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A single server facility is equippeld to perform a collection of operations. The service rendered 
to a customer is a branching process Df operations. While the performance of an operation may 
not be interrupted before its complelion, once completed, the required follow-up work may 
delayed, at a cost per unit time of waiting that depends on the type and load of work being 
delayed. Under some probabilistic assumptions on the nature of the required service and on the 
stream of customers, the problem is to find service schedules thalt minimize expected costs. The 
authors generalize results of Bruno [2], Chazan, Konheim and B. Weiss [4], Harrison [g], Klimov 

[l% _onheim [ 1 l]., and Meilijson and G. Weiss [ 131, using a dynamic programming approach. 

Single server station, service policies, 
holding costs, priorities, 

I dynamic programming. 

I. Plntroduction 

A Single server is equipped to serve several types of customers. The relevant 
features of a customer are his type, his time of arrival, his service length, and his 
holding cost. The problem of scheduling the service to the customers, under various 
cost criteria, is discused in the literature for a host of such problems. Of particular 
interest are cases where a priority ordxing of types can be s,hown to yield the best 
solution. One such ordering is the! “cp” priority ordering, where higher priorit 
assigned to customers with higher ratio of expected holding cost (c) to expect 

Jength of service (E(X) = i). 

For the non-preemptive service of an MfGI/l queue with several ty 
customers,.when tne expected cost per unit time is to be minilmized, the ” 
has been known for some time to be the best priority rule (see Con 
and Miller [S, pp. 159-KG]). Harrison [7, $1 and Meilijson and 
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its optimality in the class of all non-preemptive service policies (nor just those of a 
priority nature), Under a more general cost criterion that discounts holding costs 
and terminal rewards, Harrison showwed thlat a static priority polic;: is optimal. This 
policy reduces to “‘cp” as the discount fiactor is made to approach 1. 

As for the non-preemptive service of arrival streams other than Poisson, the 
6‘cp ” rule is optimal for the service of a batch of customers (see Conway, Maxwell 
and Miller [S, pp. 39-46]), it is always better than the only other priority rule under 
a GI/GI/l model with two types of customers (Wolff [19]), but fails to be optimal 
for more complex streams. In fact there need not exist a static priority rule that is 
optimal. Still, for general streams the *top “c+L” type of customer shoulcl be given 
preferential service, ahead of all others (Meilijson and Yechiali [14])(. 

When holding costs are the same for all customers and service lengths become 
known upon arrival, Shrage [16] showed the Shortest Remaining Processing Time 
discipline to minimise the actual number of customers present at the station at 
every single moments for the preemptive service of a general stream of customers. 
This discipline is the pre ;mptively applied “cp” rule. 

Further models introd 1 :e@ the possibility of partial preemption by assuming that 
a customer may rejoin the quest e upon compfleting service, possibly as a customer of 
a different type. 

Klimsv [lO] assumes that a type i customer upon leaving the server rejoins the 
queule as a type j customer with some probability Q(i, j), and leaves the station 
with the complementary probability 1 - Xi Q(i, j) (the non-preemptive case is 
C?(iJ) = 0). Me dlefined a priority rule and proved it to be optimal under steady 
state for Poisson arrivals. The rule: turns out not to depend on the arrival rates of 
the different types of customers, a property shared with the “cp” rule. Bruno [2] 
and Meilijson and Weiss [13] proved Klimov’s policy to be optimal for the service 
of a batch of customers with Klimov’s kind of feedback, a result that contains tho:se 
of Chazan, Konheim and B. Weiss [4], Konheim 1111, Bruro and Hofri [3], and 
Meilijson and Welass [ 121. Tcha and Pliska [ 181 dealt with the discounted version of 
thiis model. 

