setminus \{0\}$).

4. Orthogonal polynomials and semi-orthogonal basis

Let \mathscr{L} be a quasi-definite Hermitian functional on L. Assume that \mathscr{L} is normalized, i.e., $\mathscr{L}(1) = 1$. We denote by $\{\Phi_n\}_{n=0}^{\infty}$ the SMOP associated with \mathscr{L} .

For each $n \ge 1$, we can define, as in (1) the functions:

$$f_n(x) = 2^{-n} z^{-n} [z \Phi_{2n-1}(z) + \Phi_{2n-1}^*(z)],$$

$$g_n(x) = -i 2^{-n} z^{-n} [z \Phi_{2n-1}(z) - \Phi_{2n-1}^*(z)],$$
(8)

where $x = (z + z^{-1})/2$.

(Whenever \mathscr{L} is symmetric and, hence, the coefficients of Φ_{2n-1} are real, formulas (8) should be compared with those given by Szegő [6; (11.5.2)].

Obviously, $\{1\} \cup \{f_n, g_n\}_{n \ge 1}$ constitutes a basis of Σ , according to Lemma 1.1 and Proposition 2.2.

Theorem 4.1. Consider $B = \{1\} \cup (\bigcup_{n \ge 1} \{f_n, g_n\})$, where f_n , g_n are given by (8). Then B is a semiorthogonal basis with respect to the functional $\mathcal{M}_{\mathscr{L}} \in \Sigma^*$ defined in Definition 2.1. Besides, $\mathcal{M}_{\mathscr{L}}$ is quasi-definite and, when \mathcal{L} is positive definite, then $\mathcal{M}_{\mathcal{L}}$ is positive definite.

$$\mathcal{M}_{\mathscr{L}}(f_n) = \mathscr{L}[2^{-n}z^{-n}(z\Phi_{2n-1}(z) + \Phi_{2n-1}^*(z))] = 0, \quad \forall n \ge 1,$$
$$\mathcal{M}_{\mathscr{L}}(g_n) = \mathscr{L}\left[2^{-n}z^{-n}\mathbf{i}^{-1}(z\Phi_{2n-1}(z) - \Phi_{2n-1}^*(z))\right] = 0, \quad \forall n \ge 1.$$

because of the orthogonality of $\{\Phi_n\}_{n=0}^{\infty}$. Also $\mathscr{M}_{\mathscr{L}}(1) = \mathscr{L}(1) = 1$. Now for $n \ge m \ge 1$, it follows that

$$\mathcal{M}_{\mathscr{L}}(f_n f_m) = 2^{-n-m} \mathscr{L}(z^{-n}[z\Phi_{2n-1}(z) + \Phi_{2n-1}^*(z)]z^{-m}[z\Phi_{2m-1}(z) + \Phi_{2m-1}^*(z)])$$

= $2^{-n-m} \mathscr{L}(\Phi_{2n-1}(z)\Phi_{2m-1}(z) \cdot z^{-n-m+2} + \Phi_{2n-1}^*(z)\Phi_{2m-1}(z) \cdot z^{-n-m+1} + \Phi_{2n-1}(z)\Phi_{2m-1}^*(z) \cdot z^{-n-m+1} + \Phi_{2n-1}^*(z)\Phi_{2m-1}^*(z) \cdot z^{-n-m}).$

When m < n, since

$$\mathscr{L}(\Phi_{2n-1}(z) \cdot z^{-k}) = \mathscr{L}(\Phi_{2n-1}^*(z) \cdot z^{-(k+1)}) = 0, \quad k = 0, \dots, 2n-2,$$

then $\mathcal{M}_{\mathcal{L}}(f_n f_m) = 0.$

In a similar way, we can obtain that, for m < n

$$\mathscr{M}_{\mathscr{L}}(f_ng_m) = \mathscr{M}_{\mathscr{L}}(g_mf_m) = \mathscr{M}_{\mathscr{L}}(g_ng_m) = 0.$$

When n = m, it results that

$$\mathcal{M}_{\mathscr{L}}(f_n^2) = 2^{-2n} \mathscr{L}(\Phi_{2n-1}(z)\Phi_{2n-1}(z) \cdot z^{-2n+2}) + 2^{-2n+1} \mathscr{L}(\Phi_{2n-1}(z)\Phi_{2n-1}^*(z) \cdot z^{-2n+1}) + 2^{-2n} \mathscr{L}(\Phi_{2n-1}^*(z)\Phi_{2n-1}^*(z)z^{-2n}).$$

