Semiorthogonal functions and orthogonal polynomials on the unit circle

Manuel Alfaro ${ }^{\mathrm{a}, \text {, }, 1}$, María José Cantero ${ }^{\mathrm{b}, 2}$, Leandro Moral ${ }^{\mathrm{b}, 2}$
${ }^{a}$ Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
${ }^{\mathrm{b}}$ Departamento de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 7 November 1997; received in revised form 5 May 1998

Abstract

We establish a bijection between Hermitian functionals on the linear space of Laurent polynomials and functionals on $\mathscr{P} \times \mathscr{P}$ satisfying some orthogonality conditions (\mathscr{P} denotes the linear space of polynomials with real coefficients). This allows us to study some topics about sequences ($\boldsymbol{\Phi}_{n}$) of orthogonal polynomials on the unit circle from a new point of view. Whenever the polynomials Φ_{n} have real coefficients, we recover a well known result by Szegö. ©c 1998 Elsevier Science B.V. All rights reserved.

AMS classification: 42C05
Keywords: Hermitian functionals; Orthogonal polynomials; Recurrence formulas

1. Introduction

In this paper we are concerned with an algebraic method introduced in [1] in order to study polynomial modifications of Hermitian functionals \mathscr{L} defined on the linear space of Laurent polynomials and, as consequence, properties of the corresponding orthogonal polynomials (OP) on the unit circle \mathbb{T}. The basic idea is the well known Szegö's result about the connection between OP on \mathbb{T} and OP on the interval $[-1,1]$, (see [6, Section 11.5] and also [2, Section V.1] or [3, 9.1]); in this situation, since the orthogonality measure on \mathbb{T} is symmetric, the associated OP have real coefficients. We will analyze a relation such as Szegö's one, valid for OP on \mathbb{T} with complex coefficients.

[^0]Now, we proceed with some notations. In what follows, we denote $\mathscr{P}=\mathbb{R}[x]$ the linear space of polynomials with real coefficients, \mathscr{P}_{n} is the subspace of polynomials whose degree is less than or equal to n and $\mathscr{P}_{n}^{\#}$ the subset of \mathscr{P}_{n} of polynomials whose degree is exactly n. Besides, Π denotes the vector space $\mathbb{C}[z]$ of complex polynomials, and Π_{n} its subspace of all polynomials of degree less than or equal to n. We let L be the class of Laurent polynomials, that is

$$
L=\left\{\sum_{k=-m}^{n} \alpha_{k} z^{k} ; \alpha_{k} \in \mathbb{C} \mid m, n \in \mathbb{N} \cup\{0\}\right\} .
$$

The paper is organized as follows: In Section 2, we give a bijective correspondence between Hermitian functionals \mathscr{L} on L and a class of functionals \mathscr{U} on $\mathscr{P} \times \mathscr{P}$; also, we construct a basis of $\mathscr{P} \times \mathscr{P}$ (which we call semi-orthogonal basis) satisfying some orthogonality conditions with respect to \mathscr{M}. Section 3 is devoted to prove that the elements of the semi-orthogonal basis satisfy recurrence formulas connected with recurrence formulas for orthogonal matrix polynomials. In Section 4, the relation between OP on \mathbb{T} and the semi-orthogonal basis is analyzed. In the last Section, we give an application of the above method to a modification of the functional \mathscr{L}.

Next, we show some technical results that we shall use later.
For $z \in \mathbb{C} \backslash\{0\}$, let us write $x=\left(z+z^{-1}\right) / 2$ and $y=\left(z-z^{-1}\right) / 2 i$; therefore $z=x+\mathrm{i} y, z^{-1}=x-\mathrm{i} y$, and $x^{2}+y^{2}=1$. Notice that if $z=\mathrm{e}^{\mathrm{i} \theta},(\theta \in \mathbb{R})$, then $x=\cos \theta$ and $y=\sin \theta$. In any case, we can express z in terms of x with, as usually, $\sqrt{x^{2}-1}>0$ when $x>1$.

Let us consider a polynomial Φ of degree $2 n-1, n \geqslant 1, \Phi(z)=\alpha_{2 n-1} z^{2 n-1}+\cdots+\alpha_{0}$, where $\alpha_{k} \in \mathbb{C}$. We define $f, g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$, by means of

$$
\begin{align*}
& f(x)=2^{-n} z^{-n}\left[z \Phi(z)+\Phi^{*}(z)\right] \\
& g(x)=-i 2^{-n} z^{-n}\left[z \Phi(z)-\Phi^{*}(z)\right] \tag{1}
\end{align*}
$$

where $\Phi^{*}(z)=z^{2 n-1} \bar{\Phi}\left(z^{-1}\right)$ is the so-called reversed polynomial.

Lemma 1.1. Let Φ be a monic polynomial of degree $2 n-1(n \geqslant 1)$ and f, g defined in (1). Then, there exist unique polynomials $R_{1} \in \mathscr{P}_{n}^{\#}, R_{2} \in \mathscr{P}_{n-2}, S_{1} \in \mathscr{P}_{n-1}$ and $S_{2} \in \mathscr{P}_{n-1}^{*}$, such that

$$
\begin{aligned}
& f(x)=R_{1}(x)+\sqrt{1-x^{2}} R_{2}(x) \\
& g(x)=S_{1}(x)+\sqrt{1-x^{2}} S_{2}(x)
\end{aligned}
$$

Conversely, given $R_{1} \in \mathscr{P}_{n}^{\#}, R_{2} \in \mathscr{P}_{n-2}, S_{1} \in \mathscr{P}_{n-1}$ and $S_{2} \in \mathscr{P}_{n-1}^{\#}$ with R_{1} and S_{2} monic polynomials, then there is a unique monic polynomial $\Phi \in \Pi$ of degree $2 n-1$, such that

$$
\begin{aligned}
& R_{1}(x)+\sqrt{1-x^{2}} R_{2}(x)=2^{-n} z^{-n}\left[z \Phi(z)+\Phi^{*}(z)\right] \\
& S_{1}(x)+\sqrt{1-x^{2}} S_{2}(x)=-i 2^{-n} z^{-n}\left[z \Phi(z)-\Phi^{*}(z)\right]
\end{aligned}
$$