In the present note we discuss the following model. Denote by r the number of 
types of customers. Let the random variables 1, vr, cr, nli (1 s j G r) be the type of a 
customer, the length of its service (assumed throughout to be non-preemptive), its 
holding cost per unit time, and the number of customers of type j that arrive during 
it,s service. Assume that, given the types of the customers, vectors 
(lJ[ ; CI ; rh, nf3’, l . -, n,,) corresponding to different customers are independent,, those 
corresponding to customers of the same type being, in addition, identically 
distributed, 

The server’s problem is to find a service policy that will minimize the expected 
total cost on all customers during a single busy period that started with an arbitrary 
load of work. We will Idefine a priority ordering tif the types similar to thosle in 
[2,10,13] and we will prove (Theorem 1) the stationary pclicy it generates to 
provide an optimal service policy. The ordering depends on the joint distribution of 
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( Vi ; Ci ; rti I- - . . ni,) only through the values of I?(Q), E(Ci), E(n~~), E(niz), . . ., E(ni,), 
(as observed by Es’rund [2] for his model). The c;!lculation of the priority ordering is 
given explicitly in Theorem 2. 

Under reasonable assumptions on the independence and time-homoge*neity of 
busy and idle periods, a stationary policy that is clptimal for the above criterion per 
busy period will also minimize the rate of cost under steady state (see Mordijk [9,,, 
Lemma 5.21, and take i0 as the idle state). 

It shouid be observed that the counting variables nij do no? diffefentiate between 
the arrival process and feedback requirements at the station. Such a differentiation 
is unnecessary. 

The most important version of this model is thiat where cllstomers of thle various 
types arrive according to independent Poisson streams. This case is covered by the 
description that follows. 

Suppose that for some non negative vector h, 113(nij)- Au)E(vi) is non negative 
for all (i, j). This will occur for instance when the stream nij of customers of type j 
that arrive during the service of a customer of type i, is composed of ny = H:, + n’& 
where n:j is the number of arrivals in a Poisson stream with rate h(j), during the 
service of the customer of type i (whose expectation is h(j)E(vi)), and where n’:, is 
the multiple feedback generated by the customer of type i. We will show that in this 
case, the priorit!! nadering will, be unchanged when E(ni,) is replaced by E(nri) - 

A (j)E(s)* 
The models discussed by Klimov, Bruno, Meilijson and Weiss allow single 

feedback, i.e. x, n’:j is 0 or 1. Under Klimov’s model n:j emanate from Poisson 
streams, under the others n:j s 0. We have thus explained what makes the same 
policy optimal in all these cases of single feedback, while at the same time 
generalizing the models a bit further to allow for multiple feedback and for muhiple 
arrivals, where by this we meran a stream of independent and identically but 
otherwise arbitrarily distributed batches of customers that arrive at moments that 
form a Poisson point process. 

2. Assumptions and results 

In this section we introduce some notation amd formulate assumptions and 
results; the proofs of these results follow in Sections 3 and 4. 

(i) v(i):= E(vi) and c(i) = E( c i) are positive and finite, n(i, j) = E(:n, j are 

non-negative and finize. 
(ii) All eigenvalues of N = (n (i, j)) are less than 1 in absolute value. 

(iii) The length of a busy period and the number of customers served 
possess finite second moments. 

e Assumption (iii) deals with variables t:/lat do not depend on servic 

Let r be the number of types of customers and denote R = (1,2,. . ., r). For a rnat~~ 
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M on R x R and sets A c B c R, the matrix MA on A x A has M.(i, j) = M(i, j) 
and the matrix M A,WI on A X B has MA,&, j) = M(i, j)(@(B - A))(j), where 4(R) 
is the indicator function of the set K (i.e., +(K)(x) = 1 if x E K and = 0 if xe K). 
For a vector w on it? and Sets A c B c R, the vector WA on ,A has WA(i) = w(i) 
and the vector WA,B on B has wA,B(i)= w(i)(@(B -A))(i). The d+ectrutio wt//w2 
of the vectors w1 and w2 on R is the vector on R with (wJ/ w2)(i) = WI(i)/ w2(i) if 
w*(i) # 0; = 0 if w2(i) = 0. Denote by v and c the vectors on R with coordinates 
v(i) and c(i) respectively, denote: d = (I - N)c, and denote by 1 the vector all of 
whose coordinaltes &are 1. All vectors are column vectors, unless transposed by ii). 

