
Discrete Applied Mathematics 160 (2012) 1453–1464

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

NP-hardness of the sorting buffer problem on the uniform metric✩

Yuichi Asahiro a,∗, Kenichi Kawahara b, Eiji Miyano b

a Department of Information Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
b Department of Systems Design and Informatics, Kyushu Institute of Technology, Fukuoka 820-8502, Japan

a r t i c l e i n f o

Article history:
Received 5 June 2010
Received in revised form 24 November
2011
Accepted 7 February 2012
Available online 3 March 2012

Keywords:
Sorting buffer problem
Metric space
Uniform metric
NP-hardness

a b s t r a c t

An instance of the sorting buffer problem (SBP) consists of a sequence of requests for
service, each of which is specified by a point in a metric space, and a sorting buffer which
can store up to a limited number of requests and rearrange them. To serve a request, the
server needs to visit the point where serving a request p following the service to a request
q requires the cost corresponding to the distance d(p, q) between p and q. The objective
of SBP is to serve all input requests in a way that minimizes the total distance traveled by
the server by reordering the input sequence. In this paper, we focus our attention to the
uniform metric, i.e., the distance d(p, q) = 1 if p ≠ q, d(p, q) = 0 otherwise, and present
the first NP-hardness proof for SBP on the uniform metric.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the sorting buffer problem (SBP), an instance consists of (1) a sequence of requests for service, each ofwhich is specified
by a point in a metric space (V , d), where V is a set of points and d is a distance function, (2) a server which moves from a
point to a point in order to serve these requests, and (3) a finite-capacity sorting buffer capable of storing up to L requests. To
serve a request, the server needs to visit the request point where serving a request p ∈ V following the service to a request
q ∈ V requires the cost corresponding to the distance d(p, q) between p and q. The sorting buffer which is a random access
buffer can be used to reorder the input sequence. The objective of SBP is to serve all input requests in a way that minimizes
the total distance traveled by the server in the metric space by reordering the input sequence.

1.1. Previous and our results

The buffering-rearranging mechanism is widely used in many applications and very universal. Thus, several metric spaces
are investigated in the literature: Räcke et al. [12] first introduced a uniform metric, in which points are either at distance 0
or 1. The uniform metric is motivated by the following manufacturing process: consider a paint shop in a car plant which
receives a sequence of cars with specific colors. If consecutive two cars must be painted in different colors, then significant
set-up and cleaning costs are incurred in changing colors. That is, the consecutive two requests are at distance 1 if the
corresponding cars have to be painted in different colors, and at distance 0 otherwise. Kohrt and Pruhs [11] also consider
the problemon the uniformmetric and provide a polynomial-time 20-approximation algorithm. This has been subsequently
improved by Bar-Yehuda and Laserson [4] to the approximation ratio of 9, but their objective is to maximize the reduction
in the cost from that of the input sequence. Khandekar and Pandit [10] investigate a line metric, which is motivated by its

✩ A preliminary version of this paper appeared in Asahiro et al. (2008) [2].
∗ Corresponding author. Tel.: +81 92 673 5411; fax: +81 92 673 5454.

E-mail addresses: asahiro@is.kyusan-u.ac.jp (Y. Asahiro), kawahara@theory.ces.kyutech.ac.jp (K. Kawahara), miyano@ces.kyutech.ac.jp (E. Miyano).

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.02.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82019712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2012.02.005
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:asahiro@is.kyusan-u.ac.jp
mailto:kawahara@theory.ces.kyutech.ac.jp
mailto:miyano@ces.kyutech.ac.jp
http://dx.doi.org/10.1016/j.dam.2012.02.005

1454 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

application to a disk scheduling problem, and present a 15-approximation algorithm running in O(|V | · N · LO(logN)) time
where N is the length of the input sequence. Englert et al. [6] study more general metric spaces.

For the general setting, SBP is known to be NP-hard by a simple reduction from the minimum weight Hamiltonian path
problem, and can be solved optimally using dynamic programming in O(NL+1) time and in O(N |V |+1) time [10]. For the
uniform metric, however, it is not known if the problem remains NP-hard. In this paper, we prove NP-hardness of SBP on
the uniformmetric. Note that the conference version [2] of this paper contained an error which is fixed in this full version; a
brief description of the error correction will be included in the footnote of Section 3. Also note that Chan et al. have recently
posted an independent proof of the NP-hardness for SBP on the uniform metric on arXiv.org [5].

1.2. Related work

Most of the work for SBP has been devoted to the online models; the performance of algorithms is analyzed by the
competitive analysis. Räcke et al. [12] study several standard strategies on the uniformmetric and prove that the competitive
ratio of the First In First Out and the Least Recently Used strategies is Ω(

√
L) and the competitive ratio of the Most Common

First strategy is Ω(L). Also, a deterministic online algorithm with a competitive ratio of O(log2 L) is provided in [12], and
then Englert and Westermann [7] improved the competitive ratio to O(log L). Subsequently, Avigdor-Elgrabli and Rabani
design a deterministic online algorithm with a competitive ratio of O(

log L
log log L) [3]. The current best known upper and lower

bounds for the competitive ratio are O(
√
log L) and Ω(

√
log L/ log log L) proved by Adamaszek et al. [1].

Khandekar and Pandit [10] consider the line metric and present a randomized O(log2 N) competitive algorithm for
N uniformly-spaced points on a line, and then Gamzu and Segev [8] improve this by providing a deterministic O(logN)
competitive algorithm. As for the more general class of metric spaces, Englert and Westermann [7] prove that any greedy
strategy achieves a 2L − 1 competitive ratio for any metric space and Englert et al. [6] show a polylogarithmic competitive
ratio for general metric spaces.

2. Uniformmetric model

In this paper, we consider the following paint shop scenario [11,12]: we are given a service station, a (sorting) buffer, and
an input sequence S = s1s2 · · · sN of N requests which are characterized by their colors. For each request si, let c(si) denote
the color of si. Only for simplicity, we may identify the color c(si) with si itself. Also, for a subsequence sisi+1 · · · si+ℓ−1 of
ℓ requests, let c(sisi+1 · · · si+ℓ−1) denote its color sequence c(si)c(si+1) · · · c(si+ℓ−1). The buffer can hold up to L requests,
which is used to reorder the input sequence as follows: when the service station receives a new request, the request is
initially placed in the buffer. At any time, the buffer contains the first L requests of the input sequence that have not been
served so far, and one of those L requests can be processed at the service station and removed from the buffer. The similar
process is repeated until the buffer ends up empty. That is, the buffer can reorder the input sequence of N requests; the
removed requests result in an output sequence Sπ−1 = sπ−1(1)sπ−1(2) · · · sπ−1(N), which is a permutation π(S) of the input
sequence S. Since the buffer can store only a limited number of requests, the output sequence Sπ−1 cannot be an arbitrary
permutation of S; it is only possible to reorder S into a sequence which belongs to a restricted subset of the permutations
depending on the size L of the buffer.

Let a color block denote a maximal subsequence including only requests with the same color in the output sequence. Let
a cost C(S) of a sequence S be the number of color blocks in S. The objective of SBP on the uniformmetric is to minimize the
cost C(Sπ−1) of the output sequence Sπ−1 by using the sorting buffer.

3. NP-hardness

Let us consider the following decision version of SBP on the uniform metric, SBPU(Z):

Problem SBPU(Z):

Instance: A sequence S = s1s2 · · · sN of N requests, their colors c(s1), c(s2), . . . , c(sN), the capacity L of the
sorting buffer, and a positive integer Z ≤ N .

Question: Is there a rearranged output sequence Sπ−1 = sπ−1(1)sπ−1(2) · · · sπ−1(N) such that C(Sπ−1) ≤ Z?

The proof of its NP-hardness is by a polynomial-time reduction from the following vertex cover problem VC(k) [9]. Let
G = (V , E) be an undirected graph, where V and E denote the set of vertices and the set of edges, respectively.

Problem VC(k):

Instance: A graph G = (V , E) and a positive integer k ≤ |V |.
Question: Is there a subset VC ⊆ V with |VC | ≤ k such that for each edge {u, v} ∈ E at least one of u and v

belongs to VC?

Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464 1455

The subset VC is called a vertex cover. In the proof of the following theorem, from an instance G = (V , E) and an integer
k of VC(k), we construct a sequence S of requests satisfying that there is an output sequence Sπ−1 such that C(Sπ−1) ≤ Z if
and only if there is a vertex cover VC ⊆ V with |VC | ≤ k.

