
Journal of Number Theory 113 (2005) 208–225
www.elsevier.com/locate/jnt

Supersingular primes for points onX0(p)/wp

David Jao
Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

Received 10 May 2004

Available online 2 December 2004

Communicated by B. Poonen

Abstract

For small odd primesp, we prove that most of the rational points on the modular curve
X0(p)/wp parametrize pairs of elliptic curves having infinitely many supersingular primes. This
result extends the class of elliptic curves for which the infinitude of supersingular primes is
known. We give concrete examples illustrating how these techniques can be explicitly used to
construct supersingular primes for such elliptic curves. Finally, we discuss generalizations to
points defined over larger number fields and indicate the types of obstructions that arise for
higher level modular curves.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be an elliptic curve defined over a number field. It is conjectured thatE has
infinitely many prime ideals of supersingular reduction. For curvesE with complex
multiplication, a classical result of Deuring[4] states that the supersingular primes
have density 1/2. More recently, Elkies proved thatE always has infinitely many
supersingular primes whenever it is defined over a real number field[6], or when the
absolute norm ofj (E)− 1728 has a prime factor congruent to 1 mod 4 and occurring
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with odd exponent[5]. In this article we prove that the number of supersingular primes
is infinite for certain elliptic curves which do not satisfy any of the above conditions,
thereby providing the first new examples of such curves since the work of Elkies.

Specifically, forp prime, letwp be the unique Atkin–Lehner involution[1] on the
modular curveX0(p), and writeX∗

0(p) for the quotient curveX0(p)/wp. ThenX∗
0(p)

is a moduli space parameterizing unordered pairs of elliptic curves{E,E′} together
with a cyclic p-isogeny� : E → E′. The main result of this paper is the following:

Theorem 1.1. Suppose p is equal to3, 5, 7, 11, 13,or 19. Let {E,E′} be a pair
of elliptic curves parametrized by a rational point on the moduli spaceX∗

0(p), and
suppose E does not have supersingular reduction modp. Then E has infinitely many
supersingular primes.

For pairsE,E′ whose j-invariants are imaginary quadratic conjugates, the theorem
provides new examples of ordinary elliptic curves with infinitely many supersingular
primes. In Section2, we introduce the Heegner point analogues of Hilbert class poly-
nomials that enable the proof of Theorem1.1. Section 3 analyzes the real roots of
these polynomials, and Section4 gives the proof of the theorem. Section5 explains
the precise relationship between the curvesE of Theorem1.1 and the curves of[5,6].

2. Class polynomial calculations

Fix an odd primep such thatX∗
0(p) has genus 0. In this section we do not impose

any other conditions onp. Thereforep is one of 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
41, 47, 59, or 71. Under these conditions, we will construct a sequence of polynomials
for X∗

0(p) which are analogues to the Hilbert class polynomials forX(1). Instead of
using CM points onX(1) we will use Heegner points onX∗

0(p). We then describe how
our variant class polynomials factor into near perfect squares modulo primes
 �= p

and later modulo
 = p. We also classify all of the real roots of these polynomials.
Taken together, these properties of the class polynomials can be used to construct
supersingular primes for points onX∗

0(p). For 
 = p, our square factorization results
only hold for small values ofp, which explains why Theorem1.1 is restricted to these
values.

The casep = 2 is omitted because its Heegner points exhibit very different behavior
from the odd case. A discussion of this case can be found in[9].

For negative integersD ≡ 0 or 1 mod 4, writeOD for the unique imaginary quadratic
order of discriminantD. We assume throughout this chapter thatD is of the form−p

or −4p
 for some prime
 �= p. For either choice ofD, we denote byp the ideal of
OD generated byp and

√
D.

Lemma 2.1. Let E be an elliptic curve overC with complex multiplication byOD.
There is exactly one p-torsion subgroup of E which is annihilated by the idealp ⊂ OD.

Proof. An elliptic curveE with CM by OD corresponds to a quotient of the complex
plane C by a latticeL which is homothetic to an ideal class inOD. By scaling L
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appropriately, we may assumeL = 〈1, �〉 where � = −b+√
b2−4ac

2a is in the upper half
planeH, with b2 − 4ac = D.

The p-torsion subgroups ofE are generated inC/L by 1/p, �/p, (� + 1)/p, . . . ,
(�+(p−1))/p. For z to be annihilated byp means exactly that theR-linear combination√
Dz = z1 · 1 + z2 · � has integer coefficients. We have the equations:

√
D · 1

p
= b

p
+ 2a

p
�, (1)

√
D · � + k

p
= bk − 2c

p
+ 2ak − b

p
� (k = 0,1,2, . . . , p − 1). (2)

Suppose first thatp | a. Then the equationD = b2 − 4ac means thatp | b, so Eq. (1)
shows that 1/p is annihilated byp. By Eq. (2), in order for(�+k)/p to be annihilated
by p it would have to be the case thatp | (bk − 2c), but this cannot happen since
p | b andp � c.

