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In this paper, we extend the probabilistic method for homogenization of semi-
linear parabolic PDEs, developed by Buckdahn, Hu, and Peng to the case of elliptic
PDEs. First, we give a stability result for BSDEs with random terminal time which
are related to elliptic PDEs as shown in Peng (Stochastics Stochastics Rep. 37 (1991),
61�74). In the one dimensional case, we also partially relax the monotonicity
assumption on the coefficient. Then, we use these stability results for BSDEs with
random terminal time to study homogenization of systems of semilinear elliptic PDEs.
� 1998 Academic Press

1. INTRODUCTION

In [3], Buckdahn, Hu, and Peng study some homogenization properties
of semilinear parabolic PDEs by a probabilistic method based upon the
nonlinear Feynman�Kac formula developed by Pardoux and Peng in [8].
The key point, in this approach, is to obtain a powerful stability result for
backward stochastic differential equations (BSDEs) with fixed terminal
time, say T. The proof of the result mentioned above depends heavily on
the idea of subdividing the time interval [0, T] into a finite number of
small time intervals.

On the other hand, Peng [9], and recently Darling and Pardoux [4],
have shown that semilinear elliptic PDEs are related to BSDEs with
random terminal time.
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The aim of this paper is to obtain stability results for BSDEs with random
terminal time in order to study homogenization of systems of semilinear
elliptic PDEs. However, the unboundedness of the terminal time does not
allow us to use the same method as in [3]. This is why our proof is based
upon an approximation procedure.

The paper is organized as follows. In Section 2, we study the stability of
BSDEs in a general framework. In Section 3, we prove some results for
BSDEs in the one-dimensional case, for which we can partially relax the
monotonicity condition on the coefficient. The last section is devoted to the
application to elliptic PDEs.

2. STABILITY OF BSDES WITH RANDOM TERMINAL TIME

2.1. Preliminaries

Let (0, F, P) be a complete probability space carrying a standard d-dimen-
sional Brownian motion (Wt)t # R+

, and let (Ft) be the filtration generated
by W. We make the usual P-augmentation to Ft so that Ft contains all
P-null sets. Then the filtration (Ft) satisfies the usual hypothesis.

Let { be an (Ft)-stopping time and let : be some real number.
M2, :(0, {; E) denotes the Hilbert space consisting of all progressively
measurable processes X, with values in the Euclidean space E such that:

&X&2
: :=E _|

{

O
e:s &Xs &2 ds&<�.

Suppose that { is a finite stopping time and let ! be an F{ -adapted
random variable and f : 0_R+_Rk_Rk_d � Rk such that f ( } , y, z) is a
progressively measurable process for each ( y, z) # Rk_Rk_d. Consider the
BSDE with random terminal time

&dY(t)=1t�{( f (t, Y(t), Z(t)) dt&Z(t) dWt), Y({)=!,

or equivalently,

Y(t 7 {)=!+|
{

t 7 {
f (s, Y(s), Z(s)) ds&|

{

t 7 {
Z(s) dWs . (1)

BSDE (1) was first introduced by Peng in [9]. We recall the existence
and uniqueness result established by Darling and Pardoux in a more general
context [4].
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Suppose that (!, f ) satisfy the following assumption:

(A1). There exist constants C�0, #�0 and + such that, dP�ds a.e.,

1. f is uniformly Lipschitz; i.e., \( y1 , z1), ( y2 , z2) # Rk_Rk_d,

| f (s, y1 , z1)&f (s, y2 , z2)|�C | y1& y2 |+# &z1&z2 &;

2. f is monotone in y: \z # Rk_d, \( y, y$) # Rd,

( y&y$, f (s, y, z)&f (s, y$, z)) �&+ | y&y$|2 ;

3. _\ # R, such that \>#2&2+, and

E[e\{ |!|2]�C; E _|
{

0
e\s | f (s, 0, 0)|2 ds&�C.

Set *=(#2�2)&+.

Lemma 2.1. If (A1) holds, then the BSDE (1) has a unique solution (Y, Z)
in the Hilbert space M2, 2*(0, {; Rk_Rk_d ). The solution belongs actually to
M2, \(0, {; Rk_Rk_d ) and satisfies

E[ sup
0�s�{

e\s |Y(s)|2]<�,

and (M(t))t�0 is a uniformly integrable martingale, where

M(t)=|
t 7 {

0
e\sY(s) .Z(s) dWs .

We end this subsection by a proposition based upon the approximation
method introduced in [4].

First we fix some notations.
Let (Y� n , Z� n) be the unique solution in M2(0, n; Rk_Rk_d ) of the classical

(the terminal time is deterministic) BSDE on [0, n] (see [5] for a survey)

Y� n(t)=E(e*{! | Fn)+|
n 7 {

t 7 {
[e*sf (s, e&*sY� n(s), e&*sZ� n(s))&*Y� n(s)] ds

&|
n

t
Z� n(s) dWs .

Remark that we have

Y� n(t 7 {)=Y� n(t) and Z� n(t)=0 on [t>{].
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Indeed,

Y� n(t 7 {)=E(e*{! | Fn 7{)+|
n 7 {

t 7 {
[e*sf (s, e&*sY� n(s), e&*sZ� n(s))&*Y� n(s)] ds

&|
n

t 7 {
Z� n(s) dWs ,

and then

Y� n(n 7 {)=E(e*{! | Fn 7 {)&|
n

n 7{
Z� n(s) dWs .

It follows that �n
n7{ Z� n(s) dWs belongs to Fn 7 { , and thus 1[n�s>{] Z� n(s)=0

which gives the result.
Since e*{! belongs to L2(F{) there exists a process (') in M2(0, {; Rk_d )

such that

e*{!=E[e*{!]+|
{

0
'(s) dWs .

We define, for each t>n,

Y� n(t)=E(e*{! | Ft)=`(t) and Z� n(t)='(t),

and finally set

Yn(t)=e&*(t 7 {)Y� n(t), Zn(t)=e&*(t 7 {)Z� n(t).

Then we have the following result:

Proposition 2.2. Let (A1) hold and fix $ such that \>$>2*. Then
there exists a constant K which depends only on C, #, +, and \, such that,
\t # R+ ,

E _e$(t 7 {) | Yn
t

(t 7 {)|2+|
{

0
e$s( | Yn

t
(s)| 2+& Zn

t
(s)&2) ds&�Ke($&\)n,

where

Yn
t

(t)=Y(t)&Yn(t) and Zn
t

(t)=Z(t)&Zn(t).
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Proof. First we remark that, according to Lemma 4.1 of [4], (Yn , Zn)
belongs to the space M2, \(0, {; Rk_Rk_d ) and solves the BSDE

Yn(t7 {)=!+|
{

t 7 {
fn(s, Yn(s), Zn(s)) ds&|

{

t7 {
Zn(s) dWs ,

where fn(s, y, z)=1s�n f (s, y, z)+1s>n*y.
Using Itô's formula to calculate E[e$(t7 {) | Yn

t
(t 7 {)|2] and noting that

the expectation of the stochastic integral �{
t 7{ e $s Yn

t
(s) . Zn

t
(s) dWs

vanishes in view of Lemma 2.1, we get

E _e$(t 7 {) | Yn
t

(t 7 {)|2+|
{

t 7 {
e $s & Zn

t
(s)&2 ds&

=E _|
{

t 7 {
e $s(&$ | Yn

t
(s)|2+2 Yn

t
(s) .[ f (s, Y(s), Z(s))

&fn(s, Yn(s), Zn(s))]) ds& .

Writing now

f (s, y, z)&fn(s, y$, z$)=f (s, y, z)&f (s, y$, z)+f (s, y$, z)&f (s, y$, z$)

+f (s, y$, z$)&fn(s, y$, z$),

and using the fact that f is Lipschitz and monotone, we obtain

E _e$(t 7{) | Yn
t

(t 7 {)|2+|
{

t 7 {
e $s & Zn

t
(s)&2 ds&

�E _|
{

t 7 {
e $s((&$&2+) | Yn

t
(s)|2+2# | Yn

t
(s)| } & Zn

t
(s)&) ds&

+E _|
{

(t 6 n) 7{
2e$s | Yn

t
(s)| } | f (s, Yn(s), Zn(s))&*Yn(s)| ds& .

Since $>#2&2+, there exist positive numbers : and ; such that 1&:>0
and, moreover, &=$&(#2�:)+2+&;>0. Thus, from 2ab�(a2�}2)+}2b2,
we have

E _e$(t 7{) |Yn
t

(t 7{)|2+(1&:) |
{

t 7{
e $s &Zn

t
(s)&2 ds+& |

{

t 7{
e $s |Yn

t
(s)|2 ds&

�
3
;

E _|
{

n 7 {
e$s( | f (s, 0, 0)| 2+(C+|*| )2 |Yn(s)| 2+#2 &Zn(s)&2) ds& .
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Since E[1{�n �{
n 7{ } } } ]=0, we obtain

E _|
{

n 7 {
e$s | f (s, 0, 0)|2 ds&�e($&\)nE _|

{

n 7 {
e\s | f (s, 0, 0)|2 ds& ,

and the same is true for the other two terms.
Now coming back to the definition of Y� n and Z� n , we get, setting the

constant K$ equal to (3�;) max(1, (C+|*| )2, #2),

E _e$(t 7{) | Yn
t

(t7{)|2+(1&:) |
{

t 7{
e $s &Zn

t
(s)&2 ds+& |

{

t 7{
e $s | Yn

t
(s)|2 ds&

�K$e($&\)nE _|
{

n 7{
e\s( | f (s, 0, 0)| 2+e&2*s( |`(s)|2+&'(s)2)) ds&

�K$e($&\)n \E _|
{

n7 {
e \s | f (s, 0, 0)|2 ds&+&`&2

\&2*+&'&2
\&2*+ .