For a non-empty subset A of R, define the following vectors on A, after 
justifying through Seneta ([IS, Theorem 1.11) the taking of inverses. 

d(A) = (L - NA)-ldA = cA - (IA - Nk)-‘NA,Rc (1) 

y(A) = (14 - NA)-'VA (2) 
H(A)l= dr[A)jjy(A). (3) 

Define a vector 2’ 03 R by 

X(i) = max (H(A U {i})(i)). (4) 
AgR 

A service policy is %-monotone if at every decision moment it chooses almost 
surely to serve onp, of the customers whose type has the highest value of Z(i) 
among those in the: queue. (Remark: Those S&monotone policies that are of a 
priority nature are Icalled “modified static policies” by Harrison [7,8]. If it turns out 
that i# j + X(i) # X(j) then there is only one %‘-monotone policy, and it is a 
modified static policy.) 

Theorem 1. A service 
period if and only if ii 

policy minimizes the expected total cost during a. whole busy 
* is X-monotone. 

Let the non-empty sets R t, R ?, . . .4 R t be the partition of R with i, j E R Z + 
Z(i) = X(j) and I’ E RX, j E R E+1 + Z’(i) c Z’(j). (Rr, R f, l . ., R T) is called 
the optimal priority partition of R. To compute it, it is not necessary to perform ~111 
the maximizations in (4). Following Klimov 1101, I. 

Theorem 2. Define R 7 = {i E R I(H(R))(i) = minjeR (H(R))(j)}. Let R2 = 
R-R:. If R2 = 8, let I= 1. otherwise, define inductively R X = 
6 (5 Rk 1 (H(&))(i) == minj,J?, (H(R,))(j)}. Let Rk+l = R - R X. If Rk+l = $, let I= 
k. Theai=landd:=R:: forall lSk=l. 

or the next theorem, observe that if a Poisson arrival stream had raie A(i) for 
customers of type i, then the (i, j) coordinate of the matrix VA would be the 
expected number of arrivals of type j during the service of a customer of \:ype i. TIE 
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next theorem says that whenever a part of the matrix N can be interpreted as bein 
“time-homogeneous” (say, a Poisson process), that part is irrelevant for th 
computation of the optimal priority partition of R. 

‘Theorem 3. Assume that for some non-negative matrix M on R x R and som 
non-negative vector A on R, N = M + vh I. Then N and M yield the same optimal 
priority partition of R. 

A word about ‘y, d arjd H. 

Express (IA - NJE = c:=, N”, to infer that (y(A))(i) is the expected time it will 
take to serve customers to exhaustion, when there is originally one customer only, 
its type is i, and only customers whose types belong to A are provided service. At 
the conclusion of that time the expected number of customers of type j in the queue 
is the (i,j) coordinate of (IA - ANA)-‘NA,R. (d(A))(i) can thus be explained as the 
difference between the expected total holding cost per unit time of all customers in 
the station, at the beginning and conclusion of the above described time. (H(A))(i) 
is thus the ratio of a reduction in rate of cost and an expected service time, and 
reduces to c(i)/v(i)j when n(i, j) = 0. So X-monotone policies generalize the “c$’ 
rule. What follows is an intuitive justification for following X-monotone dictates. 

Imagine Tom and Die 
f 

are the only customers in the queue, Tom’s type is i, 
Dick% is j. Let i E A G R, j E B C R. Under the policy ‘ID start by serving Tam, 
serve to exhaustion customers with types in A but do not serve Dick. Now serve 
Dick, then serve to exhaustion customers with types in 3 but do not serve those in 
the queue at the moment Dick’s service started. Proceed in some aA2rary manner 
‘c;-. Define a policy DT in the naturally similar way, using the same n as before. To 
compare the perforlmances of TD and DT we may disregard the common tail -. 
The relevant waiting co& to compare are, then, 

cO’)(y(A))(i) + ((IA ‘- NA )-'NA.RC)(i)(y(B))(j), 

c (i My (B Hi) + (UB - NB)-‘NB.RC)O’)(~(A))(~). 