Conversely, if p � a then Eq. (1) shows that 1/p is not annihilated byp, and
one easily checks using Eq. (2) that (� + k)/p is annihilated if and only ifk ≡
b/2a (modp). �

One consequence of Lemma2.1 is that, if � : E → E′ is the unique cyclicp-
isogeny whose kernel is thep-torsion subgroup of Lemma2.1, thenE′ also has CM
by OD. Indeed, the latticeL′ generated byL and thisp-torsion subgroup is closed
under multiplication by both 1 andp, which additively generate all ofOD. In the case
whereD = −p
 and henceOD is a maximal order, it follows immediately thatL′ has
complex multiplication byOD. WhenD = −4p
, we have to make sure that the CM
ring is not an order strictly containingO−4p
, of which the only one isO−p
. But the
discriminants of the endomorphism rings of twop-isogenous CM elliptic curves can
only differ by a multiple ofp if they differ at all [10], and we have assumed thatp is
odd, so the discriminants cannot differ by factors of 2.

A point on X0(p) that parameterizes isogenous curves of the same CM order is
called a Heegner point[8]. We have just showed that everyE with CM by OD lifts
to a unique Heegner point onX0(p).

Definition 2.2. For any elliptic curveE with CM by OD, let Ẽ denote the Heegner
point onX0(p) corresponding to the isogenyE → E′ whose kernel is thep-torsion
subgroup of Lemma2.1.

Let jp denote a Hauptmodul onX∗
0(p), i.e., a rational coordinate function onX∗

0(p)

with a simple pole of residue 1 at∞. Such a function exists since the curveX∗
0(p)

always has a rational cusp and we are assuming its genus is 0.

Proposition 2.3. For each ideala of OD, let Ea denote the elliptic curve correspond-
ing to C/a. For |D| sufficiently large, the minimal polynomial ofjp(Ẽp) over Q
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is given by

PD(X) :=

 ∏

[a]∈Cl(OD)

(X − jp(Ẽa))



1/2

,

where the product is taken over all ideal classes ofOD.

Proof. First, note that(X − jp(Ẽp)) is one of the factors in the product. To get the
other factors, start from the known formula

HD(X) :=
∏

[a]∈Cl(OD)

(X − j (Ea))

for the Hilbert class polynomialHD(X), which by Cox[3] is the minimal polynomial
of the j-invariant ofEp. Let G be the absolute Galois group ofQ. For every� ∈ G, we
have�(j (Ep)) = j (Ea) for some ideal classa of OD appearing in the above product.
We claim that�(jp(Ẽp)) = jp(Ẽa) as well, or equivalently, the map� : Ep → Ea
sends the distinguishedp-torsion subgroup ofEp from Lemma2.1 to that ofEa. But
� sends the endomorphism ring ofEp into the endomorphism ring ofEa, and in both
cases there are only two conjugate embeddings ofOD into the endomorphism ring of
the elliptic curve, with either choice resulting in the same action ofp and hence in the
same distinguishedp-torsion subgroup.

From this claim we see that the set of Galois conjugates ofjp(Ẽp) is exactly
{jp(Ẽa) | a ⊂ OD}, and so the minimal polynomial contains all the factors in the
product.

We now prove that each linear factor in the product occurs with multiplicity two.
For any ideal class[a], the Atkin–Lehner image ofẼa is Ẽa′ for some other ideal
class[a′] ∈ Cl(OD) (by the remarks following Lemma2.1). The ideal classes[a] and
[a′] are not identical since the 2-1 covering map� : X0(p)→ X∗

0(p) has only finitely
many branch points, and we can avoid these branch points by choosing|D| sufficiently
large. Hencejp(Ẽa) = jp(Ẽa′), and since� is 2 to 1, these are the only equalities
among the roots of the factors in the product.�

From now on, we will assume that|D| is large enough to satisfy the hypothesis of
Proposition2.3.

Lemma 2.4. Let P be a prime of the splitting field K ofPD(X) lying over 
,
with residue field k. Let E be an elliptic curve defined over k, and fix an embedding
OD ↪→ End(E). Then there is exactly one p-torsion subgroup ofE which is annihilated
by p ⊂ OD.

Proof. By Deuring’s lifting lemma[4], there is exactly one lifting ofE to an elliptic
curve E over K with CM by OD such that reduction modP induces the embedding
OD ↪→ End(E). The p-torsion lattices ofE and E are isomorphic via reduction[14],
so the uniquep-torsion subgroup ofE from Lemma2.1 descends to a uniquep-torsion
subgroup onE . �
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As in Definition 2.2, we denote byẼ the point onX0(p)modP corresponding to
the elliptic curveE together with the cyclicp-isogeny whose kernel is the subgroup
determined by Lemma2.4.

Proposition 2.5. Suppose the odd prime
 splits inO−p andO−4p (equivalently, −p
is a quadratic residue modulo
). Then, modulo
, all roots of the polynomialPD(X)
occur with even multiplicity, except possibly those corresponding to elliptic curves with
j ≡ 1728 mod
 whenD = −p
, or elliptic curves which are2-isogenous to those
curves whenD = −4p
.

Proof. Assume first thatD is a fundamental discriminant. We show that the pointsẼ
corresponding to roots away fromj (E) = 1728 occur naturally in pairs modulo
.
We begin with the following facts from[6] concerning the Hilbert class polynomial
HD(X) defined in the proof of Proposition2.3. Each root ofHD(X) corresponds to
an isomorphism class of elliptic curvesE with complex multiplication byOD. The
reduction of this root modulo
 corresponds to a reduction ofE to a supersingular
elliptic curve E in characteristic
, or equivalently an embedding� : OD ↪→ End(E).
Since 
 ramifies in OD, the conjugatē� of � is again an embedding ofOD into
End(E), andE lifts by way of �̄ to an elliptic curveE′ in characteristic zero, which is
not isomorphic toE provided thatj (E) �≡ 1728(mod
).

