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ABSTRACT

For any smooth free action of the unit circle S! in a manifold M; the Gysin sequence of M is a long
exact sequence relating the DeRham cohomologies of M and its orbit space M/S!. If the action is not
free then M/S! is not a manifold but a stratified pseudomanifold and there is a Gysin sequence relating
the DeRham cohomology of M with the intersection cohomology of M/S!. In this work we extend the
above statements for any stratified pseudomanifold X of length 1, whenever the action of S! preserves
the local structure. We give a Gysin sequence relating the intersection cohomologies of X and X/S!
with a third term G, the Gysin term; whose cohomology depends on basic cohomological data of two
flavors: global data concerns the Euler class induced by the action, local data relates the Gysin term and
the cohomology of the fixed strata with values on a locally trivial presheaf.

0. FOREWORD

A pseudomanifold is a topological space X with two features. First, there is a closed
3 C X called the singular part, which is the disjoint union of smooth manifolds. The
set X — X is a dense smooth manifold. We call strata the connected components of
¥ and X — ¥; they constitute a locally finite partition of X. The second feature is
the local conical behavior of X, the model being a product U x ¢(L) of a smooth
manifold U with the open cone of a compact smooth manifold L called the link of
U. A careful reader will notice that stratified pseudomanifolds with arbitrary length
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have a richer and more complicated topological structure; in this article we deal
with stratified pseudomanifolds of length < 1, which we call just pseudomanifolds.

Between the various ways for defining the intersection (co)homology; the reader
can see [6,8] for a definition in pl-stratified pseudomanifolds; [1,7,13] for a
definition with sheaves; [15] for an approach with £2-cohomology; [4] for an
exposition in Thom—Mather spaces.

In this article, we use the DeRham-like definition exposed in [22] where the
reader will find a beautiful proof of the DeRham theorem for stratified spaces. We
work with differential forms in X — ¥ and measure their behavior when approaching
to ¥, trough an auxiliary construction called an unfolding of X. Although X may
have many different unfoldings, its intersection cohomology does not depend on any
particular choice. This point of view is the dual of the intersection homology defined
by King [12], who works with a broader family of perversities. When S! acts on X
preserving the local structure then the orbit space X/S! is again a pseudomanifold
with an unfolding.

The well-known Gysin sequence of a smooth manifold M with a principal action
of S is the long exact sequence

s HODS HT (M/sY) S B (MysY) S HIY (M) > -

where 7* is induced by the orbit map 7 : M — M/S!, which is a smooth S!-
principal bundle. The map ¢ is induced by the integration along the fibers and the
connecting homomorphism ¢ is the multiplication by the Euler class & € H*(M/S").

When the action of S! on M is not free then the base space is not anymore a
smooth manifold, but a stratified pseudomanifold M/S! whose length depends on
the number of orbit types. There is a Gysin-like sequence relating the DeRham
cohomology of M with the intersection cohomology of M /S!

s H S H_5(M/S") > Hi (M/s") = HT M) > -

where g, 2 are perversities in M/S!. The connecting homomorphism is again the
multiplication by the Euler class ¢ € H;(M /S1Y). The fixed points’ subspace MS'
is naturally contained in M/S'. The link of a fixed stratum S C M/S! is always a
cohomological complex projective space [10,14].

In this article we extend the above situation for any pseudomanifold X and any
action of S! on X preserving the local structure. The orbit map 7 :X — X/S!
induces a long exact sequence

co = HEX) > H'(G5(x/8")) > Hy ' (x/8") 5 HEFH(X) — -+
relating the intersection cohomologies of X and X/S! with a third term H *(Gz(X/
S') whose cohomology can be given in terms of local and global basic cohomo-

logical data; we call it the Gysin term. The above long exact sequence is the Gysin
sequence.
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Global data concerns the Euler class ¢ € Hiz(X /S1). For instance, if &£ = 0 then
H*(Gz(X/Sh) = Hy (X /S') where ¥ is the perversity defined by

1, S afixed stratum,
0, else.

XS = {
The connecting homomorphism 8 of the Gysin sequence depends on the Euler class,
though it’s not the multiplication. The Euler class vanishes if and only if there is a
foliation on X — ¥ transverse to the orbits of the action [18,23].
Local data relates the Gysin term with the fixed strata. In general, there is a
second long exact sequence

o= HE__(X/S") > H' (Upp; (X/8")) & B (G5(x/8Y)) 5 HITL(x/8") - -
the residual term satisfying

H* (Uppg (X/8)) = [ TH*(5. Im(er)

where S runs over the fixed strata and H*(S, Jm(s)) is the cohomology of S with
values on a locally trivial constructible presheaf [8] Jm(ey) with stalk

F=Im{er : H1O7Y(L/S") - HIOT(L/sh)}

the image of the multiplication by the Euler class &7, € H%(L/S') of the action on
the Link L of S. Since L may not be a sphere, this term could not vanish.

Henceforth, when we write the word manifold we are talking about a smooth
differential manifold of class C*°.

1. PSEUDOMANIFOLDS

Recall the definition of unfoldable psendomanifolds. The definitions and results of
this section where taken of [1,17,22]; where the reader will find a general treatment
of stratified pseudomanifolds and unfoldings.

1.1. Simple spaces. Let X be a Hausdorff, paracompact, second countable
topologicai space. We say that X is a simple space if

(1) There is a closed subspace T C X, called the singular part; which is a disjoint
union of manifolds. Its complement X — X is a dense open manifold, we call it
the regular part.

(2) A singular (respectively regular) stratum of X is a connected component of T
(respectively X — X). The family of strata is locally finite.

For instance, every manifold is a simple space whose singular part is the empty
set. If M is a manifold and X is a simple space then the product M x X is a simple

space with singular part M x X.
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Let L be a compact manifold. The cone of L is the quotient space
c(Ly=L x [0,00)/L x {0}.

We write [p, r] for the equivalence class of a point (p, r). We reserve the symbol
* for the vertex of the cone, which by definition is the equivalence class of L x
{0}. By convention we define ¢(#) = {x}. The radium of the cone is the function
p:c(L) — [0, 00) given by p[p, r] =r. For each ¢ > 0 we write c.(L) = p~ [0, €)
and & (L) = p~0, €].

A continuous function f:X — X’ between two simple spaces is a morphism
(respectively isomorphism) if f(X) C ¥/, f(X — X) C (X' — ') and the restriction
of f to each stratum is smooth (respectively a diffeomorphism). In particular, f is
an embedding if f(X) C Y is an open simple space with singular part f(X) N Z;
and f: X — f(X) is an isomorphism.