Proof. From (1) we have

$$
\begin{aligned}
f(x)= & 2^{-n} z^{-n} \sum_{k=0}^{2 n-1}\left(\alpha_{k} z^{k+1}+\bar{\alpha}_{k} z^{2 n-k-1}\right) \\
= & T_{n}(x)+\sum_{j=0}^{n-1} 2^{i-n} \operatorname{Re}\left(\alpha_{n+j-1}+\alpha_{n-j-1}\right) T_{j}(x)-\sqrt{1-x^{2}} \\
& \times \sum_{j=1}^{n-1} 2^{-j} \operatorname{Im}\left(\alpha_{2 n-j-1}-\alpha_{j-1}\right) U_{n-j-1}(x),
\end{aligned}
$$

where T_{j} and U_{j} are respectively the j th Tchebychev polynomials of the first and second kind (see [6, p.3]). So, keeping in mind that $\operatorname{Im} \alpha_{2 n-1}=0$, we can put

$$
f(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)+\sqrt{1-x^{2}} \sum_{k=0}^{n-2} b_{k} U_{k}(x) .
$$

with $a_{n}=\operatorname{Re} \alpha_{2 n-1}=1$.
Then, the desired expression for f is obtained if we take $R_{1}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)$ and $R_{2}(x)$ $=\sum_{k=0}^{n-2} b_{k} U_{k}(x)$. The uniqueness is obvious.

The proof for g is similar.
To deduce the converse, it suffices to expand the polynomials R_{1} and S_{1} (respectively, R_{2} and S_{2}) in terms of Tchebychev polynomials of the first (respectively, second) kind and the proof follows straightforward.

Note that if Φ has real coefficients, then $R_{2}(x) \equiv 0$ and $S_{1}(x) \equiv 0$. Moreover, if Φ is in addition a polynomial orthogonal on \mathbb{T} with respect to a weight function w, then by Szegö's theory, R_{1} and S_{2} are orthogonal on $[-1,1]$ with respect to the weight functions $w(x) / \sqrt{1-x^{2}}$ and $w(x) \sqrt{1-x^{2}}$, respectively.

2. Functionals on $\mathscr{P} \times \mathscr{P}$ induced by Hermitian functionals on \mathscr{P}

We denote $\Sigma=\mathscr{P} \times \mathscr{P}$, which with the product:

$$
\left(P_{1}, Q_{1}\right) \cdot\left(P_{2}, Q_{2}\right)=\left(P_{1} P_{2}+\left(1-x^{2}\right) Q_{1} Q_{2}, P_{1} Q_{2}+P_{2} Q_{1}\right)
$$

is a conmutative algebra with identity element. For each $n \geqslant 0$, we write $\Sigma_{n}=\mathscr{P}_{n} \times \mathscr{P}_{n-1}$ with the convention $\mathscr{P}_{-1}=\{0\} ; \Sigma_{n}$ is a subspace of Σ such that $\operatorname{dim} \Sigma_{n}=2 n+1$. Notice that, the mapping $(P, Q) \rightarrow P+\sqrt{1-x^{2}} Q$ establish a bijective correspondence between Σ and $\mathscr{P}+\sqrt{1-x^{2}} \mathscr{P}$ which preserves the product; so, in the sequel some times we will use the expression $P+\sqrt{1-x^{2}} Q$ to denote elements of Σ.

For every Hermitian functional on L, we can define a linear functional on Σ in the following way:

Definition 2.1. Let \mathscr{L} be a Hermitian functional on L, then $\mathscr{M}_{\mathscr{L}}: \Sigma \rightarrow \mathbb{R}$ given by

$$
\mathscr{M}_{\mathscr{L}}[(P, Q)]=\mathscr{L}\left[P\left(\frac{z+z^{-1}}{2}\right)+\left(\frac{z-z^{-1}}{2 i}\right) Q\left(\frac{z+z^{-1}}{2}\right)\right]
$$

is a linear functional on Σ. We call it, the functional induced by \mathscr{L}.
Observe that, if \mathscr{L} is definite positive and μ is the corresponding orthogonality measure on \mathbb{T} (see [3, 4]), we can write:

$$
\mathscr{M}_{\mathscr{P}}[(P, Q)]=\int_{-1}^{1} P(x) \mathrm{d}\left(v_{1}+v_{2}\right)(x)+\int_{-1}^{1} \sqrt{1-x^{2}} Q(x) \mathrm{d}\left(v_{1}-v_{2}\right)(x),
$$

where v_{1} and v_{2} are the measures on $[-1,1]$ given by

$$
\left\{\begin{array}{ll}
\mathrm{d} v_{1}(x)=-\mathrm{d} \mu(\theta), & 0 \leqslant \theta<\pi, \\
\mathrm{d} v_{2}(x)=\mathrm{d} \mu(\theta), & \pi \leqslant \theta<2 \pi,
\end{array} \quad x=\cos \theta\right.
$$

Using the induction method, it is easy to deduce:

Proposition 2.2. (i) Any set B_{n} inductively defined by

$$
\begin{equation*}
B_{0}=\{1\}, \quad B_{n}=B_{n-1} \cup\left\{h_{n}^{(1)}, h_{n}^{(2)}\right\}, \quad n \geqslant 1, \tag{2}
\end{equation*}
$$

where $h_{n}^{(1)} \in \mathscr{P}_{n}^{\#} \times \mathscr{P}_{n-2}, \quad h_{n}^{(2)} \in \mathscr{P}_{n-1} \times \mathscr{P}_{n-1}^{\#}$ is a basis of Σ_{n}.
(ii) Any set B defined by means of

$$
B=\{1\} \cup\left(\bigcup_{n \geqslant 1}\left\{h_{n}^{(1)}, h_{n}^{(2)}\right\}\right),
$$

where $h_{n}^{(1)}, h_{n}^{(2)}$ are as in (i), is a basis of Σ.
It is well known that \mathscr{L} defines a bilinear Hermitian functional: $\langle\cdot, \cdot\rangle_{\mathscr{L}}: \Pi \times \Pi \rightarrow \mathbb{C}$ by means of

$$
\langle\Phi, \Psi\rangle_{\mathscr{L}}=\mathscr{L}\left(\Phi(z) \bar{\Psi}\left(z^{-1}\right)\right) .
$$

This bilinear functional is called quasi-definite (positive definite) when the restriction of $\langle\cdot, \cdot\rangle_{\mathscr{Y}}$ to $\Pi_{n} \times \Pi_{n}$ is quasi-definite (positive definite), for each n. This definition is equivalent to the fact that all principal minors of the moment matrix $\left(\left\langle z^{k}, z^{j}\right\rangle_{\mathscr{L}}\right)_{k, j=0}^{\infty}$ are different from zero (>0). So the Gram-Schmidt procedure guarantees the existence of a sequence of monic orthogonal polynomials (SMOP) $\left\{\Phi_{n}\right\}_{n \in \mathbb{N}}$ such that $\left\langle\Phi_{n}, \Phi_{n}\right\rangle_{\mathscr{L}} \neq 0(>0)$.