In order to show that the rootjp(Ẽ) occurs twice inPD(X) modulo
, we must show
that the two curvesE andE′ from the previous paragraph correspond to two different
roots of PD(X) in characteristic zero, and that they both reduce toẼ modulo 
. To
prove the second fact, observe that the embeddings� and �̄ both determine the same
p-torsion subgroup ofE under Lemma2.4, since p equals itself under conjugation,
so Ẽ and Ẽ′ both reduce toẼ . As for the first fact, we haveE �= E′ provided that
j (E) �≡ 1728 mod
, so Ẽ �= Ẽ′. The only other wayE andE′ could be equal onX∗

0(p)

is if wp(Ẽ) = Ẽ′. But if these two were equal, then in particular their reductions mod


would be equal, sowp(Ẽ) = Ẽ ′. On the other hand, we have just showed thatẼ = Ẽ ′.
Putting the two equations together yieldswp(Ẽ) = Ẽ . We show that this cannot happen.

Let � : E → E ′ be the cyclicp-isogeny corresponding tõE . The equationwp(Ẽ) = Ẽ
implies that the dual isogenŷ� of � is isomorphic to�, or that there exist isomorphisms
�1 : E → E ′ and �2 : E ′ → E making the diagram

E
�

��

�1
��

E ′

�2

��

E ′
�̂

�� E

commute. Sincep is prime, the equation̂�� = [p] at once implies that�2� is not equal
to multiplication by any integer, which in turn means that�2� algebraically generates
an imaginary quadratic orderO inside End(E). But we also have(�2�)

2 = u[p] for
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someu ∈ Aut(E) (specifically,u = �2�1), from which we conclude thatO contains a
square root of−p, and thus thatE has CM by eitherO−p or O−4p. Moreover, since

 splits in these orders by hypothesis, the curveE must have ordinary reduction mod
.
On the other hand, by Deuring[4] every root ofHD(X)mod
 (and hence every root
of PD(X)mod
) corresponds to an elliptic curve of supersingular reduction mod
,
which provides our contradiction.

For the non-fundamental discriminantD = −4p
, setD′ := −p
 for convenience.
Let ε be 0, 1, or 2 according as 2 is inert, ramified or split inOD′ . Then the divisor
of zeros (PD)0 of PD in characteristic
 or 0 is equal to the Hecke correspondence
T2 on X∗

0(p) applied to the divisor of zeros(PD′)0 of PD′ , minus ε times the divisor
(PD′)0. That is,

(PD)0 = T2((PD′)0)− ε(PD′)0. (3)

Every zero ofPD′ , except for the divisors withj-values of 1728, appears in(PD′)0
with even coefficient in characteristic
, and hence also appears in(PD)0 with even
coefficient by (3). The only divisors unaccounted for are those withj-values of 1728,
and the images of such divisors underT2, so the Proposition is proved.�

3. Real roots ofPD(X)

We find the real roots of the class polynomialPD(X). A real root of PD(X) cor-
responds to an unordered pair{E,E′} of cyclic p-isogenous elliptic curves which is
fixed under complex conjugation. Choose an ideal class[a] ∈ Cl(OD) representingE;
then [ap] representsE′. For {E,E′} to be fixed under complex conjugation means that

{[a], [ap]} = {[a], [ap]},
where the bar denotes complex conjugation. This can happen in two ways: either
[a] = [a], or [ap] = [a].

Definition 3.1. With notation as above, a real root ofPD(X) is said to beunbounded
if [a] = [a], andboundedif [ap] = [a].

For the primesp ≡ 1 mod 4, the behavior of the real roots ofPD(X) closely resem-
bles the case ofHD(X) which was treated in[5]. This is not surprising if one observes
thatX(1) = X0(1) is a degenerate case ofX0(p) wherep ≡ 1 mod 4. However, when
p ≡ 3 mod 4, the real roots ofPD(X) exhibit very different behavior. It is therefore
necessary to treat the two cases separately.

3.1. The casep ≡ 1 mod 4

In this section, we assume thatp ≡ 1(mod 4) and thatD is equal to−p
 or −4p
,
where
 is chosen to be a prime congruent to 3 mod 4 which splits inO−p andO−4p.

An unbounded real root ofPD(X) corresponds to an isogenyE → E′ which is
isomorphic to itself under complex conjugation, meaning thatẼ is a real point on
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X0(p). Since the coveringX0(p) → X(1) is defined overQ, each such real point̃E
hasj (E) real, so we can count these points by counting the ideal classes[a] for which
j (a) is real. By genus theory[3], there are two such ideal classes forO−p
 and two
for O−4p
, corresponding to the quadratic forms

x2 + xy +
(
p
+ 1

4

)
y2,

px2 + pxy +
(
p + 


4

)
y2

for D = −p
, and

x2 + p
y2,

px2 + 
y2

for D = −4p
.
Since the first two forms above are Atkin–Lehner images of each other, and the last

two are Atkin–Lehner images of each other, the first pair of real points onX0(p), upon
quotienting bywp, yields one real root ofP−p
(X), and the second pair yields a real

root for P−4p
(X). For D = −p
, the quadratic formx2 + xy +
(
p
+1

4

)
y2 has the

root � = (−1 + √−p
)/2 in the upper half plane, and

lim

→∞ jp

(−1 + √−p

2

)
= −∞.