For instance, the change of radium

fic(L) > ce(L), |[p,r]—Ip,€-arctan(r)/m]
is an isomorphism.

1.2. Pseudomanifolds. Let X be a simple space, S a stratum. A chart of S in X is
an embedding

a:Uxe(l)— X

where U C S is open in § and a(u, ) = u for each u € U; c¢(L) is the cone of a
compact manifold L. The singular part of U x ¢(L) is U x {x}.

We say that X is a pseudomanifold if for each stratum S there is a family of
charts,

.As={ot:Ua xc(L)—»X}O[

such that {U,}, is a good covering of S (cf. [3, p. 42]). Notice that the compact
manifold L only depends on S, we call it a link of S. An atlas of X is the choice of
such a family of charts for each stratum.

Remark that the topology of a stratified pseudomanifold is in general more
complicated; see [8,17]. A familiarized reader will notice that we work with
stratified pseudomanifolds of length 0 or 1; which we call just pscudomanifolds.
Also we allow the singular strata to have codimension 1; this will be justified in the
next section, when we present the definition of intersection cohomology.

For instance, any product U x ¢(L) of a manifold U and a cone of a compact
manifold L is a pseudomanifold. Since we can adjust the size of the charts, any
open subspace of a pseudomanifold is again a pseudomanifold.

1.3. Unfoldings. One way for defining the DeRham-like intersection cohomology
of X is to control the behavior of differential forms on X — X when approaching
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to . This control is imposed through an unfolding of X; which is a manifold X; a
surjective, proper, continuous function

L:X > X

and a family {£;:L — L}; of smooth finite trivial coverings of the links of X;
satisfying

(1) The open £L71(X — %) is a union of finitely many copies of X — X; and the
restriction of £ to each copy is a diffeomorphism.

(2) For each singular stratum S and each z € £L71(S), there is an unfoldable chart,
i.e., a commutative diagram

UXZ,XR“”;&_)}?
c L

Uxec(l)—%>X

where

(a) «isachart.

(b) & is a diffeomorphism onto £~ !(Im(x)).

{c) The left vertical arrow is c(u, p,t) = (u, [Lr(p),|t]]) foreachu e U, p
L, teR.

We say that X is unfoldable when it has an unfolding.

For instance, if £:X — X is an unfolding then, for each link L, the covering
Lr:L — L is an unfolding of L. The product 1 x £:M x X — M x X is an
unfolding for each manifold M. The left vertical arrow in the commutative diagram
(2) of Section 1.3 is an unfolding.

An unfoldable morphism is a commutative square

e

& 5
L l[,/
@y

PR

-~

o

where the vertical arrows are unfoldings, « is a morphism and & is smooth.
The next result can be easily verified by using the definition of Section 1.3.

1.4.Lemma. Let L:X — X bean unfolding. Then
(1) The restriction £L: L7V (A) — A is an unfolding for each open subset A C X.

(2) Therestriction £:L-YS) — S is a smooth locally trivial fiber bundle with fiber
L, for each singular stratum S with link L.
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2. INTERSECTION COHOMOLOGY

Now we recall the definition an properties of intersection cohomology as it is
exposed in [22]. Some of the results of this section were taken from [6].

2.1. Liftable forms. Fix an unfolding £L:X - X. A form o ¢ Q*(X — X) is
liftable if there is a form & € Q*(X) such that £*(@) =® on L U(X —=%). If &
does exist then it is unique by density; we call it the lifting of w. If w, n are liftable
forms then dew is also liftable and do =d@ and @ + n =@ +7jand @ Aj =@ A 7.

2.2. Intersection cohomology. Let p:M — B be a surjective submersion.
A smooth vector field & in M is vertical if it is tangent to the fibers of p. The
perverse degree |lw| p of a differential form w € (M) is the first integer m such
that the contraction

lgg - - ig, (@) =0

for each vertical vector fields &, ..., &,. Since contractions are antiderivatives of
degree —1, for each w, v € Q(M)

ey o+ vilz <max{|wlz, [v]s] loAviig <llols +IIvis.

By convention ||0]| 3 = —oc.

We define the DeRham-like intersection cohomology of X by means of liftable
differential forms and an additional parameter which controls their behavior when
approaching to X. This new parameter is a map g which sends each singular stratum
S to an integer g(S) € Z; we call it a perversity. For instance, given an integer
n € Z we denote by 7 the constant perversity assigning » to any singular stratum.
Another example is the top perversity defined by 7(S) = codim(S) — 2 on each
singular stratum S.

Fix a perversity g. A g-form on X is a liftable form » on X — ¥ satisfying

max{|lo|s, lldwlls} <g(S) VS singular stratum

where, with a little abuse of language, we denote by ||w||s the perverse degree
of the restriction &|,-1.5 With respect to the submersion £:L£7'(S) — S. The
g-forms define a differential subcomplex Q;(X ) whose cohomology Hg (X) is the
g-intersection cohomology of X.

2.3. Topological invariance of intersection cohomology. When Goresky and
MacPherson defined the intersection (co)homology on stratified pseudomanifolds
for the first time, they showed that it does not depend on the choice of a particular
stratification, provided that there were no strata of codimension 1. This is quite
natural since originally a perversity was a parameter depending on the dimensions
of the singular strata, but not on the strata themselves.

By the other hand, the works of King and Saralegi enlarged the family of
allowed perversities (see [12,22]). In Section 2.2 a perversity is an arbitrary
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integer-valued function defined on the family of singular strata, thus depending on
the stratification. Nevertheless, if we fix a stratification of X and then we declare
new artificial strata by decomposing the regular part X — X; then the intersection
(co)homology does not change. This happens because the link of an artificial
stratum is a (co)homological sphere. In general, we have the following invartance
properties:

(a) H(X) does not depend on the particular choice of an unfolding, for any
perversity g.

(b) If § > ¢ then H}(X) = H*(X — %) is the DeRham cohomology of X - X.

(c) If 7 <0 then Hg (X) = H*(X, T) is the relative cohomology of the pair.

(d) If X is a manifold then H. g (X) coincides with the DeRham cohomology H*(X),
for any perversity 0 < § < 7.

(e) A controlled form is a 0-form. The O-intersection cohomology H()(X) is a
differential graded algebra and Hg (X) is an Hy(X )-module for any perversity
7, see Eq. (1). The O-intersection cohomology H(i)" (X) coincides with the
singular cohomology H*(X") of the normalization X" of X. For a brief

introduction to normalizations the reader can see [8,16]; we will give more
details in Appendix A.

