>

brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

© North-Holland Publishing Company

3

MULTIPLE FEEDBACK AT A SINGLE-SERVER STATION
Isaac MEILIJSON* and Gideon WEISS

Dfépartment of Statistics, The {/nivercity of Tel Aviv, Tel Aviv, Israel

R‘F:ccived: 11 August, 1975
R.vised: 15 July, 1976

A single server facility is equipped to perform a collection of operations. The service rendered
to a customer is a branching process of cperations. While the performance of an operation may
nct be interrupted before its completion, once completed, the required follow-up work may be
deiayed, at a cost per unit time of vaiting that depends on the type and load of work being
delayed. Under some probabilistic assumptions on the nature of the required service and on the
stream of customers, the problem is to find service schedules that minimize expected costs. The
authors generalize results of Bruno [2], Chazan, Konheim and B. Weiss [4], Harrison {8}, Klimov
[19], .onheim [11], and Meilijson and G. Weiss [13], using a dynarnic programming approach.

Single server station, service policies,
holding costs, priorities,
dynamic programming.

1. Imtroduction

A single server is equipped to serve several types of customers. The relevani
features of a customer are his type, his time of arrival, his service length, and his
holding cost. The problem of scheduling the service to the customers, under various
cost criteria, is discu.sed in the literature for a host of such problems. Of particular
interest are cases where a priority ordsring of types can be shown to yield the best
solution. One such ordering is the *“cu” priority ordering, where higher priority is
assigned to customers with higher ratio of expected holding cost (c) to expected
length of service (E (x)= 5)

For the non-preemptive service of an M/GI/1 queue with several types of
customers, when the expected cost per unit time is to be minimized, the “cp. ™ rule
has been known for some time to be the best priority rule (sze Conway, Maxwell
and Miller [S, pp. 159-167]). Harrison [7, 8] and Meilijson and Yechiali [14] proved
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its optimality in the class of all non-preeimptive service policies (rot just those of a
priority nature). Under a more general cost criterion that discounts holding costs
and terminal rewards, Harrison showed that a static priority polic:’ is optimal. This
policy reduces to *“‘cu” as the discount factor is made to apprcach 1.

As for the non-preemptive service of arrival streams other than Poisson, the
“cu” rule is optimal for the service of a batch of customers (see Conway, Maxwell
and Miller [5, pp. 39-46]), it is always better than the only other priovity ruie under
a G1/GI/1 model with two types of customers (Wolff [19]), but fails to be optimal
for more complex streams. In fact there need not exist a static priority rule that is
optimal. Still, for general streams the top “cu ” type of custorner should be given
preferential service, ahead of all others (Meilijson and Yechiaii [14]).

When holding costs are the same for all customers and service lengths become
known upon arrival, Shrage [16] showed the Shortest Remaining Processing Time
discipline to minimise the actual number of customers present at the station at
every single moment, for the preemptive service of a general stream of customers.
This discipline is the pre .rptively applied “cu” rule.

Further models introd 1 ;ec the possibility of partial preemption by assuming that
a customer may rejoin the quesce upon completing service, possibly as a customer of
a different type. '

Klimcv [10] assumes that a type i customer upon leaving the server rejoins the
queue as a type j customer with some probability Q(i, ), and leaves the station
with the complementary probability 1—2,Q(i,j) (the non-preemptive case is
Q(i,j)=0). He defined a priority rule and proved it to be optimal under steady
state for Poisson arrivais. The rul: turns out not to depend on the arrival rates of
the different types of customers, a property shared with the ‘“cu” rule. Bruno [2]
and Meilijson and Weiss [13] proved Klimov’s policy to be cptimal for the service
of a batch of customers with Klimov’s kind of feedback, a result that contains those
of Chazan, Konheim and B. Weiss [4], Konheim [11], Brur.o and Hofri [3], and
Meilijson and Weiss [12]. Tcha and Pliska [18] dealt with the discounted version of
this model.