Similarly, for D = −4p
, the quadratic formx2 + p
y2 has the root� = √−p
 with
lim
→∞ jp(�) = ∞. The divergence of the rootsjp(�) of PD(X), as 
→ ∞, justifies
the terminology “unbounded.”

A bounded real root ofPD(X) occurs when[ap] = [a], or equivalently[p] = [a]2.
Viewing each ideal class as a quadratic form, a bounded root exists if and only if the
quadratic formpx2 + 
y2 (for D = −4p
) or px2 + pxy + p+


4 y2 (for D = −p
) is
equal to the direct composition of some quadratic formax2 + bxy+ cy2 with itself. In
particular, this implies by definition of composition that there exists a nonzero integer
z satisfying the Diophantine equationpx2 + 
y2 = z2 in the D = −4p
 case, or
px2 + pxy + p+


4 y2 = z2 in the D = −p
 case. We show that this cannot happen in
our situation.

Lemma 3.2. The Diophantine equationspx2 +
y2 = z2 andpx2 +pxy+ p+

4 y2 = z2

have no nonzero solutionsx, y, z ∈ Z.

Proof. Suppose there were a nonzero solution. We may assumey �≡ 0 (modp), or else
descent yields a contradiction. Then reducing the equations modulop, we get that
 is
a perfect square modp, which contradicts the assumptions that
 ≡ 3 mod 4 and that

splits in O−p. �
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We conclude that the polynomialPD(X) has one unbounded real root and no bounded
real roots, with the bounded real root diverging to∞ for D = −4p
 and −∞ for
D = −p
, as 
→ ∞.

3.2. The casep ≡ 3 mod 4

We assume thatp ≡ 3(mod 4) and thatD = −4p
, where
 ≡ 1 mod 4 and
 splits
in O−p andO−4p. Using genus theory as before, the unbounded real root ofPD(X) is
represented by the pair of ideals corresponding to the twowp-equivalent quadratic forms

x2 + p
y2,

px2 + 
y2.

Hence the polynomialPD(X) has one unbounded real root, which approaches∞ as 

becomes large.

A bounded real root corresponds to an equivalence class of quadratic formsax2 +
bxy+ cy2 whose square in the form class group is equal to the formpx2 + 
y2. There
is at most one such form class, because a second one would result in more 2-torsion
classes in the ideal class group ofOD than were found in the preceding analysis of
the unbounded roots.

To show the existence of such a quadratic form, it suffices to construct a quadratic
form pax2 + bxy + ay2 of discriminantD with p dividing b. Indeed, the Dirichlet
composition[3] of pax2+bxy+ay2 with itself is a2x2+bxy+py2, which is properly
equivalent topx2 + 
y2 sincep | b and the discriminants of the two forms match.

To find such a quadratic form, choose integersA andB such that
 = A2 − pB2 =
(A + B√

p)(A − B√
p). Such integers exist because
 splits in Q(

√
p), and all such

representations of
 differ by a factor of±εn whereε := c+ d√p is the fundamental
unit of Q(

√
p). Note thatc and d are integers, sincep ≡ 3 mod 4, and thatc is even

and d is odd. Accordingly, multiplication byε changes the parity ofA, so there exist
representations withA even and withA odd. ChooseA to be odd, and seta = A,
b = 2pB to obtain a quadratic formpax2 + bxy + ay2 of discriminant−4p
.

We now find the minimal possible value forB (equivalently, the minimal possible
b), subject to the constraint thatA is odd. This value forB is determined by the
requirement that multiplication byε2 must increase the size of the coefficients of the
factor A− B√

p. We compute these coefficients to be:

(A− B√
p)(c + d√p)2 = (Ac2 − 2Bcdp + Ad2p)+ (2Acd − Bc2 − Bd2p)

√
p.

The requirement is thusB < (2Acd − Bc2 − Bd2p), or

B

A
<

2cd

c2 + d2p + 1
= d

c
· 2c2

c2 + d2p + 1
.

But d2p = c2−1, so the fraction(2c2)/(c2+d2p+1) equals 1, whence our condition on
B is just B/A < d/c. One could have done the same computation using the inequality
on A given by the other coefficient; the reader can verify that doing so produces the
same inequality.
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Now, if b is chosen to be minimal and of the above form (i.e.,cB < dA, or
equivalently cb < 2pda, and A is odd), then the root� = −b+√

D
2pa of the quadratic

form pax2 + bxy + ay2 lying in the upper half plane has absolute value 1/
√
p and

real part between−d/c and 0 (since−d/c < −B/A < 0). Denote the set of all such
complex numbers in the upper half plane byS. Since all of the points on the circular
arc S are distinct inX∗

0(p), the function jp(z) is monotonic (and, of course, real
valued) in the clockwise direction along this circular arc. Fromq-expansions we see
that jp(z) is in fact increasing clockwise along the arcS. We claim that, for random
large values of
, the locations of the corresponding roots� (as a function of
) are
uniformly distributed along the arcS in a weak sense to be made precise in Lemma3.3.
It follows that the bounded real root of the polynomialPD(X) is uniformly distributed
along the real intervaljp(S) asD varies.