Before giving the proof, to make the basic ideas of the reduction clear, we first give its intuitive explanation: consider the
problem VC(1) and two graphs G = (V , E) and G′

= (V , E ′) as its instances, where V = {a, b, c}, E = {{a, b}, {b, c}}, and
E ′

= {{a, b}, {b, c}, {a, c}}. For G, there is a vertex cover VC = {b}, but there is no vertex cover of size 1 for G′. From these
graphs and the integer k = 1, we construct two sequences S and S ′ such that S = ShS{a,b}S{b,c}St and S ′

= ShS{a,b}S{b,c}S{a,c}St ,
where each Si is a subsequence of a certain length for i ∈ {h, t} ∪ E ∪ E ′. The capacity L of the sorting buffer and the target
costs Z and Z ′ respectively for S and S ′ are determined based on |V |, |E|, and k(=1). Here, if i ∈ {h, t}, the subsequence Si
is a concatenation of subsequences represented by T i,1

V T i,1
B T i,2

V T i,2
B , otherwise, i.e., if i ∈ E ∪ E ′, it is T i,1

V T i,1
B TiT

i,2
V T i,2

B , where
the subsequences T i,1

V and T i,2
V correspond to the vertex set V of G, and the subsequence Ti corresponds to the edge i. Each

of T i,1
B and T i,2

B is a long sequence which plays an important role in the proof, and briefly explained in the following. Since
the capacity L of the sorting buffer is limited, every algorithm is forced to choose a set of requests from T h,1

V in Sh. The set
of requests chosen here corresponds to a subset U ⊆ V which is considered as a candidate of VC . Then, once the algorithm
has chosen U , we can show that it is impossible to change U when processing, e.g., T {a,b},1

V , based on the property of the
subsequences T i,j

B ’s; the subsequence T i,j
B is a kind of barrier to change the candidate U of VC . Namely, if the algorithm

changes U , say, when processing T {a,b},1
V , either of the subsequences T {a,b},1

V or T {a,b},1
B has to be processed in a non-optimal

way that incurs an extra cost. In addition, for i ∈ E ∪ E ′, the optimal cost for the subsequence Ti is achieved by processing
at least one of the requests corresponding to an end point of the edge i right before processing a request corresponding to a
vertex which belongs to U (if U is a vertex cover), meaning that the edge i is covered by U . By the construction when k = 1,
the algorithms can choose a set of requests from T h,1

V in Sh, which corresponds to one vertex in V . Since there is a vertex
cover VC = {b} for G, a set of requests corresponding to {b} can be chosen at this moment for the sequence S. The set is kept
unchanged until the end of processing, because of the barriers T i,j

B ’s, and then S{a,b} and S{b,c} are processed by the manner of
covering described above, which achieves the optimal cost. On the other hand, there is no vertex cover of size 1 for G′. Let
us consider an example that {b} is also chosen as a candidate U of VC at the beginning. Based on this choice, the constructed
sequence S ′ can be processed ‘‘optimally’’ from Sh through S{b,c} by the manner of covering. However, since the edge {a, c} is
not covered by {b}, the subsequence S{a,c} cannot be processed by the manner of covering if we do not change U . As a result,
an extra cost is necessary to process S{a,c}. Since changing U at some intermediate step also incurs an extra cost as described
above, we can see that the cost C(S ′) of S ′ is larger than the target value Z ′.

In this section, we prove the following theorem.

Theorem 1. SBPU(Z) is NP-complete.

Proof. From an instance G = (V , E) and an integer k of VC(k), we construct a sequence S of requests satisfying that there
is an output sequence Sπ−1 such that C(Sπ−1) ≤ Z if and only if there is a vertex cover VC ⊆ V with |VC | ≤ k. Assume that
|V | = n and |E| = m and let V = {v1, v2, . . . , vn} and E = {{vi1 , vj1}, {vi2 , vj2}, . . . , {vim , vjm}}. Brief explanation of the
construction is as follows.

1. We associate each vertex to a color.
2. There are four types of subsequences, two of which correspond to the vertex set V and an edge in the edge set E of the

instance of VC(k), and the remaining two types are extra ones.
3. We construct a subsequence for each edge in E, which contains all the four types of subsequences, and then concatenate

them.
4. Finally we add special subsequences S0 and Sm+1 respectively to the head and the tail of the sequence S, which do not

contain the type of subsequence corresponding to an edge.

As a result, the constructed sequence S is a concatenation of m + 2 subsequences, a special subsequence S0 at the head,
S1 through Sm, corresponding to m edges, and another special subsequence Sm+1 at the tail, i.e., S = S0S1 · · · SmSm+1. The
detailed construction is given below.

First of all, we consider 2(m+2) subsequencesΣ1
i andΣ2

i of requests for i = 0, 1, . . . ,m+1, referred to as vertex requests.
Each of the vertex requests consists of n different colors, say, σ1, σ2, . . . , σn, associated with n vertices, v1, v2, . . . , vn. Then,
each vertex request includes two requests per color, and so has length 2n. In summary,

c(Σ1
i) = c(Σ2

i) = σ1σ1 σ2σ2 · · · σnσn, for i = 0, 1, . . . ,m + 1.

Second of all, associated with ℓ-th edge {viℓ , vjℓ} ∈ E, we prepare a sequence eℓe′

ℓ of two requests referred to as an edge
request, such that c(eℓ) = σiℓ and c(e′

ℓ) = σjℓ , respectively.
Now we describe the subsequence S0 at the head in detail, which contains vertex requests and extra requests as follows:

S0 = Σ1
0 A1

0,1A
2
0,1 A1

0,2A
2
0,2 · · · A1

0,pA
2
0,p Σ2

0 B1
0,1B

2
0,1 B1

0,2B
2
0,2 · · · B1

0,pB
2
0,p.

1456 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

Here, p is some fixed, sufficiently large integer, say, p ≥ n2 and, for j = 1, 2, . . . , p, A1
0,j and A2

0,j are sequences of the same
colors, each of which consists of 2n + 1 different colors:

c(A1
0,j) = c(A2

0,j) = a0,j,1 a0,j,2 · · · a0,j,2n+1,

and, for any j, the colors in c(A1
0,j) and c(A2

0,j) do not appear in any other part in the input sequence. Also, for j = 1, 2, . . . , p,
B1
0,j and B2

0,j are sequences of the same colors, each of which consists of 4k + 1 different colors:

c(B1
0,j) = c(B2

0,j) = b0,j,1 b0,j,2 · · · b0,j,4k+1,

and, for any j, the colors in c(B1
0,j) and c(B2

0,j) do not appear in any other part in the input sequence.
The ℓ-th subsequence Sℓ (ℓ = 1, 2, . . . ,m) is similar to S0:

Sℓ = Σ1
ℓ A1

ℓ,1A
2
ℓ,1 A1

ℓ,2A
2
ℓ,2 · · · A1

ℓ,pA
2
ℓ,peℓ e′

ℓ Σ2
ℓ B1

ℓ,1B
2
ℓ,1 B1

ℓ,2B
2
ℓ,2 · · · B1

ℓ,pB
2
ℓ,p,

whereΣ1
ℓ andΣ2

ℓ are vertex requests, eℓe′

ℓ is an edge request, and A1
ℓ,j, A

2
ℓ,j, B

1
ℓ,j and B2

ℓ,j are extra requests. For j = 1, 2, . . . , p,
A1

ℓ,j and A2
ℓ,j are sequences of the same colors, each of which consists of 2n + 1 different colors:

c(A1
ℓ,j) = (A2

ℓ,j) = aℓ,j,1 aℓ,j,2 · · · aℓ,j,2n+1,

and colors of c(A1
ℓ,j) and c(A2

ℓ,j) do not appear in any other part in the sequence. Also, for j = 1, 2, . . . , p, B1
ℓ,j and B2

ℓ,j are
sequences of the same colors, each of which consists of 4k different colors:

c(B1
ℓ,j) = (B2

ℓ,j) = bℓ,j,1 bℓ,j,2 · · · bℓ,j,4k,

and, colors of c(B1
ℓ,j) and c(B2

ℓ,j) do not appear in any other part in the sequence.
The last subsequence Sm+1 includes only vertex and extra requests again:

Sm+1 = Σ1
m+1 A1

m+1,1A
2
m+1,1 · · · A1

m+1,pA
2
m+1,pΣ

2
m+1 B1

m+1,1B
2
m+1,1 · · · B1

m+1,pB
2
m+1,p,

where, for j = 1, 2, . . . , p, c(A1
m+1,j) = c(A2

m+1,j) and c(B1
m+1,j) = c(B2

m+1,j) include 2n + 1 and 4k + 1 different colors,
respectively, and those colors do not appear in any other part in the sequence.