In view of Lemma 4.1 of [4], we have moreover

&`&2
\&2*+&'&2

\&2*�\1+
1

\&2*+ E[e\{ |!| 2].

Finally, from the integrability assumption on (!, f ), we obtain

E _e$(t 7 {) | Yn
t

(t 7 {)|2+|
{

t 7 {
e$s(& Zn

t
(s)&2+| Yn

t
(s)|2) ds&�Ke($&\)n,

where K=K$C(2+1�(\&2*))�min(1&:, &), which is the desired result. K

2.2. Stability of BSDEs

In this subsection, we prove our main result concerning the stability of
BSDEs with random terminal time. As was shown in [3] for standard
BSDEs, it is possible to obtain a stability property in L2 even if the coef-
ficients do not converge themselves strongly in L2. We first recall this
result.

Consider the BSDEs depending on the parameter (=�0)

Y =(t)=!=+V =
T&V =

t+|
T

t
f =(s, Y =(s), Z=(s)) ds&|

T

t
Z=(s) dWs ,

where f = : 0_[0, T]_Rk_Rk_d � Rk is such that f =( } , y, z) is progressively
measurable for each ( y, z) and != # L2(0, FT , P; Rk). Assume that:
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(A2). There exists a constant C�0, such that \=�0, dP�ds a.e.,

1. \( y1 , z1), ( y2 , z2), | f =(s, y1 , z1)&f =(s, y2 , z2)|�C( | y1&y2 |+
&z1&z2 &);

2. (V =
} ) is a continuous progressively measurable process with

values in Rk and

E _|
T

0
| f =(s, 0, 0)| 2 ds&+ sup

0�t�T
E[ |V =

t |2]�C.

(A3). \t # [0, T], we have

1. E[|�T
t ( f =(s, Y 0(s), Z0(s))&f 0(s, Y 0(s), Z0(s))) ds|2] � 0 as = � 0;

2. \t # [0, T], E[ |V =
t&V 0

t | 2] � 0 as = � 0 and E[|!=&!0 |2] � 0
as = � 0.

Lemma 2.3. Let (A2) and (A3) hold. Then, for each t in [0, T] we have

E _ |Y =(t)&Y 0(t)| 2+|
T

0
&Z=(s)&Z0(s)&2 ds&� 0, as = goes to 0.

Now we can state our main result of the section. Let ( f =) =�0 be a family
of functions defined on 0_R+_Rk_Rk_d with values in Rk such that
f =( } , y, z) is a progressively measurable process for each ( y, z) and each =.
Let { be a finite (Ft)-stopping time and (!=) a family of F{-adapted random
variables. (V =) is a family of continuous semimartingales.

Suppose that we have

(A4). For each =�0, assumption (A1) holds for (!=, f =) with con-
stant C, #, \ and + not depending on = and

E[e \{ |V =
{ |2]�C, E _|

{

0
e \s |V =

s |2 ds&�C

Consider the solution (Y =, Z=) of the BSDE

Y =(t 7 {)=!=+V =
{&V =

t 7 {+|
{

t 7 {
f =(s, Y =(s), Z=(s)) ds&|

{

t 7 {
Z=(s) dWs .

(2)

In addition, we assume that

(A5). \n # N, \t # [0, n],

1. E[|�n 7{
t 7{ ( f =(s, Y 0(s), Z0(s))&f 0(s, Y 0(s), Z0(s))) ds|2] � 0 as

= � 0;
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2. the random variables e*{!= and e*{V =
{ converge respectively

towards e*{!0 and e*{V 0
{ in L2(0, F{ , P);

3. \t # R+ , V =
t 7 { � V 0

t 7 { in L2 and for each integer n there exists
Cn such that

sup
0�t�n

sup
=�0

E[|V =
t 7 { |2]�Cn .

Theorem 2.4. Let (A4) and (A5) hold, and fix $ such that \>$
>#2&2+. Then, for each t in R+ , we have

lim
= � 0

E _ |Y =(t 7 {)&Y 0(t 7 {)| 2+|
{

0
e$s &Z=(s)&Z0(s)&2 ds&=0.

Proof. We split the proof into two steps.

Step 1. First, suppose that for each =�0, V =#0.
Remark that, in view of assumption (A4), Lemma 2.1 supplies a unique

solution to BSDE (2) in M2, 2*(0, {; Rk_Rk_d ) which belongs in fact to
M2, \(0, {; Rk_Rk_d ).

We set Y =t
(s)=Y =(s)&Y 0(s) and Z=t

(s)=Z=(s)&Z0(s). Thus, we have

Y =t
(t 7 {)=:=+|

{

t 7 {
g=(s, Y =t

(s), Z=t
(s)) ds&|

{

t 7 {
Z=t

(s) dWs ,

where :==!=&!0 and g=(s, y, z)=f =(s, y+Y 0(s), z+Z0(s))&f 0(s, Y 0(s),
Z0(s)).

Since (Y 0, Z0) belongs to M2, \(0, {; Rk_Rk_d ) and f = satisfies assump-
tion (A1) uniformly with respect to =, we deduce that (A1) also hold for
(:=, g=) with the same \, + and # but for another constant C which does not
depend on =.

According to Proposition 2.2, let us introduce (Y =
n , Z=

n) the solution of
the BSDE on [0, n],

Y =
n(t)=E(e*{:= | Fn)+|

n 7 {

t 7 {
[e*sg=(s, e&*sY =

n(s), e&*sZ=
n(s))&*Y =

n(s)] ds

&|
n

t
Z =

n(s) dWs ,

and, for t>n, we set

Y =
n(t)=E(e*{:= | Ft ), Z=

n(t)= '=t
(t),

462 BRIAND AND HU



File: DISTL2 322909 . By:CV . Date:18:05:98 . Time:10:58 LOP8M. V8.B. Page 01:01
Codes: 2883 Signs: 888 . Length: 45 pic 0 pts, 190 mm

where ( '=t
) is given by

e*{:==E [e*{:=]+|
{

0
'=t

(s) dWs .

Now, we define, for each t in R+ ,

Y =
n

t
(t)=e&*(t 7{)Y =

n(t) and Z=
n

t
(t)=e&*(t 7 {) Z=

n(t).

Hence, by Proposition 2.2, there exists a constant K, independent of =,
such that for each = and each t,

E _e$(t 7{) |Y =t
(t 7 {)& Y =

n
t

(t 7 {)|2+|
{

0
e$s &Z=t

(s)& Z=
n

t
(s)&2 ds&�Ke($&\)n.

Thus, we get

E[e$(t 7 {) |Y =t
(t 7 {)| 2]�2E[e$(t 7 {) |Y =

n
t

(t 7 {)|2]+2Ke($&\)n. (3)

Now, recall that as we see in the previous subsection Y =
n

t
(t 7 {)= Y =

n
t

( t).
Moreover, ( Y =

n
t

, Z=
n

t
) solves the BSDE on [0, n],

Y =
n

t
(t)=e&*(n 7 {) E(e*{:= | Fn)+|

n 7{

t 7 {
g=(s, Y =

n
t

(s), Z=
n

t
(s)) ds&|

n

t
Z=

n
t

(s) dWs .

But, in view of (A5), we have

E _}|
n 7{

t 7 {
g=(s, 0, 0) ds }

2

&� 0 as = � 0,

and

e&*(n 7 {)E(e*{:= | Fn) � 0 in L2, as = � 0.

So, Lemma 2.3 implies that, for all integers n,

E _ |Y =
n

t
(t)|2+|

n

0
&Z=

n
t

(s)&2 ds&� 0, as = � 0. (4)

For n larger than t, the inequality (3) yields

E[|Y =t
(t 7 {)| 2]�2e2 |$| t E[ |Y =

n
t

(t)| 2]+2Ke |$| te($&\)n.
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Since $<\, the second term of the right hand side can be done arbitrary
small uniformly with respect to = by choosing n large enough. Thus, from
Eq. (4), we derive

E[|Y =t
(t 7 {)| 2] � 0 as = � 0. (5)

Moreover, we have

E _|
{

0
e$s &Z=t

(s)&2 ds&�2Ke($&\)n+2E _|
{

0
e$s &Z=

n
t

(s)&2 ds& ,

and

E _|
{

0
e$s &Z=

n
t

(s)&2 ds&
�e |$| nE _|

n 7 {

0
&Z=

n
t

(s)&2 ds&+E _|
{

n 7 {
e$s &Z=

n
t

(s)&2 ds& .

It is worth noting that, for n fixed, Lemma 2.3 shows that, if = � 0, then

E _|
n 7 {

0
&Z =

n
t

(s)&2 ds&� 0.

In addition, for n<t<{, we have Z=
n

t
(t)=e&*t '=t

(t) and then

E _|
{

n 7 {
e$s &Z=

n
t

(s)&2 ds&=E _1{>n |
{

0
e$se&2*s & '=t

(s)&2 ds&
�E _1{>ne($&\)n |

{

n
e(\&2*)s & '=t

(s)&2 ds&
�e($&\)n & '=t

&2
\&2* .