3. MODELLED ACTIONS

We introduce the family of modelled actions, whose main property is that the orbit
spaces always remain in the category of unfoldable pseudomanifolds. Henceforth,
we denote by S! the unit circle. We fix a pseudomanifold X and a continuous
effective action

®:Sx X — X.

We will write ®(g, x) = gx, B = X/S! for the orbit space and 7 : X — B for the
orbit map.

3.1. Modelled actions. We say that ® is a modelled action whenever it satisfies
conditions MA(1), MA(2), MA(3) and MA(4) stated below. First notice that S! x X
is a pseudomanifold with singular part S! x X.

MA(1). The action ®:S' x X — X is a morphism.

In consequence, for each g € S! the function ®,:X — X is an isomorphism.
Notice that each stratum is S!-invariant.

MAQ). For each stratum S of X the points in S have the same isotropy subgroup
Hg. In particular, the action on X — % is free.

So the restriction 7 : § — 7 (S) is a smooth locally trivial fibre bundle with fiber
S'/Hg, for each stratum S of X.

An equivariant unfolding of X is an unfolding £: X — X such that there is a
smooth free action & :S! x X — X and the function £ is S!-equivariant.

MAQR). There is an equivariant unfolding L X->x
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When ¥ = @ the above condition is trivial. For each stratum S the restriction
L:£71(8) — S is an equivariant locally trivial fiber bundle; so there is a smooth
free action of the isotropy Hy on the covering L of the link L and an Hs-equivariant
trivializing atlas of the fiber bundle.

Now we describe the local behavior of the action near the singular part. Take a
singular stratum § with link L. A modelled chart is an unfoldable chart

UXZXR—&>)?

FoLk

Uxc(L)—2>X
satisfying

(a) The above diagram is Hg-equivariant; i.e., foreach ge Hg,u €U, p € L and
teR

La(u, gp,t) = ga(u, [p, 1t]]).
(b) Foreachu e U, g € S!;if Do (a({u} x c¢(L))) N Im(er) # @ then the arrow
o @aly,  {u) x c(L) — {gu} x c(L)
is an isomorphism and commutes with the radium o : U x ¢(L) — [0, 00).

MA(4). For each singular stratum S there is a smooth free action Ws: Hg x L —
L of the isotropy of S on its link, such that S is covered by Hs-modelled charts.

3.2. Some examples of modelled actions.

(1) If G x X — X is a modelled action on a pseudomanifold X then, for each
manifold M, the induced action on M x X which is trivial in the factor M is a
modelled action.

(2) Each free smooth action G x L — L of a compact Lie group G on a compact
manifold L, induces on c(L) a modelled action given by the rule

G xc(L)y—>c(L), glp,rl=lgp.rl

(3) A Thom-Mather equivariant space is a Thom—Mather space X together with a
compact Lie group G and an effective action G x X —» X preserving the tubular
neighborhoods; i.e., each tubular neighborhood is a G-equivariant locally trivial
fiber bundle with a suitable family of cocycles (see [17,24]). Indeed, the
definition of a modelled chart is inspired in the behavior of these cocycles.
When X is a pseudomanifold then the action of G on X is modelled.

(4) For each manifold M and each smooth effective action S' x M — M, the de-
composition of M in orbit types induces a Thom--Mather equivariant structure
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in M. When the action has locally few orbit types then M is a pseudomanifold
and the action is modelled.

(5) The following is an example of an iterated modelled toric action on a manifold
M (see [5]). Let T =S! x S! be the 2-torus, M a manifoldand T x M — M a
smooth effective action with fixed points and with locally few orbit types. By
the above examples this action is modelled, the restriction of the action to the
first factor S! is a modelled action. As we will see immediately in Section 3.3,
the orbit space X; = M/S! is a pseudomanifold. There is a natural action of the
second factor S! on X which preserves the strata, this action is again modelled
and the orbit space X, = X1/S! is again a pseudomanifold.

Now we use conditions MA(1), ..., MA(4) in order to describe the orbit space.

3.3. Proposition. Let ®:S' x X — X be a modelled action. Then the orbit space
B = X/S! is a pseudomanifold and the induced map;,

¥F—L >

b'¢
l l Lp(7(x)) =n(Lx))
=X/S'—*>B

is an unfolding.

Proof. The orbit map = : X — B is open and closed, so B is also a Hausdorff,
paracompact, 2nd countable space. Conditions MA(1) and MA(2) imply that B is a
simple space and 7 is a morphism. We proceed in two steps.

e B is a pseudomanifold: Take a modelled chart

a:Uxc(l)—> X

whose existence is guaranteed by MA(4). Assume that U = WV where W C Sl is a
contractible open neighborhood of 1 € S', V a slice in the stratum S containing U.
Write . : L — L/ Hy for the orbit map. Since « is Hg-equivariant, V is a slice and
the transformations of S! preserve the radium of «; the function

B:V xc(L/Hs)~ B, B(y.[7r(p).r]) =maly,[p,r])
is well defined. More over
(a) B is an homeomorphism: Since B and L/Hg have their respective quotient
topologies, B is a continuous function. But any continuous bijection from a

compact space onto a Hausdorff space is an homeomorphism, so it is enough
to reduce the domain of 8 in a convenient way.
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(b) B preserves diffeomorphically each stratum: Since V is a slice, on the singular
part the function 8:V x {x} — 7 (V) is a diffeomorphism. Restricted to V x
L x RT we obtain the following commutative square

VxLxRt—%—=g

llm l

V x L/Hs x Rt —L> 7(8")

where §’ is the stratum containing a(V x L x R*). The vertical arrows are
submersions and « is smooth, then so is «’. The same argument can be applied
to the inverse g1.

o Lp :B— B is an unfolding: The function Lp is well defined because £ is
equivariant. If ¥ = ¢ the proof is immediate, because on each connected component
of X the map £ is a trivial covering. Assume that ¥ # (4. By the above remark,
Lp satisfies (1) of Section 1.3. We verify the existence of unfoldable charts. Take
a singular stratum S with link L. Since (again) L has no singular part, the Hg-
equivariant unfolding £; : L — L induces an unfolding Lz, : L/Hs — L/ Hs.

Let&:U x L x R — X be the unfolding of the modelled chart ¢ given before.
Define

B:V x L/Hs xR— #(Im@), B(y, #L(p). 1) = #a(y, p, 1).