Lemma 3.3. Let A be an arithmetic progression containing infinitely many primes

which are congruent to3 mod 4and split inO−p and O−4p. For any sub-arcT ⊂ S

of nonzero length, there exist infinitely many primes
 ∈ A whose corresponding roots
� above lie in T.

Proof. Let U be the projection ofT to the real axis. Using the fact that Re(�) = −B/A,
we see that it suffices to show that−B/A ∈ U for infinitely many primes
 ∈ A.
Consider the function

�(a) :=
(
N(a)

N(a)

) 2�i
log(ε/ε)

mapping idealsa of Op into complex numbers of norm 1. Let�(A,B) denote the
value of� on the principal ideal(A+B√

p) in Op. Then�(A,B) is purely a function
of B/A, and asB/A increases from 0 tod/c with B positive, the point�(A,B) ∈ S1

increases monotonically in angle from 0 to 2�. Thus it is enough to show that�(A,B)
is equidistributed onS1 whereA,B vary as a function of
 ∈ A, with 
 = A2 − pB2.
But the equidistribution of values of� with respect to
 has already been proven in
[11, p. 318]. �

In summary, forp ≡ 3 mod 4 andD = −4p
, where 
 ≡ 1 mod 4 and
 splits in
O−p andO−4p, the polynomialPD(X) has exactly two real roots, with the unbounded
real root diverging to∞ as 
 increases and the bounded real root being uniformly
distributed in the real intervaljp(S) as the prime
 is varied.

4. Proof of the main theorem

4.1. Specification of Hauptmoduls

For the sake of concreteness, we will use the following Hauptmoduls for the curves
X∗

0(p), p = 3,5,7,11,13,19. The derivation of these Hauptmoduls is discussed
in [7].
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For p = 3,5,7,13, the modular curveX0(p) is a rational curve with coordinate

jp,0(z) :=
(

�(z)
�(pz)

) 24
p−1

, (4)

where� is the Dedekind eta function. The action of the Atkin–Lehner involutionwp
is given by

wp(jp,0(z)) = p
12
p−1

jp,0(z)
. (5)

For these primes, we use the Hauptmoduljp for X∗
0(p) defined by the formula

jp(z) := jp,0(z)+ wp(jp,0(z)). (6)

For p = 11 we use the Hauptmodul

j11(z) :=
(

�1,1,3(z)

�(z)�(11z)

)2

,

where�a,b,c(z) is defined to be the theta function

�a,b,c(z) :=
∑
x,y∈Z

qax
2+bxy+cy2

, q := e2�iz,

valid for all z in the upper half planeH.
For p = 19, we use the function

j19(z) :=
(

�1,1,5(z)

�∗
1,1,5(z)

)2

,

where now�∗
1,1,5(z) is defined by

�∗
1,1,5(z) :=

∑
m+n≡1(2)

(−1)mq
1
2 (m

2+mn+5n2), q := e2�iz.

4.2. Proof of the theorem forp ≡ 3 mod 4

We assume thatp is equal to 3, 7, 11, or 19. As before, we will use the polynomials
PD(X), D = −p
 or D = −4p
, where the prime
 is both 1 mod 4 and a quadratic
residue modp. Note thatPD(X) is monic (since its rootsjp(Ẽ) are algebraic integers)
and each such curveE is supersingular modp and mod
 (sincep and 
 ramify in D).

Proposition 4.1. The polynomialPD(X) is a square modulo
.

Proof. By Proposition2.5, we only have to exclude the possibility of there being roots
associated to thej-invariant 1728. First consider the caseD = −p
. Supposejp(Ẽ)
were a root ofPD(X), with j (E) ≡ 1728 mod
. ThenE would be supersingular mod
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and have complex multiplication byO−4. But 
 splits in O−4, so a curve with CM by
O−4 cannot be supersingular mod
.

Now takeD = −4p
. As in the proof of Proposition2.5, setD′ := −p
. Then,
since all coefficients in the divisor of zeros(PD′)0 are even in characteristic
, the
proof of Proposition2.5 shows that every coefficient of(PD)0 is even as well. �

Lemma 4.2. For D = −4p
, the polynomialPD(X) is a square modulo p.

Proof. Suppose first thatp = 3 or 7. Every root ofPD(X) is of the formjp(Ẽ) where
E is a supersingular elliptic curve modp. But there is only one isomorphism class of
supersingular elliptic curves modp. It follows that PD(X) has divisor of zeros equal
to deg(PD) · (jp(Ẽ)). SincePD(X)modp is monic, has even degree, and has only one
root of maximal multiplicity, it must be a perfect square.

Now supposep = 11. WriteD′ = −p
 as before. Here there are two isomorphism
classes of supersingular elliptic curves modp, having the values 0 and−1 under the
coordinate functionj11 of Section4.1. Using the algorithm of Pizer[13], we find that
the action of the Hecke correspondenceT2, as given by the Brandt matrixB(2), is
represented by

T2((0)) = 1 · (0)+ 2 · (−1),

T2((−1)) = 3 · (0)+ 0 · (−1).

Since the roots of the polynomialPD′(X) are supersingular, the polynomialPD′(X)
has the formXm(X+ 1)nmod 11 for some integersm andn. The above calculation of
T2, combined with Eq. (3), yields

PD(X) ≡ Xm+3n−εm(X + 1)2m−εnmod 11,

which is a perfect square since deg(PD′) = m+ n is even andε is even for all primes

 ≡ 1 mod 4 which are squares modp.