Moreover, by Lemma 4.1 in [4], we have, since the random variable e\{�2:=

is in L2,

& '=t
&2

\&2*�E[e\{ |:= |2].

Finally, we get, using the assumption (A4),

E _|
{

0
e$s &Z=t

(s)&2 ds&�K$e($&\)n+2e |$| nE _|
n7 {

0
&Z=

n
t

(s)&2 ds& .

464 BRIAND AND HU



File: DISTL2 322911 . By:CV . Date:18:05:98 . Time:10:58 LOP8M. V8.B. Page 01:01
Codes: 3078 Signs: 1325 . Length: 45 pic 0 pts, 190 mm

By choosing n large enough, since \>$, the first term of the right hand
side of the previous inequality can be done arbitrary small, uniformly with
respect to =. Hence, taking into account Eq. (4), we deduce that

E _|
{

0
e$s &Z=t

(s)&2 ds&� 0 as = � 0.

Coming back to the definition of Y =t
and Z=t

, we get, from Eq. (5),

E _ |Y =(t 7 {)&Y 0(t 7 {)| 2+|
{

0
e$s &Z=(s)&Z0(s)&2 ds&� 0 as = � 0,

which complete the proof of Step 1.

Step 2. First, we notice that (Y =, Z=) solves the BSDE (2) if and only
if (Y =@, Z=@) solves the following BSDE

{&dY =@(t)=1t�{(g=(t, Y =@(t), Z=@(t)) dt&Z=@(t) dWt),
Y =@({)=!=+V =

{ ,
(6)

where we have set, for t in R+ , Y =@(t)=Y =(t)+V =
t 7 { , Z=@(t)=Z=(t) and, for

each (s, y, z) in R+_Rk_Rk_d, g=(s, y, z)=f =(s, y&V =
s , z).

Since (V =) is bounded in M2, \(0, {; Rk_Rk_d ) and E[e\{ |V =
{ | 2]�C,

Lemma 2.1 provides a unique solution (Y =@ , Z=@) to (6) in M2, 2*(0, {;
Rk_Rk_d ) which belongs to M2, \(0, {; Rk_Rk_d ).

It follows that the BSDE (2) has a unique solution (Y =, Z=) in
M2, 2*(0, {; Rk_Rk_d ) which belongs to M2, \(0, {; Rk_Rk_d ).

Moreover, we can apply Step 1 to (Y =@, Z=@). Recall that

g=(s, y, z)&g0(s, y, z)=f =(s, y&V =
s , z)&f 0(s, y&V 0

s , z),

and, since f = is Lipschitz, from Ho� lder's inequality, we get

E _}|
n7 {

t 7 {
( g=(s, Y0@(s), Z0@(s))&g0(s, Y0@(s), Z0@(s))) ds }

2

&
�2E _}|

n 7 {

t 7 {
( f =(s, Y 0(s), Z0(s))&f 0(s, Y 0(s), Z0(s))) ds }

2

&
+2C2nE _|

n

0
|V 0

s 7 {&V =
s 7 { |2 ds& .
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By assumption (A5), the first term tends to 0. But, on the other hand, in
view of assumption (A5).3, Lebesgue's dominated convergence theorem
ensures that

E _|
n

0
|V 0

s 7 {&V =
s 7 { |2 ds&� 0, as = � 0.

Thus, from Step 1, we obtain, for each t in R+ ,

E[|Y =@(t 7 {)&Y 0@(t 7 {)| 2]+E _|
{

0
e$s &Z=@(s)&Z0@(s)&2 ds&� 0.

Since, for each t, V =
t 7 { tends to V 0

t 7 { in L2, we finally obtain, as Z=@=Z=,

lim
= � 0 \E[ |Y =(t 7 {)&Y 0(t 7 {)|2]+E _|

{

0
e$s &Z=(s)&Z0(s)&2 ds&+=0,

which is the desired result.
The proof is complete. K

We end this section with another stability result.
Let ({=) be a family of (Ft)-stopping times and assume that

(A4'). For each =, assumption (A1) holds for (!=, f =, {=) uniformly
with respect to = and

E[e \{=
|V =

{= |2]&�C, E _|
{ =

0
e \s |V =

s |2 ds&�C.

(A5'). \n # N, \t # [0, n],

1. E[|�n 7{=

t 7{= f =(s, 0, 0) ds|2] � 0 as = � 0;

2. the random variables e*{=!= and e*{=V =
{ = converge to 0 in L2 ;

3. \t # R+ , V =
t 7 {= � 0 in L2 and for each integer n there exists Cn

such that

sup
0�t�n

sup
=�0

E[|V =
t 7 { = |2]�Cn .

Consider (Y =, Z=), the solution of the BSDE

{&dY =(t)=1t�{= ( f =(t, Y =(t), Z=(t)) dt+dV =
t&Z=(t) dWt),

Y =({=)=!=.

We can state
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Proposition 2.5. Under the assumptions (A4') and (A5'), for each t in R+ ,
we have

E _ |Y =(t 7 {=)|2+|
{=

0
e$s &Z=(s)&2 ds&� 0 as = � 0,

where $ is some fixed number such that \>$>2*.

Proof. We adopt the same strategy as in the proof of the previous
result. So we just outline the proof.

Suppose, first, that V =#0; fix t and pick n larger than t. From Proposi-
tion 2.2, there exists a constant K, which does not depend on = since all
assumptions are fulfilled uniformly with respect to =, such that

E _e$(t 7 { =) |Y =(t 7 {=)&Y =
n(t 7 {=)|2+|

{ =

0
e$s &Z=(s)&Z=

n(s)&2 ds&
�Ke($&\)n.

But, n being fixed, Lemma 2.3 gives

E _ |Y =
n(t 7 {=)|2+|

n 7 { =

0
&Z=

n(s)&2 ds&� 0 as = � 0,

from which we easily deduce the result.
For the general case, we do the change of variables Y =@(t)=Y =(t)+V =

t 7 {=

and Z=@(t)=Z=(t). We can apply the previous step to (Y =@, Z=@). Since,
E[|V =

t 7 { = |2] goes to 0, we easily obtain the result. K

5. ONE-DIMENSIONAL CASE

As we have seen in the previous section, to solve BSDEs with random
terminal time requires a ``structural'' condition on the coefficient f which
links the constant of monotonicity, +, and the Lipschitz constant of f in z,
# that is ``\>#2&2+.'' For applications we have in mind, homogenization
of PDEs, this condition is not natural. The aim of this section is to solve
BSDEs with random terminal time in dimension 1 without this assumption
and to obtain also some stability results.

3.1. Solutions of BSDEs

Let { be an (Ft)-stopping time and ! an F{-adapted random variable. As
in the preceding section, we work with a function f defined on 0_R+_
R_Rd which takes values in R and such that f ( } , y, z) is a progressively
measurable process for each ( y, z) in R_Rd.
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We want to construct an adapted process (Y(t), Z(t))t # R+
, which solves

the BSDE

{&dY(t)=1t�{( f (t, Y(t), Z(t)) dt&Z(t) dWt),
Y({)=! on [{<�].

(7)

We begin with a lemma. Assume that:

(A6). There exist two constants K�0 and +>0 such that, dP�dt
a.e.,

1. f is uniformly Lipschitz, i.e., \( y1 , z1), ( y2 , z2) in R_Rd,

| f (t, y1 , z1)&f (t, y2 , z2)|�K( | y1&y2 |+|z1&z2 | );

2. f is monotone in y, i.e., \y1 , y2 # R, \z # Rd,

( y1&y2) } ( f (t, y1 , z)&f (t, y2 , z))�&+( y1& y2)2 ;

3. | f (t, 0, 0)|�K.

Lemma 3.1. Let assumption (A6) hold. Then, the BSDE (7) with !=0
has a solution (Y, Z) which belongs to M2, &2+(0, {;R_Rd ) and such that Y
is a bounded process. This solution is unique in the class of processes (Y, Z)
such that Y is continuous and bounded and Z belongs to M2

loc(0, {; Rd ).

Proof. First we prove uniqueness. Suppose that (Y1, Z1) and (Y2, Z2)
are both solutions of the BSDE (7) such that (Y1, Z1) (respectively (Y2, Z2))
satisfies that Y1 (respectively Y2) is continuous and bounded and that Z1

(respectively Z2) belongs to M2
loc(0, {; Rd ). Set, as usual, Y� =Y1&Y2 and

Z� =Z1&Z2. Since both Y1 and Y2 are continuous and bounded, we can
assert that Y� is continuous and for some M>0, we have

sup
t # R+

|Y� (t)|�M, a.s.

We introduce a notation. For (z, z$) in Rd, define, for k=1, ..., d+1,

(z, z$)k=(z$1 , ..., z$k&1 , zk , ..., zd ),

and remark that (z, z$)1=z, (z, z$)d+1=z$.
We define a new process (:, ;), with values in R_Rd, by setting

:(s)={
f (s, Y1(s), Z1(s))&f (s, Y2(s), Z1(s))

Y1(s)&Y 2(s)
, if Y 1(s)&Y2(s){0,

&+, otherwise,
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and, for i=1, ..., d,

;i (s)={
f (s, Y2(s), U i (s))&f (s, Y2(s), Ui+1(s))

Z1
i (s)&Z2

i (s)
, if Z1

i (s)&Z2
i (s){0,

0, otherwise,

where, for i=1, ..., d, Ui (s)=(Z1(s), Z2(s)) i .
Note that, since f is Lipschitz, : and ; are bounded processes. Moreover,

we have, in view of Eq. (7),

&dY� (t)=1t�{([ f (t, Y 1(t), Z1(t))&f (t, Y 2(t), Z2(t))] dt&Z� (t) dWt),

which can be rewritten in the following way,

&dY� (t)=1t�{([:(t) Y� (t)+;(t) } Z� (t)] dt&Z� (t) dWt).