Then § is an unfolding of the chart 8: V x ¢(L/Hg) — B induced in the first step
of this proof. We leave the details to the reader. [

4, INVARIANT FORMS

Now we display the algebraic tools involved on modelled circle actions. Some
results of this section where taken of [10,14]; these references deal with smooth
non-free circle actions on manifolds, but the same proofs still hold in our context.
From now on, we fix a pseudomanifold X, a modelled action

o:S'xX—> X
and an equivariant unfolding £ : X — X with modelled charts.

4.1. Invariant cohomology. A g-form o on X is invariant if for each g € S! the
equation g*(w) = w holds. Since

D¢
—

>
L

-~
o)

B

<
o

I

392



is an unfoldable isomorphism, g*: Qf?(X ) — Qg(X ) is an isomorphism of differ-
ential complexes. Invariant g-forms define a differential complex, denoted IQ} (X).
The inclusion

1:1Q2(X) — QLX)
induces an isomorphism in cohomology.

Next we will study the algebraic decomposition of an invariant §-form; this
decomposition depends on the existence of a Riemannian metric and a connection
form compatible with the equivariant unfolding. All this will be useful for later
purposes, when we have to write the Gysin sequence of X.

The fundamental vector field on X is the smooth vector field C definedon X — X
by the rule

0
CF"‘“(@)

In other words, C is the smooth vector field tangent to the orbits of the action. It
never vanishes because X — X has no fixed points. The lifted action ®:S! x X — X
defines a fundamental vector field C on X.

We establish a little convention in order to classify the strata of X: A stratum §
is mobile (respectively fixed) if Hs # S! (tespectively Hs = S!). For a proof of the
next result the reader can see [10]; although it deals with smooth effective actions
on manifolds, the proof is still valid in our context.

g=1

4.2. Lemma. There are Riemannian metrics |, [L respectively on X — Z, X;
satisfying

(1) w and ji are S'-invariant.

Q) Lwy=ponL7H(X - %),

(3) u(C.Cy=a{C,C)=1.

(4) For each mobile stratum S and each vertical vector field v respectively the
submersion L71(S) A S; the following equation holds: /1(5, v)=0.

Let u be an invariant Riemannian metric on X — X. The fundamental form
induced by u is the 1-form y defined by the rule x(v) = w(C, v). By the other
hand, we will say that w is unfoldable if there is a Riemannian metric & in X
satisfying Lemma 4.2. In that case i is unique by density and, by Lemma 4.2(2),
the fundamental form y on X lifts to the fundamental form ¥ =15 () on X.

4.3. Lemma. For each unfoldable metric u in X the fundamental form x satisfies

Ixlls = 1, S afixed stratum,
Xlls = 0, S amobile stratum.
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Proof. The equation arises directly from (3) and (4) of Lemma 4.2. [
Henceforth, we fix an unfoldable metric u.

4.4. Decomposition of an invariant form. A form n on X — X is basic if one of
the following equivalent statements holds:

(a) n is invariant and ¢ () = 0. Notice that
0=Lc(n) =dic(n) +1cd(n) =1cd(m)
where L is the Lie derivative with respect to the fundamental vector field.
(b) n=n*(&) for some differential form 6 on B — £ =z (X — X). If there is such

a & then it is unique, because 7* is injective.

For each invariant form w € IQ*(X — X) there are v € Q*(B—X) and 0 € Q* " 1(B—
¥) satisfying

w=1"W)+ x A7*0).

The above expression is the decomposition of w. The forms v, § are uniquely
determined by the following equations

a*@) =1c(@), 7T*W)=w—x Aic(w).
When w is a liftable form then
=) + ¥ AF* ).
So v, 6 lift respectively to 7, 8.
4.5. The Gysin sequence of a free smooth action. Assume that ¥ =@. Then X

is a manifold, ®:S! x X — X is a free smooth action and 7 : X — B is a smooth
S'-principal fiber bundle. There is a morphism of integration along the orbits

f = (-7 e 19N (X) — @7 H(B)
defined by
7§w =179, w=a*(v)+x A7*®) e IQ (X).
We obtain a short exact sequence
$

0 Q*(B) 5 19%(X) 5> @*~1(B) — 0.
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The induced long exact sequence

) s> HY(X) ﬂ HY(B) S H(B) S HTI(X) — -

is the Gysin sequence of X by the action ®. It does not depend on the particular
choice of a metric . The form dy is basic, so there is a unique e € 2(B) such that

dy =n*(e).

This e is the Euler form induced by the action ® and the metric u. The cohomology
class £ = [¢] € H%(B) is the Euler class of B. The connecting homomorphism &
of the Gysin sequence (2) is the multiplication by the Euler class ¢ = [e] € H?(B).
The Euler class ¢ does not depend on the particular choice of a metric p. Following
[9,23] we get the equivalent propositions

(a) The Euler class ¢ € H2(B) vanishes.

(b) H(X)= H(B) ® H(S"); then we say that X is a cohomological product in the
DeRham cohomology.

(c) There is a foliation F on X transverse to the orbits of the action.

Now we return to the stratified case. Since u is an unfoldable metric, the Euler
form e on B — X can be lifted to the Euler form € on B induced by the metric fi.
Notice that e € .Q%(B).

4.6. Proposition. The Euler class ¢ € Hiz(B) vanishes if and only if there is a
foliation F on X — I transverse to the orbits of the action.

Proof. By the above equivalences (a), (b) and (c) applied to X — X; it is enough to
verify that the Fuler class vanishes in HQZ(B) ifand only if it vanishes in H2(B — X).
By (b) of Section 2.3, there is an isomorphism

H52+I(B) — H*(B-Y)

induced by the inclusion of the respective complexes. So it is enough to verify that
the Euler class vanishes in H;(B) if and only if it vanishes in H52+I(B)'

Take a representative e € Q?+I(B) of the Euler class and suppose that e = d6
for some 0 € Qt}+i(B). Since the perverse degree of a form is lower or equal to its

usual degree, 6 € Q%(B) and e is a border in Q%(B). This proves one implication,
the converse is trivial. O

We finish this section with a description of the perverse degree of the invariant
forms. For a proof of the following lemma the reader can see [10].
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4.7. Lemma. Take a perversity g on X, write also g for the perversity induced on
B in the obvious way. Then the arrow

¥ Q;(B) — IQ;(X)

is well defined. What's more, for each invariant form o = n*(v) + x A n*(0) and
each singular stratum S, we have

lolls = max{[[vilzcs), 1x s + 10 1lxcs) }-

Now we refine our classification of the fixed strata: A fixed stratum S is perverse
if and only if its link is not a cohomological product.