In the present note we discuss the following model. Denote by r the number of
types of customers. Let the random variables I, v;, ¢, n; (1 <j <r) be the type of a
customer, the length of its service (assumed throughout to be non-preemptive), its
holding cost per unit time, and the number of customers of type j that arrive during
its service. Assume that, given the types of the customers, vectors
(vs5 €13 nny, Az, - . -, mi,) corresponding to different customers are independent, those
corresponding to customers of the same type being, in addition, identically
distributed.

The server’s problem is to find a service policy that will mirimize the expected
total cost on all customers during a single busy period that started with an arbitrary
load of work. We will define a priority ordering of the types similar to those in
[2,10,13] and we will prove (Theorem 1) the stationary pelicy it generates to
provide an optimal service policy. The ordering depends on the joint distribution of
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(vi; ¢i; iy .. ni) only through the values of E(v:), E(c:), E(ni,), E(ny), ..., E(n.),
(as observed by Bruro [2] for his model). The czlculation of the priority ordering is
given explicitly in Theorem 2.

Under reasonabie assumptions on the independence and time-homogeneity of
busy and idle periods, a stationary policy that is optimal for the above criterion per
busy period will also minimize the rate of cost under steady state (see Hordijk [9,
Lemma £.2), and take i, as the idle state).

it shouid be observed that the counting variables n; do not differentiate between
the arrival process and feedback requirements at the station. Such a differentiation
is unnecessary. '

The most important version of this model is that where customers of the various
types arrive according to independent Poisson streams. This case is covered by the
description that follows.

Suppose that for some non negative vecior A, 2(n;)— A(j)E (v:) is non negative
for all (i, j). This will occur for instance when the stream n; of customers of type j
that arrive during the service of a customer of type i, is composed of n; = nj;+ n’,
where nj; is the number of arrivals in a Poisson stream with rate A(j), during the
service of the customer of type i (whose expectation is A (j)E(v)), and where n’; is
the multiple feedback gznerated by the customer of type i. We will show that in this
case, the prioritv ordering will be unchanged when E(n;) is replaced by E(n;) -
A()E(vi). |

The models discussed by Klimov, Bruno, Meilijson and Weiss allow single
feedback, i.e. 2,n"; is 0 or 1. Under Klimov’s model n’; emanate from Poisson
streams, under the others nj;=0. We have thus explained what makes the same
policy optimal in all these cases of single feedback, while at the same time
generalizing the models a bit further to allow for multiple feedback and for muttiple
arrivals, where by this we mean a stream of independent and identically but
otherwise arbitrarily distributed batches of customers that arrive at moments that
form a Poisson point process.

2. Assumptions and results

In this section we introduce some notation and formulate assumptions and
results; the proofs of these results follow in Sections 3 and 4.
(i) »(i)=E(v.) and c(i)= E(c;) are positive and finite, n(i,j)= E(n,) are
non-negative and finite.
(ii) All eigenvalues of N = (n(i,j)) are less than 1 in absolute value.
(iii) The length of a busy period and the number of customers served during it
possess finite second moments.

Remark. Assumption (iii) deals with variables that do not depend on service policy.

Let r be the nunioer of types of customers and denote R = {1,2, ..., r}. For a matrix
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M on R X R and sets A C B C R, the ma‘rix M, on A X A has M. (i, j)= M(i, j)
znd the matrix Mas on A X B has Mas(i,j) = M(i, j)(¢(B — A))(j), where P(K)
is the indicator function of the set K (i.e., #(K)(x)=1if x € K and =0 if x& K).
For a vector w on R and sets A C B C R, the vector wa on A has wa(i)= w(i)
and the vector wa s on B has was(i)= w(i)(¢ (B — A))(i). The direct ratio w,/[ w2
of the vectors w, and w, on R is the vector on R with (w,//w2)(i) = wi(i)/ w2(i) if
wa(i) # 0; = 0 if w,(i) =0. Denote by v and ¢ the vectors on R with coordinates
v(i) and c(i) respectively, denote d = (I — N)c, and denote by 1 the vector 2ll of
whose coordinates are 1. All vectors are column vectors, unless transposed by {').