Fix % # R+ and set, for t�%,

R(t)=exp \|
t

% 7 {
:(u) du+ .

Pick n # N such that n�%; Itô's formula yields

R(n7 {) Y� (n 7 {)&R(% 7 {) Y� (% 7 {)=|
n 7 {

% 7{
R(s) Z� (s)(dWs&;(s) ds).

Since on the set [{�n] we have Y� (n7 {)=Y� ({)=0 P a.s., we deduce
from the previous inequality that

Y� (% 7 {)=R(n 7 {) Y� (n 7 {) 1{>n&|
n 7 {

% 7 {
R(s) Z� (s) dW� s , (8)

where we have set W� t=Wt&� t
0 ;(s) ds.

Let Qn be the probability measure on (0, Fn) whose density with respect
to P |Fn

is

exp \|
n

0
;(s) dWs&

1
2 |

n

0
|;|2(s) ds+ .

Since ; is a bounded process, the probability measures Qn and P |Fn
are

mutually absolutely continuous and (W� (t))0�t�n is a Brownian motion
under Qn .
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Taking the conditional expectation with respect to F% 7 { of the
equation (8), we obtain

|Y� (% 7 {)|�EQn (R(n) |Y� (n)| 1{>n | F% 7 {), Qn a.s. (9)

Since f satisfies the assumption (A6).2, we have :(t)�&+ dP�dt a.e.
and then we get R(t)�e&+(t&%)P a.s. Moreover the variable R(n) |Y� (n)| 1{>n

is Fn -measurable and, since the processes Y1 and Y2 are bounded, we have

R(n) |Y� (n)| 1{>n�2Me&+(n&%) P |Fn
a.s.

and, as QntP |Fn
, we get

R(n) |Y� (n)| 1{>n�2Me&+(n&%) Qn a.s.

Coming back to inequality (9), we obtain

|Y� (% 7 {)|�2Me&+(n&%) Qn a.s.

Using once again the fact that Qn and the restriction of P to Fn are
equivalent, we deduce that

P a.s. \n # N s.t. n�%, |Y� (% 7 {)|�2Me&+(n&%).

Sending n to infinity, we deduce from the previous estimate

Y� (% 7 {)=0 P a.s.

and then, by continuity, Y1=Y 2.
Moreover, for t # R+ , Itô's formula yields

E[ |Y� (t 7 {)|2]+2E _|
t 7 {

0
Y� (s)( f (s, Y1(s), Z1(s))&f (s, Y2(s), Z2(s))) ds&

=E[|Y� (0)|2]+E _|
t 7 {

0
|Z� (s)|2 ds& ,

which gives

E _|
t 7 {

0
|Z� (s)|2 ds&=0.

Now, we turn to existence. Denote by (Yn , Zn) the unique solution of the
BSDE

Yn(t)=|
n 7{

t 7 {
f ( s, Yn(s), Zn(s)) ds&|

n

t
Zn(s) dWs ,
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and recall that in fact Yn(t)=Yn(t 7 {), Zn(t)=1t�{Zn(t), in other words,

Yn(t 7 {)=|
n7 {

t 7{
f (s, Yn(s), Zn(s)) ds&|

n 7{

t 7{
Zn(s) dWs .

First we give an a priori estimate. Using the same notations as in the
proof of uniqueness, we have

Yn(t 7 {)=|
n 7 {

t 7 {
(:n(s) Yn(s)+;n(s) Zn(s)+f (s, 0, 0)) ds&|

n 7{

t 7 {
Zn(s) dWs ,

where

:n(s)={
f (s, Yn(s), Zn(s))&f (s, 0, Zn(s))

Yn(s)
, if Yn(s){0,

&+, otherwise,

and, for i=1, ..., d,

(;n) i (s)={
f (s, 0, (Zn(s), 0) i )&f (s, 0, (Zn(s), 0) i+1)

(Zn) i (s)
, if (Zn) i (s){0,

0, otherwise.

We define Rn(t)=exp(�t
% 7{ :n(s) ds) and Wn(t)=W(t)&� t

0 ;n(s) ds. Thus,
applying Itô's formula, we obtain

Yn(% 7 {)=Rn(n 7 {) Yn(n 7 {)+|
n 7 {

% 7{
Rn(s) f (s, 0, 0) ds

&|
n 7 {

% 7 {
Rn(s) Zn(s) dWn(s),

and taking into account that Yn(n7 {)=Yn(n)=0, we deduce from the
previous equality that

Yn(% 7 {)=|
n 7 {

% 7 {
Rn(s) f (s, 0, 0) ds&|

n 7 {

% 7{
Rn(s) Zn(s) dWn(s).

We introduce the probability measure Qn on (0, Fn) whose density with
respect to the restriction of P on Fn is given by

exp \|
n

0
;n(s) dW(s)& 1

2 |
n

0
|;n | 2 (s) ds+ .
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From Girsanov's theorem, Qn and P |Fn
are mutually absolutely continuous

and moreover the process (Wn(t))0�t�n is a Brownian motion under Qn .
Hence, we deduce that

|Yn(%7 {)|�EQn \|
n 7 {

% 7 {
| f (s, 0, 0)| Rn(s) ds | F% 7 {+ Qn a.s.

Remark that | f (s, 0, 0)|�K and Rn(s)�e&+(s&%). Thus, we deduce from
the previous inequality that

|Yn(% 7 {)|�Ke+% EQn \|
n7 {

% 7{
e&+s ds } F% 7 {+ Qn a.s.,

and then

|Yn(% 7 {)|�Ke+%EQn \|
n

%
e&+s ds } F% 7 {+ Qn a.s.

From the previous inequality, we easily derive that

\% # [0, n], |Yn(% 7 {)|�
K
+

Qn a.s.

Since Yn is a continuous process and the measures P (in fact its restriction
to Fn) and Qn are equivalent on Fn , we get

P a.s. \n # N, \% # [0, n], |Yn(% 7 {)|�
K
+

. (10)

Now, we study the convergence of the sequence of processes ((Yn , Zn))N

in the Hilbert space M2, &2+(0, {; R_Rd ). We define Yn and Zn on the
whole time axis by setting

Yn(t)=0 and Zn(t)=0, if t>n.

Fix %�n�m and set Y� =Ym&Yn , Z� =Zm&Zn , and f� (s, y, z)=
1s�n f (s, y, z). We get, from Itô's formula, since Y� (m)=0,

Y� (t 7 {)=|
m 7 {

t 7 {
( f (s, Ym(s), Zm(s))&f� (s, Yn(s), Zn(s))) ds

&|
m 7 {

t 7 {
Z� (s) dWs .
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As in the proof of uniqueness, we use the same kind of linearization together
with Girsanov's transformation. So we write

f (s, Ym(s), Zm(s))&f� (s, Yn(s), Zn(s))

=:n, m(s) Y� (s)+;n, m(s) Z� (s)+1s>n f (s, 0, 0),

where

:n, m(s)={
f (s, Ym(s), Zm(s))&f (s, Yn(s), Zm(s))

Ym(s)&Yn(s)
, if Ym(s)&Yn(s){0,

&+, otherwise,

and, for i=1, ..., d,

(;n, m)i (s)

={
f (s, Yn(s), U i (s))&f (s, Yn(s), Ui+1(s))

(Zm)i (s)&(Zn) i (s)
, if (Zm&Zn) i (s){0,

0, otherwise,

where, for i=1, ..., d, Ui (s)=(Zm(s), Zn(s)) i .
We set Rn, m(t)=exp(� t

% 7 { :n, m(s) ds) and Wn, m(t)=Wt&� t
0 ;n, m(s) ds.

We define a new probability measure on (0, Fm), say Qn, m , whose density
with respect to the restriction of P to Fm is

exp \|
m

0
;n, m(s) dWs&

1
2 |

m

0
|;n, m | 2(s) ds+ .

The process (;n, m) being bounded, Qn, m is equivalent to P |Fm
and

(Wn, m(t))0�t�m is a Brownian motion under Qn, m .
We use Itô's formula to compute Rn, m(% 7 {) Y� (% 7 {) and obtain,

noting that Y� (m 7 {)=0,

Y� (% 7 {)=|
m 7 {

n 7 {
Rn, m(s) f (s, 0, 0) ds&|

m 7 {

%7 {
Rn, m(s) dWn, m(s).

As f (s, 0, 0) is bounded by K, we get

|Y� (% 7 {)|�KEQn, m \|
m 7 {

n 7 {
Rn, m(s) ds } F% 7 {+ , Qn, m a.s.
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and, from :n, m(t)�&+, we finally obtain

|Ym(% 7 {)&Yn(% 7 {)|�
K
+

e+% (e&+n&e&+m), Qn, m a.s.

Since Qn, m and P are equivalent, we deduce from the continuity of the
process Y� that

P a.s. \0�%�n�m, |Ym(% 7 {)&Yn(% 7 {)|�
K
+

e+% (e&+n&e&+m).

