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Electronic spam is the most troublesome Internet phenomenon challenging large global companies,
including AOL, Google, Yahoo and Microsoft. Spam causes various problems that may, in turn, cause
economic losses. Spam causes traffic problems and bottlenecks that limit memory space, computing
power and speed. Spam causes users to spend time removing it. Various methods have been developed
to filter spam, including black list/white list, Bayesian classification algorithms, keyword matching,
header information processing, investigation of spam-sending factors and investigation of received mails.
This study describes three machine-learning algorithms to filter spam from valid emails with low error
rates and high efficiency using a multilayer perceptron model. Several widely used techniques include
C4.5 decision tree classifier, multilayer perceptron and Naïve Bayes classifier, all of which are used for
training data whether in the form of spam or valid emails. Finally, the results are discussed, and outputs
of considered techniques are examined in relation to the proposed model.
Copyright © 2016, Far Eastern Federal University, Kangnam University, Dalian University of Technology,
Kokushikan University. Production and hosting by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Internet is considered a very powerful tool. Email is an
efficient way to exchange information. Considering the growth of
the Internet and wide use of email, the rate of increase of spam is of
great concern. Spam may originate from anywhere in the World
Wide Web. Despite tools to prevent spam, it has been increasing
daily. One way to assess the current situation is that organizations
examine available means that can be used to even count the
amount of spam. These means include corporate email systems,
gateways, spam filtering and end user training. Internet users
cannot disregard this important problem of the modern Internet
world. Lack of mechanized systems to prevent spamwill result in a
spam-saturated World Wide Web, destruction of Internet products
and severe loss of bandwidth.
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1.1. Architecture of spam filtering rules and existing methods

There are various definitions for spam and its difference from
valid mails. The shortest definition of spam is ‘an unwanted elec-
tronic mail’. A major problemwith introduction of spam filtering is
that a valid email may be labelled spam or a valid email may be
missed. To not filter spams causes problems; not only will inboxes
be completely occupied by spam, but it will result in more serious
problems including reduction of bandwidth and storage. There are
techniques to identify emails received in the form of spam, as fol-
lows: black list/white list, Bayesian classifying algorithm [1],
keyword matching and header information analysis [11].

Awhite list is a list of addresses fromwhich users tend to receive
emails. Users can also add email addresses, domain inputs or do-
mains of functions. An advantage of white list is that it allows users
or administrators to put email addresses of favourite people into
the list in order to make sure that valid emails received from ad-
dresses in the white list are not labelled spam when receiving
emails from different senders.

A black list is a list of addresses fromwhich users do not tend to
receive emails. The header reviewing process of an email involves a
series of rules implemented as follows. An email will be labelled
junk and transferred to a spam folder if its header is congruent to a
University of Technology, Kokushikan University. Production and hosting by Elsevier
ons.org/licenses/by-nc-nd/4.0/).
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header of training data in the black list. Otherwise, it will be
transferred to the white list.

Bayesian classifications are the basis of many anti-spam
methods; probability of a future event can be obtained by its
occurrence in the past. Bayesian is an automatic classifier. Only text
algorithms that have shown better efficiency are recently used for
filtering [9]. Previously, various rule-based software packages were
used for filtering operations [6]. Rule-based solutions have two
substantial disadvantages. First, these systems required users to
generate a series of rules; the users required broad knowledge of
spam to formulate suitable rules. Second, these rules required
reformulation by experts because features of spam change over
time [14]. Basically, reformulation is time-consuming with a high
level of error.

2. Methodology

Most spam filteringmethods use text techniques [12]; therefore,
most of the problems are related to classification. The present study
classifies rules to extract features from an email. Most developed
models for minimizing spam have been machine learning algo-
rithms [3,10]. Various systems have been introduced for automatic
classification of emails [4]; some are as follows: decision-based
systems [14], Bayesian classifiers [15], support vector machine
[1,2], neural networks [15] and sample-based methods [7]. The
present study discusses three important algorithms of machine
learning techniques including C4.5 decision tree classifier, multi-
layer perceptron and naïve Bayes classifier provided in the pro-
posed model. Various methods are presented in [13] to filter spam
using machine learning algorithms.