The important differences between S0 (or Sm+1) and Sℓ (1 ≤ ℓ ≤ m) are: (i) Bi
ℓ,j has only 4k requests for i = 1, 2, and

(ii) Sℓ includes an edge request eℓe′

ℓ, which play a key role in this proof.
Finally, we set the capacity L of the sorting buffer and the positive integer Z as follows:

L = 2n + 2k + 1
Z = (m + 2)(n + (2n + 1)p + 4kp) + 2p + n − k.

This completes the reduction from VC(k) to SBPU(Z).1
We show Lemmas 1 and 2 below in the following two subsections, from which Theorem 1 follows. �

Lemma 1. If there is a vertex cover VC with |VC | ≤ k, then there is an output sequence Sπ−1 such that C(Sπ−1) ≤ Z.

Lemma 2. If there is an output sequence Sπ−1 such that C(Sπ−1) ≤ Z, then there is a vertex cover VC with |VC | ≤ k.

3.1. Proof of Lemma 1

In this subsection, we give the proof for Lemma 1. Without loss of generality, assume that VC = {v1, v2, . . . , vk},
and thus V \ VC = VC = {vk+1, vk+2, . . . , vn}. Regarding these VC and VC , let the corresponding set of the colors be
cVC = {σ1, σ2, . . . , σk} and cVC = {σk+1, σk+2, . . . , σn}. We describe subsequences of the output sequence Sπ−1 step by step.

(Step 0–1) Since L = 2n+2k+1, thewhole vertex requestsΣ1
0 of length 2n and the first 2k+1 requests from A1

0,1 are stored
in the sorting buffer during the first 2n+2k+1 steps. First, n−k colors σk+1, σk+2, . . . , σn (2(n−k) requests) ofΣ1

0 ,
corresponding to VC , are processed and removed from the sorting buffer. Let ΣVC0

= σk+1σk+1 σk+2σk+2 · · · σnσn.
Then, C(ΣVC0

) = n − k.
(Step 0–2) Now, in the sorting buffer there remain σ1, σ1, σ2, σ2, . . . , σk, σk corresponding to VC and the whole A1

0,1 of
length 2n + 1. We process the head a0,1,1 of A1

0,1 and remove it from the sorting buffer. At this moment, the same

1 In the conference version [2] of the paper, the lengths of subsequences were different. Roughly speaking, the lengths were about half of those in this
paper: (i) the length of Σ1

i and Σ2
i for 0 ≤ i ≤ m + 1 is n, where one request per color is included, (ii) the length of A1

i,j and A2
i,j for 0 ≤ i ≤ m + 1 and

1 ≤ j ≤ p is n+ 1, (iii) the length of B1
0,j , B

2
0,j , B

1
m+1,j , and B2

m+1,j is 2k+ 1, and then (iv) the length of B1
i,j and B2

i,j for 1 ≤ i ≤ m and 1 ≤ j ≤ p is 2k. Although
this difference caused an error in a part of the proof, we could have fixed the error just by doubling the subsequences.

Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464 1457

color a0,1,1 which is the head ofA2
0,1 is placed in the buffer and thus a0,1,1 is removed. Similarly, each pair of the same

color in A1
0,1 and A2

0,1 is processed consecutively. That is, 2(2n + 1)p requests of A1
0,1, A

2
0,1, A

1
0,2, A

2
0,2, . . . , A

1
0,p, A

2
0,p

are permuted as follows:

A0 = a0,1,1a0,1,1 a0,1,2a0,1,2 · · · a0,1,2n+1a0,1,2n+1a0,2,1a0,2,1 a0,2,2a0,2,2 · · · a0,2,2n+1a0,2,2n+1 · · ·

a0,p,1a0,p,1 a0,p,2a0,p,2 · · · a0,p,2n+1a0,p,2n+1,

where the first a0,1,1 comes from A1
0,1, the second a0,1,1 comes from A2

0,1, the third a0,1,2 from A1
0,2, and so on. The

cost C(A0) is (2n + 1)p.
(Step 0–3) The next output subsequence of length 4k is

ΣVC0 = σ1σ1σ1σ1 σ2σ2σ2σ2 · · · σkσkσkσk,

and its cost C(ΣVC0) is k.
(Step 0–4) Currently, 2(n − k) requests, σk+1, σk+1, σk+2, σk+2, . . . , σn, σn, and the whole B1

0,1 of length 4k + 1 are stored
in the sorting buffer, from which the following subsequence of length 2(4k + 1)p is obtained by merging B1

0,1 and
the subsequence B2

0,1B
1
0,2B

2
0,2 · · · B1

0,pB
2
0,p:

B0 = b0,1,1b0,1,1 b0,1,2b0,1,2 · · · b0,1,4k+1b0,1,4k+1b0,2,1b0,2,1 b0,2,2b0,2,2 · · · b0,2,4k+1b0,2,4k+1 · · ·

b0,p,1b0,p,1 b0,p,2b0,p,2 · · · b0,p,4k+1b0,p,4k+1,

where the first b0,1,1 comes from B1
0,1, the second b0,1,1 comes from B2

0,1, the third b0,1,2 comes from B1
0,2, and so

on. The cost C(B0) is (4k + 1)p.

At this moment, σk+1 through σn (each of which has two requests and 2(n − k) requests in total) from S0 and the first
4k+ 1 requests from S1 are placed in the sorting buffer. In the following, from ℓ = 1 to ℓ = m, we repeat (Step ℓ-1) through
(Step ℓ-4), which are very similar to (Step 0–1) through (Step 0–4).

(Step ℓ-1) The following sequence ΣVCℓ
of colors corresponding to VC comes out of the buffer, merging σk+1 through σn in

Sℓ−1 and the same colors in Σ1
ℓ of Sℓ. If a color σj in Sℓ−1 which corresponds to one color of an edge request not in

cVC remains in the buffer,2

ΣVCℓ
= σk+1σk+1σk+1σk+1 σk+2σk+2σk+2σk+2 · · · σjσjσjσjσj · · · σnσnσnσn,

where five σj’s are output consecutively, or, otherwise,

ΣVCℓ
= σk+1σk+1σk+1σk+1 σk+2σk+2σk+2σk+2 · · · σnσnσnσn.

The cost C(ΣVCℓ
) is n − k.

(Step ℓ-2) For j = 1, . . . , p, A1
ℓ,j and A2

ℓ,j are merged in a similar way to (Step 0–2), and thus the following output
subsequence is obtained:

Aℓ = aℓ,1,1aℓ,1,1 aℓ,1,2aℓ,1,2 · · · aℓ,1,2n+1aℓ,1,2n+1aℓ,2,1aℓ,2,1 aℓ,2,2aℓ,2,2 · · · aℓ,2,2n+1aℓ,2,2n+1 · · ·

aℓ,p,1aℓ,p,1 aℓ,p,2aℓ,p,2 · · · aℓ,p,2n+1aℓ,p,2n+1

and its cost C(Aℓ) is (2n + 1)p.
(Step ℓ-3) Currently, σ1 through σk from Σ1

ℓ (2k requests), eℓ and e′

ℓ of an edge request eℓe′

ℓ, and two σ1’s through σn−1’s,
and one σn from Σ2

ℓ are stored in the sorting buffer. It is important to note that at least one of c(eℓ) = σiℓ and
c(e′

ℓ) = σjℓ is the same as one of σ1 through σk since at least one of eℓ and e′

ℓ must be in VC . Now, for example,
assume that e′

ℓ ∈ VC . Then, the following sequence is removed:

ΣVCℓ
= σ1σ1σ1σ1 σ2σ2σ2σ2 · · · σjℓσjℓσjℓσjℓσjℓ · · · σkσkσkσk,

and its cost C(ΣVCℓ
) is k. If both of eℓ and e′

ℓ are in VC , then ΣVCℓ
is as follows, assuming iℓ ≤ jℓ:

ΣVCℓ
= σ1σ1σ1σ1 · · · σiℓσiℓσiℓσiℓσiℓ · · · σjℓσjℓσjℓσjℓσjℓ · · · σkσkσkσk,

and its cost is still k.
(Step ℓ-4) For j = 1, . . . , p, B1

ℓ,j and B2
ℓ,j aremerged in a similarway to (Step 0–4). At the beginning of this step, there remain

2(n−k) requests, σk+1, σk+1, σk+2, σk+2, . . . , σn, σn in the sorting buffer. Also in the sorting buffer theremay exist
one request, say, σjℓ of the edge request eℓe′

ell because of (Step ℓ-3), i.e., currently 2(n − k) + 1 requests may be

2 Such a color does not exist in the case ℓ = 1 by the definitions of Step 0–1–Step 0–4.

1458 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

stored in the buffer. However, differently to (Step 0–4), since the length of B1
ℓ,j (and B2

ℓ,j) for 1 ≤ j ≤ p is 4k, the
whole of B1

ℓ,j is also stored in the sorting buffer. Hence by merging B1
ℓ and B2

ℓ similarly to (Step 0–4), the following
output subsequence can be obtained:

Bℓ = bℓ,1,1bℓ,1,1 bℓ,1,2bℓ,1,2 · · · bℓ,1,4kbℓ,1,4kbℓ,2,1bℓ,2,1 · · · bℓ,2,4kbℓ,2,4k · · · bℓ,p,1bℓ,p,1 · · · bℓ,p,4kbℓ,p,4k

and its cost C(Bℓ) is 4kp since B1
ℓ,j and B2

ℓ,j have 4k different colors.

After (Stepm-4), σk+1 through σn (2(n−k) requests) remain in the sorting buffer. We execute a similar phase oncemore,
and generate four output subsequences, ΣVCm+1

, Am+1, ΣVCm+1 , and Bm+1: if a color σj of the edge request in Sm is not in cVC ,
then it remains in the sorting buffer and hence

ΣVCm+1
= σk+1σk+1σk+1σk+1 σk+2σk+2σk+2σk+2 · · · σjσjσjσjσj · · · σnσnσnσn,

where five σj’s are output consecutively, or, otherwise,
ΣVCm+1

= σk+1σk+1σk+1σk+1 σk+2σk+2σk+2σk+2 · · · σnσnσnσn,

Am+1 = am+1,1,1am+1,1,1 · · · am+1,1,2n+1am+1,1,2n+1am+1,2,1am+1,2,1 · · · am+1,2,2n+1am+1,2,2n+1 · · ·

am+1,p,1am+1,p,1 · · · am+1,p,2n+1am+1,p,2n+1,

ΣVCm+1 = σ1σ1σ1σ1 σ2σ2σ2σ2 · · · σkσkσkσk (=ΣVC0),

Bm+1 = bm+1,1,1bm+1,1,1 · · · bm+1,1,4k+1bm+1,1,4k+1bm+1,2,1bm+1,2,1 · · · bm+1,2,4k+1bm+1,2,4k+1 · · ·

bm+1,p,1bm+1,p,1 · · · bm+1,p,4k+1bm+1,p,4k+1.

Finally, there remain n− k colors (2(n− k) requests), σk+1 through σn, each of which is removed from the sorting buffer.
Let ΣVCm+2

be the sequence of those n − k colors. As a result, the output sequence Sπ−1 is as follows:

Sπ−1 = ΣVC0
A0ΣVC0B0 ΣVC1

A1ΣVC1B1 · · · ΣVCm+1
Am+1ΣVCm+1Bm+1 ΣVCm+2

.

Therefore, the lemma holds since the total cost C(Sπ−1) is Z:

C(Sπ−1) =

m+1
ℓ=0

(C(ΣVCℓ
) + C(ΣVCℓ

)) +

m+1
ℓ=0

(C(Aℓ) + C(Bℓ)) + C(ΣVCm+2
)

= (m + 2)(n + (2n + 1)p + 4kp) + 2p + n − k.

3.2. Proof of Lemma 2

In this subsection, we prove Lemma 2. First we introduce the notation only used in this subsection, and then show several
propositions on important properties and the optimal cost of subsequences rearranged in the sorting buffer. Let ΞX denote
themultiset of colors in the buffer when the head request of a (sub)sequence X (of the input sequence) is ready to enter into
the sorting buffer. For simplicity we say that X is ready instead of ‘‘the head request of X is ready to enter into the sorting
buffer’’. Similarly, a request is ready if it is ready to enter into the sorting buffer. Let {T } for a sequence T be the multiset
of colors in T . For a multiset M of colors, #(M) denotes the number of colors in M . For a pair of sequences X and Y , [Y]X
denotes the situation that ΞX = {Y }, in which we are implicitly assuming that |{Y }| is at most the buffer size. If the buffer
is empty, we write [∅]X . Note that the sequence of colors in the buffer is not important because we can remove them in an
arbitrary order.

Let OPT (X) (or OPT (Xπ−1) if we want to clarify that X is reordered) denote the optimal cost for a sequence X , under
the assumption that the buffer is empty before X arrives, i.e., OPT (X) = minπ {C(Xπ−1)}. For a pair of sequences X and
Y , OPT ([Y]X) denotes the optimal cost to process X with the sorting buffer containing {Y } initially, i.e., OPT ([Y]X) =

OPT ([∅]YX) = OPT (YX).
An output sequence s1s2s3s4 · · · sl of length l is a pairwise output if c(si) = c(si+1) for any odd i, or quadwise if

c(si) = c(si+1) = c(si+2) = c(si+3) for any i = 1 mod 4. For example, A0 and ΣVC0 in the proof of Lemma 1 are pairwise and
quadwise, respectively. We define A(ℓ) and B(ℓ) are as follows:

A(ℓ)
= A1

ℓ,1A
2
ℓ,1 A1

ℓ,2A
2
ℓ,2 · · · A1

ℓ,pA
2
ℓ,p and

B(ℓ)
= B1

ℓ,1B
2
ℓ,1 B1

ℓ,2B
2
ℓ,2 · · · B1

ℓ,pB
2
ℓ,p.

First of all, in Propositions 1–3, we show quite simple but important properties on the optimal cost of (sub)sequences
rearranged in the sorting buffer. The following proposition gives a trivial lower bound on the optimal cost.

Proposition 1. For any sequence X, it holds that OPT (X) ≥ #(X). �

Propositions 2 and 3 are on the optimal cost to process a sequence using the buffer initially holding another sequence.

Proposition 2. For any pair of sequences X and Y , it holds that OPT ([Y]X) ≥ OPT (X). �

Proposition 3. For any two sequences X and Y such that {X} ∩ {Y } = ∅, OPT ([Y]X) = OPT (Y) + OPT (X). �

Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464 1459

Based on the above propositions, we prove Lemma 2 in the following. The main idea of the proof is to show that the
output sequence Sπ−1 given in the previous section is essentially the unique choice to minimize the cost.

For a while, we focus on the first subsequence S0 of S (but the following claims and propositions on S0 also hold for Sm+1).
First we show the optimal cost of S0 in Proposition 4 below. Let Z0 = (2n + 4k + 2)p + 2n − k.

Proposition 4. OPT (S0) = Z0. �

Proof. We first show that OPT (S0) ≥ Z0, and then present an output sequence of the cost Z0. We divide S0 into two
subsequences SH0 and ST0 such that

SH0 = Σ1
0 A1

0,1 and

ST0 = A2
0,1 A1

0,2A
2
0,2 · · · A1

0,pA
2
0,p Σ2

0 B(0).

For the number of the colors in ST0 , we observe that

#(ST0) = #(A2
0,1 A1

0,2A
2
0,2 · · · A1

0,pA
2
0,p Σ2

0 B(0))

= (2n + 1)p + n + (4k + 1)p
= (2n + 4k + 2)p + n. (1)

Since {Σ1
0 } ∩ {A1

0,1} = ∅ and |{SH0 }| = 4n + 1, we must always remove |{SH0 }| − L = 2n − 2k requests of SH0 before ST0 is
ready. Here, these 2n − 2k requests include at least n − k colors since each color appears at most twice in Σ1

0 and A1
0,1, and

thus the following holds.