Our main purpose is to carry over these results to the set of bilinear functionals on Σ, via an orthogonalization procedure.

Definition 2.3. Let $\mathscr{M} \in \Sigma^{*}$, where Σ^{*} denotes the algebraic dual space of Σ. We define the symmetric bilinear form $\langle\cdot, \cdot\rangle_{. /}: \Sigma \times \Sigma \rightarrow \mathbb{R}$ by

$$
\langle F, G\rangle_{\cdot \mu}=\mathscr{M}(F \cdot G), \quad F, G \in \Sigma .
$$

We say that \mathscr{M} is quasi-definite (positive definite) if the restriction of $\langle,\rangle_{. / \prime}$ to $\Sigma_{n} \times \Sigma_{n}$ is quasidefinite (positive definite), for each $n \in \mathbb{N}$.

Notice that the definition of the positivity of \mathscr{M} is similar to the one given for Hermitian functionals. However, the quasi-definiteness of \mathscr{M} does not imply that $\langle F, F\rangle . / \neq 0$ for all $F \in \mathscr{M}, F \neq 0$.

Theorem 2.4 (Orthogonalization procedure). Let $\mathscr{M} \in \Sigma^{*}$ be a quasi-definite (positive definite) functional. Then, for each $n \in \mathbb{N}$, there exists a unique basis B_{n} of Σ_{n}, given by

$$
B_{0}=1, \quad B_{n}=B_{n-1} \cup\left\{f_{n}, g_{n}\right\}
$$

where $f_{n}=\left(R_{n}^{(1)}, R_{n}^{(2)}\right) \in \mathscr{P}_{n}^{\#} \times \mathscr{P}_{n-2}$ and $g_{n}=\left(S_{n}^{(1)}, S_{n}^{(2)}\right) \in \mathscr{P}_{n-1} \times \mathscr{P}_{n-1}^{\#}$, with $R_{n}^{(1)}$ and $S_{n}^{(2)}$ monic polynomials, such that

$$
\begin{align*}
& \mathscr{M}\left(f_{n} \cdot x^{k}\right)=\mathscr{M}\left(g_{n} \cdot x^{k}\right)=0, \quad 0 \leqslant k \leqslant n-1, \\
& \mathscr{M}\left(f_{n} \cdot \sqrt{1-x^{2}} x^{k}\right)=\mathscr{M}\left(g_{n} \cdot \sqrt{1-x^{2}} x^{k}\right)=0, \quad 0 \leqslant k \leqslant n-2 . \tag{3}
\end{align*}
$$

Besides, the matrix

$$
C_{n}=\left(\begin{array}{cc}
\mathscr{M}\left(f_{n}^{2}\right) & \mathscr{M}\left(f_{n} g_{n}\right) \\
\mathscr{M}\left(f_{n} g_{n}\right) & \mathscr{M}\left(g_{n}^{2}\right)
\end{array}\right)
$$

is quasi-definite (positive definite.).
Proof. Let $\mathscr{M} \in \Sigma^{*}$ be quasi-definite (positive definite). For $n=1$, we consider, according to (2), the following basis $\left\{1, f_{1}, g_{1}\right\}$ of Σ_{1} given by

$$
f_{1}(x)=\left(x+c_{1}, 0\right), \quad g_{1}(x)=\left(\tilde{c}_{1}, 1\right) .
$$

Let $\mathscr{M}\left(f_{1}\right)=\mathscr{M}\left(g_{1}\right)=0$. Then,

$$
\begin{aligned}
& \mathscr{M}\left(f_{1}\right)=\mathscr{M}(x)+c_{1} \mathscr{M}(1)=0, \\
& \mathscr{M}\left(g_{1}\right)=\widetilde{c}_{1} \mathscr{M}(1)+\mathscr{M}\left(\sqrt{1-x^{2}}\right)=0
\end{aligned}
$$

but $\mathscr{M}(1) \neq 0$, because of the quasi-definiteness of $\langle\cdot, \cdot\rangle_{. / /}$on Σ_{0}. Thus we have uniqueness for c_{1}, \widetilde{c}_{1} in the above system.

Moreover, the matrix

$$
\left(\begin{array}{ccc}
\mathscr{M}(1) & \mathscr{M}\left(f_{1}\right) & \mathscr{M}\left(g_{1}\right) \\
\mathscr{M}\left(f_{1}\right) & \mathscr{M}\left(f_{1}^{2}\right) & \mathscr{M}\left(f_{1} g_{1}\right) \\
\mathscr{M}\left(g_{1}\right) & \mathscr{M}\left(f_{1} g_{1}\right) & \mathscr{M}\left(g_{1}^{2}\right)
\end{array}\right)=\left(\begin{array}{c|c}
\mathscr{M}(1) & 0 \\
\hline 0 & C_{1}
\end{array}\right)
$$

is quasi-definite (positive definite) because of the quasi-definiteness (positivity) of \mathscr{M}. Thus C_{1} is quasi-definite (positive definite). By applying induction, the proof follows straightforward.

If \mathscr{M} is induced by a positive definite functional, formulas (3) in Theorem 2.4 leads to four 'unusual' orthogonality conditions:

Theorem 2.5. Let $\mathscr{M}_{\mathscr{H}}$ be a functional on Σ induced by a Hermitian positive definite functional \mathscr{L}. Let μ be the Borel positive measure on \mathbb{T} associated with \mathscr{L} and v_{1} and v_{2} the measures on $[-1,1]$ given by $\mathrm{d} v_{1}(x)=-\mathrm{d} \mu(\theta), 0 \leqslant \theta<\pi$, and $\mathrm{d} v_{2}(x)=\mathrm{d} \mu(\theta), \pi \leqslant \theta<2 \pi$, with $x=\cos \theta$. Then, the polynomials $R_{n}^{(1)}$ and $R_{n}^{(2)}$, introduced in Theorem 2.4, satisfy

$$
\begin{aligned}
& \int_{-1}^{1} R_{n}^{(1)}(x) x^{k} \mathrm{~d}\left(v_{1}+v_{2}\right)(x)+\int_{-1}^{1} R_{n}^{(2)}(x) x^{k} \sqrt{1-x^{2}} \mathrm{~d}\left(v_{1}-v_{2}\right)(x)=0, \quad 0 \leqslant k \leqslant n-1, \\
& \int_{-1}^{1} R_{n}^{(2)}(x) x^{k}\left(1-x^{2}\right) \mathrm{d}\left(v_{1}+v_{2}\right)(x)+\int_{-1}^{1} R_{n}^{(1)}(x) x^{k} \sqrt{1-x^{2}} \mathrm{~d}\left(v_{1}-v_{2}\right)(x)=0, \quad 0 \leqslant k \leqslant n-2 .
\end{aligned}
$$

Two analogous formulas are true for the polynomials $S_{n}^{(1)}$ and $S_{n}^{(2)}$.