Then, we have, after straightforward calculations:

$$\begin{aligned} \mathscr{L}(\Phi_{2n-1}(z)\Phi_{2n-1}(z)\cdot z^{-2n+2}) &= -e_{2n-1}\Phi_{2n}(0), \\ \mathscr{L}(\Phi_{2n-1}(z)\Phi_{2n-1}^{*}(z)\cdot z^{-2n+1}) &= e_{2n-1}, \\ \mathscr{L}(\Phi_{2n-1}^{*}(z)\Phi_{2n-1}^{*}(z)\cdot z^{-2n}) &= -e_{2n-1}\overline{\Phi_{2n}(0)}, \end{aligned}$$

where $e_n = \mathscr{L}(\Phi_n(z) \cdot z^{-n}) \neq 0$, and thus

$$\mathcal{M}_{\mathscr{L}}(f_n^2) = 2^{-(2n-1)} e_{2n-1} \{ 1 - \operatorname{Re} \Phi_{2n}(0) \},$$

$$\mathcal{M}_{\mathscr{L}}(f_n g_n) = -2^{-(2n-1)} e_{2n-1} \operatorname{Im} \Phi_{2n}(0),$$

$$\mathcal{M}_{\mathscr{L}}(g_n^2) = 2^{-(2n-1)} e_{2n-1} \{ 1 + \operatorname{Re} \Phi_{2n}(0) \}.$$
(9)

So, *B* constitutes a semi-orthogonal basis, according to Definition 2.7. Besides, the matrix of $\langle \cdot, \cdot \rangle_{\mathcal{M}_{\mathcal{T}}}$ with respect to *B* is

11	$\mathscr{U}_{\mathscr{S}}(1)$	0	0)	
	0	C_1	0]	
	0	0	C_2		,
			• • •	· · ·)	

where

$$C_n = 2^{-2n+1} e_{2n-1} \begin{pmatrix} 1 - \operatorname{Re} \Phi_{2n}(0) & -\operatorname{Im} \Phi_{2n}(0) \\ -\operatorname{Im} \Phi_{2n}(0) & 1 + \operatorname{Re} \Phi_{2n}(0) \end{pmatrix},$$

i.e., each C_n is quasi-definite (positive definite) if and only if \mathscr{L} is quasi-definite (positive). \Box

Proposition 4.2. For each $n \ge 1$ the functions f_n and g_n can be expressed as

$$f_n(x) = \frac{(1 - \overline{\Phi_{2n}(0)})\Phi_{2n}(z) + (1 - \Phi_{2n}(0))\Phi_{2n}^*(z)}{2^n z^n (1 - |\Phi_{2n}(0)|^2)},$$

$$g_n(x) = \frac{(1 + \overline{\Phi_{2n}(0)})\Phi_{2n}(z) - (1 + \Phi_{2n}(0))\Phi_{2n}^*(z)}{2^n z^n i (1 - |\Phi_{2n}(0)|^2)}.$$
(10)

Proof. It is an easy consequence of formula (8) and Szegő's recurrence formulas. \Box

Proposition 4.3. The SMOP related to \mathcal{L} , can be expressed as

$$\Phi_{2n-1}(z) = 2^{n-1} z^{n-1} \{ f_n(x) + ig_n(x) \},\$$

$$\Phi_{2n}(z) = 2^{n-1} z^n \{ (1 + \Phi_{2n}(0) f_n(x) + (1 - \Phi_{2n}(0)) ig_n(x) \}.\$$

Proof. It suffices to eliminate $\Phi_{2n-1}^*(z)$ in (8) and $\Phi_{2n}^*(z)$ in (10). \Box

In these conditions, Theorem 4.1 has the following converse:

Theorem 4.4. Let $\mathcal{M} \in \Sigma^*$ be quasi-definite, such that trace $C_n \neq 0$ for each $n \ge 1$. Then, there exists just one quasi-definite Hermitian functional $\mathcal{L} \in L^*$, such that \mathcal{M} is induced by \mathcal{L} , that is, $\mathcal{M} = \mathcal{M}_{\mathcal{L}}$. Moreover, \mathcal{L} is positive definite if and only if \mathcal{M} is positive definite.