OPT (S0) ≥ (n − k) + OPT ([ΞST0]ST0)

≥ (n − k) + OPT (ST0)

≥ n − k + (2n + 4k + 2)p + n
= (2n + 4k + 2)p + 2n − k (= Z0),

where the second inequality comes from Proposition 2, and the third one comes from Proposition 1 and Eq. (1).
Next we present an output sequence which achieves the minimum cost Z0 for S0. The output sequence is very similar

to a concatenation of the output sequence given by (Step 0–1) through (Step 0–4) in the proof of Lemma 1 and an output
sequence obtained from the requests remaining in the sorting buffer at the end of (Step 0–4).We describe only the difference
from the sequences of (Step 0–1) through (Step 0–4) in the following.

(Step 0–1
′

) The multiset of n − k colors (with 2(n − k) requests) removed first can be chosen arbitrarily from Σ1
0

although in the previous section we selected n − k colors corresponding to VC . Let the multiset be W0 and the
multiset of remaining k colors be W0 such that |W0| = 2k. Without loss of generality, we can assume that
W0 = {σ1, σ1, . . . , σk, σk} as well, and then the output subsequence ΣW0

is the same as ΣVC0 in (Step 0–1).
(Step 0–2

′

) Exactly the same as (Step 0–2).
(Step 0–3

′

) Almost all the same as (Step 0–3) except that we denote the output subsequence by ΣW0 to distinguish.
(Step 0–4

′

) Exactly the same as (Step 0–4).
(Step 0–5

′

) Currently, since the buffer contains W0, we remove them by ΣW0
, again. The number of color blocks of the

output subsequence ΣW0
is n − k.

The whole output sequence obtained in (Step 0–1
′

) through (Step 0–5
′

) is

S0,π−1 = ΣW0
A0ΣW0B0ΣW0

,

and its cost C(S0,π−1) is

C(S0,π−1) = 2C(ΣW0
) + C(A0) + C(ΣW0) + C(B0)

= 2(n − k) + (2n + 1)p + k + (4k + 1)p
= (2n + 4k + 2)p + 2n − k (= Z0).

Therefore we can conclude that OPT (S0) = Z0. �

Based on the above proposition, we next show the necessary conditions on optimal output sequences for S0; more
precisely, any optimal output sequence must obey (Step 0–1′), (Step 0–2′), and (Step 0–4′), which are shown by Claims 1, 2
and 4, respectively.

Claim 1. For an output sequence U0 of S0, if C(U0) = Z0, then |{Σ1
0 } ∩ ΞΣ2

0 | = 2k and #({Σ1
0 } ∩ ΞΣ2

0) = k must be satisfied.

Proof. We prove this claim by contradiction, considering three cases (Case 1) |{Σ1
0 } ∩ ΞΣ2

0 | ≥ 2k + 1, (Case 2)
|{Σ1

0 } ∩ ΞΣ2
0 | ≤ 2k − 1, and (Case 3) |{Σ1

0 } ∩ ΞΣ2
0 | = 2k but #({Σ1

0 } ∩ ΞΣ2
0) ≥ k + 1. (Note that if |{Σ1

0 } ∩ ΞΣ2
0 | = 2k,

then #({Σ1
0 } ∩ ΞΣ2

0) ≥ k holds since each color is included at most twice in {Σ1
0 } ∩ ΞΣ2

0 .)

1460 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

(Case 1). Since {Σ1
0 } ∩ ΞΣ2

0 ⊆ {Σ1
0 } ∩ ΞA2

0,1 and {Ai
0,j} ∩ {Σ1

0 } = ∅ for i = 1, 2 and j = 1, . . . , p, it holds that
2k + 1 ≤ |{Σ1

0 } ∩ ΞΣ2
0 | ≤ |{Σ1

0 } ∩ ΞA2
0,1|. Assume, for simplicity, that |{Σ1

0 } ∩ ΞA2
0,1| = 2k + 1, by which we observe

that there exist 2n requests of A1
0,1 in ΞA2

0,1 since the buffer size is L = 2n + 2k + 1. When the head request of A2
0,1 is ready,

the number of color blocks so far is at least n− k+ 1 according to the argument of (Step 0–1
′

). Namely, at least one request
(color) of A1

0,1 is not included in ΞA2
0,1. Let such a color be a0,1,q for some q. There are two more subcases; the next output

from the current buffer is (Case 1–1) a request of {Σ1
0 }, or (Case 1–2) a request of {A1

0,1}.

(Case 1–1). After removing the color σ ∈ {Σ1
0 }, a0,1,1 of A2

0,1 enters into the buffer. Since OPT (ST0) ≥ (2n + 4k + 2)p + n
as in the proof of Proposition 4, the total number of color blocks must be at least (n − k + 1) + (2n + 4k + 2)p + n =

(2n + 4k + 2)p + 2n − k + 1 > Z0, which contradicts the assumption C(U0) = Z0.
(Case 1–2). Let us divide S0 into four subsequences S10 , S

2
0 , S

3
0 , and S40 :

S10 = Σ1
0 A1

0,1 a0,1,1 a0,1,2 · · · a0,1,q−1,

S20 = a0,1,q a0,1,q+1 · · · a0,1,2n+1,

S30 = A1
0,2A

2
0,2 · · · A1

0,pA
2
0,p, and

S40 = Σ2
0 B1

0,1B
2
0,1 B1

0,2B
2
0,2 · · · B1

0,pB
2
0,p.

When a0,1,q of S20 is ready, the buffer contains 2k + 1 requests of Σ1
0 by the assumption |{Σ1

0 } ∩ ΞΣ2
0 | = 2k + 1. Recall

that there exists only space which can hold up to other 2n requests. Since the distance between a0,1,q in S10 and a0,1,q in
S20 is 2n + 1, they must be removed separately from the sorting buffer. Since we can consider that the colors of S20 will be
removed before the colors of S30 from Proposition 3, a possible output subsequence to minimize the cost for removing colors
of {A1

0,1} ∪ {A2
0,1} is like this:

· · · a0,1,q · · · a0,1,1a0,1,1 a0,1,2a0,1,2 · · · a0,1,q · · · a0,1,2n+1a0,1,2n+1.

The optimal cost incurred for this portion is at least 2n + 2. Thus the number of color blocks so far is at least (n − k + 1) +

(2n+ 2) = 3n− k+ 3 where (n− k+ 1) comes from the cost of n− k+ 1 colors in Σ1
0 , and (2n+ 2) comes from the above

output sequence.
It is not hard to see that for each pair of A1

0,h and A2
0,h for 2 ≤ h ≤ p, the cost of (2n + 2) is required due to the limited

space in the sorting buffer. Thus, the number of color blocks so far when Σ2
0 is ready is at least (n − k + 1) + (2n + 2)p. In

addition to that, OPT (S40) ≥ n + (4k + 1)p from Proposition 1. Therefore, the total number of color blocks is at least

(n − k + 1) + (2n + 2)p + n + (4k + 1)p = (2n + 4k + 2)p + 2n − k + p + 1 (>Z0),

which contradicts the assumption.
In the above argument,we assumed that |{Σ1

0 }∩ΞA2
0,1| = 2k+1 for simplicity. However, in the case that |{Σ1

0 }∩ΞA2
0,1| >

2k+ 1, i.e., the buffer contains more than 2k+ 1 requests of Σ1
0 when a0,1,q of S20 is ready, the situation gets worse since the

available space in the sorting buffer is smaller. [End of Case 1.]
(Case 2). Since |{Σ1

0 } ∩ ΞΣ2
0 | ≤ 2k − 1, at least 2n − 2k + 1 requests of Σ1

0 have been already removed when Σ2
0 is

ready. This produces at least n − k + 1 color blocks. Then since the lower bound of the optimal cost for the subsequence
A1
0,1 A2

0,1 · · · A1
0,p A

2
0,p is (2n + 1)p and that for S40 is n + (4k + 1)p from Proposition 1, the total cost is at least

(n − k + 1) + (2n + 1)p + n + (4k + 1)p = (2n + 4k + 2)p + 2n − k + 1 (>Z0),

which contradicts the assumption. [End of Case 2.]
(Case 3). The fact #({Σ1

0 } ∩ ΞΣ2
0) ≥ k + 1 implies that some of the colors from {Σ1

0 } ∩ ΞΣ2
0 has only one request in

{Σ1
0 } ∩ ΞΣ2

0 , because |{Σ1
0 } ∩ ΞΣ2

0 | = 2k and each color is included at most twice in the buffer. Let r = #({Σ1
0 } ∩

ΞΣ2
0) − k (> 0). In this case the number of color blocks already produced when A1

0,1 is ready is at least n − k + r .
Since #(A(0) Σ2

0 B(0)) = (2n + 1)p + n + (4k + 1)p, in this case the total number of color blocks turns to be at least
(n − k + r) + (2n + 1)p + n + (4k + 1)p = (2n + 4k + 2)p + 2n − k + r > Z0. [End of Case 3.]