Corollary 2.6. Let $\mathscr{M} \in \Sigma^{*}$ be quasi-definite (positive). Then there is a unique basis B of Σ such that

$$
B=\{1\} \cup\left(\bigcup_{n \geqslant 1}\left\{f_{n}, g_{n}\right\}\right),
$$

where f_{n} and g_{n} are as in (3). Besides, the matrix associated with $\langle\cdot, \cdot\rangle_{. /}$(with respect to B) is the diagonal-block matrix:

$$
\left(\begin{array}{cccc}
\mathscr{M}(1) & 0 & 0 & \cdots \\
0 & C_{1} & 0 & \cdots \\
0 & 0 & C_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Definition 2.7. Given $\mathscr{A} \in \Sigma^{*}$ quasi-definite, we say that the basis B of Σ from Corollary 2.6 is a semi-orthogonal basis with respect to \mathscr{M}.

3. Recurrence formulas

Let us consider a quasi-definite linear functional \mathscr{M} on Σ and let $B=\{1\} \cup\left(\cup_{n \geqslant 1}\left\{f_{n}, g_{n}\right\}\right)$ be the corresponding semi-orthogonal basis.

We denote

$$
\boldsymbol{F}_{0}=(1,0)^{\mathrm{T}}, \quad \boldsymbol{F}_{n}=\left(f_{n}, g_{n}\right)^{\mathrm{T}}, \quad(n \geqslant 1) .
$$

Also, for $p_{1}, p_{2}, q_{1}, q_{2} \in \Sigma$, we write

$$
\boldsymbol{P}=\left(p_{1}, p_{2}\right)^{\mathrm{T}}, \quad \boldsymbol{Q}=\left(q_{1}, q_{2}\right)^{\mathrm{T}}, \quad(n \geqslant 1) .
$$

We define $\langle\boldsymbol{P}, \boldsymbol{Q}\rangle: \Sigma^{2} \times \Sigma^{2} \rightarrow \mathbb{R}^{(2,2)}$ by

$$
\langle\boldsymbol{P}, \boldsymbol{Q}\rangle=\left(\begin{array}{cc}
\mathscr{M}\left(p_{1} q_{1}\right) & \mathscr{M}\left(p_{1} q_{2}\right) \tag{4}\\
\mathscr{M}\left(p_{2} q_{1}\right) & \mathscr{M}\left(p_{2} q_{2}\right)
\end{array}\right)
$$

Notice that $\langle\boldsymbol{Q}, \boldsymbol{P}\rangle=\langle\boldsymbol{P}, \boldsymbol{Q}\rangle^{\mathrm{T}}$ and $\langle f \boldsymbol{P}, \boldsymbol{Q}\rangle=\langle\boldsymbol{P}, f \boldsymbol{Q}\rangle \quad \forall f \in \Sigma$.
Now, we consider $x \boldsymbol{F}_{n}, n \geqslant 1$. It is obvious that $x f_{n}, x g_{n} \in \Sigma_{n+1}$ and according to (3), we have

$$
\begin{aligned}
& \mathscr{M}\left(x f_{n}(x) \cdot x^{k}\right)=\mathscr{M}\left(x g_{n}(x) \cdot x^{k}\right)=0, \quad 0 \leqslant k \leqslant n-2, \\
& \mathscr{M}\left(x f_{n}(x) \cdot x^{k} \sqrt{1-x^{2}}\right)=\mathscr{M}\left(x g_{n}(x) \cdot x^{k} \sqrt{1-x^{2}}\right)=0, \quad 0 \leqslant k \leqslant n-3 .
\end{aligned}
$$

That is, $x f_{n}$ and $x g_{n}$ belong to the orthogonal complement of Σ_{n-2} with respect to Σ_{n+1}. So, there exist matrices $\Gamma_{n}, A_{n}, M_{n} \in \mathbb{R}^{(2,2)}$ such that

$$
x \boldsymbol{F}_{n}=\Gamma_{n} \boldsymbol{F}_{n+1}+\Lambda_{n} \boldsymbol{F}_{n}+M_{n} \boldsymbol{F}_{n-1}, \quad n \geqslant 1
$$

holds. By identification of the coefficients of x^{n+1} and $x^{n} \sqrt{1-x^{2}}$, we have that Γ_{n} is the 2×2 identity matrix and so we get

$$
\begin{equation*}
x \boldsymbol{F}_{n}=\boldsymbol{F}_{n+1}+\Lambda_{n} \boldsymbol{F}_{n}+M_{n} \boldsymbol{F}_{n-1}, \quad n \geqslant 1 . \tag{5}
\end{equation*}
$$

In a similar way, $\sqrt{1-x^{2}} f_{n}, \sqrt{1-x^{2}} g_{n} \in \Sigma_{n+1}$ and

$$
\begin{aligned}
& \mathscr{M}\left(\sqrt{1-x^{2}} f_{n}(x) \cdot x^{k}\right)=\mathscr{M}\left(\sqrt{1-x^{2}} g_{n}(x) \cdot x^{k}\right)=0, \quad 0 \leqslant k \leqslant n-2, \\
& \mathscr{M}\left(x f_{n}(x) \cdot x^{k} \sqrt{1-x^{2}}\right)=\mathscr{M}\left(x g_{n}(x) \cdot x^{k} \sqrt{1-x^{2}}\right)=0, \quad 0 \leqslant k \leqslant n-3 .
\end{aligned}
$$