In other words, (H(B))(j) and (H(A))( ) i are to be compared. If Z@‘(i) > X(j) then 

for tome set A containing i and aP1 sets _B containing j, we wp;id rather use TD 
than DT. 

3. Proofs of Theorems 2 and 3 and some technical lemm 

Lemma 1. For i E AC, c B C R anld for crny vector u O~Q B, 

((1s -* NJ’u)(i;) z ((IA - NA)-'U*)(i) -f- ((IA - NA)-"NA,B(IB - 

. Immediate. Use the probabilistic interpretatio 
about ‘y, d and H. 
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Defitae, for A C B G R, a vector HA(B) on A by 

giA(Z3) = ((d(B))A - d(n ))ll((r(B))A - r(A))* (6) 

emma k, For i E A c B CI R, 

(HU-V)(i) = ((y&A ))(i)lly(B))(i))(H(A))(i) + (7) 

Ifi in addition, y(B)(i) > y(A)(i), then (HA (B))( ) i is a convex combination of the 
values of (H(B))(j) *for j E B - A. 

Proof, Expccssion (73 follows immediately from expressions (3) and (6). Apply 
Lemma 1 to u = & and to u = us to obtain, when, y(B)(i)> y(A)(i), 

(HA(B)!@) = (((IA - P~A)-‘NA,B~(.~~))(~))/(((IA - NA)-lNA,By(B))(i)), from which 
the second part of the statement follows. 

Lemma 3. Let j E R. Denote by N w the matrix on R x R with N”‘(i, k ) = 
N(i, h)(d)(R - {j}))(k). Denote by 6 the vector on R with t(i) = N(i, j). Then, 

(i) For every subset B of R containing j and for every vector u on B, 

((Zs - Ni!‘)-‘u)(j) = ((4s - NJ’u)(j)I(l + ((1s - NJ*Wo’)). (8) 

(ii) For eoeq subset B of R co,ntaining j, 

(H!(B a)(j) == 
(C(j)(l - ((& - No8’)-‘~B)(j)) - ((Is, - N$$‘)-‘&&(j)) 

((ls - N%‘)-h)(j) 
. (9 

Proof. Let (Ze - NOB))% = y. Then u = (ZB - N$$))y = (ZB - NB)y + y(j)& Hence, 
(ZD -- Ng’)-*u = y = (ZB - N&‘u -- y(j)(ZB - N&l&+ Taking the’ j’s component, 
(8) follows, (9) is obtained by sulbstituting in (8) NB,R~, &, and vB for u. 

Proof of Theorem 2. As a first step, we will show that if i E I? Z and i E A G Rk, 
then 

(Z%A ))(i) S (H& ))(i)* (10) 

By the second part of Lemma 2, either there is trivially an equality in (10) or 
(E&, @k))(i) is a convex combination of the values of #(H(Rk))(j) for j E RI, - A. By 
the definition of Z? t and the first part of Lemma 2,, (10) follows. 

We will now idelrtify k T a6 R 7. By (lo), lif i E fir then (H(R))(i) = 
maxAsR (H({i) U A))(i). By the definition of R f, H(R) is constant on R: and 

Z(i) a (H(R ))ti) ’ (YR ))(‘) I w lenever 1 i E I? ‘: and j E R2. It then follows that 
“* R* = R:. 

Assume, by induction, that Z? T = R 5 for k < m. Assumle that ,,, # 0. Consider 
anyiER2. Lemma 2 and the induction hypo 

(H(A ))(i) a R,,,))(i) then necessarily (H(A n 
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imize (H(A))(i) over A we may restrict attention to A C R,. Now use (19) to 

obtain that X(i) = (H(R,))(i). By the definition of RZ, H(R,) is constant on &t, 
and Z’(j) a (H(R,)(j)) > (H(R,))(i) whenever i E Rz and j E R,, . . 3 then 
f’ol!ows that R - f = R f and the proof is complete. 

l?r~f of Theorem 3. Check, possibly imitating the proof of Lemma 3, that for every 
vector w on A f R, 

(I. -NA)-IW =(IA -MA)-‘W +(A~(IA -NA)-‘w)*(IA -MA)-‘vAe (11) 

