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Abstract In this paper, the thin film of a non-Newtonian fluid namely, a Sisko fluid on a vertical

moving belt and this fluid in a collector is investigated. Sisko fluid’s behavior is expressed by non-

linear equation. At the first problem, we consider a container having a non-Newtonian fluid in it. A

wide moving belt passes through this container and moves vertically upward with constant velocity.

The graphical representation of the velocity v against the horizontal distance x shows that the veloc-

ity increases as the non-Newtonian effect increases. Physics of the second problem includes a mov-

ing flat plate with constant velocity. The flat plate is cooled with a kind of oil through which its

properties follow the Sisko fluid model. We obtain the velocity gradient with difference values of

b and k coefficient, in Collector. By the use of velocity gradient, the pressure gradient can be

predicted. Predicting the pressure can help to analyze the extra stresses in the collector. The varia-

tional iteration method (VIM) is used to solve this non-linear equation analytically. Comparison of

the result obtained by the present method with numerical solution shows the accuracy, reliable and

fast convergence of this method for nonlinear problems.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Most low molecular weight substances such as organic and
inorganic liquids, solutions of low molecular weight inorganic
salts, molten metals and salts, and gases exhibit Newtonian
flow characteristics, i.e., at constant temperature and pressure,

and in simple shear, the shear stress (r) is proportional to the
rate of shear (c�) and the constant of proportionality is the
familiar dynamic viscosity (g). Such fluids are classically

known as the Newtonian fluids. However Many substances
of industrial significance, especially of multi-phase nature
(foams, emulsions, dispersions and suspensions, slurries, for

instance) and polymeric melts and solutions (both natural
and manmade) do not conform to the Newtonian postulate
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of the linear relationship between (r) and (c�) in simple shear,
for instance. Accordingly, these fluids are variously known as
non-Newtonian, non-linear, complex, or rheological complex

fluids.
The trend for examining non-Newtonian fluid has been

increased with respect to importance of this kind of fluid in

industry and so on. Various workers in the field cite a wide
variety of applications in rheological problems in biological
sciences, geophysics, chemical and petroleum industries [1].

Several others [2–7] investigated the analytic solutions for flow
of non-Newtonian fluids under various assumptions. Siddiqui
et al. [8] discussed the thin film flows of Sisko fluid on a moving
belt and Moallemi et al. [9] discussed Sisko fluid flow in collec-

tor. The equations of modeling non-Newtonian Sisko fluid are
non-linear equations.

Many different methods have recently introduced to solve

nonlinear problems, such as the homotopy analysis method
[10], the Adomian’s decomposition method (ADM) [11,12],
the homotopy perturbation method [13–17], and variational

iteration method (VIM). The VIM is strongly and simply
capable of solving a large class of linear or nonlinear differential
equations without the tangible restriction of sensitivity to the

degree of the nonlinear term and also it reduces the size of cal-
culations besides, its interactions are direct and straightforward.

The VIM was first proposed by He [18,19] and is systemat-
ically illustrated in [20] and used to give approximate solutions

of the problem of seepage flow in porous media with fractional
derivatives. The VIM is useful to obtain exact and approxi-
mate solutions of linear and nonlinear differential equations.

In this method, general Lagrange multipliers are introduced
to construct correction functional for the problems. The
multipliers can be identified optimally via variational theory.

It has been used to solve effectively, easily and accurately a
large class of nonlinear problems with approximation [21]. It
was shown by author [22] that this method is more powerful

than existing techniques such as the Adomian method.
Taza Gul et al. [23] studied the unsteady thin film flow of a

second grade fluid over a vertical oscillating belt. The govern-
ing equation for velocity field with appropriate boundary

conditions is solved analytically using Adomian decomposition
method (ADM). Expressions for velocity field have been
obtained. Optimal asymptotic method (OHAM) has also been

used for comparison. The effects of Stocks number, frequency
parameter and pressure gradient parameters have been
sketched graphically and discussed.