4.8. Proposition. There is an unfoldable metric . such that, for each singular
stratum S with link L, the Euler form satisfies

o |lellzesy <0 S is a mobile stratum.
o llellzs) < 1ifS is a fixed non perverse stratum.
o llellnsy =2 if S is a perverse stratum.

Proof. See Appendix A. O

5. THE GYSIN SEQUENCE

Given a modelled action ®:S! x X — X we want to know the cohomological
relationship between X and B. The answer is a long exact sequence relating the
intersection cohomologies of X, B with a third algebraic complex; we call it the
Gysin sequence of X. The third complex is the Gysir term, whose cohomology
depends on B plus some data on the perverse strata.

As we have seen, if £ = @ then we get the Gysin sequence by integrating along
the fibers. If X is a manifold and ® is a smooth effective action with fixed points;
then B is not a manifold but a stratified pseudomanifold. There is a Gysin sequence
relating the DeRham cohomology of X with the intersection cohomology of B [10].
Something analogous happens for smooth actions of §* and T" with few local orbit
types [21,20], and for Riemannian flows [19].

5.1. The Gysin sequence. Fix a modelled action ®:S! x X — X. Take a
perversity g in X, write also g for the perversity induced on B in the obvious way.
The g-Gysin term is the cokernel

0 @ (B) 5 125 () & G2(B) > 0.
The induced long exact sequence

@ o BB H(Gy(B) > HIAB) S HIA(X) > -
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is the Gysin sequence of X. By Section 2.3, when g > 7 the sequence (3) is
the usual Gysin sequence (2) of X — ¥; when 7 < 0 it is the Gysin sequence
of the pair (X, ¥). Looking at the free smooth case, the reader could think that
H*(Gz(B)) coincides with the intersection cohomology of B and the connecting
homomorphism is the multiplication by the Euler class. As we will see, this is
just a naive conjecture. The real situation is more complicated. Define on B the
Jfundamental perversity

1, S afixed stratum,
0, else

X(w($) = IIXII5={

and the Euler perversity

0, S is amobile stratum,
é(w(S)) =1 1, S isafixed non perverse stratum,
2, §isaperverse stratum

(cf. Lemma 4.3, Proposition 4.8). Notice that, by definition x € Q)l—((B) while e €
Q2(B).

The Gysin term can be written by means of basic differential forms.

5.2. Lemma. For each perversity 0 < § < i there is a differential isomorphism

g%‘(B) >~ {9 € Q;_)—((B)/E]v € Q*(B —X): (1) v is liftable;
(2) max{||vlls, dv + e A 8lls} < G(S) VS perverse stratum}.

Under this identification, the connecting homomorphism is
3:H'(G7(B)) - H;'Z(B), 3[01=[dv +e A 0]
Proof. By definition

m;g“ (X)

By 4T
% (25 (B))

is a quotient complex with differential operator d(@) = dw, where @ is the
equivalence class of a differential form w € ISZ;(X ). Take an invariant form o =
7*v + x An*0. Then

=y AT*0), do=yAr*(—db).
The function
f:G3(B) > Q% _o(B), @0
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is well defined and injective and linear. The right term appearing in our statement is
the image Im(f). Since df = — fd, the map f is an isomorphism (modulo a sign)
and induces an isomorphism in cohomology. The connecting homomorphism arises
as usual from the Snake’s lemma. O

The above lemma allows us to calculate directly H*(Gz(B)) when X has no
perverse strata. In that case, the cohomology of the Gysin term is closer of our
naive conjecture.

5.3. Proposition. If X has no perverse strata then the Euler class ¢ is in HEZ(B)
and, for each perversity 0 < g < 1, the Gysin sequence (3) becomes

S H'“(X) H_.(B) 5 H’+2(B) I H’+2(X) .

where the connecting homomorphism is the multiplication by the Euler class. If
additionally X has no fixed strata then & € Hg(B) and then the above sequence
becomes

N H’+1(X) = HL(B) 5 H’+2(B) H“’Z(X) .

Proof. By Lemma 5.2, the Gysin term is an intermediate complex
4 Q;_:(B) CG3(B) C Q;_z(B).

If X has no perverse strata then ¥ = & and the extremes in the above inequality are
equal; so g;‘(B) Q’i _z(B). The remark about the connecting homomorphism is
immediate and the second statements are straightforward. O

54. Corollary If the Euler class ¢ € H: 2(B) vanishes then, for each perversity
0<3g

— -1
H;(X) = H}(B) ® H}=}(B).
If additionally X has no fixed strata, then
Hz(X) = H(B) ® H(S"),
i.e., X is a cohomological product for intersection cohomology.

Proof. If ¢ € HEZ(B) vanishes then X has no perverse strata. O

5.5. Residual approximations. In the rest of this work we will calculate
H*(G5(B)) for a modelled action with perverse strata. For this sake, we introduce
the residual approximations of the Gysin term. These are the quotient complexes
induced by the inequality (4);

0— Q@ _,(B)—> GX(B)B £ Lo (B) 0,
0— GZ(B)B — Q_-(B) 5 LUppz(B) — 0.
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We call Som:’i‘(B) (respectively ilpp;(B)) the lower residue (respectively upper
residue). The induced long exact sequences

(5) - HL_(B) — H'(G7(B)) > H'(Lovg(B)) — HITL(B) - -,
© > H(G(B) > Hi_(B) 5 H (Uppy(B)) > HTH(Gz(B)) —

are the residual approximations. As we will see in Section 6, Som;(B), il,pp;(B)
are local terms. Next consider the cokernel

0 QF_;(B) > Q_7(B) 5 QY7 (B) >0

q_

its cohomology H (B) is called the step intersection cohomology of B [11]. The

residual approx1mat1ons are related by the long exact sequences

++— H}_.(B)— H._.(B) —~ H._; (B) - Hiﬂ(B) .
q—e
-— H'(Lowg(B)) — H’: 7 (B) > H'(Upp;(B)) - H' (2omq(B))

q-

These sequences can be arranged in a commutative exact diagram; called the Gysin
braid

H] ;(B) H;_-(B) H' (Uppz(B)) H™ (Lowg (B))
H'(G5(B)) H: z( HY(G(B))
H=L(gippz(B)) H' (Lovoz(B)) H{:é(B) H{I%(B)

5.6. Remark. The cohomology complexes in this section are HG(B)-modules. For
instance, the linear action of Hﬁ*(B) in Hﬁ (X) is given by the rule

HE(B) x Hy(X) = Hy(X), (0,0) > 7*(0) Ao,

The reader is invited to check that also the arrows are morphisms of Hg(B)-
modules.