From the above cases (Cases 1–3) we conclude that |{Σ1
0 } ∩ ΞΣ2

0 | = 2k and #({Σ1
0 } ∩ ΞΣ2

0) = k. �

From the above claim, we obtain the following corollaries in a straightforward way.

Corollary 1. The multiset of colors W0 determined by (Step 0–1′) remains in ΞΣ2
0 . �

Corollary 2. For an output sequence U0 of S0, if C(U0) = Z0, |{Σ1
0 } ∩ΞA2

0,1| = 2k and #({Σ1
0 } ∩ΞA2

0,1) = k must be satisfied.

Proof. From Claim 1 it holds that |{Σ1
0 }∩ΞΣ2

0 | = 2k. First we assume that |{Σ1
0 }∩ΞA2

0,1| ≥ 2k+1, i.e., at least one request
in Σ1

0 remains in the buffer when A2
0,1 is ready but is removed while processing A(0) before Σ2

0 is ready. In this case, by a

Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464 1461

similar discussion to the (Case 1–2) of the proof of Claim 1, we observe that the total cost of U0 is greater than Z0, because
there is not enough room in the buffer for storing the whole Ai

0,j for each i and j. Therefore |{Σ1
0 } ∩ ΞA2

0,1| = 2k as well. To
consider the other case, suppose that |{Σ1

0 } ∩ ΞA2
0,1| = 2k and #({Σ1

0 } ∩ ΞA2
0,1) ≥ k + 1. In this case, the total cost of U0 is

also greater than Z0, because the number of color blocks before A2
0,1 is ready is at least n − k + 1. �

In conjunction with the above Claim 1, the following claim guarantees the optimality of the output subsequence for S0
that is determined by (Step 0–1′) and (Step 0–2′).

Claim 2. For an output sequence U0 of S0, if C(U0) = Z0, the output subsequence for A(0) must be pairwise.

Proof. From Corollary 2, ΞA2
0,1 contains 2k requests of Σ1

0 and the whole A1
0,1. Thus, we can reorder A(0) into A0 using the

space of size 2n + 1, which is occupied by A1
0,1 currently in the buffer. If we remove two a0,i,j’s in A(0) separately, it wastes

the cost so that the cost at the end of A(0) is greater than (n − k) + (2n + 1)p. Moreover, the optimal cost for S40 is at least
n + (4k + 1)p. Therefore the final cost is greater than (2n + 4k + 2)p + 2n − k = Z0 from Proposition 3. �

Next we show the intuitive validity of (Step 0–3′), while the following claim only guarantees that a subset ofW0 remains
in the buffer.

Claim 3. For an output sequence U0 of S0, if C(U0) = Z0, |{Σ2
0 } ∩ΞB2

0,1| ≤ 2n− 2k and {Σ2
0 } ∩ΞB2

0,1 ⊆ W0 must be satisfied.

Proof. Assume that |{Σ2
0 }∩ΞB2

0,1| ≥ 2n−2k+1, so that less than 2k colors (4k requests) of B1
0,1 can be stored in the buffer

when the last request b0,1,4k+1 of B1
0,1 is ready. At this moment, we must remove one color of B1

0,1, say, b0,1,i for some i. As a
result, the coming b0,1,i in B2

0,1 cannot be removed right after b0,1,i in B1
0,1. Namely, by the assumption, the subsequence B(0)

cannot be reordered into a pairwise sequence. Thus, even if the output subsequence so far is optimal satisfying Claims 1 and
2, the total cost is greater than Z0. This contradicts the assumption on optimality, and so |{Σ2

0 } ∩ ΞB2
0,1| ≤ 2n− 2kmust be

satisfied.
Next, assume that |{Σ2

0 }∩ΞB2
0,1| ≤ 2n−2k and {Σ2

0 }∩ΞB2
0,1 ⊈ W0 hold. From Corollary 1, we observe thatW0 ⊆ ΞΣ2

0 .
After removing A(0) based on Claim 2, if we output a subsequence differ from ΣW0 , it produces more than k color blocks,
because the number of remaining requests must be at most 2(n − k), in which only one request of some color is included.
As a result, the total cost is again greater than Z0, which again contradicts the assumption on optimality. Therefore the claim
holds. �

The proof of the above claim indicates the optimality of the sequence determined by (Step 0–4′).

Claim 4. For an output sequence U0 of S0, if C(U0) = Z0, the output subsequence for B(0) must be pairwise. �

Now we know that the optimal output sequence has to satisfy the conditions (Step 0–1′), (Step 0–2′), and (Step 0–4′)
for the subsequence S0, from Claims 1, 2 and 4. However (Step 0–3′) is just a candidate of optimal output sequences. In the
following, we will prove that (Step 0–3′) has to be also satisfied in order to obtain an optimal output sequence for the entire
input. Before proving it, we need to deal with each subsequence Sℓ for 1 ≤ ℓ ≤ m.

We define an output sequence for Sℓ as in (Step 0–1′) through (Step 0–5′). The main difference can be seen in the steps
(Step ℓ-3′) and (Step ℓ-5′) in which respectively five and three requests in identical colors corresponding to a color of the
edge request are removed consecutively.

(Step ℓ-1′) Almost all the same as (Step ℓ-1) except that we denote the output subsequence by ΣWℓ
, and the remaining

requests of Σ1
ℓ by Wℓ.

(Step ℓ-2′) Exactly the same as (Step ℓ-2) (and so as (Step 0–2′)).
(Step ℓ-3′) Almost all the same as (Step ℓ-3) except that

• we denote the output subsequence by ΣWℓ
to distinguish, and

• if neither of the two colors σiℓ and σjℓ of the edge request eℓeℓ′ are inWℓ, the output subsequence is as follows:

ΣWℓ
= σ1σ1σ1σ1 σ2σ2σ2σ2 · · · σkσkσkσk σiℓ .

(Step ℓ-4′) Exactly the same as (Step ℓ-4).
(Step ℓ-5′) If e′

ℓ ∉ Wℓ, then the buffer containsWℓ and σjℓ , the color of the edge request which is not removed in (Step ℓ-3′);
otherwise (both colors of the edge request are removed in (Step ℓ-3′)), the buffer contains Wℓ only. In the former
case, the output subsequence is

ΣWℓ
= σk+1σk+1 σk+2σk+2 · · · σjℓσjℓσjℓ · · · σnσn,

and in the latter case

ΣWℓ
= σk+1σk+1 σk+2σk+2 · · · σnσn.

Similar to the above discussion for S0, we state several propositions and claims for Sℓ in the following. Since the proofs
are very similar to those for S0, we will omit the details. Let Z ′

= Z0 − p = (2n + 4k + 1)p + 2n − k.

1462 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

Proposition 5. OPT (Sℓ) = Z ′ for any ℓ. �

Note that the above optimal output is done by choosing a multiset of colors asWℓ, that includes k colors and 2k requests
such that at least one of the k colors is the same as one of the two edge requests in Sℓ.

Claim 5. For an output sequence Uℓ, if C(Uℓ) = Z ′, then |{Σ1
ℓ } ∩ Ξeℓ| = 2k and #({Σ1

ℓ } ∩ Ξeℓ) = k must be satisfied. �

The following corollary follows from the above claim.

Corollary 3. The multiset Wℓ of colors determined by (Step ℓ-1′) remains in Ξeℓ. �

Moreover, the following Claims 6–8 can be proved by similar discussions as in the proofs of Claims 2–4, respectively. One
difference in Claim 7 is that the right hand side of the inequality is one greater than that in Claim 3, which is caused by the
difference between the length 4k of Bi

ℓ,j’s and the length 4k + 1 of Bi
0,j’s.

