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a b s t r a c t

In Bell and Stelljes (2009) a scheme for constructing explicitly solvable arbitrage-free
models for stock prices is proposed. Under this scheme solutions of a second-order (1+1)-
partial differential equation, containing a rational parameter p drawn from the interval
[1/2, 1], are used to generate arbitrage-free models of the stock price. In this paper Lie
symmetry analysis is employed to propose candidatemodels for arbitrage-free stock prices.
For all values of p, many solutions of the determining partial differential equation are
constructed algorithmically using routines of Lie symmetry analysis. As such the present
study significantly extends the work by Bell and Stelljes who found only two arbitrage-
free models based on two simple solutions of the determining equation, corresponding to
p = 1/2 and p = 1.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

An important constituent in the valuation of options and other derivatives is the stock price. In the classical Black–Scholes
model [1] the stock price St is assumed to follow an Itô process described by the stochastic differential equation

dSt = µStdt + σ StdWt , (1.1)

where µ and σ are two parameters representing the drift and volatility of the stock, respectively, and Wt is a standard
Wiener process. The Black–Scholes stock price model (1.1) belongs to a class of solvable arbitrage-free models, i.e. models
forwhich the expected value of St at any time t is precisely the future value at time t of a risk-free bondwith present value S0.
As a result of this feature (1.1) leads to the well-known Black–Scholes formula for determining the value of a European call
option [1]. In fact ‘‘arbitrage-freeness’’ is an essential feature in stock price models. Unfortunately, it is not always inherent
in alternative models of the stock price.

Bell and Stelljes [2] describe a method for constructing explicitly solvable arbitrage-free models for stock prices. The
method is based on the following solvable stochastic Bernoulli equation of Stratonovich type

dSt = µSt + σSpt ◦ dWt , (1.2)

where p denotes a rational number in the interval [ 12 , 1]. The solution of (1.2) (see [2] and the references therein) is

St = ert

(1 − p)σ

 t

0
er(p−1)udWu +S1−p

0

1/(1−p)

. (1.3)
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The processSt does not generally satisfy the arbitrage-free condition and hence is not a feasible model for stock price.
However, St ≡ G(St , t) does satisfy the arbitrage-free condition provided that G solves the second-order partial differential
equation

Gt +


rs +

p σ 2s2p−1

2


Gs +

σ 2s2 p

2
Gss = r G (1.4)

and that there exists n such that for every T > 0

sup
0≤t≤T

|Gs(s, t)| ≤ C |s|n (1.5)

where C is a constant depending only on T .
In [2] two values of p, namely p =

1
2 and p = 1, are identified in which cases Eq. (1.4) is tractable. The former case gives

rise to a solvable version of the Cox–Ross model [3] and the latter to the Black–Scholes model [1]. In the case p = 1,

G(s, t) = s e−σ 2t/2 (1.6)

is found to solve (1.4) and to satisfy the regularity condition (1.5). Therefore St = G(St , t), withSt defined in (1.3), furnishes
an arbitrage-free stock price model for p = 1. Similarly for p =

1
2

G(s, t) = s +
σ 2

4 r
(1.7)

solves (1.4) and satisfies the regularity condition (1.5). Accordingly, the resulting arbitrage-free stock price model St =

G(St , t) is obtained from (1.7) and (1.3).
The aim of this paper is to investigate Eq. (1.4) for all values of p for which the equation is tractable. From the point

of view of Lie symmetry analysis this coincides with values of p for which the equation admits a nontrivial symmetry Lie
algebra. We have determined that for each value of p Eq. (1.4) admits a rich symmetry group akin to the group admitted by
the Black–Scholes equation or the heat equation [4]. Furthermore, we have exploited the admitted one-parameter Lie point
symmetries and routines of Lie symmetry analysis to construct solutions of (1.4) as invariant solutions and by transformation
of known solutions.

The paper is organised as follows. In Section 2, we introduce elements of Lie symmetry analysis of differential equations.
Determination of Lie point symmetries admitted by Eq. (1.4) is done in Section 3. In Section 4 we use the admitted
symmetries to construct several exact solutions of (1.4) for all rational values of p. We present concluding remarks in
Section 5.

2. Preliminaries of Lie symmetry analysis

Lie symmetry analysis is one of the most powerful methods for finding analytical solutions of differential equations.
It has its origins in studies by the Norwegian mathematician Sophus Lie who began to investigate continuous groups
of transformations that leave differential equations invariant. Accounts of the subject and its application to differential
equations are covered in many books [5–12].