6. LOCAL CALCULATIONS

In this section we present the local properties of the Gysin term and the residues.
Some results were taken from [22].
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An introduction to presheaves and the Cech cohomology can be found for
instance in [3]. A presheaf P on X is complete if for any open cover U = {X,}q
of X the augmented Cech differential complex

0 PX) S U P S cunrcur-s...

is exact, where C/ (U, P) = Hw0<_‘_<aj PXgp N---0 Xaj) and 8 is given coordi-
natewise by the alternating sum of the restrictions.

For each perversity g, the complex of g-forms 93(—) is a presheaf on X (and
also on B). The complex IQZ‘?(—) of invariant g-forms is a presheaf on X but it is
defined in the topology of invariant open sets; and gg(—), Eums(—) and ilpp;(——)
are presheaves on B.

6.1. Lemma. The presheaves Qj}i(—), IQ"q.‘(——), g;(—), Som;—‘(—) andﬂpp;(—) are
complete.

Proof. The presheaf Q;(—) (respectively ISZ:’]i(—)) is complete because for each
open cover U of X there is a controlled (respectively also invariant) partition of
the unity subordinated to I/. A proof for can be seen in [3, p. 94]. The Gysin term
and the residues are complete presheaves because they are quotients of complete
presheaves. [

Now we calculate the cohomology of a product U x ¢(L) with values on those
presheaves.

6.2. Lemma. Let ®:S' x X — X be a modelled actions. Consider on R x X
the induced modelled action which is trivial in the R factor. Then the projection
pr:R x X — X induces the following isomorphisms

HLR x X) = HL(X), H(G;(R x B)) = H(G;(B)),
H'(Sotz(R x B)) = H'(Lowg(B)), H'(Upp;(R x B)) = H'(Upp;(B)).

Proof. The first isomorphism can be seen at [22], we will verify the other three.
Notice that the orbit space of R x X is R x B and the orbitmapis 1 x 7 :Rx X —
R x B. There is a commutative diagram

—> B ® x B) —> B R x X) —> H (G5 (R x B)) —> HE (R x B) —> HEP2 R x X) —>

T T T | |

i+l i+1 irer P42 i+2
Hz(B) Hz7(X) HY(Gz(B)) Hé (B) Hé X)——

where the horizontal rows are Gysin sequences and the vertical arrows are induced
by the projections pr:R x X — X and pr:R x B — B. By the Five Lemma,
H'(Gz(R x B)) = H'(G5(B)); the same argument holds for the residues. O
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6.3. Lemma. Let ¥:S' x L — L be a smooth free circle action on a compact
manifold. Then for each r > 0 the inclusion 1, : L — c(L) defined by x — [x,r]
induces the following isomorphisms

i HY(L), 0<i<gW),
Hi(c(L)) = ‘

0, else,
H'(L/SY, i <G -2,
H'(G7(c(L/SY))) = { ker[e: HI®N(L/S') - HIOH(L/SH], i=g() -1,
0, i2g()

where ¢ is the multiplication by the Euler class ¢ € H*(L/S"). What's more

. ker[e: HIW-1(L/SY) — HIWTI(L/SH], i=g() —1,
H' (Zowg (c(L/S1))) = { 0 z £g0() —1

,~ Im[e: HIW™N(L/SY) - HIOTIL/SH], =36 -1,
H' (Uppz (c(L/S"))) = { 0 i#qe) — 1.

Proof. As before, the first isomorphism can be found in [22]. For i < g(x) — 2 there
is a commutative diagram

> HI e(L/81) —> HEY (e(L) — 1 (G(e(L/8")) —> B2 (e(L/S1) —= HE(e(L/8") —>

| l | l

s gL (L8l —— (L) —— H (G5 (L/SY) ——> HiF2(1/81) ——— Hit2 (L) —>

where again the horizontal rows are Gysin sequences and the vertical arrows are
induced by ¢,. By the Five Lemma

H' (G5 e(L/8"))) = H' (G (1/5")) = ' (L/S")

because L has no singular part. For i = g(x) — 1 the upper horizontal row has two
zeros in the right side. By Proposition 5.3

HI®(G5(c(L/SY))) = coker(n*) = ker[e: HIW™(L/S!) — HIWH(L/s1)].

For i > g(x) the upper horizontal row has four zeros, hence H* (Gg(c(L/ S =o0.

Since L/S! has no singular part the Gysin residues vanish on L/S!. With an
analogous procedure the cohomology of the residues of c(L/S!) can be easily
deduced. O

7. RESIDUAL COHOMOLOGY AND THE GYSIN THEOREM

We want to calculate the cohomology of the Gysin term in the general case. For
this sake we will use the upper approximation given in Section 5.5. This long
exact sequence relates H*(Gz(B)) with Hé_ )T(B) and the upper residue. Trough the
following two lemmas we give an explicit calculation of the residual cohomology.
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7.1. Lemma. Take a family U = {Vs: 7(S) C T} of disjoint open sets separating
the singular strata in B. Then

H' (Uppz (B)) = [ | ' (UUppz (Vi)
N

where S runs over the perverse strata.

Proof. Apply Lemma 6.1 to the open cover ¢/ U {B — X}. Notice that the presheaf
ilpp;(——) vanishes on any open subset of B — ¥ and on Vg whenever S is a mobile
stratum or its link is a cohomological product (cf. Propositions 4.8, 5.3). O

7.2. Lemma. [n the situation of Lemma 7.1, H*(Uppz(Vs)) is the cohomology of
S with values on the presheaf

Jmz(@)(U) =Im[3: HXO™ (W) > HIOV (W)], v=snw, wc s

for each perverse stratum S. Here 9 is the connecting homomorphism of a Gysin
Sequence.