!hbstitute dA as w in (11) to express 

d(A) = (IA - NA)-‘dA = (IA - MA)-‘& + (AAd(A))(IA - MA)-‘v,+ (12) 

Substitute vA for w in (11) to express 

y(A) = (I’ - NA)-‘tl,a = (1 + A AT(A)) 0 (IA - MA)-‘vA. (139 

The direct ratio of (12) and (13) yields, denoting by .HtM) the If computed as if M 
was N, 

H(A) = I+ h f,(A)(H’“‘(A)+(A:d(A))lA)* (14 
A 

Since for any fixed A, there is a strictly increasing relationship between H(A) and 
HfM)(A), the construction in Theorem 2 will produce under N and M the same 
optimal priority partition of R. 

4. Qptimality of X-monotone policies 

This section deals with Dynamic Programming. Some of the concepts have been 
:.?orrowed from Dubins and Savage [6]. A good general reference is Blackwell [ 11 

and Strauch [17]. 
A decision moment is a moment in which an arriving customer finds an idle server 

a;r a departing customer le?ves a non-empty queue behind. The state at a decision 
moment is the vector s = (nl, n2, . . ., nr) of queue lengths of the I types. Denote by 
n the collection of all states and by J the mapping from a to 2R - {@ defined by 
.J(nl, n2, . . .) n,) = {i E R 1 ni > 0). A policy specifies at each decision moment the 
rype of the customer to be served next, among those in the J set for the current 
state. The process generated by a policy is the (eventually terminating) sequence of 
consecutive states during the busy period, under the policy. 
r:n-+2R-{cp}f or which r(s) c .?(s) for all s E 0, a policy is a~u&la& in 
almost surely all states d in the process generated by the policy, it 
a type in r(s). For any two policies w and W’ and any stoppirl 
process generated by n, let (?T’, v’) be the policy that agrees with 
“number of operations”) and then procee 
the state under w at tim ‘_P. For a mappin 
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f(s) E J(s), f’“’ is the stationary policy that serves a type i customer whenever 

f( ) 2; -ri, -’ : Shorten ((j@))7) n) to (lfT, 71) and q’, rr) to (f, n). For a policy n, a positive 
integer (finite or + 00) pt, and a state s E 0, let K(w)(s j be the expected total 
waiting cost up to the concfusion of the nth operation (or the end of the busy 
period, whichever comes first), starting with an initial state s and using the policy n. 
Shorten V, = Vi A policy :r* is O@YUZ~” if for a11 s E &! and all policies r, 
V( “tr *)(s) s V(T)(S). A polky 7r * is tail-irrelevant if for a!1 s E 0 and all policies 
gz; ,V(Wn, #q(s) -+ V(W)(S) as n -+ 00. A policy 7t is Mfty if for all f : I(t --, R, with 
f(s)E J(s) for all s E 91, V[f, n)(s) 2, V(7r)gs) for all s E 0.. 

The problem of finding an optimal policy is a Negative Dynamic Pro&ramming 
problem with a finite action space:. Hence, by ([17, Theorems 6.5 and 9.1]), optimal 
pokies do exist, and a tail-irreilevant policy is optimal if and only if it is thrifty. Fix 
any optimal policy vTTI For s E: CI let 

G(s) = {i E d(s) 1 for :iome f : 0 * R with f(r) = i, V(f, T)(S) = V(v)(s)}. 

Observe that any two optimal pohcies define the same mapping G : f2 -+ 2R - (0). 

‘Define a mapping K : fl+ 2R - {fl) by 

K(s) = {i E J(s) 1 %(i ) ::.= max Z(j)}. 
j&l(S) 

The Z-monotone *;)olicies are ihose policies that are available in I%: Lemma 4 will 
prove all policies to be tail-irrele want, Lemma 5 will prove a policy to be thrifty if 
ancll onIy* if it is ;tvaiIable in G, iln,d the rest of the section wil1 show G and K to be 
identical. 