Noreen sher Akbar [24] investigated the mathematical mod-
eling and analysis of blood flow in a tapered artery with steno-
sis. His analysis was carried out in the presence of heat and
mass transfer. Constitutive equation of Carreau fluid is

invoked in the mathematical formulation. Graphical illustra-
tions associated with the tapered arteries namely converging,
diverging and non-tapered arteries are examined for different

parameters of interest. Noreen and Butt [25] devoted to a study
of the peristaltic motion of a Casson fluid of a non-Newtonian
fluid accompanied in a horizontal tube. To characterize the

non-Newtonian fluid behavior, they considered the Casson
fluid model. Suitable similarity transformations are utilized
to transform the governing partial differential momentum into

the non-linear ordinary differential equations. Also they inves-
tigated peristaltic mechanisms in a two dimensional nonuni-
form channel filled with Herschel–Bulkley fluid under the
assumptions of long-wavelength and low-Reynolds-number
approximation [26]. The influence of magnetic field on peri-
staltic flow of a Casson fluid model is considered in another
study of Akbar [27]. The governing coupled equations were

constructed under long wavelength and low Reynold’s number
approximation and Exact solutions were evaluated for stream
function and pressure gradient in his study. Taza et al. [28]

studied the influence of heat transfer analysis of thin film flows
of a third grade fluid in the presence of magneto hydrodynamic
(MHD) on a vertical moving belt. The momentum and energy

equations are solved analytically by using the Adomian
decomposition method (ADM) in their work. Optimal Homo-
topy Asymptotic Method (OHAM) is also used for compari-
son. Khan et al. [29] studied problem of thin layer third

order fluid flow past a vertical lubricating and porous belt that
was modeled by a system of nonlinear differential equations
studied in the presence of heat. The nonlinear differential

equations for the fields of velocity and temperature, are solved
analytically by using Optimal Homotopy Asymptotic Method
(OHAM) in their study and in another work of Taza et al. [30],

the influence of temperature dependent viscosity on thin film
flow of a magneto hydrodynamic (MHD) third grade fluid past
a vertical belt is investigated. In this paper we use the varia-

tional iteration method (VIM) to investigate this film flow of
a non-Newtonian Sisko fluid [31] on a vertically moving belt.
Results and discussion are given in Section 7. The conclusions
are summarized in Section 8.

2. Governing equations

The fundamental equations governing the motion of an incom-

pressible fluid, neglecting the thermal effects are given by

divV ¼ 0 ð1Þ

q
@V

@t
þ ðV � rÞV

� �
¼ r � Tþ qb ð2Þ

where q is the density, T is the Cauchy stress tensor, V is the
velocity vector, t is the time and qb are body forces per unit
mass. The Cauchy stress tensor T, is given by

T ¼ �pIþ S ð3Þ
where p is the pressure, I the unit tensor and S the extra stress

tensor.
In this paper, we are dealing with non-Newtonian Sisko

fluid. For a Sisko fluid the extra stress tensor is defined by [23]

S¼ aþb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
trðA2

1Þ
r�����

�����
ðn�1Þ2

4
3
5A1 for Non-Newtonian fluid n> 1

ð4Þ
where A1, is the rate of deformation tensor, and a, b and n are
constants defined differently for different fluids.

Sþk1
DS

Dt
þk3

2
ðSA1þA1SÞþk5

2
ðtrSÞA1 ¼l A1þk2

DA1

Dt
þk4A

2
1

� �
A1 ¼LþLT

L¼ gradV

ð5aÞ
where A1, is the first Rivlin–Ericksen tensor, l, k1, k2, k3, k4
and k5 are the material constants. The contra variant
convected derivative D=Dt is defined by
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DðdÞ
Dt

¼ dðdÞ
dt

� LðdÞ � ðdÞLT ð5bÞ

in which d=dt is the material derivative.

3. First problem

We consider a container having a non-Newtonian fluid in it. A
wide moving belt passes through this container and move

vertically upward with constant velocity U0 as shown in
Fig. 1. Since the belt moves upward and passes through the
fluid, it picks up a film fluid of thickness d. Due to gravity;
the fluid film tends to drain down the belt. For simplicity, some

assumptions are made:

(i) The flow is in steady state.