Proof. We do it in two steps.
o The restricted presheaf makes sense: Take U C § open. Define

SUpp;(U) = UppL(W)

for any W C Vg open such that U = WN S. If W C Vs is open and W N S =
W N S then UppZ (W) = Upp=(W"), because the residual presheaf is complete and it
vanishes on each open subset of Vg — S.

o H'(Upp;(Vs)) = H'(S, Imz(d)): After a convenient adjust in the size of Vs, we
can take an open cover of Vs by modelled charts

U={a:U, x c(L/Sl) >V, C Vg}a

such that {U,}, is a good covering of S and each finite intersection of open sets in
U admits a decomposition

Vo, N---NVy, =AUVs, ACVs—S, Vgell.
Then
H (8ppz (Vo N+ N Vi)

_ | Im[e: HZO-N(L/SY) — HIOH(L/SY], i=g(S5) -1,
o, i £G(S) — 1.

By Lemma 6.3 the double complex (C/ (U,uppig(—)), 8,d) has horizontal rows
exact on each level j and vertical rows exact but in level g(S§) — 1. Following {3,
p. 130],

H' ($ppg (Vs)) = H =IO (U, HilppI ™™ = -1 (5,0m5(9)). o
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The above two lemmas show us that the cohomology of the Gysin term depends
both of local and global basic information. Global information concerns the
behavior of the Euler class, local information depends on the perverse strata. We
summarize it in the following

7.3. Theorem (The Gysin theorem). For each modelled circle action S' x X —
X and each perversity 0 < q < I there are two long exact sequences relating the
intersection cohomology of X and B: The Gysin sequence

o HP0) S HU(G5(B)) > HIAB) > HIP(X) — -+
and a second long exact sequence

(7)o Hl_ (B~ [ H (S, Img(®)) — H(G(B)) — HI 2(B) — -+
S

where S runs over the perverse strata, H' (S, Jmz(d)) is the cohomology of S with
values on a locally trivial presheaf whose fiber is

Im[e: HI®~Y(L/S") — HIOH(L/S)]
the image of the multiplication by the Euler class ¢ € H*(L/SY).

7.4. Remark. Apply the same procedure to the lower residue Somg(—). You will
get that a third long exact sequence

(8) <> HE_o(B) > H'(G5(B)) — [ [ H'(S, Rerg (@) - HITL(B) — -
N

relating the Gysin term with the cohomology of the perverse strata with values on
a locally trivial presheaf Rerz(d) whose fiber is

ket[e: BT (L/S1) - HIOH (L8]

APPENDIX A. SOME PROPERTIES OF THE EULER CLASS

A.1. The perverse degree of the Euler form. In this appendix we provide a proof
of Proposition 4.8.

By Lemma 4.2(4); for any unfoldable metric 4 on X and any mobile stratum §
we have |lellz(s) = 0. So we restrict our attention to the fixed strata. We must give
an unfoldable metric ¢ such that the induced Euler form e satisfies

(A1) lellz¢sy =2 < S isaperverse stratum

for each fixed stratum S in X. Any unfoldable metric p satisfying this property will
be called a good metric.
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o Construction of a global good metric u from a family of local ones:
We give an invariant open cover U = {X,}, of X, and a family {u,}, of unfoldable
metrics such that each y, is a good metric in X, .

(a) The complement of the fixed points’ set Xo =X — X st belongs to L. We take
on X an unfoldable metric .
(b) For each fixed stratum § we take a family of modelled charts

o Uy xell)y— X

as in (2) of Section 3.1; such that {U,}, is a good cover of S. We put X, =
Im(e) and take

fo = *(py, +pL +dr?)

where uy, (tespectively y7) is a Riemannian (respectively and also invariant)
metric in U, (respectively in L). So u,, is a good metric in X,.

Fix an invariant controlled partition of the unity {p«}» subordinated to I/. Define

(A2) p= Z Do Moot

e Goodness of i on a fixed stratum S: We verify the property (A.1) on S.

=)

(=)
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Write x, e (respectively xq, €x) for the characteristic form and the Euler form
induced by u on X (respectively by u, on X,,). Notice that

(A3)  dx=) (@pa) AXat+ ) Pedia.

In the above expression, the first sum of the right side has perverse degree 1
(see Lemma 4.3). Recall that, by Lemma 4.7, lle|lx¢s) = lldx{ls. If |dxlls =2
then, by Eq. (A.3),

ldxallsnx, = leallz(snxy) =2

for some X, intersecting S. So &;, # 0 because pi, is a good metric.

In the rest of this proof we use some local properties of intersection cohomol-
ogy. In particular, we use the step cohomology of a product U x c(L/S!) as itis
defined in [11]. In Section 6 the reader will find more details. Let’s assume that
llellzcs) < 2 and take some X, = Im(«) € U, the image of a modelled chart «
on S. Write By = 7(Xy) = Uy x c¢(L/S1); so that |e|p, ||y, < 2. Consider the
short exact sequence of step intersection cohomology

0 Q¥(Ba) > QL(Bo) 5 Q5 (Ba) — 0



which induces the long exact sequence

> HX(Bo) > H2(Bo) > H21(B) 5 H3(B) — -

2/1(
The inclusion . : L/S' — U, x ¢(L/S!) given by p — (xo, [p, €]), induces
the isomorphism

2 W = g2 1
1?1 Hy 3 (Ua x o(L/S")) = Hy(L/S')
where xo € U, and ¢ > 0. Since |e|z(sy < 1, then the double equivalence
class [é]|p,] vanishes on Hi /I(B"‘)' By the above remarks, (aic) ™ *(s1) =

prilelp,1=0;s0 e =0.

A.2. Chasing the Euler form in a double complex. In this appendix we show
that the Euler form is cohomologous to a controlled form whenever e < ¥. In order
to simplify the proof we will assume that X has a unique singular stratum §. If S is
mobile there is nothing to do. If S is a fixed (non-~perverse) stratum we consider the
long exact sequence of step cohomology

—>H (B) > H (B)—>H (B)—>Hg(3)—>.--.

i/0
The Euler form e is cohomologous to a controlled form < in step cohomology
the double class [¢] vanishes. Take an atlas I/ and a good metric x on X as in
Appendix A.1. For each B, = n(X,) we obtain

HY(L/SYH, i=1,

A4 ”
(A4)  H (B = {0’ L

By the above equation, the double complex

(K" =C1{U, 9 4).d.5)
satisfies the following conditions: The horizontal rows (K**, §) are exact and the
vertical rows (K*/,d) are exact in dimension i # 1. Following [3], there are two
isomorphisms

A5 H]U B g) = HY U, @ ) < H2((B)

i /o) i/0

where the middle term is the diagonal cohomology of the double complex, the first
arrow is given by chasing in the braid of the double complex and the second arrow
is induced by the restrictions to the open sets By = 7 (Xq).