Central to methods of Lie symmetry analysis is invariance of a differential equation under a continuous group of
transformations. Consider a one-parameter Lie group of point transformations in infinitesimal form

x̃ = x + ε ξ(x, t, u)+ O(ε2)

t̃ = t + ε τ(x, t, u)+ O(ε2) (2.1)

ũ = u + ε η(x, t, u)+ O(ε2)

depending on a continuous parameter ε. This transformation is characterised by its infinitesimal generator,

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (2.2)

The corresponding finite transformations are obtained by exponentiating or by solving the Lie equations

dx
dε

= ξ(x,t,u), dt
dε

= τ(x,t,u), du
dε

= η(x,t,u) (2.3)

subject to the initial conditions

(x,t,u)|ε=0 = (x, t, u). (2.4)

A general (1 + 1)-partial differential equation with one dependent variable u and two independent variables (x, t),

∆(x, t, u, ux, ut , uxx, uxt , utt) = 0 (2.5)
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is invariant under (2.1) if and only if

X (2)∆ = 0 when∆ = 0, (2.6)

where X (2) is the second prolongation of X given by

X (2) = X + η
(1)
i ∂ui + η

(2)
i1 i2
∂ui1 i2

, i1, i2 = 1, 2, (2.7)

with

η
(1)
i = Diη −


Diξ

j uj, η
(2)
i1 i2

= Di2η
(1)
i1

−

Di2ξ

j ui1j, i, ik, j = 1, 2, (2.8)

where ui =
∂u
∂xi

, ui1 i2 =
∂2u

∂xi1 ∂xi2
, i, ij = 1, 2, (x1, x2) = (x, t), (ξ 1, ξ 2) = (ξ , τ ) and Di denotes the total differential operator

with respect to xi:

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ uijk

∂

∂ujk
+ · · · . (2.9)

The Einstein summation convention is adopted in (2.7)–(2.9). The invariance condition (2.6) yields an overdetermined
system of linear partial differential equations (called determining equations) for the symmetry group of Eq. (2.5). The
infinitesimals ξ , τ and η are then determined as a general solution to the determining equations. If the infinitesimals contain
more than one arbitrary constant, we normally ‘split’ the multi-parameter infinitesimal generator into single parameter
generators, which constitute a Lie algebra of (2.5) under the operations of addition and taking the Lie Bracket, namely

[Xi, Xj] = XiXj − XjXi.

There are various methods based on infinitesimal generators of the admitted symmetry groups for constructing solutions of
partial differential equations. The specific methods used in this paper are introduced in the relevant sections of the paper.

3. Lie point symmetries of (1.4)

With respect to Eq. (1.4), we shall use the less cumbersome variables x and u in place of s and G, respectively. Suppose

X = ξ(x, t, u) ∂x + τ(x, t, u) ∂t + η(x, t, u) ∂u, (3.1)

where ξ , τ and η are arbitrary functions, is an infinitesimal generator of a symmetry group of (1.4). Then the invariance
condition dictates the following:

X (2)

ut +


rx +

p σ 2x2p−1

2


ux +

σ 2x2p

2
uxx − ru


(1.4)

= 0, (3.2)

where X (2) is the second-prolongation of X given in (2.7). With the help of YaLie [13] and Mathematica [14], this leads to
the following system of determining equations:

ξu = 0 (3.3)
τu = 0 (3.4)
τx = 0 (3.5)
ηuu = 0 (3.6)
2 ξ p + x (τt − 2 ξx) = 0 (3.7)

ξ


r +

1
2
p (2 p − 1) σ 2 x−2+2 p


−


r x +

1
2
p σ 2 x2 p−1


(ξx − τt)+ x2 p σ 2 ηxu − ξt −

1
2
x2 p σ 2 ξxx = 0 (3.8)

ηt + r u ηu +


r x +

1
2
p σ 2 x2 p−1 σ 2


ηx +

1
2
x2 p ηxx − r (η + u τt) = 0. (3.9)

From the first four equations, (3.3)–(3.6), we easily determine that

ξ = ξ(x, t) (3.10)
τ = τ(t) (3.11)
η = φ(x, t)+ uϕ(x, t), (3.12)

where φ and ϕ are arbitrary functions. Eqs. (3.7)–(3.9) remain unsolved, with (3.7) reducing to

2 p ξ + x

τ ′

− 2 ξx


= 0 (3.13)
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Table 3.1
Commutator table for ⟨X1, . . . , X6⟩ in the case p ≠ 1.