(ii) The flow is laminar and uniform.
(iii) The film fluid thickness d is uniform.

We choose a xy-coordinate system and position x-axis
parallel to the fluid and normal to the belt, y-axis upward
along the belt and z-axis normal to the xy-plane. The only

velocity component is in the y-direction; therefore,

V ¼ ð0; vðxÞ; 0Þ ð6Þ
and also the extra stress tensor is function of x only, that is

S ¼ SðxÞ ð7Þ
Eq. (6) satisfies the continuity Eq. (1) identically.

3.1. Mathematical formulation

The pressure along x-axis is constant, so using Eqs. (3) and (4)

in momentum Eq. (2), then, we obtain

� dP

dx
¼ 0 ð8Þ

y-momentum:

� dP

dy
þ qgþ a

d2v

dx2
þ b

d

dx

dv

dx

� �n

¼ 0 ð9Þ

From Eq. (8) we deduce that p = p(y). Thus, we remain with
the single equation:
Figure 1 Geometry of the flow of moving belt through a non-

Newtonian fluid.
a
d2v

dx2
þnb

dv

dx

� �n�1
d2v

dx2
þqg¼ dp

dy
for non-Newtonian fluid n> 1

ð10Þ
Since the velocity component v in above equation is a func-

tion of x while the pressure p is a function of y alone, the two
sides of this equation can be equal only if each is constant. As

there is no pressure gradient along y-direction, this constant
can be taken to be zero and fluid is going upwards; therefore,
Eq. (10) becomes

a
d2v

dx2
þnb

dv

dx

� �n�1
d2v

dx2
�qg¼ 0 for non-Newtonian fluid n> 1

ð11Þ
The boundary conditions will be

x ¼ 0 ! v ¼ U0 at the belt

x ¼ d ! sxy ¼ 0 shear stress at free surface

�
ð12Þ

where the shear stress sxy in Eq. (12) for the flow problem

under consideration from Eq. (4) is given by

sxy ¼ a
dv

dx
þ b

dv

dx

� �n
ð13Þ

Substituting Eq. (13) in the second boundary condition of
Eq. (12), we get

dv

dx
¼ 0 at x ¼ d ð14Þ

We obtain the same result in case of a Newtonian fluid.
Thus, the flow of a Sisko fluid on a vertical moving belt is

governed by the system:

d2v

dx2
þ nb

a

dv

dx

� �n�1
d2v

dx2
� qg

a
¼ 0 ð15Þ

x ¼ 0 ! v ¼ U0

x ¼ d ! dv
dx
¼ 0

(
ð16Þ

To non-dimensionalize Eq. (15) subject to (16), we intro-
duce the dimensionless parameters as follows:

v� ¼ v

U0

; x� ¼ x

d
; b� ¼ b

aðd=U0Þn�1
; k� ¼ qgd2

aU0

Thus, the dimensionless form of Eq. (15) subject to (16)
without ‘*’ is

d2v

dx2
þ nb

a

dv

dx

� �n�1
d2v

dx2
� qg

a
¼ 0 ð17Þ

x ¼ 0 ! v ¼ 1

x ¼ 1 ! dv
dx
¼ 0

(
ð18Þ

We give the solution of problem (17) with n= 3 under the
boundary conditions (18) by variational iteration method
(VIM).

4. Second problem

Physics of the problem includes a moving flat plate with

constant velocity (i.e. v0). The flat plate is cooled with a kind
of oil through which its properties follow the Sisko fluid
model. It is one of the main applications of this problem. In
Fig. 2a total outline of the added segment to collect the fluid
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from the moving plate is shown. The right side of the collector
is closed, oil enters to the collector and because of the closed
end part of the collector the oil exits from the upper part of

the duct. The pressure before duct entrance equals p0 and in
the collector is pi.

For simplicity, some assumptions are considered:

(i) The flow is in steady state.
(ii) The flow is laminar and uniform.

