11P.14 Yeast cytochrome c oxidase: A model system for determining the specific role of bound phospholipids
Andrzej Musatov, Neal C. Robinson
The University of Texas Health Science Center, Department of Biochemistry, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
E-mail: musatov@uthscsa.edu
Cytchrome c oxidase (EC 1.9.3.1; CoO) catalyzes the transfer of electrons from ferrocytochrome c to oxygen, a reaction coupled to proton translocation across the inner mitochondrial membrane. One feature that most directly impacts upon the structural and functional integrity of CoO is cardiolipin (CL) tightly bound to the enzyme. Hypotheses have been put forward that (i) CL acts as “glue” to stabilize the multi-subunit complexes; and (ii) CL functions as a “proton antenna” to facilitate proton entry into the active site of the enzyme. One of the best ways to test these hypotheses is site-directed mutagenesis of Saccharomyces cerevisiae CoO. The enzyme is structurally similar to mammalian CoO and is amenable to genetic manipulation of its structure. Towards this goal, CoO was isolated from baker’s yeast. The enzyme was extracted from mitochondria using dodecyl maltoside and purified by high performance Q-Sepharose column chromatography. The resulting enzyme has the expected oxidized and reduced visible absorption spectrum, and a molecular activity of about 120 s−1 when assayed spectrophotometrically using ferrocytochrome c as a substrate. The subunit composition of yeast CoO was analyzed by a combination of RP-HPLC and mass spectrometry. Seven major HPLC elution peaks were detected using absorption at 214 nm. The identity of the 8 nuclearly encoded subunits that eluted from the RP-HPLC column was determined by electrospray ionization mass spectrometry. Normal phase silicic acid HPLC analysis of the extracted from isolated CoO phospholipids confirmed that a small number of phospholipids including CL, phosphatidylcholine, and phosphatidylethanolamine co-purified with CoO. Treatment of CoO with phospholipase A2 resulted in partial inactivation of the enzyme indicating the important functional role of at least some of these bound phospholipids.

This work was supported by the National Institutes of Health (GMS 24795 to N. C. Robinson).

References

11P.15 Membrane-facilitated proton transfer to the surface of a membrane-spanning proton transporter
Linda Näsåk-Ojemyr1, Tor Sandén2, Jerker Widengren3, Peter Brzezinski1
1Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
2Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Sweden
E-mail: lindao@dph.su.se

A key step in energy metabolism of a living organism is the translocation of protons across a membrane, conducted by membrane-spanning proton transporters of the respiratory chain. The electrochemical gradient maintained by these transporters is utilized, for example, for synthesis of ATP. In the present study we used Fluorescence Correlation Spectroscopy (FCS) to investigate the interplay between the components of the respiratory chain and the membrane, and the effect of the membrane on the proton transfer in the energy-conservation machinery. The FCS technique was used to study membrane-facilitated proton transfer, by determining the protonation kinetics of a fluorescein molecule anchored to the surface of membranes of different composition. The results from these studies showed that the protonation rate of the fluorescein molecule increased upon incorporation of the probe into a membrane. This acceleration in the rate was interpreted in terms of a proton-collecting antenna, composed of the lipid molecules, that acts to facilitate protonation of the surface-bound probe [1]. Here we have used the FCS technique to investigate the interplay between the membrane surface and the protein surface of one of the proton transporters of the respiratory chain. A fluorescein molecule was covalently linked to the surface of cytochrome c oxidase from Rhodobacter sphaeroides. The protonation kinetics was determined for the fluorescein molecule linked to the detergent-solubilized protein as well as to the protein incorporated into dioleoyl-phosphatidylglycerol vesicles. The results show that the protonation rate increased by a factor of about 400, from about 7 × 1010 s−1 M−1 to 3 × 1013 s−1 M−1 upon incorporation into vesicles. Collectively, these results indicate that there is proton transfer to the protein surface facilitated by the membrane surface [2].

References