The casep = 19 is similar: using the Hauptmodulj19 of Section4.1, the Hecke
correspondence mod 19 has matrix

[
1 2
1 2

]
with respect to the basis of supersingular

invariants {(0), (8)}. Since the columns of this matrix add up to even numbers, the
polynomial PD(X) is always a perfect square modulo 19 forD = −4p
 and our
choices of
. �

Theorem 4.3. Supposep = 3,7,11, or 19. Let {E,E′} be a pair of elliptic curves,
defined over K, corresponding to a rational point onX∗

0(p), and assume that E is not
supersingular at p. Then E has infinitely many supersingular primes.

Proof. If E is represented by the complex lattice〈1, �〉 with � ∈ H, the fact that
h := jp(�) is real means that we may (cf. Section3) take � either on the unbounded
arcs corresponding to Re(�) = 0 or Re(�) = 1/2, or on the bounded arcjp(S) of
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Lemma 3.3. In the unbounded case,j (�) is real andK has a real embedding, so the
result follows from[6] and we do not need to do it here. We can therefore assume
that � ∈ S and −d/c� Re(�)�0. Moreover, we can assume these inequalities are
strict, since otherwiseE has CM and its supersingular primes are known to have
density 1/2.

Now supposeh is rational inside the interior of the intervaljp(S) and the curveE
is not supersingular modulop. Given any finite set	 of primes ofK, we construct a
supersingular prime� of E outside of	.

Without loss of generality, suppose that	 contains all of the primes of bad reduction
of E. Choose a large prime
 such that

(1) 
 ≡ 1 mod 4 and
 splits in O−p and O−4p.

(2)
(
v
p


)
= 1 for every rational primev lying under a prime in	, except possibly

v = p.
(3) PD(h) < 0.

Condition 3 is satisfied as long as the bounded rootr of PD(h) falls to the left of
h on the real line. Sinceh is not on the boundary ofjp(S), Lemma3.3 assures the
existence of infinitely many primes
 satisfying all the conditions.

The rational numberPD(h) is then congruent to a perfect square mod
 (by Proposi-
tion 4.1) and modp (by Lemma4.2). However, being negative, it also contains a factor
of −1, which is not a perfect square modp
. Therefore, at least one of its prime factors

q satisfies the equation
(
q
p


)
�= 1 and thus is ramified or inert inQ(

√
D). Moreover,

the denominator ofPD(h) is a perfect square, sincePD(X) is monic with integer co-
efficients and even degree. Hence we may takeq to be a factor of the numerator of
PD(h). Furthermore,q is not equal top, becauseE is not supersingular atp and sop
cannot dividePD(h).

It follows from Condition 2 thatq does not lie under any prime in	, and h is a
root of PD(X) in characteristicq. Thereforej (E) is a root ofHD(X) in characteristic
q. Hence, for any primeq of K lying over q, the reduction ofE at q has complex
multiplication by OD′ for some factorD′ of D such thatD/D′ is a square, and since
q is not split inQ(

√
D), it follows that there is a new supersingular prime� �∈ 	 lying

aboveq. �

4.3. Proof of the theorem forp ≡ 1 mod 4

We now give a proof of Theorem1.1 for the primesp = 5 and 13. Let
 be a prime
congruent to 3 mod 4 such that
 splits in O−p andO−4p. Explicitly, 
 ≡ 3,7(mod 20)
for N = 5, and 
 ≡ 7,11,15,19,31,47(mod 52) for N = 13. Note that Proposition
2.5 applies in this case. Throughout this section we will use the Hauptmodulsj5 and
j13 specified in Section4.1.

Proposition 4.4. For p = 5 and D = −p
 or D = −4p
, the polynomialPD(X) is
of the form(X + 22)R(X)2 modulo
.
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Proof. From class number considerations we know that the class polynomialPD(X)

has odd degree. We show that the only factors ofPD(X) lying over j = 1728 are
equal to(X + 22)mod
. This will imply that our polynomial has the required form,
by Proposition2.5.

Let E = C/L whereL = Z[i]. Thenj (E) = 1728 and there are six points (counting
multiplicity) of X0(5) lying overE. We compute the values underj5,0 and j5 for each
of the choices of 5-torsion subgroup ofE:

Subgroup j5,0 j5

〈1/5〉 125+ 2
√

5 248+ 126
√

5
〈i/5〉 125+ 2

√
5 248+ 126

√
5

〈(i + 1)/5〉 125− 2
√

5 248− 126
√

5
〈(i − 1)/5〉 125− 2

√
5 248− 126

√
5

〈(i + 2)/5〉 −11+ 2i −22
〈(i − 2)/5〉 −11− 2i −22

Notice that the two subgroupsG of E with j5(E,E/G) = −22 are characterized by
the propertyG = iG (cf. [12, Section II.2]). We will use this characterization to prove
that the roots ofPD(X) over 1728 must havej5 = −22.