2.1. Multilayer perceptron (MLP)

Fig. 1 shows a multilayer perceptron (MLP) neural network [5].
The model delivers information by activating input neurons con-
taining values labelled on them. Activation of neurons is calculated
in the middle or output layer, as follows:

ai ¼ s
�X

j

WijOj

�
(1)

where ai represent activation level of neuron i; j is neuron set of the
previous layer;Wij is the weight of the link between neuron i and j;
Oj is the output of neuron j and s(x) represents a transfer function.

sðxÞ ¼ 1
1þ ex

(2)
Fig. 1. Perceptron artificial neural network containing input, hidden and output layers.
A multilayer perceptron is trained using an error back-
propagation strategy based on generalized delta rule.

An MLP indicates a nonlinear relationship between input and
output vectors. This is achieved by connecting neurons of a node in
the previous and next layers. Output neurons are multiplied by
weighting coefficients. Then they are inserted in the nonlinear
function of activation as input. In the training step, perceptron is
given training information. Then network weights are adjusted to
minimize the error between predicated and target output or to
increase frequency of trainings to a predeterminedmaximum level.
A series of unexperienced inputs is applied to the input to validate
the training. These inputs need to be different from inputs used for
network training. Training of neural networks is typically very
complicated as an optimization problem containing a large number
of variables. MLP is an in-depth optimizer to solve many problems;
for example, when a fixed model or adequate knowledge is not
available on values of inputs and their relationship with output.
Fig. 2 shows a perceptron containing a bios input.

2.2. C4.5 decision tree classifier

Output of a C4.5 decision tree classifier is structural data in the
forma binary tree. AC4.5 tree ismodelled as follows. A training set is
a set of base tuples to determine classes related to these tuples. A
tuple X is represented by an adjective vector X ¼ (x1, x2, …, xn). As-
sume that a tuple belongs to a predefined class that is determinedby
an adjective called as class label. The training set is randomly
selected from the base; this step is called the learning step. This
technique is very efficient and extensively uses classification. The
structure of the tree can be implementedwith the following factors:

1. A node of the tree represents a test on an adjective;
2. A branch exiting from a node represents possible outputs of a

test;
3. A leaf represents a class label.

A decision tree includes a rule set by which objective functions
can be predicted. The J48 algorithm is an optimized version of C4.5.
The algorithm used for this model uses greedy techniques. Fig. 3
shows classification of a sample based on a decision tree.

2.3. Naïve Bayesian classifier

A Naïve Bayesian classifier generally seems very simple; how-
ever, it is a pioneer in most information and computational appli-
cations for spam filtering [2,8]. A Bayesian network is an acyclic
directed graph indicating probability distribution in a compressed
way. A node in this graph shows a random variable, Xi. A directed
edge between two nodes indicates potential interdependence be-
tween a variable shown by the parent node and another variable
shown by a child node. The structure of this network assumes that a
node Xi is conditionally independent from other vector and non-
parent nodes. A node Xi is related to a potentially conditional table
determining probability distribution on the node Xi by the amount
allocated to parents of the node. A Bayesian classifier is simply a
Fig. 2. Perceptron containing a bios input.



Fig. 3. Classification of a sample based on decision tree.

Table 1
Series of rules to assign a score to the received email.

Via meaning of the name
Via domain names
Via blocked IP number
By detecting apostrophe
Via evaluation of automatic white list (AWL)
Via addresses of in the black list
Via addresses of in the white list
Via type of content
Via bounded content
Via content of name
Via undeclared addresses of recipients
Via main header
Receiving from an address and sending to a similar address
Unclear subject field
If the subject field contains ambiguous letters
If the message is forward
If the message is replied
If there is no sign of the sender in the subject field
Whether there is a text
Whether the message contains emotional words
Whether the mark ('') is constantly repeated in the body
Whether characters contain Latin alphabet compounds
There is large number of empty spaces In the body

Table 2
Comparison of results obtained from classifiers.

MLP J48 Naïve Bayes Evaluation rules

138.05 0.20 0.15 Data training time (sec)
1485 1449 1479 Valid classification of samples
99.2 96.6 98.6 Valid recognition rate (%)
2 4 5 False positive (%)
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Bayesian network used for classification including group C which
indicates variable of class label and variable Xi which indicates
features. According to Bayes theory:

PðC ¼ CkjX ¼ xÞ ¼ PðX ¼ xjC ¼ ckÞPðC ¼ ckÞ
PðX ¼ xÞ (3)

An important problem with Bayes theory is independence of
random variables, the lack of which makes it difficult to calculate
PðX ¼ xjC ¼ ckÞ. In the following, an old assumption on indepen-
dence is provided for naïve Bayesian classifier; according to this
assumption, a feature Xi will be a condition independent from other
features if a class C variable is available.