For a non-empty subset A of R, define the following vectors on A, after
justifying through Seneta ([15, Theorem 1.1]) the taking of inverses.

d(A)= (I, — Nao)'da = ca —(In = Na) 'Naxc (1)
Y(A)=(In — Na)'va 2
H(A)=d(A)//v(A). 3

Define a vector # on R by
H(i)= max (H(A U{i})(@). C)

A service policy is #-monotone if at every decision moment it chooses almost
surely to serve one of the customers whose type has the highest value of #(i)
among those in the queue. (Remark: Those #-monotone policies that are of a
priority nature are called ‘“modified static policies” by Harrison [7, 8]. If it turns out
that i#j == ¥(i)# #(j) then there is only one ¥-monotone policy, and it is a
modified static policy.)

Theorem 1. A service policy minimizes the expected total cost during a whole busy
period if and only if it is #-monotone.

Let the non-empty sets RY, R%,..., R be the partition of R with i,j € R} =>
H(i)= #(j) and i € R}, jER%,, = #H(I))< X(j). (R1,R3%,...,R?Y) is called
the optimal griority partition of R. To cormpute it, it is not necessary to perform ail
the maximizations in (4). Following Klimov [10],

Theorem 2. Define R?*={i € R|(H(R))i)=minex (H(R))(j)}. Let R,=
R-R%* If R,=@, let [=1. Otherwise, define inductively R3%=
{i € Re|(H(R))(i) = min;er, (H(R:))()}. Let Revi=R —R%. If Rni =0, let [ =
k. Then | =1 and R% = R% forall 1<k =<1

For the next theoiem, observe that if a Poisson arrival stream had rae A (i) for
customers of type i, then the (i,j) coordinate of the matrix vA’' would be tae
expected number of arrivals of type j during the service of a customer of :ype i. The



Mudltiple feedback at a single - server station 199

next theorem says that whenever a part of the matrix N can be interpreted as being
“time-homogeneous’” (say, a Poisson process), that part is irrelevant for the
computation of the optimal priority partition of R.

Theorem 3. Assume that for some non-negative matrix M on R X R and some
non-negative vector A on R, N =M + vA'. Then N and M yield the same optimal
priority partition of R.

A word about vy, d axd H.

Express (Ia — Na) ™ = Z; - N% to infer that (y(A))({) is the expected time it will
take to serve customers to exhaustion, when there is originally one customer only,
its type is i, and only customers whose types belong to A are provided service. At
the conclusion of that time the expected number of customers of type j in the queue
is the (i, j) coordinate of (I — Na)'Nar. (d(A))(i) can thus be explained as the
difference between the expected total holding cost per unit time of all customers in
the station, at the beginning and conclusion of the above described time. (H(A)Xi)
is thus the ratio of a reduction in rate of cost and an exp:zcted service time, and
reduces to c¢(i)/v(i) when n(i, j)=0. So ¥-monotone policies generalize the “‘cu”
rule. What follows is an intuitive justification for following 3/-monotone dictates.

Imagine Tem and Dicls are the only customers in the queue, Tom’s type is i,
Dick’sis j. Let i € A C K, j € B C R. Under the policy TD start by serving Tom,
serve te exhaustion customers with types in A but do not serve Dick. Now serve
Dick, then serve to exhaustion customers with types in 3 but do not serve those in
the queue at the moment Dick’s service started. Proceed in some a:u.lrary manner
7-. Define a policy D'T in the naturally similar way, using the same = as before. To
compare the performances of TD and DT we may disregard the common tail =.
The relevant waiting costs to compare are, then,

c()(y(A)E) + ((La — Na) ' Narc)@iNy(B))(j),
c(i)(v(B)Xj) + ((Is = N5 )" Na.rc)(j)(y (A)Ni).

In other words, (H(B))(j) and (H(A))i) are to e compared. If #(i)> J(j) then
for some set A containing i and all sets B containing j, we w- .id rather use TD
than DT.