Proceeding as above, we get that there exist two matrices $\widetilde{\Lambda}_{n}, \widetilde{M}_{n} \in \mathbb{R}^{(2.2)}$ such that

$$
\begin{equation*}
\sqrt{1-x^{2}} \boldsymbol{F}_{n}=J \boldsymbol{F}_{n+1}+\widetilde{\Lambda}_{n} \boldsymbol{F}_{n}+\widetilde{M}_{n} \boldsymbol{F}_{n-1}, \quad n \geqslant 1 \tag{6}
\end{equation*}
$$

where

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Taking into account that $\left\langle\boldsymbol{F}_{n}, \boldsymbol{F}_{m}\right\rangle=C_{n} \delta_{n, m}(n, m \geqslant 1)$, we can obtain, after simple calculations:

$$
\begin{array}{ll}
\left\langle x \boldsymbol{F}_{n}, \boldsymbol{F}_{n+1}\right\rangle=C_{n+1}, & \left\langle\sqrt{1-x^{2}} \boldsymbol{F}_{n}, \boldsymbol{F}_{n}\right\rangle=\widetilde{\Lambda}_{n} C_{n}, \\
\left\langle\sqrt{1-x^{2}} \boldsymbol{F}_{n}, \boldsymbol{F}_{n+1}\right\rangle=J C_{n+1}, & \left\langle x \boldsymbol{F}_{n+1}, \boldsymbol{F}_{n}\right\rangle=M_{n+1} C_{n} \\
\left\langle x \boldsymbol{F}_{n}, \boldsymbol{F}_{n}\right\rangle=\Lambda_{n} C_{n}, & \left\langle\sqrt{1-x^{2}} \boldsymbol{F}_{n+1}, \boldsymbol{F}_{n}\right\rangle=\widetilde{M}_{n+1} C_{n} .
\end{array}
$$

So, the coefficients for the recurrence relations (5) and (6) are determined by $\left(C_{n}\right)_{n \geqslant 1}$, in the following way:

$$
\begin{array}{ll}
A_{n}=\left\langle x \boldsymbol{F}_{n}, \boldsymbol{F}_{n}\right\rangle C_{n}^{-1}, & M_{n+1}=C_{n+1} C_{n}^{-1} \\
\tilde{\Lambda_{n}}=\left\langle\sqrt{1-x^{2}} \boldsymbol{F}_{n}, \boldsymbol{F}_{n}\right\rangle C_{n}^{-1}, & \widetilde{M}_{n+1}=-C_{n+1} J C_{n}^{-1} \tag{7}
\end{array}
$$

Formulas (5) and (6) does not determine completely M_{1} and \widetilde{M}_{1}. Relations (7) remain true if the initial conditions $M_{1}=\{\mathscr{M}(1)\}^{-1} C_{1}$ and $\widetilde{M}_{1}=\{\mathscr{M}(1)\}^{-1} C_{1} J^{\mathrm{T}}$ are given.

Summing up we have shown

Theorem 3.1. Let $\mathscr{M} \in \Sigma^{*}$ be quasi-definite and let B be the associated semi-orthogonal basis. Then, there are matrices $\Lambda_{n}, M_{n}, \widetilde{\Lambda}_{n}, \widetilde{M}_{n} \in \mathbb{R}^{(2,2)}$ such that (5)-(7) hold. Besides M_{n} and \widehat{M}_{n} are regular matrices. When the functional \mathscr{M} is positive, then the eigenvalues of M_{n} are positive.

Proposition 3.2. Let $\mathscr{M}, \tilde{\mathscr{M}} \in \Sigma^{*}$ be quasi-definite. If \mathscr{M} and $\tilde{\mathscr{M}}$ have the same semi-orthogonal associated basis B, then there is $\alpha \in \mathbb{R} \backslash\{0\}$ such that

$$
\mathscr{M}(F)=\alpha \cdot \tilde{M}(F) \quad \forall F \in \Sigma
$$

Proof. Let $B=\{1\} \cup\left(\bigcup_{n \geqslant 1}\left\{f_{n}, g_{n}\right\}\right)$. For each $F \in \Sigma$, there exist $a_{k}, b_{k}, c \in \mathbb{R}$ such that

$$
F=c+\sum_{k} a_{k} f_{k}+\sum_{j} b_{j} g_{j}
$$

holds. But, B is a semi-orthogonal basis with respect to \mathscr{M} and $\tilde{\mathscr{M}}$, and this fact implies $\mathscr{M}(F)=$ c. $\mathscr{M}(1), \tilde{\mathscr{M}}(F)=c \tilde{\mathscr{M}}(1)$. So, it suffices to take $\alpha=\mathscr{M}(1)(\tilde{\mathscr{M}}(1))^{-1}$.

The above proposition determines a unique quasi-definite functional $\mathscr{M} \in \Sigma^{*}$ (except for a factor $\alpha \in \mathbb{R} \backslash\{0\}$).

4. Orthogonal polynomials and semi-orthogonal basis

Let \mathscr{L} be a quasi-definite Hermitian functional on L. Assume that \mathscr{L} is normalized, i.e., $\mathscr{L}(1)=1$. We denote by $\left\{\Phi_{n}\right\}_{n=0}^{\infty}$ the SMOP associated with \mathscr{L}.

For each $n \geqslant 1$, we can define, as in (1) the functions:

$$
\begin{align*}
& f_{n}(x)=2^{-n} z^{-n}\left[z \Phi_{2 n-1}(z)+\Phi_{2 n-1}^{*}(z)\right] \\
& g_{n}(x)=-\mathrm{i} 2^{-n} z^{-n}\left[z \Phi_{2 n-1}(z)-\Phi_{2 n-1}^{*}(z)\right] \tag{8}
\end{align*}
$$

where $x=\left(z+z^{-1}\right) / 2$.
(Whenever \mathscr{L} is symmetric and, hence, the coefficients of $\Phi_{2 n-1}$ are real, formulas (8) should be compared with those given by Szegő [6; (11.5.2)].

Obviously, $\{1\} \cup\left\{f_{n}, g_{n}\right\}_{n \geqslant 1}$ constitutes a basis of Σ, according to Lemma 1.1 and Proposition 2.2.

Theorem 4.1. Consider $B=\{1\} \cup\left(\bigcup_{n \geqslant 1}\left\{f_{n}, g_{n}\right\}\right)$, where f_{n}, g_{n} are given by (8). Then B is a semiorthogonal basis with respect to the functional $\mathscr{M}_{\mathscr{P}} \in \Sigma^{*}$ defined in Definition 2.1. Besides, $\mathscr{M}_{\mathscr{L}}$ is quasi-definite and, when \mathscr{L} is positive definite, then $\mathscr{M}_{\mathscr{L}}$ is positive definite.