Suppose first thatD = −5
 is a fundamental discriminant. Letj5(Ẽ) be a root of
PD(X) modulo
 with j (E) = 1728 modulo
. Then the reductionE of E modulo
 has
quaternionic endomorphism ringA containing a subring generated byZ[I, (D+√

D)/2],
where I2 = −1 and

√
D in A is obtained from the embedding� : OD → A induced

by the reduction map fromE to E . Now, the reduction of the ringA modulo 5 is
isomorphic toM2×2(Z/5), with the isomorphism being given by the action ofA on
the 5-torsion groupE[5] = E[5] of E. The element

√
D has square equal toD ≡

0 mod 5, so it is nilpotent inM2×2(Z/5) with kernel equal to ker(5,
√
D) = kerp. Ob-

serve that ker(I
√
DI−1) = I ker(

√
D) = I kerp; on the other hand, ker(I

√
DI−1) =

ker(�̄(
√
D)) = ker(

√
D) = kerp. Therefore the distinguished 5-torsion subgroupG =

kerp of Lemma2.4 satisfies the equalityG = iG, as desired.
For the non-fundamental caseD = −20
, note that the Hecke correspondenceT2

applied to the valuej5(Ẽ) = −22 is a formal sum of terms all with even coefficient
except for−22 itself, so by the proof of Proposition2.5, the polynomialPD(X) is a
perfect square except for a linear factor of(X + 22). �

Proposition 4.5. For p = 13 and D = −p
 or D = −4p
, the polynomialPD(X) is
of the form(X + 6)R(X)2 modulo
.

Proof. Let j (E) = 1728. By the same proof as in Proposition4.4, the kernelG of Ẽ
satisfiesG = iG. There are only two 13-torsion subgroupsG of C/Z[i] that satisfy the
equationG = iG, and they are generated, respectively, by(2+3i)/13 and(3+2i)/13.
One calculates thatj13,0 = −3±2i andj13 = −6 for these points, so as in Proposition
4.4 the polynomialPD factors as(X + 6) times a perfect square.�
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DefineP
(X) to be the monic polynomialP−p
(X)·P−4p
(X). Then, by Propositions
4.4 and 4.5, the polynomialP
(X) is a perfect square mod
, and by the classification
of the real roots ofPD(X) in Section3.1, the polynomialP
(X) has exactly two real
roots which diverge to infinity in opposite directions as
→ ∞. In particular, for any
fixed real numberh, the value ofP
(h) is negative for all sufficiently large
.

Lemma 4.6. For p = 5 or 13, the polynomialP
(X) is a square modulo p.

Proof. Since the polynomial has even degree, it suffices to prove that all roots of
the polynomial are congruent modp. But every root ofP
(X)modp is of the form
jp(Ẽ) where Ẽ is an elliptic curve whose reduction modulop is supersingular. For
either p = 5 or p = 13, there is only one isomorphism class of supersingularj-
invariants modp, so all such curvesE are isomorphic modp and they all have the same
jp value. �

Theorem 4.7. Suppose p equals5 or 13.Let {E,E′} be a pair of elliptic curves, defined
over a number field K, corresponding to a rational point on the curveX∗

0(p). Assume
that E is not supersingular at p. Then E has infinitely many supersingular primes.

Proof. Supposeh := jp(Ẽ) is rational and not of supersingular reduction modulop.
Given any finite set	 of primes ofK, containing all ofE’s primes of bad reduction, we
construct a supersingular prime� of E outside of	. Choose a large prime
 satisfying
the conditions:

(1) 
 ≡ 3 mod 4 and
 splits in O−p and O−4p.

(2)
(
v
p


)
= 1 for every rational primev lying under a prime in	 (except possibly

v = p).
(3) P
(h) < 0.

Then the numeratorz of the rational numberP
(h) is divisible by some rational primeq
which is ramified or inert inQ(

√
D) for one ofD = −p
 or D = −4p
 (equivalently,

has
(
q
p


)
�= 1). Indeed, if not, then the absolute values of both the numerator and the

denominator ofP
(h) would have quadratic character 1 modulop
. But
(−1
p


)
= −1

by our choice of
, so the numberP
(h) itself would have quadratic character−1
modulo p
, contradicting the fact thatP
(h) is a perfect square modp and mod
.
Moreover,q is not equal top, since the assumption thatE is not supersingular atp
implies thatp does not divideP
(h).

It follows that q does not lie under any prime in	, and h is a root ofP
(X) in
characteristicq. Therefore, for one ofD = −p
 or D = −4p
, the valuej (E) is
a root ofHD(X) in characteristicq. Hence, for any primeq of K lying over q, the
reductionEq has complex multiplication byOD′ for some factorD′ of D such that
D/D′ is a square, and sinceq is not split in Q(

√
D), it follows that there is a new

supersingular prime� �∈ 	 lying aboveq. �



222 D. Jao / Journal of Number Theory 113 (2005) 208–225

5. Numerical computations

5.1. Relationship to Elkies’s work

In addition to proving the infinitude of supersingular primes for elliptic curves defined
over real number fields in[6], Elkies notes in[5, p. 566] that his method also works
for j-invariants “such that the exponent of some prime congruent to+1 mod 4 in the
absolute norm ofj − 123 is odd.” Thus, even for the case of elliptic curves over
imaginary number fields our results do not represent the first demonstration of infinitely
many supersingular primes for ordinary curves. However, one can prove by direct
computation that, over non-real number fields, the set of elliptic curves given in the
statement of Theorem1.1 is disjoint from the set of curves which satisfy the property
stated by Elkies above. As an illustration of this fact we will perform the computation
for the case ofX∗