(iii) The gravity is negligible.

xy-coordinate system is chosen and y-axis is posed parallel
to the fluid and normal to the plate. x-axis is toward the plate

and also z-axis is normal to the xy-plane. The only velocity
component is in the x direction; therefore,

V ¼ ðvðyÞ; 0; 0Þ ð19Þ
and also the extra stress tensor is function of y only, that is

defined as follows:

S ¼ SðyÞ ð20Þ
4.1. Mathematical formulation

By entering the velocity field, s becomes

S ¼ a
@v

@y

� �
þ b

@v

@y

� �n

ð21Þ

r � S ¼ a
@2v

@y2

� �
þ bn

@2v

@y2

� �
@v

@y

� �n�1

ð22Þ

r � T ¼ �@p

@x
þ a

d2v

dy2
þ nb

dv

dy

� �n�1
d2v

dy2
¼ 0 ð23Þ

Acceleration vector is written DV=Dt and it is defined as

follows:

DV

Dt
¼ @V

@t
þ ðr � VÞV ð24Þ

By substituting Eqs. (23) and (24) into Eq. (2) and consid-
ering these assumptions, the final momentum equations are

obtained. For further information about this part, one can
refer to Refs. [24,25]. However, power law model is considered
in these two references but also non-Newtonian fluid is

investigated and they are worthy references due to behavior
of non-Newtonian fluid for researchers. The pressure along
the x axis direction is constant.

Constant pressure along y-axis is as follows:
ip0p

0U
y

x
h

L

Figure 2 Geometry of the fluid collector over a moving flat

plate.
dp

dy
¼ 0 ð25Þ

x-momentum:

a
d2v

dy2
þ nb

dv

@y

� �n�1
d2v

dy2
¼ dp

dx
ð26Þ

The reason of considering the velocity only as function of y
is the change in the partial differential equation to the ordinary

differential one. From Eq. (25) it is concluded that the pressure
is only the function of x. The right side of Eq. (26) only
depends on y and the pressure gradient dp=dx is constant,

Therefore:

dp

dx
¼ const ð27Þ

The proposed condition is implied as follows:

pð0Þ ¼ p0

pðLÞ ¼ pi

�
ð28Þ

Finally, the pressure profile is linear and this profile is

obtained as Eq. (29):

pðxÞ ¼ p0 � pi
L

xþ p0 ð29Þ

So, in Eq. (27) the internal pressure of the collector is not
known, clearly. Obtaining the internal pressure of the collector
is important because it leads to prevent the critical stress in

collecting oil segment by limiting the internal pressure.
Furthermore, the momentum equation and the related bound-
ary conditions for the flowing non-Newtonian Sisko fluid in

accordance with the movement are defined as the following
equation:

a
d2v

dy2
þ nb

dv

dy

� �n�1
d2v

dy2
� dp

dx
¼ 0 ð30Þ

The relevant boundary conditions are as follows:

y ¼ 0 ! v ¼ 0

y ¼ h ! v ¼ v0

�
ð31Þ

To solve Eqs. (30) and (31) the non-dimensional variables
and parameters are defined as follows:

v� ¼ v

U0

; y� ¼ y

h
; b� ¼ b

aðh=v0Þn�1
; k� ¼

dp
dx
h2

av0

Thus, the dimensionless form of Eq. (30) which is subjected
to Eq. (31) without ‘*’ is

d2v

dy2
þ nb

dv

dy

� �n�1
d2v

dy2
� k ¼ 0 ð32Þ

With the following boundary conditions:

y ¼ 0 ! v ¼ 0

y ¼ 1 ! v ¼ 1

�
ð33Þ

Eq. (33) is a second order nonlinear differential equation with
two boundary conditions. The solution of Eq. (32) under the

above boundary conditions is obtained by VIM. It should be
noted that Eq. (32) is considered for integer parameter n to
overcome problems due to dv=dy < 0 because of the nature
of article that investigated the velocity field of gap.



Figure 3 Dimensionless velocity profile of the belt with b= 0

and n= 3, for fixed value k = 1.
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5. Basic concepts of VIM

To illustrate the basic concepts of VIM, we consider the
following differential equation:

LuþNu ¼ hðxÞ ð34Þ
where L, N and h(x) are the linear operator, the nonlinear
operator and a heterogeneous term, respectively.