(11)

Taking into consideration that by construction Yn(% 7 {)=Yn(%), the
previous inequality implies that, for each %�0, the sequence of random
variables (Yn(%))N is a Cauchy sequence in L� and then converges to Y(%),
uniformly with respect to % on compact sets.

Moreover, Y(%)=Y(% 7 {) and letting m go to infinity in (11), it comes
that P a.s.,

\0�%�n, |Y(% 7 {)&Yn(% 7 {)|�
K
+

e&+(n&%). (12)

Now, we show that the sequence (Yn)N is a Cauchy sequence in the
space M2, &2+(0, {; R). Indeed, we have

E _|
{

0
e&2+s |Y� (s)|2 ds&

=E _|
n 7 {

0
e&2+s |Y� (s)|2 ds&+E _|

m 7 {

n7 {
e&2+s |Y� (s)|2 ds& ,

and then, we derive, from the inequality (11) and the a priori estimate (10),
that

E _|
{

0
e&2+s |Y� (s)|2 ds&�E _|

n 7 {

0

K 2

+2 e&2+n ds&+E _|
m 7{

n 7 {

K2

+2 e&2+s ds& .

Finally, we have

E _|
{

0
e&2+s |Ym(s)&Yn(s)| 2 ds&�

K2

+2 e&2+n \n+
1

2++ , (13)

which shows that (Yn)N is a Cauchy sequence in M2, &2+(0, {; R).
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We show that the same is true for the sequence (Zn)N . From Itô's
formula, we get

E _ |Y� (0)|2+|
m 7 {

0
e&2+s |Z� (s)| 2 ds&

=E _|
m 7{

0
e&2+s(2+ |Y� (s)|2+2Y� (s) } [ f (s, Ym(s), Zm(s))

&f (s, Yn(s), Zn(s))]) ds&+E _|
m 7 {

n 7 {
2e&2+sYm(s) f (s, 0, 0) ds& .

Taking into account that f is Lipschitz and satisfies the assumption (A6),
we have the estimate

E _|
m 7 {

0
e&2+s |Z� (s)|2 ds&�E _|

m 7{

0
2Ke&2+s |Y� (s)| |Z� (s)| ds&+

K2

+2 e&2+n .

Using the fact that 2K |Y� (s)| |Z� (s)|�2K2 |Y� (s)| 2+ 1
2 |Z� (s)| 2, we obtain

finally

E _|
m 7 {

0
e&2+s |Z� (s)|2 ds&�4K 2E _|

m 7{

0
e&2+s |Y� (s)|2 ds&+2

K 2

+2 e&2+n,

from which we deduce, using the inequality (13),

E _|
{

0
e&2+s( |Y� (s)|2+|Z� (s)|2) ds&�

K 2

+2 e&2+n _(1+4K 2) \n+
1

2+++2& .

As a byproduct of the previous inequality, the sequence of processes
((Yn , Zn))N is a Cauchy sequence in M2, &2+(0, {; R_Rd ) and thus
converges in this Hilbert space towards a process (Y, Z).

It remains to show that (Y, Z) satisfies the BSDE (7). First, remark that
in view of the a priori estimate (10), we have

\t # R+ , |Y(t 7 {)|�
K
+

.

Secondly, for 0�%�t�n, we have

Yn(% 7 {)&Yn(t 7 {)=|
t7 {

%7 {
f (s, Yn(s), Zn(s)) ds&|

t 7 {

% 7 {
Zn(s) dWs ,
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and, then passing to the limit in L2, we obtain

Y(% 7 {)&Y(t 7 {)=|
t 7 {

% 7 {
f ( s, Y(s), Z(s)) ds&|

t 7{

% 7 {
Z(s) dWs ,

that is

&dY(t)=1t�{( f (t, Y(t), Z(t)) dt&Z(t) dWt).

Moreover, obviously,

|Y(n 7 {)|�|Y(n7 {)&Y2n(n 7 {)|+|Y2n(n 7 {)|,

and we deduce from (12) that

|Y(n 7 {)|�
K
+

e&+n+|Y2n(n 7 {)|.

On the set [{<�], we have, for n large enough (n�{(|)), since
Y2n(n 7 {)=Y2n(2n 7 {)=0,

|Y({)|�
K
+

e&+n,

and thus, sending n to infinity, we get

Y({)=0 on [{<�].

This completes the proof of Lemma 3.1. K

We prove the following estimate:

Proposition 3.2. Let (A6) hold and let !=0. Then there exists a
constant C depending only on K and +, such that for each 0�t�n,

E[|Y(t 7 {)&Yn(t 7 {)| 2]+E _|
t 7 {

0
|Z(s)&Zn(s)| 2 ds&�Ce&2+(n&t).

Proof. The key point in this proof is the inequality (12). Indeed, fix
0�t�n, and, using Itô's formula, we get
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E[|Y(t 7 {)&Yn(t 7 {)| 2]+2E _|
t 7 {

0
(Y(s)&Yn(s))( f (s, Y(s), Z(s))

&f (s, Yn(s), Zn(s))) ds&
=E[|Y(0)&Yn(0)|2]+E _|

t 7 {

0
|Z(s)&Zn(0)|2 ds& ,

from which we derive, using the fact that f is Lipschitz and satisfies (A6).2.,

E _|
t 7 {

0
|Z(s)&Zn(s)| 2 ds&

�E[|Y(t 7 {)&Yn(t 7 {)|2]

+2KE _|
t 7 {

0
|Y(s)&Yn(s)| } |Z(s)&Zn(s)| ds& .

Since 2K |Y(s)&Yn(s)| } |Z(s)&Zn(s)|�2K2 |Y(s)&Yn(s)|2+ 1
2 |Z(s)&

Zn(s)|2, we finally obtain

1
2E _|

t 7{

0
|Z(s)&Zn(s)|2 ds&

�E[|Y(t 7 {)&Yn(t 7 {)|2&+2K2 E _|
t 7 {

0
|Y(s)&Yn(s)| 2 ds& .

Thus, in view of (12),

E _|
t 7 {

0
|Z(s)&Zn(s)| 2 ds&�2

K2

+2 e2+t \1+
K 2

+ + e&2+n.

It remains only to choose C=(K2�+2)(3+2(K2�+)). K

We can state our main result concerning the existence and uniqueness of
solutions of BSDE (7).

Theorem 3.3. Let (A6) hold and in addition suppose that ! belongs to
L�(Fr) and, moreover, dP�dt a.e.,

\z # Rd, | f (t, 0, z)|�K.

Then there exists a solution (Y, Z) to BSDE (7), such that Y is a bounded
and continuous process and Z belongs to M2, &2+(0, {; Rd ). This solution is
unique in the class of processes (Y, Z) such that Y is continuous and uniformly
bounded and Z belongs to M2

loc(0, {; Rd ).
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Proof. Since ! belongs to L�(F{), there exists a process (') in
M2(0, {; Rd ) such that

!=E[!]+|
{

0
'(s) dWs .

It is worth noting that (Y, Z) solves the BSDE (7) if and only if the
process ( y, z), defined by ( y(t), z(t))=(Y(t)&E(! | Ft), Z(t)&'(t)), solves
the BSDE

{&dy(t)=1t�{(g(t, y(t), z(t)) dt&z(t) dWt),
y({)=0 on [{<�],

(14)

where we have set g(t, y, z)= f (t, y+E(! | Ft), z+'(t)). Moreover, we remark
that the function g satisfies | g(t, 0, 0)|�K &!�+K. So from Lemma 3.1, the
BSDE (14) has a unique solution ( y, z) such that y is continuous and bounded
and z belongs to M2

loc(0, {; Rd ). Since (E(! | Ft))t is bounded and continuous
and (') belongs to M2(0, {; Rd ), we easily obtain the result. K

Remark. When the random variable ! has a Malliavin derivative which
is uniformly bounded, the assumption that | f (t, 0, z)|�K can be weaken
to | f (t, 0, 0)|�K.

3.2. Stability Results

In the context of the previous section, BSDEs with random terminal time
in dimension one, we can establish some stability results in the spirit of
Section 2.2.

Assume that

(A7). Assumption (A6) hold for a family of functions ( f =) =�0 , with
constants K and + independent of = and for each =, dP�dt a.e.,

\z # Rd, | f =(t, 0, z)|�K,

(!=) is a family of F{ -adapted random variables such that &!=&�� K.
Introduce (Y =, Z=), the solution of the BSDE depending on =,

{&dY =(t)=1t�{( f =(t, Y =(t), Z=(t)) dt&Z=(t) dWt),
Y =({)=!= on [{<�].

(15)
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Suppose that

(A8). For each integer n, and for each t in [0, n],

E _}|
n 7 {

t 7{
( f =(s, Y 0(s), Z0(s))&f 0(s, Y 0(s), Z0(s))) ds }

2

&� 0 as = � 0,

and != tends to !0 in L2(F{) as = � 0.

Theorem 3.4. If (A7) and (A8) hold, then \t # R, we have

E[|Y =(t 7 {)&Y 0(t 7 {)|2]+E _|
t 7 {

0
|Z=(s)&Z 0(s)|2 ds&� 0 as = � 0.

Proof. We split the proof into two parts.