0(3).
We preserve the notation from Section4.1. We will need the equation

j (z)− 1728= (j3,0(z)
2 − 486j3,0(z)− 19683)2

j3,0(z)3
, (7)

obtained as in[7] by linear algebra on the Fourier coefficients ofq-expansions. Because
[6] already treats the case of elliptic curves with realj-invariants, we are interested
only in the case of non-realj-invariants. Eqs. (6) and (7) show that the only way a
rational numberj3(z) can arise from a non-real numberj (z) is if the two complex
numbersj3,0(z) andw3(j3,0(z)) are imaginary quadratic complex conjugates of each
other. When this happens, Eq. (5) then shows that the two complex conjugates multiply
to 36, so we conclude that the norm ofj3,0(z) must equal 36.

Taking the norms of both sides of (7), we get

N(j (z)− 1728) = N(j3,0(z)2 − 486j3,0(z)− 19683)2

N(j3,0(z))3

= N(j3,0(z)2 − 486j3,0(z)− 19683)2

(36)3
,

where the last equality follows from the fact thatj3,0(z) has norm 36. This equa-
tion shows that the rational number N(j (z) − 1728) is always a perfect square, and
hence it cannot satisfy the requirement of Elkies that it possess a prime factor of odd
multiplicity.

5.2. Points onX∗
0(11)

For a numerical demonstration of our supersingular prime finding algorithm, consider
the pointj11 = 21

2 on X∗
0(11), having j-invariant

j = −489229980611− 42355313
√−84567

4096
,
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with N(j−1728) = (7646751287/64)2. We find supersingular primes for thisj-invariant
using class polynomials onX∗

0(11). For this we must pick primes
 ≡ 1 mod 4 such
that 
 is a quadratic residue mod 11 and the class polynomial of discriminant−44

has a real root to the left of21

2 , in order to ensure thatPD(21
2 ) is negative.

Using 
 = 5, we find that

P−220(X) = X2 − 77X + 121.

The rational numberP−220(
21
2 ) = −2309/4 is negative and a perfect square modulo

55, so the prime factor 2309 in the numerator is a supersingular prime for this point.
To find a new supersingular prime not equal to 2309, we need a new value of


such that the Jacobi symbol(2309
11
 ) is equal to 1. Using
 = 37, we have

P−1628(X) = X8 − 101042X7 − 2728753X6 − 167281605X5

+1453552981X4 − 4464256335X3 + 8630555868X2

−9354295951X + 4253517961

and

P−1628(
21
2 ) = −72 · 151· 452233314041

256
.

Of the primes in the numerator, both 7 and 151 are quadratic non-residues mod 11·37 =
407, so ourj-invariant is supersingular modulo these primes. In this case the primes
are small enough to check directly against the tables of supersingularj-invariants in
[2]; thus we find that(−489229980611− 42355313

√−84567)/4096 is congruent to
6 mod 7, and to 67 mod 151 (or to 101 mod 151 if the other square root is chosen), and
that these values are indeed supersingular invariants modulo 7 and 151, respectively.

6. Further directions

The proofs given here are not limited to the case wherejp(E) is rational. When
p ≡ 1 mod 4, we can generalize Theorem1.1 to the case of elliptic curvesE whose
jp-invariant has odd algebraic degree. The proof is the same as that given in[5]: for
large enough values of
, the absolute norm ofP
(jp(E)) is negative and hence has a
prime factor lifting to a new supersingular prime ofE. Likewise, forp ≡ 3 mod 4, we
can extend our proof to all curvesE for which jp(E) is real. In this case we assume
that all the real conjugates ofjp(E) lie inside the setjp(S) of Lemma 3.3, since
otherwise we can use[6] directly. Because the bounded root ofPD(X) is uniformly
distributed alongjp(S), there exists a value ofD making PD(X) negative valued on
exactly one real conjugate ofjp(E). For this choice ofD, the numerator of the absolute
norm of PD(jp(E)) produces a new supersingular prime forE.

One might naturally ask how to prove Theorem1.1 for the primesp = 17 or
p > 19. Our proof relies on the fact that the polynomialPD(X) is a square modp.
When X0(p) has genus 0, this fact is automatic sincePD(X) has only one root in
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characteristicp. For the genus 1 casesp = 11 and 19, we proved squareness using the
fact that the Brandt matrix of the Hecke correspondenceT2 has column sums which are
even. However, this evenness property fails in general—for instance, whenp = 23 we

haveB(2) =
[

1 2 0
1 1 1
0 3 0

]
which means we cannot expectPD(j23(E)) to be a perfect square

unless the numberj23(E)mod 23 differs from every possible pair of supersingularj23-
invariants by quantities having the same quadratic character mod 23. This condition is
fulfilled by about one quarter of the curves satisfying the hypotheses of Theorem1.1,
and for these curves the proof of the theorem goes through unchanged.

Even whenPD(X) is not guaranteed to be a perfect square modp, empirical evidence
indicates that the polynomial is sometimes a perfect square anyway. For example, when
p = 23, a computer search up to
 = 400 indicates that the primes 101, 173, and 317
have polynomials with square factorizations. It therefore seems possible that classifying
the square occurrences ofPD(X) would lead to a proof of the theorem in these cases.
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