The above assumption can be written as follows:

PðX ¼ xjC ¼ ckÞ ¼ PiPðXi ¼ xijC ¼ ckÞ (4)

To clear the concept of the above formula as well as indepen-
dence, consider the following example. Given that the word Coca
Cola appears in 400 out of 3000 spams and given that the word
appears in only 5 of 300 valid emails, then the probability of an
email containing Coca Cola is spam is

PðcocacolajSpamÞ ¼
400
3000

400
3000 þ 5

300

¼ 0=8889

3. Extraction of features and implementation of the
considered algorithm

The work here was based on rules for proper scoring in terms of
the efficiency of rules. The considered rules were provided in three
forms: 1) email header information analysis, 2) keyword matching,
and 3) main body of the message. A score was finally obtained for
these rules.

The following introduces several efficient rules by which spam
can be detected. The proposed algorithm to evaluate a spamworks
as follows:

The proposed model evaluated the email received in the system
using 23 rules as shown in Table 1. Each rule was assigned a score
and the sum of scores was calculated. Following evaluation of an
email, a rule was applied to the email. As the first rule was applied
to the received email followed by a positive result, the received
email was scored. The process continued until the 23th rule was
applied to the received email. The final score of the received email
was compared to a threshold value. The received email was labelled
Junk and sent to the Spam folder if its score was more than the
threshold value (see Table 2).

4. Discussion

Results were obtained from studies of data of personal emails
modelled byWEKA software which is a very powerful, open source
and portable tool with a strong user interface to run machine
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learning algorithms, techniques and pre-processing steps. The
experimental dataset used for the study was drawn from a series of
spam and valid emails entered into a personal system during a six-
month period. Emails were well-reviewed and were subjected to
the 23 default rules of the proposed model in order to classify
emails. The primary dataset included 750 valid emails as well as
750 spams. To extract vector features of an email, the following
methods were used: 1) email header review, 2) keyword review, 3)
black list and white list.

Labels of a class in the proposed model included L and S; the
former represented Legitimate, and the latter is an alternative for
Spam.

Three classifiers including naïve Bayes, C4.5 decision tree and
MLP neural networks were run on training data byWEKA software.
The training data were tested in terms of message header infor-
mation, black and white list and keyword review. Efficiency and
accuracy of training data were evaluated by 10 classes of reliably
valid data. An accuracy factor was calculated as follows.
Fig. 5. Results from test of accuracy of classifiers.
4.1. Number of studied valid samples multiplied by training dataset
to total data samples

Fig. 4 shows pseudo code of the considered algorithm compiled
by C# language (see Figs. 5 and 6).

Two other basic concepts are used for spam filtering operations,
false positive and false negative. The former refers to those spams
classified as valid emails and the latter refers to valid emailswrongly
classified as spam. False positive rate of a classifier is applied to its
efficiency. Table 1 shows the efficiency of the above classifiers.

Efficiency of these three techniques depends on the following
factors: 1) valid recognition rate, 2) data training time and 3) false
positive rate. The efficiency of MLP neural network was better than
the other models.

MLP requires more time to develop the model. J48 and naïve
Bayes algorithm require more time on learning experimental data.
Fig. 6. training time of classifiers.
5. Conclusions

There are many ways to filter Internet spam. Considering the
daily growth of spam and spammers, it is essential to provide
Fig. 4. Pseudo code of the considered algorithm written by C#.
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effective mechanisms and to develop efficient software packages
to manage spam. Using valid emails and spam the present study
extracted data from emails using machine learning algorithms to
develop a new model. Measuring the rate of 10 classes of valid
emails and running MLP algorithm on test data, the model
demonstrated higher efficiency than naïve Bayes classifier algo-
rithms and J48 with a low rate of false positive. The proposed
algorithm can be modelled to be implemented on a Mail Server
and Mail Client in order to eliminate problems, such as band-
width reduction and very low efficiency, from which users usu-
ally suffer.
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