Step 1. Suppose, first, that for each =, !==0. Fix t�n, and set Y =t
=

Y =&Y 0, Z=t
=Z=&Z0. Then ( Y =t

, Z=t
) solves the BSDE

&d Y =t
(t)=1t�{(g=(s, Y =t

(s), Z=t
(s)) ds& Z=t

(s) dWs ,

with the terminal condition Y =t
({)=0 on [{<�] and where we have set

g=(s, y, z)= f =(s, y+Y 0(s), z+Z0(s))&f 0(s, Y 0(s), Z 0(s)).

Remark that g= is K-Lipschitz and +-monotone in y uniformly with
respect to =. Moreover, since |Y 0(t)|�K�+, we have

| g=(t, 0, 0)|�2K(1+|Y 0(t)| )�2K \1+
K
++ .

For each integer n, let us introduce (Y =
n

t
, Z=

n
t

), the solution on [0, n] of
the BSDE

Y =
n

t
(t)=|

n 7 {

t 7 {
g=(s, Y =

n
t

( s), Z=
n

t
(s)) ds&|

n 7{

t 7 {
Z=

n
t

(s) dWs . (16)

Then, by Proposition 3.2, there exists a constant C which does not
depend on = such that, for n�t,

E[|Y =t
(t 7 {)& Y =

n
t

(t 7 {)| 2]+E _|
t 7 {

0
|Z=t

(s)& Z=
n

t
(s)| 2 ds&�Ce&2+(n&t).
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It follows that

E[|Y =t
(t 7 {)|2]+E _|

t 7 {

0
|Z=t

(s)|2 ds&
�2Ce&2+(n&t)+2E _ |Y =

n
t

(t 7 {)|2+|
t 7 {

0
|Z=

n
t

(s)|2 ds& .

Moreover, from assumption (A8), we have

E _}|
n 7{

t 7 {
g=(s , 0, 0) ds }

2

&� 0 as = � 0.

Since (Y =
n

t
, Z=

n
t

) solves the BSDE (16), Lemma 2.3 shows that \n # N, if =
tends to 0,

E[|Y =
n

t
(t 7 {)|2]+E _|

t 7 {

0
|Z=

n
t

(s)|2 ds&� 0,

from which we deduce the result of Step 1.

Step 2. As in the proof of existence, we do the change of variables y=(t)
=Y =(t)&E(!= | Ft) and z=(t)=Z=(t)&'=(t) where, for each =, the process
('=) is given by

!==E[!=]+|
{

0
'=(s) dWs .

Remark that, setting g=(t, y, z)= f =(t, y+E(!= | Ft), z+'=(t)), ( y=, z=)
solves the BSDE

&dy=(t)=1t�{( g=(t, y=(t), z=(t)) dt&z=(t) dWt),

and satisfies y=({)=0 on the set [{<�].
In order to apply Step 1, it remains to prove that, for = going to 0,

.= :=E _}|
n 7{

t 7{
[ g=(s, y0(s), z0(s))&g0(s, y0(s), z0(s))] ds }

2

&� 0,

for each 0�t�n.
Coming back to the definition of g= and using the fact that f = is Lipschitz,

uniformly with respect to =, we get
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.=�2KE _\|
n 7 {

t 7 {
( |E(!=&!0 | Fs)|+|'=(s)&'0(s)| ) ds+

2

&
+2E _}|

n 7 {

t 7 {
[ f =(s, Y 0(s), Z0(s))&f 0(s, Y 0(s), Z0(s))] ds }

2

& .

By assumption (A8), the second term tends to 0 as = goes to 0, and using
Ho� lder's inequality we derive

E _\|
n 7 {

t 7 {
( |E(!=&!0 | Fs)|+|'=(s)&'0(s)| ) ds|+

2

&
�2n2 E[ |!=&!0 |2]+2nE _|

n 7 {

0
|'=(s)&'0(s)| 2 ds& .

To complete the proof, we remark that

E _|
n 7 {

0
|'=(s)&'0(s)| 2ds=E[ |E(!=&!0 | Fn)| 2]&(E[!=&!0])2

�E[ |!=&!0 |2].

Since, by assumption (A8), != � !0 in L2(F{), .= tends to 0 as = � 0.
Hence, applying Step 1 to ( y=, z=), we easily conclude the proof, since we

have already seen that E(!= | Ft) � E(!0 | Ft) and E[�t 7{
0 |'=(s)&'0(s)|2 ds] � 0.

K

We end this subsection by the analogy of Proposition 2.5. Let ({=) be a
family of (Ft)-stopping times and (!=) be F{ =-adapted random variables.

Assume that:

(A8') E[|!= | 2] � 0, and \0�t�n,

E _}|
n 7{ =

t 7 {=
f =(s, 0, 0) ds }

2

&� 0, as = � 0.

Consider (Y =, Z=) which is the solution of the BSDE

{&dY =(t)=1t�{= ( f =(t, Y =(t), Z=(t)) dt&Z=(t) dWt),
Y =({=)=!= on [{=<�].

We can state the following result:
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Proposition 3.5. If (A7) and (A8') hold, then \t # R+ , if = � 0, we have

E[|Y =(t 7 {=)|2]+E _|
t 7{=

0
|Z=(s)|2 ds&� 0.

Proof. The proof is similar to the proof of Theorem 3.4, since the upper
bound in Proposition 3.2 does not depend on { but only on K and +. K

4. HOMOGENIZATION OF ELLIPTIC PDES

4.1. Standing Assumptions

In Chapter 3 of [2], the authors proposed a probabilistic method for
studying homogenization properties of elliptic PDEs in the linear case. The
purpose of this section is to give a probabilistic method for studying the
homogenization properties of systems of semilinear elliptic PDEs. The approach
developed here is based upon the nonlinear Feynman�Kac formula (see
[8]) and the stability properties of BSDEs studied in the previous sections.
The case of parabolic PDEs is studied in [3].

Consider a system of semilinear elliptic PDEs of the following form, we
use convention of summation over repeated indices,

{
1
2

ai, j \x
=+ �2

i, ju
=
m(x)+

1
=

b i\x
=+ � iu =

m (x)+
1
=

gm \x
=+

(17)+fm \x,
x
=

, u=(x), Du=(x) _ \x
=++=0, in O, m=1, ..., k,

u=
|�O=h |�O ,

where O is a bounded open subset of Rn and b: Rn � Rn, _: Rn � Rn_d,
g: Rn � Rk, f : Rn_Rn_Rk_Rk_d � Rk and h: Rn � Rk are smooth func-
tions which are periodic in the variable x�= (we denote ' this variable in the
following). We have also a=__t where the superscript t means transpose.

We are interested in the asymptotic behavior of (u=) which is the solution
of (17). We first recall the deep connection between solutions of PDEs and
BSDEs.

Let (0, F, P) be a complete probability space carrying a standard d-dimen-
sional Brownian motion (Wt). (Ft) denotes the usual right continuous and
complete filtration associated to (Wt).

Assume that:

(A9). O is a bounded open subset of Rn which is moreover of class
C5 and the functions b, _, g, f, h are smooth and periodic; more precisely
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1. b, _, g, f are C3
b , h belongs to C5

b(Rn);

2. a=__t is strictly elliptic, i.e., there exists ;>0 such that

\x # Rn, a(x)�;In ;

3. all functions considered are [0, 1]n periodic in the variable '
(=x�=); in the following we denote [0, 1]n by 5.

(A10). f is monotone, i.e., there exists a constant + strictly positive
such that, for each (x, ', z) and for each ( y, y$),

( y&y$, f (x, ', y, z)&f (x, ', y$, z)) �&+ | y&y$|2.

In addition, if k�2, suppose also

(A11). 2+>#2 where #=sup |Dz f (x, ', y, z)|.

We recall first some standard results from elliptic PDEs theory and
homogenization. We refer to [1, 2, and 7] for details and proofs.

Let L be the differential operator

L= 1
2 ai, j (') �2

'i , 'j
+b i (')�'i

,

and let L* denote its formal adjoint.
According to [2, p. 431], we can state

Proposition 4.1. Let (A9) hold. Then there exists a unique continuous
function m such that m is positive and 5-periodic and satisfies

L*m=0 and |
5

m(') d'=1.

Moreover, 0<m
�

�m(')�M for each ' in 5.

Introduce, on the other hand, (X =
x ), the solution of the SDE depending

on =>0,

{dX =
x (t)=

1
=

b \X =
x (t)
= + dt+_ \X =

x (t)
= + dWt ,

(18)

X =
x(0)=x,

and denote by {=
x the hitting time for the closed set Oc of the process (X =

x),
x # O. Since a is strictly elliptic, we have, for each =>0 and each x in Rn,
{=

x<� a.s. (see [6, p. 144]).
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Consider (Y =
x , Z =

x ) the solution of the BSDE with random terminal time,
writing X =

x in place of X =
x (t),

{
&dY =

x(t)=1t�{=
x \\1

=
g \X =

x

= ++f \X =
x ,

X =
x

=
, Y =

x(t), Z =
x(t)++ dt&Z =

x(t) dWt+ ,

(19)
Y =

x({=
x)=h(X =

x({=
x)).

We now precise connections between (Y =
x , Z =

x ) and u= solution of (17).

Proposition 4.2. Let (A9) and (A10) hold and suppose also, if k�2,
that (A11) holds. Then the system of PDEs (17) has a unique classical
solution u=, which belongs to C4(O� ) and for each x in O� , we have

Y =
x (t)=u=(X =

x (t 7 { =
x)) and Z =

x (t)=1 t�{ =
x \Du=(X =

x (t)) _ \X =
x (t)
= ++ ,

where (Y =
x , Z =

x ) is the solution of the BSDE (19).