[Xi, Xj] X1 X2 X3 X4 X5 X6

X1 0 −2DX2 0 −2D σ 2 X2 −DX1 0
X2 2DX2 0 −

2D
σ 2 X1 0 DX2 0

X3 0 2D
σ 2 X1 0 4DX5 −2DX3 0

X4 2D σ 2 X2 0 −4DX5 0 2DX4 0
X5 DX1 −DX2 2DX3 −2DX4 0 0
X6 0 0 0 0 0 0

for which the solution is

ξ(x, t) = xp γ +
x τ ′

2(1 − p)
, p ≠ 1, (3.14)

where γ is an arbitrary function of t . Next, solving Eq. (3.8) for ϕ, we obtain

ϕ(x, t) = δ +

2 r x (p − 1) τ ′

− 4 r xp (p − 1)2 γ + 4 xp γ ′
− 4 p xp γ ′

+ x τ ′′
 x1−2 p

4 (1 − p)2 σ 2
, p ≠ 1, (3.15)

where δ is another arbitrary function of t . The linear superposition principle for Eq. (1.4) dictates that the equation admits
the infinite group. This is the case only if φ solves (1.4), in which case Eq. (3.9) simplifies to the equation

u (p − 1)2 σ 2 
2 (−3 + p) r τ ′

+ 4 δ′
+ τ ′′


xp +


u


τ (3) − 4 r2 (p − 1)2 τ ′


x2−p

+

4 u (p − 1)


r2 (p − 1)2 γ − γ ′′


x = 0, p ≠ 1. (3.16)

Eq. (3.16) holds identically if and only if

τ = ε1 +
ε2 e2D t

− ε3 e−2D t

2D
(3.17)

γ = ε4 eD t
+ ε5 e−D t (3.18)

δ = ε6 +
r (3 − p)

2
τ −

τ ′

4
, (3.19)

where εi are arbitrary constants. This completes the solution of the determining Eqs. (3.3)–(3.9), and leads to the following
basis of the infinite dimensional vector space of infinitesimal symmetries of Eq. (1.4) for p ≠ 1:

X1 = eD t x1−p 
σ 2x2p−1∂x − 2 r u ∂u


, X2 = e−D t xp ∂x

X3 = e2D t

r x ∂x − ∂t +


D − r −

2 r2 x2(1−p)

σ 2


u ∂u


X4 = e−2D t [r x ∂x + ∂t + r u ∂u]
X5 = ∂t + (r − D/2) u ∂u, X6 = u ∂u, Xφ = φ(x, t) ∂u

 (3.20)

where D = (p − 1) r and φ(x, t) is any solution of (1.4)
For p = 1 the admitted infinite dimensional vector space of infinitesimal symmetries of Eq. (1.4) is spanned by the

following operators:

X1 = x σ 2 ∂x − r u ∂u
X2 = t x σ 2 ∂x + u (ln x − r t) ∂u
X3 = ∂t + M r u ∂u

X4 = x ln x ∂x + 2 t ∂t + u

2M r t −

1
2

−
r
σ 2

ln x

∂u

X5 = t x ln x ∂x + t2 ∂t +


M r t2 +

1
2 σ 2 (ln x)2 − t


1
2

+
r
σ 2

ln x


u ∂u

X6 = u ∂u, Xφ = φ(x, t) ∂u


(3.21)

whereM = 1+
r

2 σ 2 and φ(x, t) is any solution of (1.4) when p = 1. The first six operators in (3.20) and (3.21) generate finite
dimensional symmetry Lie algebras for Eq. (1.4), when p ≠ 1 andwhen p = 1, respectively. The corresponding commutators
are given in Tables 3.1 and 3.2, respectively.
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Table 3.2
Commutator table for ⟨X1, . . . , X6⟩ in the case p = 1.

[Xi, Xj] X1 X2 X3 X4 X5 X6

X1 0 σ 2 X6 0 X1 X2 0
X2 −σ 2X6 0 −X1 −X2 0 0
X3 0 X1 0 2 X3 X4 0
X4 X1 X2 −2 X3 0 2 X5 0
X5 X2 0 −X4 −2 X5 0 0
X6 0 0 0 0 0 0

The finite symmetry transformations of Eq. (1.4) corresponding to the infinitesimal generators are obtained by solving
the Lie equations (2.3)–(2.4). The results corresponding to the infinitesimal generators (3.20) and (3.21) are presented in
(3.22) and (3.23), respectively.