Claim 6. For an output sequence Uℓ, if C(Uℓ) = Z ′, then the output subsequence for A(ℓ) must be pairwise. �

Claim 7. For an output sequence Uℓ of Sℓ, if C(Uℓ) = Z ′, |{Σ2
ℓ } ∩ ΞB2

ℓ,1| ≤ 2n − 2k + 1 and {Σ2
ℓ } ∩ ΞB2

ℓ,1 ⊆ Wℓ must be
satisfied. �

Claim 8. For an output sequence Uℓ, if C(Uℓ) = Z ′, the output subsequence for B(ℓ) must be pairwise. �

Now we are prepared to prove Lemma 2. Let a sequence S(ℓ) be defined by S(ℓ)
= S0S1 · · · SℓSm+1 for 1 ≤ ℓ ≤ m.

Proposition 6. For an output sequence U (ℓ) of S(ℓ) (1 ≤ ℓ), if C(U (ℓ)) = Z0 + ℓ(Z ′
− (n− k)) + (Z0 − (n− k)), then W0 must

contain at least one color corresponding to an edge request for every Si (1 ≤ i ≤ ℓ).

Proof. The proof is by induction on ℓ.
(Base case). We prove that if C(U (1)) = Z0 + Z ′

− (n − k) + (Z0 − (n − k)), then W0 surely contains either e1 or e′

1 by
contradiction. Recall that colors of A(0) and B(0) in S0 appear neither in S1 nor in Sm+1. Then, one can see that if ΞS1 contains
those colors, then we can remove all of them immediately by a pairwise output before putting the head request of S1 into
the buffer, which does not incur any redundant cost. A similar argument can be applied for A(1), B(1), and ΞSm+1.

We prove that {Σ2
0 } ∩ΞS1 = W0 if C(U (1)) = Z0 + Z ′

− (n− k)+ (Z0 − (n− k)): for a while, we consider a subsequence
S ′

= S0S1 of S(1) and show that if OPT (S ′) = Z0 + Z ′
− (n − k) is obtained, then {Σ2

0 } ∩ ΞS1 = W0. First we show that
|{Σ2

0 } ∩ ΞS1| = 2n − 2k by proving that assumptions |{Σ2
0 } ∩ ΞS1| ≤ 2n − 2k − 1 and |{Σ2

0 } ∩ ΞS1| ≥ 2n − 2k + 1
lead us to contradictions. Suppose for contradiction that |{Σ2

0 } ∩ ΞS1| ≤ 2n − 2k − 1 in an optimal output. Recall that
OPT (S0) = Z0 from Proposition 4. Then, the number of color blocks is at least Z0 − (n − k − 1) when S1 is ready, because at
least 2k + 1 requests of Σ2

0 in more than k colors are removed. Since OPT (S1) = Z ′ from Proposition 5, the cost must be at
least Z0 − (n − k − 1) + Z ′

= Z0 + Z ′
− (n − k) + 1, which is a contradiction.

Next suppose that |{Σ2
0 }∩ΞS1| = 2n−2k+q for 1 ≤ q ≤ 4k+1. The number of color blocks when S1 is ready is at least

Z0−(n−k+q/2)+p, because B(0) in S0 is not removed by a pairwise output due to the lack of the room to store thewhole Bi
0,j’s

in the sorting buffer. Again, sinceOPT (S1) = Z ′, the costmust be at least Z0−(n−k+q/2)+p+Z ′
= Z0+Z ′

−(n−k)+p−q/2,
which is also a contradiction since q < p and OPT (S ′) = Z0 + Z ′

− (n − k). Thus, it holds that |{Σ2
0 } ∩ ΞS1| = 2n − 2k.

Here we claim that {Σ2
0 } ∩ ΞS1 = W0 by observing that ΞB2

0,1 contains W0 and {Σ2
0 } (= W0 ∪ W0) based on the fact

|{Σ2
0 } ∩ ΞS1| = 2n − 2k and Claim 3. If we remove the colors of two W0’s (four requests for each color) by a quadwise

output, then the number of color blocks is k. Otherwise, more than k color blocks are indispensable to decrease the number
of requests from W0 ∪ {Σ2

0 } remaining in the buffer to 2n − 2k. Therefore, again the number of color blocks by such an
output is greater than Z0 − (n − k) + OPT (S1) = Z0 + Z ′

− (n − k). Furthermore, one can see that the output sequence
given by (Step 0–1

′

)–(Step 0–4
′

) and (Step 1–1
′

)–(Step 1–5
′

) has cost Z0 + Z ′
− (n− k), and so, it is the optimal cost of the

subsequence S ′.
By the above argument, we can assumeΞS1 = W0 considering that all requests B(0) are removed from the buffer, and the

number of color blocks so far when S1 is ready is Z0−(n−k). Hence in order to achieve the cost Z0+Z ′
−(n−k)+Z0−(n−k)

for the entire sequence S0S1Sm+1, we have to process S1 at the cost OPT (S1)−(n−k) (before Sm+1 is ready), and then process
Sm+1 at the cost OPT (Sm+1) using the buffer initially filled with some requests of S0 and S1. It follows that we need to first
output two W0’s from ΞS1 and Σ1

1 by a quadwise output. Otherwise, |{Σ1
1 } ∩ ΞA1

1,1| ≥ 2k + 1, which does not meet the
condition on Claim 6, or more than n − k color blocks are produced to store the whole A1

1,1 in the buffer, which does not
meet the condition to achieve the cost Z ′ for S1 from Proposition 5. Similarly, it can be shown that two W0’s from ΞSm+1
and Σ1

m+1 must be removed by a quadwise output, which leads us to the proposition.
Then the last thing to show is that W0 contains at least one of e1 and e′

1. By the above argument, we assume that whole
A(1) is output and the set of remaining requests in the buffer isW0 only, i.e., Ξe1e′

1 = W0. Since |Ξe1e′

1 ∪ {e1, e′

1} ∪ {Σ2
1 }| =

2n+2k+2 with n colors, we need to remove at least 4k+1 requests from the buffer before B1
1,1 is ready, in order to process

Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464 1463

B(1) in S1 by a pairwise output based on Claim 8. Moreover, to achieve the cost OPT (S1)− (n− k) for S1 before Sm+1 is ready,
only k color blocks are allowed for this removal of 4k+1 requests. Such an output can be done only if there are five requests
in one color, and at least 4(k − 1) requests in k − 1 colors, that is, W0 must contain c(e1) or c(e′

1) (or both). [End of Base
case.]
(Induction Step). As shown in Lemma 1, ifW0 contains at least one color corresponding to at least one edge request for every
Si, then the output sequence such that the cost is equal to Z0 +m(Z ′

− (n− k))+ (Z0 − (n− k)) can be obtained by applying
(Step 0–1

′

)–(Step 0–4
′

) for S0, (Step ℓ-1)–(Step ℓ-4′) for every Si (1 ≤ i ≤ ℓ), and then (Step 0–1
′

)–(Step 0–5
′

) for Sm+1. In
this case,W0 = Wi holds for 1 ≤ i ≤ m+ 1, and the obtained sequence has the optimal cost. We call this type of the output
sequences is canonical. Also we say that a subsequence is canonical if it is a part of a canonical sequence.

What we would like to prove here is that non-canonical output sequences cannot achieve the optimal cost. Suppose
that S(ℓ) satisfies the proposition and an optimal output sequence is denoted by U∗. We partition U∗ into two subsequences
such that U∗

= U∗

ℓ U
∗

m+1, where U∗

ℓ is a subsequence before when Sm+1 is ready. Then we consider S(ℓ+1) and an optimal
output sequence U . The sequence U is also partitioned into three subsequences such that U = UℓUℓ+1Um+1, where Uℓ is the
subsequence before when Sℓ+1 is ready, and Uℓ+1 is one between the time when Sℓ+1 is ready and the time when Sm+1 is
ready. We will prove that if U is not canonical, then its cost is greater than the desired value Z0 + (ℓ + 1)(Z ′

− (n − k)) +

(Z0 − (n − k)), by contradiction.
There are two cases to consider: (Case 1) Uℓ = U∗

ℓ and (Case 2) Uℓ ≠ U∗

ℓ .