Proof. Existence of classical solution for (17) may be found in [7, p. 387].
The probabilistic interpretation of u= from Itô's formula, see [9].

Moreover, since u= and its gradient are continuous and bounded, (Y =
x , Z =

x )
is uniformly bounded, and then, if k�2, belongs to M2, 2*(0, {=

x ; Rk_Rk_d )
due to the fact that 2*=#2&2+<0. Thus, uniqueness of solutions for
BSDEs (see Lemma 2.1 and Theorem 3.3) gives uniqueness of smooth solu-
tions for (17). Remark that in view of [1, p. 787], for k=1, u= is the unique
solution in W 2, p(O). K

We do a further assumption on the vector fields b and g; that is

(A12). |
5

b(') m(') d'=0 and |
5

g(') m(') d'=0.

The asymptotic properties of (u=) remains an open question without this
assumption even in the linear case.

We can state the result (see [1, p. 780] or [2, p. 432]).

Lemma 4.3. Under assumptions (A9) and (A12), there exist two functions
/1 and /2, called correctors, which belong to C4(Rn) and such that

1. /1 and /2 are 5-periodic;

2. �5 /1(') m(') d'=0 and �5 /2(') m(') d'=0;

3. L/1
l =bl , l=1, ..., n and L/2

m= gm , m=1, ..., k.

4.2. Homogenization

We start this subsection with a technical lemma, rather similar to Lemma
10.2 on p. 499 of [2].
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Lemma 4.4. Let (A9) hold. Let 8: R+_Rn_Rn � R be a function of
class C1, 2, 2, such that, for each (t, x) in R+_Rn, ' � 8(t, x, ') is 5-periodic
and �5 8(t, x, ') m(') d'=0.

Then, \n # N, \t # [0, n],

E _}|
n 7{ =

x

t 7 { =
x

8 \s, X =
x(s),

X =
x (s)
= + ds }

2

&� 0 as = � 0.

Proof. We solve, for (t, x) fixed, L9=&8. Following [2, p. 499], 9 is
5-periodic and belongs actually to C1, 2, 2.

Itô's formula yields

_9 \s, X =
x (s),

X =
x (s)
= +&

n 7 {=
x

t 7 {=
x

=
1
=2 |

n 7 {=
x

t 7 { =
x

(L9) \s, X =
x (s),

X =
x (s)
= + ds

+
1
= |

n 7 { =
x

t 7{=
x

(D'9+=Dx9 ) _ \s, X =
x (s),

X =
x (s)
= + dWs

+
1
= |

n 7 { =
x

t 7{=
x

(=�s9+bi�xi
9+ai, j�

2
xi , 'j

9

+
=
2

ai, j�
2
xi , xj

9+\s, X =
x (s),

X =
x (s)
= + ds.

It follows, since L9=&8 that

|
n 7 { =

x

t 7 {=
x

8 \s, X =
x (s),

X =
x(s)
= + ds

=&=2 _9(s, X =
x (s),

X =
x (s)
= +&

n 7 { =
x

t 7 {=
x

+= |
n7 {=

x

t 7{ =
x

:= \s, X =
x (s),

X =
x (s)
= + ds

+= |
n 7 { =

x

t 7 { =
x

;= \s, X =
x (s),

X =
x (s)
= + dWs ,

where we have set

:=(t, x, ')=\=�t9+b i�xi
9+ai, j�

2
xi , 'j

9+
=
2

a i, j �
2
xi , xj

9+ (t, x, '),

;=(t, x, ')=(D' 9+=Dx9) _(t, x, ').
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Since all functions are continuous and 5-periodic, := and ;= are bounded
on [0, n]_O� _Rn, uniformly with respect to =.

Taking square and letting = tend to 0, we obtain easily the result. K

Now, we can state our results. First, define the homogenized coefficients.
Set, for (x, y, z) in Rn_Rn_Rk_n,

a� =|
5

(In&D/1(')) a(')(In&D/1('))t m(') d',

f� (x, y, z)=|
5

f (x, ', y, [z(In&D/1('))&D/2(')] _(')) m(') d',

and consider the system of semilinear elliptic PDEs,

{
1
2a� i, j�

2
i, jum+f� m(x, u, Du)=0, in O, m=1, ..., k,

u |�O=h |�O .
(20)

Theorem 4.5. Under the assumptions (A9)�(A12), the system (20) has a
unique solution u # C4(O� ) and moreover

\x # O� , u=(x) � u(x), as = � 0.

Proof. The existence and uniqueness of u, the solution of (20), and its
regularity come from the smoothness of the data and the fact that a� is
elliptic. Indeed,

a� �;m
� |5

(In&D/1('))(In&D/1('))t d'

=;m
� \In+|

5
D/1(') D/1(')t d'+

�;m
�

In .

Fix m=1, ..., k. We consider the asymptotic expansion of u=
m

u=
m(x)=um(x)+=u1

m(x, ')+=2 } } } ,

and substituting it into (17) and comparing the terms of order =&1, we get,
taking into consideration the definition of /1 and /2,

u1
m(x, ')=&/1

l (') �lum(x)&/2
m(').
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This is why we think to calculate

d/2
m \X =

x (t)
= + and d _/1

l \X =
x (t)
= + �lum(X =

x (t))& .

Using Itô's formula, we obtain

du=(X =
x (t))

=dY =
x (t)

=&_1
=

g \X =
x (t)
= ++f \X =

x (t),
X =

x (t)
=

, Y =
x (t), Z =

x(t)+& dt+Z =
x (t) dWt ,

and

dum(X =
x (t))=_1

2
a i, j�

2
i, jum+

1
=

bi� i um&\X =
x (t),

X =
x (t)
= + dt

+Dum(X =
x (t)) _ \X =

x (t)
= + dWt ,

and taking into account (20), for t�{=
x ,

dum(X =
x (t))=_1

2
(a i, j&a� i, j ) \X =

x (t)
= + �2

i, jum(X =
x (t))

+
1
=

bi \X =
x (t)
= + � ium(X =

x (t))& dt

&f� m(X =
x (t), u(X =

x (t)), Du(X =
x (t))) dt

+Dum(X =
x (t)) _ \X =

x (t)
= + dWt .

In addition,

d/2
m \X =

x (t)
= +=

1
=2 L/2

m \X =
x (t)
= + dt+

1
=

D/2
m \X =

x (t)
= + _ \X =

x (t)
= + dWt ,

and

d _/1
l \X =

x (t)
= + �lum(X =

x (t))&=
1
=2 L/1

l \X =
x (t)
= + �l um(X =

x (t)) dt

+
1
=

dU =
m(t)+dA=

m(t),
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where we have set, for m=1, ..., k,

A=
m(t)=

1
2 |

t

0
/1

l \X =
x (s)
= + ai, j \X =

x (s)
= + �3

i, j, lum(X =
x (s)) ds

+|
t

0
/1

l \X =
x (s)
= + D(� lum)(X =

x (s)) _ \X =
x (s)
= + dWs ,

and

U =
m(t)=|

t

0
[bj/1

l +ai, j�'i
/1

l ] \X =
x (s)
= + �2

l, j um(X =
x (s)) ds

+|
t

0
�l um(X =

x (s)) D/1
l \X =

x(s)
= + _ \X =

x (s)
= + dWs .

Taking into account Lemma 4.3, we get, for m=1, ..., k,

d/2
m \X =

x (t)
= +=

1
=2 gm \X =

x (t)
= + dt+

1
=

D/2
m \X =

x (t)
= + _ \X =

x (t)
= + dWt ,

and

d _/1
l \X =

x (t)
= + � lum(X =

x (t))&
=

1
=2 bl \X =

x (t)
= + �lum(X =

x (t)) dt+
1
=

dU =
m(t)+dA =

m(t).

Finally, we set C =
m(t)=/2

m(X =
x (t)�=)+/1

l (X =
x (t)�=) �lum(X =

x (t)), then

d[u=
m(X =

x (t))&um(X =
x (t))]

=&
1
2 _ai, j \X =

x (t)
= +&a� i, j& �2

i, jum(X =
x(t)) dt

&_ fm(X =
x (t),

X =
x (t)
=

, Y =
x (t), Z =

x (t))

&f� m(X =
x (t), u(X =

x (t)), Du(X =
x (t)))& dt

+_Z =
x (t)&_Dum(X =

x (t))&D/2
m \X =

x (t)
= +& _ \X =

x (t)
= +& dWt

+dU =
m(t)+=d[A=

m(t)&C =
m(t)].
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As a consequence, putting, in view of the definition of U =
m ,

Y =
n

t
(t)=Y =

x (t)&u(X =
x (t 7 {=

x)), (21)

and

Z=
x

t
(t)=Z =

x (t)&1 t�{=
x _Du(X =

x (t)) _In &D/1 \X =
x (t)
= +&

&D/2 \X =
x (t)
= +& _ \X =

x (t)
= + ,

(Y =
x

t
, Z=

x
t

) solves the BSDE

&dY =
n

t
(t)=1t�{=

x _F \X =
x (t),

X =
x (t)
=

, Y =
x

t
(t), Z =

x
t

(t)+ dt

&Z=
x

t
(t) dWt+=dB=

x(t)& , (22)

with the terminal condition Y =
x

t
({=

x)=0, where we put B=
x(t)=&A=(t)+C =(t),

and for m=1, ..., k, we set

Fm(x, ', y, z)=fm(x, ', y+u(x), z+[Du(x)[In&D/1(')]&D/2(')] _('))

&f� m(x, u(x), Du(x))+ 1
2 [ai, j (')&a� i, j&2bj(') /1

i (')

&2ak, j (') �'k
/1

i (')] �2
i, jum(x).