Lemma 4. Under awmptions: (i), (ii) and (iii), supW V(w)(s) < 00 and 
sup, (V(V)(S) - vn (W)l(S))-* 0 LZS n + 00, for each s EE 0. 

Weof. Assume fjlrst that the ralrl&m holding costs c are deterministic, i.e., they are 
determined by the type of tlke customer. Then, ktting L be the number of 
customers served during the bus,y period, and X the length of the busy period, 

sup v(~)(s) SS maxc(i)a 
?I iER 

nax c ( i)(ES (.X2)) ‘Sr2(ES (L 2))“2 < 00 
iER 

(15) 

Sup( V(n)(s) a-- Vn(~)~I('s~l~) S max c(i)lE,(X e L l t/!i(,I, a at)). 
7r iER 

Since X l L is integrable by (1511 and +(L 3 n) -+ 0 a.s. as n +w, the right h:md side 
of (16) goes to zero. 

The proof will be finished if WC show that when G is replaced by c(I), V,(W)(S) 
remains unchanged, 

Let ci, vi, 4, Ai be the holding cost, length of service, type and arrival time of the 
i th cu.stoma served Iduring t.he l:~:~y period (i := I, 2, . . . I.,). Th en, using conditional 
independence of service perior,:f s @ven types, 
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Vn !, T)(S) = E (‘m’E”’ 2 CiUj - miTn’ CiAi) , i=l jCi i=l 

= 2 2 E(4(L 2 i)u,ci)- 2 E(4(L 3 i)c,A,) 
i=l jCi i=l 

= 2 z E (Q(L 3 i)sc(Ii))- 2 E(4(L 3 i)c(.pi)d4i) 
i=l j<i is1 

Lemma 5. Under assmgptions (i), (ii) an.d (iii), a policy is optimal if and only if it is 
available in G. 

Proof. Let 7~” be any optimal policy. 

If 7~ is available in G, then (v’, T*) is optimal and so, by induction, so is (#, n*), 
for every positive integer n. Hence, for each s E fi and each positive integer n, 

1 V(m)(s) L v(w*)(s)l s 1 V(7r)(s) - K(w)(s)J + 1 V”(7F, w*)(s) - V(7?, w’b(s)J 

s; 2 sup( V(V’)(S) - V&‘)(s)). 
lr‘ 

So, by Lemma 4, V(w) = V(w*) and n is optimal. 
If v is not available in G, let T 2 0 be the least of the two times: end of the busy 
period, or first time ITT dictates an action outside the G set for the current state. 
Non-availability of T in G implies that (#, 7p*) strictly improves T, so n is not 
optimal. 

Proof of Theorem 1. Each order $ on .R defines a priority stationary policy f” 
with f(s) = sup{i ES(s)}. Let p be any order on R making X monotone 
non-decreasing (i.e., making f@‘) avnlilable in K) and let j E R be arbitrary. Define 
g : 0 -+ R by g(s) = j if j IE J(s) and g(::) = f(s) otherwise. In the light of Lemma 
9, to obtain that K and G are identical it is enough to show that for arbitrary p and 
j as above, V(g, f@))(s) > V(f”))(s) f or all s E 0, with strict inequality holding 

whenever j E J(s) - K(s). We will show that for some strictly positive stopping 
time T on the process generated by f @), V(g, f@“))(s) > V(pr, (g, fml)>cs), with strict 

inequality holding whenever j E J(s) - K(s). The 
enough, since its aipplication again and again 

VcfT, (g, f@)))(s) B V(fT, cfT, (g, f@‘))))(s) a l l 0, and, 
sequence converges t 0 V(@f”‘)( s). 

For initial state s cf 0 wi.th j E J(s), let T be 
:sF = (ni, ni,. . ., 8t.i)) s’atisfies 

(a) nL= 0 for k > f(s), 

proof of this last statement is 
will yield that V(g,ra’)(s) a- 
by Lemma 4, this decreasin 

the first time the state (c 

w n;(,j ;= nf0) f f(s) = j then V(g, f@“‘)(s) = V(JT, (g, 
since for such an s, (c;, f@)), CfT, (g, ftml)) and f(“’ generate thts same process. 
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