3. Proofs of Theoreins 2 and 3 and some technical lemrnas

Lomma 1. Fori € A C B C R and for any vector u ovn. B,
((Is = Na)'u)(i) = ((Ta = Na) 'ua)(i)+ ((Ia — Na) 'Nas(Is — Na)'uXi) (5)

Proof. Immediate. Use the probabilistic interpretation given in the comments
about y, d and H.
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Define, for A C B C R, a vector Ha(B) on A by
Ha(B) = ((d{B)a — d(AN//((¥(B))a — v(A)). ©6)

Lemma 1. Fori€ ACBCK,
(H(B)Xi) = ((v(AN@)/ (v (B)(E)NH(A))) + | (7
+ (1= ((y(A)NE)/ (v(BNEHA(B)))

If, in addition, y(B)(:) > y(A)(i), then (Ha(B))i) is a convex combination of the
values of (H{B))(j) for j€ B — A.

Proof. Expression (7} follows immediately from expressions (3) and (6). Apply
lemma 1 to u=ds and to u=vs to obtain, when y(B)(i)>y(A)(i),
(Ha(B))(i) = ((Ia = Na)'Nasd(B))(i))/ (I = Na)'Nasy(B))i)), from which
the second part of the statement follows.

Lemma 3. Let jE€R. Denotz by N the matrix on RXR with N9, k)=
N, k)¢ (R = {jD)k). Denote by & the vector on R with £(i) = N(i, j). Then,
(i} For every subset B of R containing j and for every vector u on B,
((Is = N®)"'u)(j) = ((Is = Na)"'u)(j)/(1 + ((Is = N&)"'£s)(J))- ®
(ii) For every subset B of R containirg j,

» . (e(DNA = (s = N®) "¢ )(j)) — (Is — N8)"Ns.rc)(j))
(Hr(B ))(]) - ((IB — Ng))—lva )(]) . (9)

Proof. Let (Is — N¥)'u =y. Then u = (Is — N¥)y = (Is — Ns)y + y(j)és. Hence,
(Is - N 'u =y =(Is — Ns)'u ~ y(j)(Is = Ns)'£s. Taking the j’s component,
(8) follows, (9) is obtained by substituting in (8) Ngrc, & and vs for w.

Proof of Theorem 2. As a first step, we will show that if i € R¥andi€E ACR,
then

(H(A)() = (H(R))(P). (10)

By the second part of Lemma 2, either there is trivially an equality in (10) or
(H.(R.\))(i) is 2 convex combination of the values of (H(R,))(j) for j € R« — A. By
the definition of R¥ and the first part of Lemma 2, (10) follows.

We will now ideutify R* as R%. By (10), if i € Rt then (H(R))()=
max.crx (H{i} U A))(i). By the definition of R*, H(R) is constant on R% and
3‘5’ ()= (HR)))> (H(R))(i) whenever i € R¥ and j € R,. It then follows that
R1=R}.

Assume, by induction, that R} = R} for k < m. Assume that R,, # @. Consider
any i € R%. Use Lemma 2 and the induction hypethesis to obtain that if i € A and
(H(A))(i) = (H(R.))(i) then necessarily (H(A N R, ))(i)= (H(A))(i), so to max-
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imize (H(A))(i) over A we may restrict attention to A C R,.. Now use (1) to
obtain that #(i) = (H{R..))(i). By the definition of R%, H(R.,.) is constant on R*
and ¥(j)=(H{R,)())>(H(R.))i) whenever i€ R% and jER,,.-. !t then
follows that R% = R and the proof is complete.

Prooi of Theorem 3. Check, possibly imitating the proof of Lemma 3, that for every
vector w on A CR,

(In = Na)'w =(Ia = Ma)"'w + (A A(Ls = Na)'w)-(Ia = Ma) 'va. (13)
Substitute da as w in (11) to express

d(A)=(Is = Na)'da = (Ia = Ma)'da + A ad(ANa — Ma) 'va.  (12)
Substitute va for w in (11) to express

Y(A)=(Ia = Na)"'va =(1+A4y(A)) - (In — Ma) 'Va. (13)

The direct ratio of (12) and (13) yields, denoting by H*” the H computed as if M
was N,
1

HA = T 0@

H™(A)+ (A ad(AN1L). (14)
Since for any fixed A, there is a strictly increasing relationship between H(A) and
H™(A), the construction in Theorem 2 will produce under N and M the same
optimal priority partition of R.