Assuming u0ðxÞ is the solution of Lu = 0 we can write

down an expression to correct the value of some special point,
for example at x= 1:

ucorð1Þ ¼ u0ð1Þ þ
Z 1

0

k½Lu0 þNu0 � h�dx ð35Þ

where k is a general Lagrange multiplier, which can be identi-
fied optimally via the variational theory, and the second term
on the right is called the correction. He [18,19] has modified the
above method into an iteration method in the following way:

unþ1ðx0Þ ¼ unðx0Þ þ
Z x0

0

k½Lun þN~un � h�dx ð36Þ

With u0ðxÞ as initial approximation with possible
unknowns, ~un is considered a restricted variation and is chosen
suitably to satisfy the restricted variation conditions, i.e.
d~un ¼ 0. For arbitrary of u0, we can rewrite Eq. (36) as follows:

unþ1ðxÞ ¼ unðxÞ þ
Z x

0

k½LunðnÞ þN~unðnÞ � hðnÞ�dn
for non-Newtonian fluid n P 0 ð37Þ

It is obvious that the successive approximations uj; j P 0 can

be established by determining k, general Lagrange’s multiplier,

which can be identified optimally via the variational theory. As
mentioned before, the function ~un is a restricted variation which
means d~un ¼ 0. Therefore, we first determine the Lagrange

multiplier k which will be identified optimally via integration
by parts. The successive approximations unþ1ðxÞ; n P 0 of the
solution u(x) will be readily obtained upon using the obtained

optimal Lagrange multiplier and by using admissible function
u0. Once k is determined, then several approximations
ujðxÞ; j P 0, follow immediately. Consequently, the exact solu-

tion may be obtained using following equation:

u ¼ lim
n!1

un ð38Þ
Figure 4 Dimensionless velocity profile of the belt with b= 0.25

and n= 3, for fixed value k = 1.
6. VIM solution

In order to obtain VIM solution of Eq. (17) with n= 3, we

construct a correction functional which reads as follows:

vnþ1ðxÞ ¼ vnðxÞ

þ
Z x

0

k
d2vnðsÞ
ds2

þ 3b
d~vnðsÞ
ds

� �2
d2~vnðsÞ
ds2

� k

 !
ds ð39Þ

where k is the general Lagrangian multiplier that is to be deter-
mined later and ~vnðsÞ is considered as a restricted variation, i.e.
d~vnðsÞ ¼ 0. To find the optimal value of k:

dvnþ1ðxÞ¼dvnðxÞþd
Z x

0

k
d2vnðsÞ
ds2

þ3b
d~vnðsÞ
ds

� �2
d2~vnðsÞ
ds2

�k

 !
ds

ð40Þ
Or

dvnþ1ðxÞ ¼ dvnðxÞ þ d
Z x

0

k
d2vnðsÞ
ds2

� �
ds ð41Þ

Its stationary conditions can be obtained as follows:

€kðsÞ ¼ 0 1� _kðsÞ��
s¼x

¼ 0 kðsÞjs¼x ¼ 0 ð42Þ
The Lagrange multiplier can be identified as same as

Eq. (43):

k ¼ s� x ð43Þ



Figure 5 Dimensionless velocity profile of the belt With

b= 0.35 and n= 3, for fixed value k = 1.

Figure 6 Dimensionless velocity profile of the belt With

b= 0.45 and n= 3, for fixed value k = 1.

Figure 7 Comparison of VIM velocity field V and Numerical

solution with b = 0.02, n= 1 and k= 8.

Figure 8 Dimensionless velocity profile With b= 0.01, n= 2

and k = 8.
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As a result, the following variational iteration formula can
be obtained:

vnþ1ðxÞ¼ vnðxÞþ
Z x

0

ðs�xÞ d2vnðsÞ
ds2

þ3b
d~vnðsÞ
ds

� �2
d2~vnðsÞ
ds2

�k

 !
ds

ð44Þ
Now we must start with an arbitrary initial approximation.