Proof. We will write the matrix of the bilinear form $\langle\cdot, \cdot\rangle_{. H_{y^{\prime}}}$ with respect to the basis B. Thus we have

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{L}}\left(f_{n}\right)=\mathscr{L}\left[2^{-n} z^{-n}\left(z \Phi_{2 n-1}(z)+\Phi_{2 n-1}^{*}(z)\right)\right]=0, \quad \forall n \geqslant 1, \\
& \mathscr{M}_{\mathscr{y}}\left(g_{n}\right)=\mathscr{L}\left[2^{-n} z^{-n} \mathrm{i}^{-1}\left(z \Phi_{2 n-1}(z)-\Phi_{2 n-1}^{*}(z)\right)\right]=0, \quad \forall n \geqslant 1
\end{aligned}
$$

because of the orthogonality of $\left\{\Phi_{n}\right\}_{n=0}^{\infty}$. Also $\mathscr{M}_{\mathscr{P}}(1)=\mathscr{L}(1)=1$.
Now for $n \geqslant m \geqslant 1$, it follows that

$$
\begin{aligned}
\mathscr{M}_{\mathscr{H}}\left(f_{n} f_{m}\right)= & 2^{-n-m} \mathscr{L}\left(z^{-n}\left[z \Phi_{2 n-1}(z)+\Phi_{2 n-1}^{*}(z)\right] z^{-m}\left[z \Phi_{2 m-1}(z)+\Phi_{2 m-1}^{*}(z)\right]\right) \\
= & 2^{-n-m} \mathscr{L}\left(\Phi_{2 n-1}(z) \Phi_{2 m-1}(z) \cdot z^{-n-m+2}+\Phi_{2 n-1}^{*}(z) \Phi_{2 m-1}(z) \cdot z^{-n-m+1}\right. \\
& \left.+\Phi_{2 n-1}(z) \Phi_{2 m-1}^{*}(z) \cdot z^{-n-m+1}+\Phi_{2 n-1}^{*}(z) \Phi_{2 m-1}^{*}(z) \cdot z^{-n-m}\right)
\end{aligned}
$$

When $m<n$, since

$$
\mathscr{L}\left(\Phi_{2 n-1}(z) \cdot z^{-k}\right)=\mathscr{L}\left(\Phi_{2 n-1}^{*}(z) \cdot z^{-(k+1)}\right)=0, \quad k=0, \ldots, 2 n-2,
$$

then $\mathscr{M}_{\mathscr{L}}\left(f_{n} f_{m}\right)=0$.
In a similar way, we can obtain that, for $m<n$

$$
\mathscr{M}_{\mathscr{L}}\left(f_{n} g_{m}\right)=\mathscr{M}_{\mathscr{L}}\left(g_{m} f_{m}\right)=\mathscr{M}_{\mathscr{L}}\left(g_{n} g_{m}\right)=0
$$

When $n=m$, it results that

$$
\begin{aligned}
\mathscr{M}_{\mathscr{L}}\left(f_{n}^{2}\right)= & 2^{-2 n} \mathscr{L}\left(\Phi_{2 n-1}(z) \Phi_{2 n-1}(z) \cdot z^{-2 n+2}\right) \\
& +2^{-2 n+1} \mathscr{L}\left(\Phi_{2 n-1}(z) \Phi_{2 n-1}^{*}(z) \cdot z^{-2 n+1}\right)+2^{-2 n} \mathscr{L}\left(\Phi_{2 n-1}^{*}(z) \Phi_{2 n-1}^{*}(z) z^{-2 n}\right) .
\end{aligned}
$$

Then, we have, after straightforward calculations:

$$
\begin{aligned}
& \mathscr{L}\left(\Phi_{2 n-1}(z) \Phi_{2 n-1}(z) \cdot z^{-2 n+2}\right)=-e_{2 n-1} \Phi_{2 n}(0), \\
& \mathscr{L}\left(\Phi_{2 n-1}(z) \Phi_{2 n-1}^{*}(z) \cdot z^{-2 n+1}\right)=e_{2 n-1} \\
& \mathscr{L}\left(\Phi_{2 n-1}^{*}(z) \Phi_{2 n-1}^{*}(z) \cdot z^{-2 n}\right)=-e_{2 n-1} \overline{\Phi_{2 n}(0)},
\end{aligned}
$$

where $e_{n}=\mathscr{L}\left(\Phi_{n}(z) \cdot z^{-n}\right) \neq 0$, and thus

$$
\begin{align*}
& \mathscr{M}_{\mathscr{Y}}\left(f_{n}^{2}\right)=2^{-(2 n-1)} e_{2 n-1}\left\{1-\operatorname{Re} \Phi_{2 n}(0)\right\}, \\
& \mathscr{M}_{\mathscr{H}}\left(f_{n} g_{n}\right)=-2^{-(2 n-1)} e_{2 n-1} \operatorname{Im} \Phi_{2 n}(0), \tag{9}\\
& \mathscr{M}_{\mathscr{P}}\left(g_{n}^{2}\right)=2^{-(2 n-1)} e_{2 n-1}\left\{1+\operatorname{Re} \Phi_{2 n}(0)\right\}
\end{align*}
$$

So, B constitutes a semi-orthogonal basis, according to Definition 2.7. Besides, the matrix of $\langle\cdot, \cdot\rangle_{H_{y}}$ with respect to B is

$$
\left(\begin{array}{cccc}
\mathscr{M}_{\mathscr{p}}(1) & 0 & 0 & \cdots \\
0 & C_{1} & 0 & \cdots \\
0 & 0 & C_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

where

$$
C_{n}=2^{-2 n+1} e_{2 n-1}\left(\begin{array}{ll}
1-\operatorname{Re} \Phi_{2 n}(0) & -\operatorname{Im} \Phi_{2 n}(0) \\
-\operatorname{Im} \Phi_{2 n}(0) & 1+\operatorname{Re} \Phi_{2 n}(0)
\end{array}\right)
$$

i.e., each C_{n} is quasi-definite (positive definite) if and only if \mathscr{L} is quasi-definite (positive).