X1 : x =


x−

D
r −

D eD t ε1 σ
2

r

−
D
r

, t = t, u = e−2 eD t r x−
D
r ε1 u

X2 : x =


x−

D
r −

D e−D t ε2

r

−
r
D

, t = t, u = u

X3 : x = ee
2D t r ε3 x, t = −

ln

e−2D t

+ 2D ε3


2D
,

u = exp

e2D t (D − r) ε3 +

r2

e−2D e2D t ε3 − 1


x−

2D
r

D σ 2


X4 : x = ee

−2D t r ε4 x, t =
ln(e2D t

+ 2D ε4)
2D

, u = ee
−2D t r ε4 u

X5 : x = x, t = t + ε5, u = e

r− D

2


ε5 u

X6 : x = x, t = t, u = eε6 u
Xφ : x = x, t = t, u = u + φ(x, t)



(3.22)

X1 : x = eε1 σ
2
x, t = t, u = u e−r ε1

X2 : x = x eε2 σ
2t , t = t, u = u e


ε2

2 σ2
2 −r ε2


t
xε2

X3 : x = x, t = t + ε3, u = u eD r ε3

X4 : x = xε4 , t = ε4
2t, u =

u eD r (ε42−1) t x
(1−ε4)r
σ2

√
ε4

, ε4 ≠ 0

X5 : x = x
1

1−t ε5 , t =
t

1 − t ε5
, u = u e

D r ε5t
2

1−ε5 t x
ε5 (2 r t−ln x)
2 (ε5 t−1) σ2


1 − ε5 t

X6 : x = x, t = t, u = eε6u
Xφ : x = x, t = x, u = u + φ(x, t).



(3.23)

4. Exact solutions of Eq. (1.4)

We shall now use the admitted symmetries to construct exact solutions of Eq. (1.4). We will do this in two ways, via
group transformations of known solutions and by construction of invariant solutions.

4.1. Group invariant solutions

Let X be an infinitesimal generator of a symmetry group admitted by (1.4). A function u = Θ(x, t) is an invariant solution
of (1.4) arising from X if it is a solution of (1.4) and remains unchanged under the action of every transformation of the
symmetry group generated by X . Such solutions are easily found. They are characterised by a necessary condition known as
the invariant surface condition:

X (u −Θ(x, t)) = 0 when u = Θ(x, t). (4.1)
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Construction of invariant solutions proceeds in a very algorithmic fashion. We determine two independent invariants
r(x, t, u) and v(x, t, u) (with vu ≠ 0) of the group from solutions of the associated characteristic system

dx
ξ

=
dt
τ

=
du
η
. (4.2)

The general solution of the invariant surface condition (4.1) is now written as v = F(r) or u = Θ(x, t), in terms of u, x, t .
Upon substitution of the general solution in (1.4) we obtain an ODE that definesΘ . The solution of this ODE completes the
process.

The infinitesimal generators of symmetry groups of Eq. (1.4) can each (except ‘‘u ∂u’’ and ‘‘φ ∂u’’ [4]) be used to generate
invariant solutions of (1.4). In the examples that follow we use the basis infinitesimal generators in (3.20) and (3.21),
corresponding to p ≠ 1 and p = 1, respectively, to do so. In each case we reduce Eq. (1.4) to an ODE and solve the ODE
if it admits a ‘‘simple’’ solution. In the interest of brevity of the exposition, we shall only report essential elements of the
solution process. In each of the solutions provided below κi are arbitrary constants.

Example 4.1 (Invariant Solutions of (1.4) in the Case p ≠ 1).