Therefore, we begin with Eq. (45):

v0ðxÞ ¼ cxþ d ð45Þ
where c and d are unknown constants to be further deter-

mined. By the above variational formula (44), we obtain the
following first-order approximate solution:

v1ðxÞ¼ v0ðxÞþ
Z x

0

ðs�xÞ d2v0ðsÞ
ds2

þ3b
d~v0ðsÞ
ds

� �2
d2~v0ðsÞ
ds2

�k

 !
ds

ð46Þ
Substituting Eq. (45) into Eq. (46), we have

v1ðxÞ ¼ cxþ dþ 1

2
kx2 ð47Þ



Figure 9 Dimensionless velocity profile with b= 0.05, n= 2

and k = 8.

Figure 10 Comparison of dimensionless velocity profile With

n= 2 and k= 8, for different values of b.

Figure 11 Dimensionless velocity profile with b= 0.02, n= 2

and k = 10.

Figure 12 Dimensionless velocity profile with b= 0.02, n= 2

and k = 12.
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Incorporating the boundary conditions, Eq. (18), into v1ðxÞ
we can determine the values of the unknown constants as
follows:

c ¼ �k; d ¼ 1 ð48Þ
Therefore, we obtain the first-order approximate solution,

which reads as follows:

v1ðxÞ ¼ 1

2
kx2 � kxþ 1 ð49Þ
Using the variational formula (44) and first-order approxi-

mate solution (47), we can obtain v2ðxÞ:

v2ðxÞ ¼ cxþ dþ 1

2
kx2 � 3

2
bc2kx2 � k2bcx3 � 1

4
bk3x4 ð50Þ

In the same way, v3ðxÞ; v4ðxÞ; . . . can be obtained.

Therefore, we are able to give an approximate solution of
the considered problem.

To give an approximation solution for the second problem

with n = 2, we use the same process.



Figure 13 Comparison of dimensionless velocity profile With

b= 0.02 and n= 2 for different values of k.
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7. Results and discussion

For the first problem we consider a container having a non-

Newtonian fluid in it. A wide moving belt passes through this
container and moves vertically upward with constant velocity
U0 as shown in Fig. 1. Since the belt moves upward and passes

through the fluid, it picks up a film fluid of thickness d. Due to
gravity, the fluid film tends to drain down the belt. The graph-
ical representation Figs. 3–6 of the velocity v against the

horizontal distance x shows that the velocity increases as the
non-Newtonian effect increases from b = 0 (Newtonian case)
to b = 0.45, when n= 3. Physics of the second problem
includes a moving flat plate with constant velocity (i.e. v0).

The flat plate is cooled with a kind of oil through which its
properties follow the Sisko fluid model. In case of n = 1, the
behavior of the fluids changes to Newtonian fluid. Fig. 7 shows

the comparable results of Newtonian fluid by variational itera-
tion method. In Figs. 8, 9, 11 and 12 the velocity profile of the
Sisko fluid with n = 2 in duct is plotted in accordance with duct

width in different values of b and k, respectively. Comparison
of velocity profile with n = 2 and k= 8, for different values
of b has been shown in Fig. 10. It is observed that in case of lar-

ger amount of b the results separate from Newtonian fluid and
non-Newtonian fluid. The velocity profile with b = 0.02 and
n= 2, for different values of k has been shown in Fig. 13.
Figs. 3–6, 8, 9, 11 and 12 show the comparison of analytical

results of velocity with numerical results. It can be found that
our analytical results of velocity fit well with numerical results.

8. Conclusion

In the present work, we study two problems of non-Newtonian
fluid, namely a Sisko fluid. For the first problem we consider a

thin film of fluid on a vertically moving belt and in the second
one a fluid flow in collector. We apply the variational iteration
method to obtain the velocity profile. The validity of our
solutions is compared by the numerical results. In first problem
For Sisko fluid when n = 3, it is observed that as the non-
Newtonian effect is increased the velocity increases. In second

problem we obtain the pressure gradient by applying this
method (VIM) for fluid flow in collector. Predicting the pres-
sure can help to analyze the extra stresses in the collector.
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