4. Optimality of 7 -monotone policies

This section deais with Dynamic Programming. Some of the concepts have been
»orrowed from Dubins and Savage [6]. A good general reference is Blackwell [1]
and Strauch [17].

A decision moment is a moment in which an arriving customer finds an idle server
or a departing customer le~ves a non-empty queue behind. The state at a decision
moment is the vector s = (n,, na, . . ., n.) of queue lengths of the r types. Denote by
 the collection of all states and by J the mapping from Q to 2® — {#} defined by
J(ny,ns...n)={iER l n; >0}. A policy specifies at each decision moment the
type of the customer to be served next, among those in the J set for the current
state. The process generated by a policy is the (eventually terminating) sequence of
consecutive states during the busy period, under the policy. For a mapping
I': Q- 2% - {¢} for which I'(s) € J(s) for all s € £, a policy is available in I' if at
almost surely all states d in the process generated by the policy, it chooses to serve
a type in I'(s). For any two policies 7+ and =’ and any stopping time T on the
process geneiated by m, let (77, 7’) be the policy that agrees with 7 up tc time (re:
“number of operations”) T and then proceeds with ', with initial state equal to

~

the state under 7 at time 7. For a mapping f: £ — R such that for all s€ Q.
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f(s)E I(s), f© is the stationary policy thbat serves a type i customer whenever
f(s) = i. Shorten ((f)", =) to (f", =) and (f', =) to (f, w). For a policy , a positive
integer (finite or +®) n, and a state s € £, let V,(w)(s) be the expected total
waiting cost up to the conclusion of the nth operation (or the end of the busy
period, whichever comes first), starting with an initial state s and using the policy .
Shorten V.= V. A policy «* is optimai if for a!l s € 2 and all policies =,
V(n*)(s)< V(m)(s). A policy 1™ is tail-irrelevant if for all s € £2 and all policies
w, V(m", w*)(s)— V(m7)(s) as n -->x. A policy = is thrifty if for all f : 2 — R, with
f(s)E J(s) for all s € N, V{f, n)(s)= V(r)(s) for ail s € Q.

The problem of finding an optimzl policy is a Negative Dynamic Progsamming
problem with a finite action space. Hence, by ({17, Theorems 6.5 and 9.1}), optimal
policies do exist, and a tail-irrelevant policy is optimal if and only if it is thrifty. Fix
any optimal policy . For s € (1 let

G(s) = {i € J(s)|for some f: 2 — R with f(s) = i, V(f, w)(s) = V(m)(s)}.

Observe that any two optimal poiicies define the same mapping G : 2 — 2% — {f}.
Define a mapping K : 2 —» 2% — {#} by

K(s)={i € J(s)| #(i) = max ()}

The #-monotone »Holicies are those policies that are available in K. Lemma 4 will
prove all policies to be tail-irrelevant, Lemma 5 will prove a policy to be thrifty if
and only if it is available in G, and the rest of the section will show G and K tc be
identical.

Lemama 4. Under assumptions (i), (ii) and (iii), sup.V(w)(s)<w~ and
sup.(V(z)(s)— V.{m)(s)j—0 as n -, for each s € Q.

Proof. Assume first that the random holding costs ¢ are deterministic, i.e., they are
determined by the type of the customer. Then, letting L be the number of
customers served during the busy period, and X the length of the busy period,

sup V(r)(s)< max c(i)-E(X-L)=s nax ¢ GUEA(X)(E(LY)) <  (15)

Sl,lTp( V(m)(s)—- Va(m)is)< max c(i)E,(X-L-¢(L =n)). (16)

Since X - L is integrable by (15) and ¢ (L = n)— 0 a.s. as n — o, the right hand side
of (16) goes to zero.

The proof will be finished if w: show that when ¢ is replaced by c(I), V.(7)(s)
remains unchanged.