(a) X1 = eD t x1−p

σ 2x2p−1∂x − 2 r u ∂u


• r = t , v = u exp


−

r x2 (1−p)

(p−1) σ 2


, u = exp


r x2 (1−p)

(p−1) σ 2


y(t)

• y′
+ (p − 2) r y = 0, y(t) = e(2−p) r t κ1

• u(x, t) = κ1 e
r

(2−p) t− x2 (1−p)

(1−p) σ2


(b) X2 = e−D t xp ∂x

• r = t , v = u exp


e(p−1) r t x(1−p)

p−1


, u = exp


−

e(p−1) r t x(1−p)

p−1


y(t)

• 2 y′
−


2 r − e2 (p−1) r t σ 2


y = 0, y(t) = κ1 e

r t− σ2 e2 (p−1) r t
4 (p−1) r

• u(x, t) = κ1 exp

r t −

e(p−1) r t x(1−p)

p−1 −
e2 (p−1) r t σ 2

4 (p−1) r


(c) X3 = e2D t


r x ∂x − ∂t +


D − r −

2 r2 x2(1−p)

σ 2


u ∂u


• r = er t x, v = e

−
r x2 (1−p)

(p−1) σ2 u x2−p, u = e
r x2 (1−p)

(p−1) σ2 xp−2 y (ζ ), ζ = er t x
• α y + ζ


(3 p − 4) y′

+ ζ y′′


= 0
where α = 6 − 7 p + 2 p2

• y(ζ ) = κ1 ζ
3−2 p

+ κ2 ζ
2−p

• u(x, t) = exp

r


2 (1 − p) t −

x2(1−p)

(1−p) σ 2

 
κ2 ep r t + κ1 er t x1−p


(d) X4 = e−2D t [r x ∂x + ∂t + r u ∂u]

• r = e−r t x, v = u/x, u = x y (ζ ), ζ = e−r t x
• p y + ζ


(2 + p) y′

+ ζ y′′


= 0
• y(ζ ) =

κ1
ζ

+
κ2
ζ p

• u(x, t) = κ1 er t + κ2 ep r t x1−p

(e) X5 = ∂t + (r − D/2) u ∂u
• r = x, v = e

(p−3) r t
2 u, u = e

(3−p) r t
2 y(x)

• r (1 − p) y +

2 r x + p x2 p−1 σ 2


y′

+ x2 p σ 2 y′′
= 0.

Example 4.2 (Invariant Solutions of (1.4) in the Case p = 1).

(a) X1 = σ 2 x ∂x − r u ∂u
• r = t , v = u x

r
σ2 , u = x−

r
σ2 y(t)

• y′
− M R y = 0, y(t) = κ1 er M t

• u(x, t) = κ1 eM r t x−
r
σ2

(b) X2 = σ 2 t x ∂x + u (ln x − r t) ∂u

• r = t , v = u x
r
σ2

−
ln x

2 t σ2 , u = x
ln x

2 t σ2
−

r
σ2 y(t)

• 2 t σ 2 y′
+


σ 2

−

r2 + 2 r σ 2


t

y = 0, y(t) =

κ1 er M t
√
t

• u(x, t) = κ1 eM r t x
ln x

2 t σ2
−

r
σ2
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(c) X3 = ∂t + M r u ∂u
• r = x, v = u e−M r t , u = eM r t y(x)
• y + x


ν y′

+
σ 4

r2
x y′′


= 0, y(x) = x−

r
σ2 (κ1 + κ2 ln x)

• u(x, t) = eM r t x−
r
σ2 (κ1 + κ2 ln x), ν =

σ 2 (2 r+σ 2)
r2

(d) X4 = x ln x ∂x + 2 t ∂t + u

2M r t −

1
2 −

r
σ 2 ln x


∂u

• r =
ln x
√
t
, v = e−M r t u x

r
σ2 t1/4, u =

eM r t x
−

r
σ2 y(ζ )

t1/4
, ζ =

ln x
√
t

• y + 2 ζ y′
− 2 σ 2 y′′

= 0

(e) X5 = t x ln x ∂x + t2 ∂t +


M r t2 +

1
2 σ 2 (ln x)2 − t


1
2 +

r
σ 2 ln x


u ∂u

• r =
ln x
t , v = u x

2 r t−ln x
2 t σ2

√
t , u =

eM r t x
−2 r t+ln x

2 t σ2 y(ζ )
√
t

, ζ =
ln x
t

• y′′
= 0, y(ζ ) = κ1 + κ2 ζ

• u(x, t) = eM r t x
−2 r t+ln x

2 t σ2

κ1√
t
+

κ2 ln x
t3/2


.

4.2. Group transformation of known solutions

The basis of this method is the fact that a symmetry group of an equation transforms any solution of the equation into
a solution of the same equation. Let X be an infinitesimal generator of a group admitted by Eq. (2.5) and u = f (x, t) be any
solution of the equation. Thenu = f (x,t), wherex,t ,u are associated with x, t , u through the symmetry transformations,x = f (x, t, ε), t = g(x, t, ε), u = h(x, t, ε) (4.3)

generated by X , defines a family of solutions of (2.5). Replacingx,t andu and solving for u results in a one-parameter family
of (typically new) solutions of (2.5), u = fε(x, t). Each of the symmetry groups admitted by the equation can thus be used to
transform any known solution of the equation into other solution of the same equation. Let us apply this to generate new
solutions of (1.4) from the simple solutions (1.6) and (1.7).