Proof. Consider a semi-orthogonal basis $B = \{1\} \cup (\bigcup_{n \ge 1} \{f_n, g_n\})$ related to \mathcal{M} . Without loss of generality, we can assume that $\mathcal{M}(1) = 1$. Then the matrix of $\langle \cdot, \cdot \rangle_{\mathcal{M}}$ with respect to B is

/ 1	0	0	/
0	C_1	0	}
0	0	C_2]
$\left(\ldots \right)$		• • •	/

with

$$C_n = \begin{pmatrix} \mathcal{M}(f_n^2) & \mathcal{M}(f_ng_n) \\ \mathcal{M}(g_nf_n) & \mathcal{M}(g_n^2) \end{pmatrix}.$$

We will obtain a Hermitian functional \mathscr{L} such that the associated SMOP satisfy formulas (9). This system provides that

$$e_{2n-1} = 2^{2n-2} \{ \mathcal{M}(f_n^2) + \mathcal{M}(g_n^2) \}$$

with $e_{2n-1} \neq 0$ because of trace $C_n \neq 0$ (>0). Now, the quasi-definiteness of \mathcal{M} implies that

$$0 \neq \text{Det } C_n = \mathcal{M}(f_n^2) \mathcal{M}(g_n^2) - \mathcal{M}(f_n g_n)^2 = e_{2n-1}^{-1} 2^{2-4n} (1 - |\Phi_{2n}(0)|^2)$$

then $|\Phi_{2n}(0)| \neq 1$ and, when \mathcal{M} is positive, $|\Phi_{2n}(0)| < 1$.

So, once e_{2n-1} is known, formulas (9) give us $\Phi_{2n}(0)$ and, because of Proposition 4.3, we have $\{\Phi_n\}_{n \in \mathbb{N}}$. Thus, this sequence $\{\Phi_n\}$ is uniquely determined by the matrix sequence (C_n) . Now, Favard's theorem guarantees the existence of a unique Hermitian, quasi-definite (positive) functional (except for a non-zero factor) $\mathscr{L} \in \Sigma^*$ such that $\{\Phi_n\}_{n \in \mathbb{N}}$ is the related SMOP. Besides, \mathscr{M} is induced by \mathscr{L} in the sense of Definition 2.1. \Box

5. Application

Let $\mathscr{L} \in L^*$ be quasi-definite and $\mathscr{M} := \mathscr{M}_{\mathscr{L}}$ its induced functional. If we define $\widetilde{\mathscr{L}} \in L^*$ by: $\widetilde{\mathscr{L}} = (\frac{1}{2}(z+z^{-1})-a)\mathscr{L}$ with $a \in \mathbb{R}$, let $\widetilde{\mathscr{M}} := \widetilde{\mathscr{M}}_{\mathscr{G}} \in \Sigma^*$ be given by

$$\widetilde{\mathscr{M}}[(P,Q)] = \widetilde{\mathscr{L}}[P + \sqrt{1 - x^2}Q] = \mathscr{L}[(x - a)(P + \sqrt{1 - x^2}Q)] = \mathscr{M}[(x - a)(P,Q)]$$

 $\forall (P,Q) \in \Sigma$. So, $\widetilde{\mathcal{M}} = (x-a)\mathcal{M}$ is the associated functional of $\widetilde{\mathcal{L}}$, with the quasi-definiteness conditions given in Theorem 4.1.

Assume that $\widetilde{\mathcal{M}}$ is quasi-definite, and let (F_n) the sequence of semi-orthogonal functions related to $\widetilde{\mathcal{M}}$, $F_n = (F_n, G_n)^T$, $n \ge 1$. Then, we have

$$\widetilde{\mathscr{M}}(x^{k}\boldsymbol{F}_{n}(x)) = \mathscr{M}(x^{k}(x-a)\boldsymbol{F}_{n}(x)) = 0 \quad (0 \leq k \leq n-1),$$

$$\widetilde{\mathscr{M}}(x^{k}\sqrt{1-x^{2}}\boldsymbol{F}_{n}(x)) = \mathscr{M}(x^{k}\sqrt{1-x^{2}}(x-a)\boldsymbol{F}_{n}(x)) = 0 \quad (0 \leq k \leq n-2)$$

from here $(x - a)F_n$, $(x - a)G_n \in \Sigma_{n+1}$ are orthogonal to Σ_n with respect to $\langle \cdot, \cdot \rangle_{\mathcal{U}}$. Thus, there exist unique matrices A_n , $B_n \in \mathbb{R}^{(2,2)}$ such that

 $(x-a)\mathbf{F}_n = A_n \mathbf{f}_{n+1} + B_n \mathbf{f}_n.$

By comparing the coefficients of x^{n+1} and $\sqrt{1-x^2}x^n$ we obtain that $A_n = I$. So, if we assume that \mathcal{M} is quasi-definite, there exists a unique matrix $B_n \in \mathbb{R}^{(2,2)}$ such that

$$(x-a)F_n = f_{n+1} + B_n f_n.$$
(11)

When $|a| \neq 1$, notice that $f_n(a)$ has two determinations for $\alpha = a + \sqrt{a^2 - 1}$ and $\alpha^{-1} = a - \sqrt{a^2 - 1}$, that we denote by $f_n^+(a)$ and $f_n^-(a)$, respectively. Then formula (11) becomes

$$0 = [f_{n+1}^+(a), f_{n+1}^-(a)] + B_n [f_n^+(a), f_n^-(a)].$$

Thus, the quasi-definiteness of $[f_{n+1}^+(a), f_{n+1}^-(a)], (n \ge 1)$ implies the existence of F_n $(n \ge 1)$ verifying (11) and, moreover, the quasi-definiteness of $\widetilde{\mathcal{M}}$.