Proposition 4.2. For each $n \geqslant 1$ the functions f_{n} and g_{n} can be expressed as

$$
\begin{align*}
& f_{n}(x)=\frac{\left(1-\overline{\Phi_{2 n}(0)}\right) \Phi_{2 n}(z)+\left(1-\Phi_{2 n}(0)\right) \Phi_{2 n}^{*}(z)}{2^{n} z^{n}\left(1-\left|\Phi_{2 n}(0)\right|^{2}\right)} \tag{10}\\
& g_{n}(x)=\frac{\left(1+\overline{\Phi_{2 n}(0)}\right) \Phi_{2 n}(z)-\left(1+\Phi_{2 n}(0)\right) \Phi_{2 n}^{*}(z)}{2^{n} z^{n} i\left(1-\left|\Phi_{2 n}(0)\right|^{2}\right)}
\end{align*}
$$

Proof. It is an easy consequence of formula (8) and Szegö's recurrence formulas.
Proposition 4.3. The SMOP related to \mathscr{L}, can be expressed as

$$
\begin{aligned}
& \Phi_{2 n-1}(z)=2^{n-1} z^{n-1}\left\{f_{n}(x)+\mathrm{i} g_{n}(x)\right\} \\
& \Phi_{2 n}(z)=2^{n-1} z^{n}\left\{\left(1+\Phi_{2 n}(0) f_{n}(x)+\left(1-\Phi_{2 n}(0)\right) \mathrm{i} g_{n}(x)\right\}\right.
\end{aligned}
$$

Proof. It suffices to eliminate $\Phi_{2 n-1}^{*}(z)$ in (8) and $\Phi_{2 n}^{*}(z)$ in (10).
In these conditions, Theorem 4.1 has the following converse:

Theorem 4.4. Let $\mathscr{M} \in \Sigma^{*}$ be quasi-definite, such that trace $C_{n} \neq 0$ for each $n \geqslant 1$. Then, there exists just one quasi-definite Hermitian functional $\mathscr{L} \in L^{*}$, such that \mathscr{M} is induced by \mathscr{L}, that is, $\mathscr{M}=\mathscr{M}_{\mathscr{L}}$. Moreover, \mathscr{L} is positive definite if and only if \mathscr{M} is positive definite.

Proof. Consider a semi-orthogonal basis $B=\{1\} \cup\left(\bigcup_{n \geqslant 1}\left\{f_{n}, g_{n}\right\}\right)$ related to \mathscr{M}. Without loss of generality, we can assume that $\mathscr{M}(1)=1$. Then the matrix of $\langle\cdot, \cdot\rangle_{\#}$ with respect to B is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & C_{1} & 0 & \cdots \\
0 & 0 & C_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

with

$$
C_{n}=\left(\begin{array}{ll}
\mathscr{M}\left(f_{n}^{2}\right) & \mathscr{M}\left(f_{n} g_{n}\right) \\
\mathscr{M}\left(g_{n} f_{n}\right) & \mathscr{M}\left(g_{n}^{2}\right)
\end{array}\right)
$$

We will obtain a Hermitian functional \mathscr{L} such that the associated SMOP satisfy formulas (9). This system provides that

$$
e_{2 n-1}=2^{2 n-2}\left\{\mathscr{M}\left(f_{n}^{2}\right)+\mathscr{M}\left(g_{n}^{2}\right)\right\}
$$

with $e_{2 n-1} \neq 0$ because of trace $C_{n} \neq 0(>0)$. Now, the quasi-definiteness of \mathscr{M} implies that

$$
0 \neq \operatorname{Det} C_{n}=\mathscr{M}\left(f_{n}^{2}\right) \mathscr{M}\left(g_{n}^{2}\right)-\mathscr{M}\left(f_{n} g_{n}\right)^{2}=e_{2 n-1}^{-1} 2^{2-4 n}\left(1-\left|\Phi_{2 n}(0)\right|^{2}\right)
$$

then $\left|\Phi_{2 n}(0)\right| \neq 1$ and, when \mathscr{M} is positive, $\left|\Phi_{2 n}(0)\right|<1$.
So, once $e_{2 n-1}$ is known, formulas (9) give us $\Phi_{2 n}(0)$ and, because of Proposition 4.3, we have $\left\{\Phi_{n}\right\}_{n \in \mathbb{N}}$. Thus, this sequence $\left\{\Phi_{n}\right\}$ is uniquely determined by the matrix sequence $\left(C_{n}\right)$. Now, Favard's theorem guarantees the existence of a unique Hermitian, quasi-definite (positive) functional (except for a non-zero factor) $\mathscr{L} \in \Sigma^{*}$ such that $\left\{\Phi_{n}\right\}_{n \in \mathbb{N}}$ is the related SMOP. Besides, \mathscr{M} is induced by \mathscr{L} in the sense of Definition 2.1.

5. Application

Let $\mathscr{L} \in L^{*}$ be quasi-definite and $\mathscr{M}:=\mathscr{M}_{\mathscr{S}}$ its induced functional. If we define $\widetilde{\mathscr{L}} \in L^{*}$ by: $\tilde{\mathscr{L}}=\left(\frac{1}{2}\left(z+z^{-1}\right)-a\right) \mathscr{L}$ with $a \in \mathbb{R}$, let $\tilde{\mathscr{M}}:=\widetilde{\mathscr{M}}_{\tilde{\mathscr{L}}} \in \Sigma^{*}$ be given by

$$
\tilde{\mathscr{M}}[(P, Q)]=\widetilde{\mathscr{L}}\left[P+\sqrt{1-x^{2}} Q\right]=\mathscr{L}\left[(x-a)\left(P+\sqrt{1-x^{2}} Q\right)\right]=\mathscr{M}[(x-a)(P, Q)]
$$

$\forall(P, Q) \in \Sigma$. So, $\tilde{\mathscr{M}}=(x-a) \mathscr{M}$ is the associated functional of $\tilde{\mathscr{L}}$, with the quasi-definiteness conditions given in Theorem 4.1.

Assume that $\widetilde{\mathscr{M}}$ is quasi-definite, and let $\left(\boldsymbol{F}_{n}\right)$ the sequence of semi-orthogonal functions related to $\tilde{\mathscr{M}}, \boldsymbol{F}_{n}=\left(F_{n}, G_{n}\right)^{\mathrm{T}}, n \geqslant 1$. Then, we have

$$
\begin{aligned}
& \tilde{\mathscr{M}}\left(x^{k} \boldsymbol{F}_{n}(x)\right)=\mathscr{M}\left(x^{k}(x-a) \boldsymbol{F}_{n}(x)\right)=0 \quad(0 \leqslant k \leqslant n-1), \\
& \tilde{\mathscr{M}}\left(x^{k} \sqrt{1-x^{2}} \boldsymbol{F}_{n}(x)\right)=\mathscr{M}\left(x^{k} \sqrt{1-x^{2}}(x-a) \boldsymbol{F}_{n}(x)\right)=0 \quad(0 \leqslant k \leqslant n-2)
\end{aligned}
$$

from here $(x-a) F_{n},(x-a) G_{n} \in \Sigma_{n+1}$ are orthogonal to Σ_{n} with respect to $\langle\cdot, \cdot\rangle_{\mu}$. Thus, there exist unique matrices $A_{n}, B_{n} \in \mathbb{R}^{(2,2)}$ such that

$$
(x-a) \boldsymbol{F}_{n}=A_{n} \boldsymbol{f}_{n+1}+B_{n} \boldsymbol{f}_{n} .
$$