Example 4.3. (a) p =
1
2 , f (x, t) = x +

σ 2

4 r

(i) X2 :
x,t,u =


√
x + ε e

r t
2 /2

2
, t, u


fε(x, t) =

√
x +

ε

2
e

r t
2

2
+
σ 2

4 r
(4.4)

(ii) X5 :
x,t,u =


x, t + ε, u e

5 r ε
4


fε(x, t) = e−

5 r ε
4


x +

σ 2

4 r


(4.5)

(b) p = 1, f (x, t) = x e−σ 2t/2

(i) X1 :
x,t,u =


eε σ

2
x, t, u e−r ε


fε(x, t) = exp


ε


r + σ 2

−
t σ 2

2


x (4.6)

(ii) X3 :
x,t,u =


x, t + ε, eM r ε u


fε(x, t) = exp


−

t σ 2

2
− ε


M r +

σ 2

2


x. (4.7)

4.3. New solutions from known solutions via Xφ

The infinite set of operators represented by ‘‘Xφ ’’ in (3.20) and (3.21) can be used to generate new solutions of (1.4) from
known solutions [4]. Let u = ω(x, t) be a known solution of Eq. (1.4) so that the operator Xω is admitted by Eq. (1.4). Then,
if X is any other operator admitted by Eq. (1.4), by taking the Lie bracket, one obtains

[X, Xω] = Xω (4.8)

where ω is also a solution of Eq. (1.4), typically different from ω(x, t). The infinite set Lω of operators of the form Xω can
therefore be used to generate a whole range of solutions of (1.4) via the relation (4.8). Wewill illustrate this by transforming
the simple solutions (1.6) and (1.7) into new solutions of (1.4) in the cases p = 1 and p =

1
2 , respectively.
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Example 4.4. (a) p =
1
2 , ω(x, t) = x +

σ 2

4 r

(i) X1 = e−
r t
2

√
x


σ 2 ∂x − 2 r u ∂u


[X1, Xω] = ω ∂u, ω(x, t) = e−

r t
2

√
x


2 r x +

3 σ 2

2


(4.9)

(ii) X3 = e−r t

r x ∂x − ∂t −

1
2 r u


3 +

4 r x
σ 2


∂u


[X3, Xω] = ω ∂u, ω(x, t) = e−r t


3 r x +

2 r2 x2

σ 2
+

3 σ 2

8


(4.10)

(b) p = 1, ω(x, t) = xe−σ 2t/2

(i) X2 = t x σ 2 ∂x + u (ln x − r t) ∂u

[X2, Xω] = ω ∂u, ω(x, t) = e−
t σ2
2 x


t


r + σ 2

− ln x


(4.11)

(ii) X4 = x ln x ∂x + 2 t ∂t + u

2M r t −

1
2 −

r
σ 2 ln x


∂u

[X, Xω] = ω ∂u

ω(x, t) = e−
t σ2
2


xψ(t)+

x

r + σ 2


ln x

σ 2


(4.12)

where

ψ(t) =
1
2

−
t


r + σ 2

2
σ 2

.

5. Concluding remarks

This paper complements the work by Bell and Stelljes [2] who proposed a method for constructing explicitly solvable
arbitrage-free models for the stock price. At the centre of their method is a second-order partial differential equation that
contains, as a parameter, a rational number p drawn from the interval [

1
2 , 1]. Solutions of this equation that satisfy a

prescribed regularity requirement define solvable arbitrage-free models for the stock price. Bell and Stelljes reported the
challenge of finding such solutions for a general parameter p; they only found two simple solutions for p = 1 and p =

1
2 .

In this connection, the present paper augments the work by Bell and Stelljes through the use of Lie symmetry analysis. We
have determined Lie point symmetries admitted by the determining PDE for all values of p and established that in each
case the equation admits a rich symmetry group. As a result we have been able to construct several families of solutions of
the equation via routines of Lie symmetry analysis. Those solutions that satisfy the necessary regularity condition provide
models for arbitrage-free stock prices.
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