On the other hand,

$$\det[f_n^+(a), f_n^-(a)] = \frac{1}{i2^{2n}} \begin{vmatrix} \alpha \Phi_{2n-1}(\alpha) + \Phi_{2n-1}^*(\alpha) & \alpha^{-1} \Phi_{2n-1}(\alpha^{-1}) + \Phi_{2n-1}^*(\alpha^{-1}) \\ \alpha \Phi_{2n-1}(\alpha) - \Phi_{2n-1}^*(\alpha) & \alpha^{-1} \Phi_{2n-1}(\alpha^{-1}) - \Phi_{2n-1}^*(\alpha^{-1}) \end{vmatrix}$$
$$= \frac{1}{i2^{2n-2}} \begin{vmatrix} \Phi_{2n-1}^*(\alpha) & \Phi_{2n-1}^*(\alpha^{-1}) \\ \alpha \Phi_{2n-1}(\alpha) & \alpha^{-1} \Phi_{2n-1}(\alpha^{-1}) \end{vmatrix} \neq 0.$$

If we claim that trace $\widetilde{\mathcal{M}}(\mathbf{F}_n \cdot \mathbf{F}_n^T) \neq 0$, then the same relation for the even terms is obtained. That is, according to Theorem 4.4, $\widetilde{\mathscr{L}}$ is quasi-definite when

$$D_n(\alpha) = \Phi_n^*(\alpha^{-1})\alpha \Phi_n(\alpha) - \Phi_n^*(\alpha)\alpha^{-1} \Phi_n(\alpha^{-1}) \neq 0$$
(12)

 $\forall n \ge 1$ and $\alpha \ne \pm 1$. This requirement is the same given in [5] for the quasi-definiteness of $\widetilde{\mathscr{L}}$ in the particular case $\widetilde{\mathscr{L}} = \operatorname{Re}(z - \alpha)\mathscr{L}$.

By using formulas (8) and (11), we can obtain the relationship:

$$(z^2-2az+1)\widetilde{\Phi}_n(z)=\Phi_{n+2}(z)+r_nz\Phi_n(z)+s_n\Phi_n^*(z),$$

where $(\tilde{\Phi}_n)$ is the SMOP associated with $\tilde{\mathscr{L}}$. So, we derive the determinantal formula:

$$(z^{2}-2az+1)\widetilde{\Phi}_{n}(z) = D_{n}(\alpha)^{-1} \begin{vmatrix} \Phi_{n+2}(z) & z\Phi_{n}(z) & \Phi_{n}^{*}(z) \\ \Phi_{n+2}(\alpha) & \alpha\Phi_{n}(\alpha) & \Phi_{n}^{*}(\alpha) \\ \Phi_{n+2}(\alpha^{-1}) & \alpha^{-1}\Phi_{n}(\alpha^{-1}) & \Phi_{n}^{*}(\alpha^{-1}) \end{vmatrix}$$

which gives $(\tilde{\Phi}_n)$ in terms of (Φ_n) , constrained to the condition (12).

References

- M.J. Cantero, Polinomios ortogonales sobre la circunferencia unidad. Modificaciones de los parámetros de Schur, Doctoral Dissertation, Universidad de Zaragoza, 1997.
- [2] G. Freud, Orthogonal Polynomials, Akadémiai Kiadó, Budapest and Pergamon Press, Oxford, 1971, 1985.
- [3] Y.L. Geronimus, Orthogonal Polynomials, Consultants Bureau, New York, 1961.
- [4] Y.L. Geronimus, Polynomials orthogonal on a circle and their applications, Transl. Amer. Math. Soc. 3 Serie 1 (1962) 1-78.
- [5] M.C. Suarez, Polinomios ortogonales relativos a modificaciones de funcionales regulares y hermitianos, Doctoral Dissertation, Universidad de Vigo, 1983.
- [6] G. Szegö, Orthogonal Polynomials, 4th ed., AMS Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.