Remark that we have, see [2, p. 416�417],

|
5

[ai, j&(bj/1
i +bi/1

j )&ak, j�'k
/1

i &ak, i �'k
/1

j ](') m(') d'=a� i, j .

Thus, from the definition of f� , for each x in Rn,

|
5

F(x, ', 0, 0) m(') d'=0. (23)

Moreover, in view of assumption (A9) and the smoothness of u, /1 and /2,
F belongs to C4

b .
We want to apply Proposition 2.5 to ( Y =

n
t

, Z=
x

t
) which solves the BSDE (22).

First, let us note that ( y, z) � F(X =
x (t), X =

x (t)�=, y, z) is uniformly Lipschitz
with constants C=sup |Dy f (x, ', y, z)| and #=sup |Dz(x, ', y, z)|, and also
+-monotone, where + is the constant appearing in assumption (A10). Hence,
assumption (A11) says that 2+>#2.
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Consider \ such that #2&2+<\<0. Since F is bounded, say by M, we
easily show that

E _|
{=

x

0
e \s }F \X =

x (s),
X =

x (s)
=

, 0, 0+}
2

ds&�&
M2

\
.

Recall that B=
x(t)=C =

x(t)&� t
0 .=

x(s) ds&� t
0 �=

x(s) dWs , where

(C =
x)m (t)=/2

m \X =
x (t)
= ++/1

l \X =
x (t)
= + � lum(X =

x (t)),

(.=
x)m (t)=

1
2

/1
l \X =

x (t)
= + �3

i, j, lum(X =
x (t)) ai, j \X =

x (t)
= + ,

(�=
x)m (t)=/1

l \X =
x (t)
= + D(�l um)(X =

x (t)) _ \X =
x (t)
= + .

It is worth noting that in view of the smoothness of the coefficients, (.=
x(t)),

(�=
x(t)) and (C =

x(t)) are bounded processes uniformly with respect to =. We
derive easily from this remark that, setting V =

x(t)==B=
x(t),

E _|
{ =

x

0
e \s |V =

x(s)| 2 ds&�=2C \1+E _|
{ =

x

0
e \s }|

s

0
�=

x(u) dWu }
2

ds&+ .

But, on the other hand,

E _|
{ =

x

0
e \s }|

s

0
�=

x(u) dWu }
2

ds&�|
�

0
e \s E _}|

s 7 { =
x

0
�=

x(u) dWu }
2

& ds

�|
�

0
e \s E _|

s 7 {=
x

0
&�=

x(u)&2 du& ds.

(�=
x( } )) being uniformly bounded, the previous inequality implies that

E _|
{ =

x

0
e \s |V =

x(s)| 2 ds&�C=2.

Moreover,

E[e \{=
x |V =

x({ =
x)|2]�3=2E _e \{=

x _ |C =
x |2+\|

{ =
x

0
|. =

x(s)| ds+
2

+}|
{ =

x

0
�=

x(s) dWs }
2

&& ,
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and since t � t2e\t is a bounded function on R+ (since \<0), we get

E[e \{=
x |V =

x({=
x)|2]�C=2 \1+E _e \{ =

x }|
{ =

x

0
�=

x(s) dWs }
2

&+ .

Using Itô's formula and setting :=
x(t)=�t

0 �=
x(s) dWs , we obtain, for t in R+ ,

e\(t 7 {=
x) |:=

x(t 7 {=
x)|2=|

t 7 { =
x

0
e \s(\ |:=

x(s)| 2+&�=
x(s)&2) ds

+|
t 7 {=

x

0
e \s: =

x(s) } �=
x(s) dWs .

Taking into account that \<0, Burkholder, Davis, and Gundy's
inequality yields

E[sup e\(t 7 { =
x) |:=

x(t 7 { =
x)|2]

�&
M2

\
+CE _\|

{ =
x

0
e 2\s |:=

x(s)|2 &�=
x(s)&2 ds+

1�2

&
�&

M2

\
+C \E _|

{=
x

0
e 2\s |:=

x(s)|2 &�=
x(s)&2 ds&+

1�2

.

From the boundedness of (�=
x( } )), we get E[|: =

x(t)|2]�M 2t and thus

E[sup e\(t 7 {=
x) |:=

x(t 7 {=
x)|2]�C,

which implies that

E[e \{=
x |V =

x({=
x )|2]�C=2.

In particular, e( \�2) { =
x V =

x({=
x ) converges to 0 in L2 and the same is true for

e*{ =
x V =

x({ =
x ).

In the same way, we get

E[|V =
x(t 7 {=

x)|2]�C(1+t2) =2.

Finally, in view of (23), since F is smooth, Lemma 4.4 implies that

E _}|
n 7 { =

x

t 7 { =
x

F \X =
x (s),

X =
x (s)
=

, 0, 0+ ds }
2

&� 0 as = � 0.

Thus, all assumptions of Proposition 2.5 are satisfied, and therefore

E[|Y =
n

t
(t 7 { =

x)| 2] � 0, as = � 0.
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This is true, in particular for t=0. Coming back to (21), we obtain

u=(x) � u(x), as = � 0.

The proof is complete. K

4.3. The Case of Dimension One

We finish with a stronger result for the case of a single equation.

Theorem 4.6. Suppose k=1 and let (A9), (A10), and (A12) hold. Then

\x # O� , u=(x) � u(x), as = � 0.

Proof. We keep the same notations as in the proof of the previous result.
Recall that (Y =

x
t

, Z =
x

t
) solves the BSDE (22) and we need to show that

Y =
x

t
(0) � 0.

Here, we cannot apply directly Proposition 3.5 because B=
x({=

x) is not
bounded. Once again we overcome this difficulty by a change of variables.

Fix 0<$<+ and set

Y =
x(t)=e&$t \Y =

x
t

(t)+=C =
x(t)&= |

t

0
.=

x(s) ds+
Z =

x(t)=e&$t(Z =
x

t
(t)+=� =

x(t)).

Itô's formula shows that (Y =
x , Z =

x) solves the BSDE

&dY =
x(t)=1t�{=

x
[G =(t, Y =

x(t), Z =
x(t)) dt&Z =

x(t) dWt],

with the final condition Y =
x({=

x )==e&${=
x (C =

x({=
x)&�{ =

x
0 .=

x(s) ds), where we
have set

G =(t, y, z)

=$y+e&$tF \X =
x (t),

X =
x (t)
=

, e$ty&=C =
x(t)+= |

t

0
.=

x(s) ds, e$tz&=�=
x(t)+ .

Since F is bounded, G =(t, 0, z) is uniformly bounded. Moreover, G= is
Lipschitz with constant K+$ and monotone; the constant is +&$>0.

Remember that (C =
x( } )) and (.=

x( } )) are bounded processes uniformly
with respect to =. Hence,

"=e&${=
x \C =

x({=
x)&|

{ =
x

0
.=

x(s) ds+"�
�K=,
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and thus

"=e&${=
x \C =

x({=
x )&|

{ =
x

0
.=

x(s) ds+"2

� 0 as = � 0.

The last point to establish is that for each 0�t�n,

E _}|
n 7 { =

x

t 7 { =
x

G =(s, 0, 0) ds }
2

&� 0, as = � 0.

We have

E _}|
n 7 {=

x

t 7 { =
x

G =(s, 0, 0) ds }
2

&
�2E _}|

n 7 { =
x

t 7{=
x

e&$sF \X =
x (s),

X =
x (s)
=

, 0, 0+ ds }
2

&
+2E _}|

n 7 { =
x

t 7 { =
x
_G =(s, 0, 0)&e&$sF \X =

x (s),
X =

x (s)
=

, 0, 0+& ds }
2

& .

The first term tends to 0 as = � 0 by Lemma 4.4. Moreover, since

G =(t, 0, 0)=e&$tF \X =
x (t),

X =
x (t)
=

, &=C =
x(t)+= |

t

0
. =

x(s) ds, &=� =
x(t)+

we get, using Ho� lder's inequality and the fact that F is Lipschitz,

E _}|
n 7 {=

x

t 7 {=
x
_G =(s, 0, 0)&e&$sF \X =

x (s),
X =

x (s)
=

, 0, 0+& ds }
2

&
�K=2nE _|

n 7 {=
x

t 7 {=
x

e&$s _ |C =
x(s)| 2+ }|

s

0
.=

x(u) du }
2

+|�=
x(s)| 2& ds& .

As the processes (C =
x( } )), (.=

x( } )) and (�=
x( } )) are uniformly bounded, we

finally get, for another constant K,

E _}|
n 7{ =

x

t 7{=
x
_G =(s, 0, 0)&e&$sF \X =

x (s),
X =

x (s)
=

, 0, 0+& ds }
2

&�K=2n.

From Proposition 3.5, we get lim= � 0 E[ |Y =
x(0)|2]=0. Since

Y =
x(0)=u=(x)&u(x)+= _/2 \x

=++Du(x) /1 \x
=+& ,
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we have, from the boundedness of /1 and /2, that,

u=(x) � u(x), as = � 0,

which is the desired result. K
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