Let ¢, v, I, A be the holding cost, length of service, type and arrival time of the
ith customer served during the husy period (i = 1,2,... L). Then, using conditional
independence of service periods given types,
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lmm(L.n) min(L,n)

Vams)=E( 3 Sen- c.»Ai)

i=1

]
I\ZE

j<i

> S EG(L =i)ue)- 2 E@G(L=0aA)

[
~

> S EGW = Duel) - SE@EL >i)e(1)A)

- E(m"_'i”"’ S (L) - ffl’ c(L)A..).

i=1 Jj<i

Lemma 5. Under assumptions (i), (ii) and (iii), a policy is optimal if and only if it is
available in G.

Proof. Let 7* be any optimal policy.
If 7 is available in G, then (7', 7 *) is optimal and so, by induction, so is (7", 7*),
for everv positive integer n. Hence, for each s € 2 and each positive integer n,

| V(@r)(s) = V(m*)s)| < | V(m)s) = Va(mXs)| + | Val(ar", w*)(s) = V(7" m*)s))]
< 2sup(V(7')(s) = Va(7')s)).

So, by Lemma 4, V(7)= V(x*) and = is optimal.

If 7 is not avaiiable in G, let T =0 be the least of the two times: end of the busy
period, or first time # dictates an action outside the G set for the current state.
Non-availability of 7 in G implies that (#=", 7*) strictly improves , so 7 is not
optimal.

Proof of Theorem 1. Each order p on R defines a priority stationary policy
with f{s)=sup{i €J(s)}. Let p be any order on R making ¥ monotone
non-decreasing (i.e., making f® avalilable in K) and let j € R be arbitrary. Define
g: 02— R by g(s)=j if j € J(s) and g(s) = f(s) otherwise. In the light of Lemma
5, to obtain that K and & are identical it is enough to show that for arbitrary p and
j as above, V(g f®)s)= V(f™)s) for all s € {2, with strict inequality holding
whenever j € J(s)— K(s). We will show that for some strictly positive stopping
time T on the process generated by f©, V(g, f<)(s)= V(f7, (g f))s), with strict
inequality holding whenever j € J{s)— K(s). The proof of this last statement is
enough, since its application again and again will yield that V(g f)(s)=
V(T @& FNs) = VT, (T (8 f)))s) = - - -, and, by Lemma 4, this decreasing
sequence converges to V(f®)(s).

For initial state s € 2 with j € J(s), let T be the first time the state (call it
s' = (nt, ny, ..., n;)) satisfies

(@) ni.=0 for k > f(s),

(b) nho= =1 If f(s)=]j then V(g f)s)= V(T (& fMNs)= V(Xs)

since for such an s, (s, f), (f7, (g f") and f* generate the same process.
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If i = f(s)>j, then, because of the nature of T, to compare V(g, f*))(s) and
V(T (g f))s), we .aay assume without loss of generality that J(s)={i,j} and
n, = n; = 1. When the ini:ial state is such an s, the policy (g, ) serves the custoraer
of type j, ihen serves to exhaustion customers of types i,i +1,...,r but not the
customer of type i originally in the queue—call this block 1—then serves the
original customer of type i, then serves to exhaustion customers of types i,...,r,
(call this block 2), then continues in some manner (call this block 3). The policy
(f", (g f") sexves the customer of type i, then block 2, then the original customer
of type j, then block 1, and finaily block 3. Let A={k €R |k =i} and B =
A U {j}. Note that H(A )(i) = #(i). 'Jsing the notations and results of Lemma 3,

vigfNs)~ VUL (& f)Ns) =
= c(i)(Is — N®)"'vs)( )+ (Is - N¥)'Na.rc)(j) +
+c(X(Is = N¥) & )))N(Ia = Na) 04 (i)
— c()(Ia = NaY'va)(i) = ((1a = Na)'Narc)(i)(Is — N¥) "vs)(j)
= ((Is = N9)"vs)(j {({Za — Na) "'va JUYH(AXE)
= (((Is = N®)"'0s)()) " (c (N1~ ((Is = N)"€a)()) — (Is = N¥) "' Ne.xc)()))
= ((Is — N¥) "0s)() )((Ia — Na) 'va J(i)(H(A i) — H(B)()))
= ((In — N¥) '0s)())((La = Na)'ua JENH (@)~ %))

The result follows.
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