(Case 1). When Sℓ+1 is ready, there remain Wℓ (=W0) including 2n − 2k requests in n − k colors in the sorting buffer. To
achieve the optimal cost, we need to achieve the optimal costs for subsequences Sℓ+1 and Sm+1. The only way to process is
outputting 4n − 4k requests in at most n − k colors, i.e., Wℓ (two requests of Wℓ and two requests of Σ1

ℓ+1 in each color)
must be removed from the buffer. This determines Wℓ+1 such that Wℓ+1 = W0. Then in Sℓ+1, there must be at least one
edge request whose color is included in Wℓ+1(=W0); otherwise, the optimal cost cannot be obtained. Note here that there
is a possibility to remove both of the colors of the edge request of Sℓ+1 and then an ‘‘extra’’ free space of size one is made in
the buffer when B(ℓ) is ready and also when Sm+1 is ready. This free space can store one request in Σ2

ℓ+1 (or, Wℓ+1), or one
request in B(0). However this fact does not contribute to reduce the optimal cost for Sm+1: first, B(ℓ+1) must be removed by a
pairwise output to have the optimal cost from Claim 8. Then even if one request σ in Σ2

ℓ+1 (or,Wℓ+1) remains in the buffer,
another request σ ′ in Σ2

ℓ+1 having the same color c(σ) is already removed from the buffer, and thus wastefully increases
the cost by one. This contradicts the assumption that U is optimal. Thus in this case we observe that Uℓ+1 is canonical. Since
Uℓ+1 is canonical and so is UℓUℓ+1, Um+1 is also canonical to achieve the optimal cost, by which we conclude U is canonical.
As a result,W0 must contain at least one color corresponding to an edge request for every Si(1 ≤ i ≤ ℓ). [End of (Case 1).]
(Case 2). As in the above discussion for (Case 1), theremay be a chance not to follow the rules determined by (Step ℓ-1′)–(Step
ℓ-5′) by storing some request in the possible extra free space of the buffer.

Let i be the smallest index such that the extra free space appears, namely, both of the colors of the edge request from Si
are included in Wi. Similar to (Case 1), putting a request of B(i) into the free space does not reduce the total cost. Hence, we
assume in the following that a request δ from Σ2

i (also fromWi) is stored in the free space, that is, ΞB(i)
⊇ Wi ∪ {δ} and so

ΞSi+1 ⊇ Wi ∪ {δ}. Again, note here that the other request in Σ2
i which has the same color c(δ) is already removed from the

buffer and consumes one color block.
We will see that we cannot change Wi+1 from Wi without any penalty cost, i.e., Wi+1 is identical to Wi. To obtain the

optimal cost Z ′
− (n − k) for Si+1 (before Si+2 is ready), we must remove 4n − 4k + 1 requests in at most n − k colors from

Wi ∪ {δ} ∪ Σ1
i+1, and then keep 2k requests in the buffer. (Otherwise, i.e., if there remain at most 2n spaces in the buffer,

then A(i+1) of length 2n + 1 cannot be removed by a pairwise output from Claim 6).
If δ and all of the requests having the same color c(δ) are removed at this time, the cost increases. The reason is that the

number of such requests is only three and also at most four requests in every color exist in Wi ∪ {δ} ∪ Σ1
i+1, that is, if we

remove 4n − 4k + 1 requests from the buffer and keep 2k requests in the buffer, then it produces at least n − k + 1 color
blocks. Thus, even if the rest of the output sequence has the optimal cost by this change, the total cost is greater than the
optimal value. When we decide to keep one or two requests of color c(δ) in the buffer before when Si+1 is ready, the others
(two requests or one request, resp.) having color c(δ) is removed at this time and consumes one color block. The last choice
is to keep those three requests of color c(δ) until when Si+1 is ready. There are further two cases at (Step (i+1)-0′): (i) some
of the three requests are included in Wi+1, and (ii) all the three requests are removed together with requests of the same
color in Σ1

i+1.
For the case (i), if we include inWi+1 all the three requests of color c(δ), then at least n− k+ 1 color blocks are produced

at the step. The reason is that the three requests of color c(δ) and at least one color c ′(≠ c(δ)) inWi+1 has only one request
in the buffer, which implies that the other request having color c ′ is already removed. If we include in Wi+1 one or two
requests of color c(δ), then we must remove at least one request of color c(δ) and waste a color block. Hence, keeping the
extra space empty is better. For the case (ii), recall that we need 4n − 4k + 1 requests in n − k colors fromWi ∪ {δ} ∪ Σ1

i+1
to achieve the optimal cost. This can be done only when every removed color has at least four requests, while currently the
number of the requests of color c(δ) is three. Hence, again, keeping the extra space empty is better.

Therefore, the sequences considered in (Case 2) have cost greater than the optimal one and it contradicts the assumption
that U is optimal. [End of (Case 2).]

1464 Y. Asahiro et al. / Discrete Applied Mathematics 160 (2012) 1453–1464

From the discussion for (Case 2), if U = UℓUℓ+1Um+1 is optimal, then U can differ from canonical ones only for Uℓ+1 and
Um+1. However, as seen above in (Case 1), the difference for Uℓ+1 does not reduce the cost either, by which we conclude that
if the total cost of the sequence is the desired value, the sequence must be canonical and so it holds thatW0 = Wi for all i. It
is easy to observe that a canonical sequence has the optimal cost only if W0 contains at least one color of the edge request
for every Si, because otherwise, i.e., neither two colors of the edge request, e.g., from Sj are included in Wj(=W0), the cost
for Sj is greater than the optimal value. �

If there is an output sequence Sπ−1 such that C(Sπ−1) = C(U (m)) = Z , then there isW0 which contains at least one color
of two edge requests for every Si from Proposition 6. This ensures that the corresponding subset V0 of vertices includes at
least one vertex of each edge and |V0| = k, i.e., V0 must be a vertex cover.

4. Conclusion

We have shown the NP-hardness of the sorting buffer problem on the uniformmetric. However, our proof does not give
any inapproximability result, e.g., APX-hardness.

Acknowledgments

The authors would like to thank Anna Adamaszek for pointing out a flaw in the preliminary version of this paper, and
anonymous referees for their very helpful comments that improved the presentation of this paper. This work is partially
supported by Grant-in-Aid for Scientific Research (KAKENHI), 16092223, 18700015, 20500017, 22700019, and 23500020.

References

[1] A. Adamaszek, A. Czumaj, M. Englert, H. Räcke, Almost tight bounds for reordering buffer management, in: Proc. STOC 2011, 2011, pp. 607–616.
[2] Y. Asahiro, K. Kawahara, E. Miyano, NP-hardness of the sorting buffer problem on the uniform metric, in: Proc. the 2008 International Conference on

Foundations of Computer Science, FCS08, 2008, pp. 137–143.
[3] N. Avigdor-Elgrabli, Y. Rabani, An improved competitive algorithm for reordering buffer management, in: Proc. SODA 2010, 2010, pp. 13–21.
[4] R. Bar-Yehuda, J. Laserson, Exploiting locality: approximating sorting buffers, J. Discrete Algorithms 5 (4) (2007) 729–738.
[5] H.-L. Chan, N. Megow, R. van Stee, R. Sitters, The sorting buffer problem is NP-hard, CoRR http://arxiv.org/abs/1009.4355 [abs/1009.4355], 2010.
[6] M. Englert, H. Räcke, M. Westermann, Reordering buffers for general metric spaces, Theory Comput. 6 (1) (2010) 27–46.
[7] M. Englert, M. Westermann, Reordering buffer management for non-uniform cost models, in: Proc. ICALP’05, 2005, pp. 627–638.
[8] I. Gamzu, D. Segev, Improved online algorithms for the sorting buffer problem on line metric, ACM Trans. Algorithms 6 (1) (2009) 13. Article 15.
[9] M.J. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.

[10] R. Khandekar, V. Pandit, Online and offline algorithms for the sorting buffers problem on the line metric, J. Discrete Algorithms 8 (1) (2010) 24–35.
[11] J.S. Kohrt, K. Pruhs, A constant approximation algorithm for sorting buffers, in: Proc. LATIN’04, 2004, pp. 193–202.
[12] H. Räcke, C. Sohler, M. Westermann, Online scheduling for sorting buffers, in: Proc. ESA’02, 2002, pp. 820–832.

http://arxiv.org/1009.4355

	NP-hardness of the sorting buffer problem on the uniform metric
	Introduction
	Previous and our results
	Related work

	Uniform metric model
	NP-hardness
	Proof of Lemma 1
	Proof of Lemma 2

	Conclusion
	Acknowledgments
	References