By comparing the coefficients of x^{n+1} and $\sqrt{1-x^{2}} x^{n}$ we obtain that $A_{n}=I$. So, if we assume that \mathscr{M} is quasi-definite, there exists a unique matrix $B_{n} \in \mathbb{R}^{(2,2)}$ such that

$$
\begin{equation*}
(x-a) \boldsymbol{F}_{n}=\boldsymbol{f}_{n+1}+B_{n} \boldsymbol{f}_{n} . \tag{11}
\end{equation*}
$$

When $|a| \neq 1$, notice that $f_{n}(a)$ has two determinations for $\alpha=a+\sqrt{a^{2}-1}$ and $\alpha^{-1}=a-\sqrt{a^{2}-1}$, that we denote by $f_{n}{ }^{+}(a)$ and $f_{n}^{-}(a)$, respectively. Then formula (11) becomes

$$
0=\left[\boldsymbol{f}_{n+1}^{+}(a), \boldsymbol{f}_{n+1}^{-}(a)\right]+B_{n}\left[\boldsymbol{f}_{n}^{+}(a), \boldsymbol{f}_{n}^{-}(a)\right]
$$

Thus, the quasi-definiteness of $\left[\boldsymbol{f}_{n+1}^{+}(a), \boldsymbol{f}_{n+1}^{-}(a)\right],(n \geqslant 1)$ implies the existence of $\boldsymbol{F}_{n}(n \geqslant 1)$ verifiying (11) and, moreover, the quasi-definiteness of $\widetilde{\mathscr{M}}$.

On the other hand,

$$
\begin{aligned}
\operatorname{det}\left[f_{n}^{+}(a), f_{n}^{-}(a)\right] & =\frac{1}{\mathrm{i} 2^{2 n}}\left|\begin{array}{ll}
\alpha \Phi_{2 n-1}(\alpha)+\Phi_{2 n-1}^{*}(\alpha) & \alpha^{-1} \Phi_{2 n-1}\left(\alpha^{-1}\right)+\Phi_{2 n-1}^{*}\left(\alpha^{-1}\right) \\
\alpha \Phi_{2 n-1}(\alpha)-\Phi_{2 n-1}^{*}(\alpha) & \alpha^{-1} \Phi_{2 n-1}\left(\alpha^{-1}\right)-\Phi_{2 n-1}^{*}\left(\alpha^{-1}\right)
\end{array}\right| \\
& =\frac{1}{\mathrm{i} 2^{2 n-2}}\left|\begin{array}{ll}
\Phi_{2 n-1}^{*}(\alpha) & \Phi_{2 n-1}^{*}\left(\alpha^{-1}\right) \\
\alpha \Phi_{2 n-1}(\alpha) & \alpha^{-1} \Phi_{2 n-1}\left(\alpha^{-1}\right)
\end{array}\right| \neq 0 .
\end{aligned}
$$

If we claim that trace $\tilde{\mathscr{M}}\left(\boldsymbol{F}_{n} \cdot \boldsymbol{F}_{\tilde{n}}^{T}\right) \neq 0$, then the same relation for the even terms is obtained. That is, according to Theorem 4.4, $\tilde{\mathscr{L}}$ is quasi-definite when

$$
\begin{equation*}
D_{n}(\alpha)=\Phi_{n}^{*}\left(\alpha^{-1}\right) \alpha \Phi_{n}(\alpha)-\Phi_{n}^{*}(\alpha) \alpha^{-1} \Phi_{n}\left(\alpha^{-1}\right) \neq 0 \tag{12}
\end{equation*}
$$

$\forall n \geqslant 1$ and $\alpha \neq \pm 1$. This requirement is the same given in [5] for the quasi-definiteness of $\tilde{\mathscr{L}}$ in the particular case $\tilde{\mathscr{L}}=\operatorname{Re}(z-\alpha) \mathscr{L}$.

By using formulas (8) and (11), we can obtain the relationship:

$$
\left(z^{2}-2 a z+1\right) \widetilde{\Phi}_{n}(z)=\Phi_{n+2}(z)+r_{n} z \Phi_{n}(z)+s_{n} \Phi_{n}^{*}(z),
$$

where $\left(\widetilde{\Phi}_{n}\right)$ is the SMOP associated with $\widetilde{\mathscr{L}}$. So, we derive the determinantal formula:

$$
\left(z^{2}-2 a z+1\right) \widetilde{\Phi}_{n}(z)=D_{n}(\alpha)^{-1}\left|\begin{array}{lll}
\Phi_{n+2}(z) & z \Phi_{n}(z) & \Phi_{n}^{*}(z) \\
\Phi_{n+2}(\alpha) & \alpha \Phi_{n}(\alpha) & \Phi_{n}^{*}(\alpha) \\
\Phi_{n+2}\left(\alpha^{-1}\right) & \alpha^{-1} \Phi_{n}\left(\alpha^{-1}\right) & \Phi_{n}^{*}\left(\alpha^{-1}\right)
\end{array}\right|
$$

which gives $\left(\widetilde{\Phi}_{n}\right)$ in terms of $\left(\Phi_{n}\right)$, constrained to the condition (12).

References

[1] M.J. Cantero, Polinomios ortogonales sobre la circunferencia unidad. Modificaciones de los parámetros de Schur, Doctoral Dissertation, Universidad de Zaragoza, 1997.
[2] G. Freud, Orthogonal Polynomials, Akadémiai Kiadó, Budapest and Pergamon Press, Oxford, 1971, 1985.
[3] Y.L. Geronimus, Orthogonal Polynomials, Consultants Bureau, New York, 1961.
[4] Y.L. Geronimus, Polynomials orthogonal on a circle and their applications, Transl. Amer. Math. Soc. 3 Serie 1 (1962) 1-78.
[5] M.C. Suarez, Polinomios ortogonales relativos a modificaciones de funcionales regulares y hermitianos, Doctoral Dissertation, Universidad de Vigo, 1983.
[6] G. Szegö, Orthogonal Polynomials, 4th ed., AMS Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.

[^0]: * Corresponding author. E-mail: alfaro@posta.unizar.es.
 ${ }^{\text {' }}$ This research was supported by DGES PB96-0120-C03-02.
 ${ }^{2}$ This research was supported by UZ97-CIE-10 (Universidad de Zaragoza).