A double class [[614]s € Ha U, H. -) is always represented by an element 6 =

(Bup)ap € K1! such that d6 =0, 86 = —dv for some v € K%2, and §v = 0. Hence
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¢ =6 +v e K? is a D-cocycle, where D is the diagonal differential operator. By
exactness of the horizontal rows, ¢ is D-cohomologous to a D-cocycle dw € K*0

vV o=y =0

ool $=0+v D=0
w —6,dv = % W, w: 8V =v, Sw=6—dv
! Il $=0—
do | = 0 ¢+ D¢’ = =8V)+ O +dV +bw) +dow
i) =dw
0
This dw is a representative element of a unique global cohomology class [dw] €
H%/G(B).

Next we show that the double class [&] =€ H%/G(B) vanishes.

o Definition of 0 = (6a)ap € K'1: Take &g = X — xo On each intersection X, N
Xg; where xo =™ *(x1). These forms &, are basic; 50 &,5 = m*(0yg) for a unique
form 6, on Byg. Since L is a cohomological product, we can assume that d x; = 0;
80

¥ (dOup) = dr* (Oup) = dEup =dxa —dxp =0
and
T*(Oup + O8y) = bap +Epy =Euy =70 (Bay).

Since 7* is injective we deduce that d8 = §6 = 0. So @ is a representative element

of a D-cocycle in the Q5 /O-double complex. By exactness of the horizontal rows in

the Q;-double complex, there is some w = (wq )y such that o = 6. So [[#]4]s =0.
o Definition of © = () € K1'0: By Eq. (A.3) we have

dx = Z(dpa) AN éaﬁ

on Xg. Define wg =Y, pubup o0 Bg. Then

e=Y (dpa) Nop = d(pabap) =dwp.
o o

This implies that the double class [e] of ¢ in step cohomology is the image of a
dd-boundary by the isomorphism (A.5).

APPENDIX B. ON THE EXISTENCE OF MODELLED ACTIONS

From now, a pre-modelled action is an action ®:S! x X — X of the unit circle on a
pseudomanifold X satisfying conditions MA(1), MA(2), and MA(3) of Section 3.1.
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The only difference between pre-modelled and modelled actions is the existence of
modelled charts, we devote this section to study that problem.

A pseudomanifold is normal when its links are connected. For each pseudoman-
ifold X there is a normal pseudomanifold X" and a morphism

n: XV 5 Xx

which is an isomorphism in intersection homology. The construction of X% is
functorial, thus unique; we call it a normalization of X. The arrow n is the
normalization map. For a detailed introduction the reader can see [8,6].

Recall that the definition of intersection cohomology given in Section 2.2
depends on the prefixed stratification, and it deals with a broader family of
perversities. In [16] we show that for these perversities, the normalization still
preserves the intersection homology. The proof depends on the fact that, when
restricted to any stratum S in X, the arrow n:n~!(S) — § is a smooth finite
covering. By the DeRham Theorem, the intersection cohomology can be deduced
from the intersection homology [22]. So, the normalizations also preserve the
intersection cohomology. As we will see, this property can be directly deduced by
topological arguments.

Let ®:S' x X — X be a pre-modelled (respectively a modelled) action. An
equivariant normalization is a normalization n: XV — X together with a pre-
modelled (respectively a modelled) action &V :S! x XV — XV and an equivariant
unfolding £¥:X — XV such that the morphism n is Sl-equivariant; and the
diagram

xN_ 2

-

nl O

>

L
X

is commutative.

B.1. Propesition. Any pre-modelled (respectively modelled) action has an equi-
variant normalization.

Proof. Fix a pre-modelled action ®:S! x X — X. Take a normalization n: XV —
X. We proceed in two steps.
e Definition of ®N :S! x XN — X" Since ® is a morphism and

ixnSx xV sl x x

is a normalization, by functoriality ® lifts to a unique morphism ®¥ :S! x XV —
XN This ®¥ is indeed an action, so MA(1) holds by construction. For each stratum
S in X the restriction

nn (8 - 8
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is a smooth finite covering. The strata of XV contained in the preimage of S are the
connected components of n~1(S). Since the arrow is equivariant and the isotropy
of S is constant Hy, there is a smooth action of Hy in the fiber and a smooth Hg-
equivariant trivializing atlas of the covering. By an argument of connectedness we
get MA(2).

e Definition of LN : X - X: Take an equivariant unfolding £: X — X. For each
singular stratum S with link L; The cone ¢(L) has an Hs-equivariant normalization

no:e(W¥ =| [ek), [p.rlj=p.r]

J

where {K ;}; are the connected components of L and [p, r]; is a point in ¢(K ). The
arrow

M IxR—eY,  MNB0 = [L] (B, 1],) i LT (B) e K;

is an Hg-equivariant unfolding of U x c(L)". Next we give the S'-equivariant
unfolding of XV as follows. Recall the restriction n: XV — £ =n"1(X — %) —
X — ¥ is a diffeomorphism. Define

n~1L(2), L) e(X -1,

VX xY¥, No= e . .
a¥ eV (@ (z), & anunfoldable chart and z € Im(&)

where ¥ is the unique embedding such that the diagram

aV
U x c(L)N ——x¥N
®B.1) lmﬂ ln
Uxc(l)—2—=X

commutes. In order to see that £V is well defined take some z € X. If z € £ X -
) NIm(@) for some unfoldable chart &; then the above diagram implies that

NeN@ T=n"lL.

By the other hand, if z € £~'(X) and &, j8 are two unfoldable charts of z; then by
an argument of density

"M@ @) =N (B @)

So £V is well defined. The above equations imply that each unfoldable chart of
£:X — X induces unfoldable charts of £V : X — XV . In consequence, condition
MA(3) also holds.

Finally, if @ is modelled then for each modelled chart «:U x ¢(L) - X the
induced chart «” given in Eq. (B.1) restricted to each connected component of
U x c(L)" induces a modelled chart. This proves MA(4), we leave the details to
the reader. O
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B.2. Remark. Fix an equivariant normalization n: XV — X. Since for any stratum
S in X the restriction n:n"!($) — S is a smooth finite covering; the induced map
n*: Q;i(X) — QZ(XN ) is an isomorphism of differential complexes. Hence, for
each perversity 0 < g <7 in X; there is an isomorphism

. N
n* HE (X) — H (XV)
in intersection cohomology.

Next we want to verify the existence of modelled charts. In order to do this,
we will simplify some S!-equivariant unfolding £:X — X. A bubble on X is a
connected component of £~1(X — X), i.e.; a diffeomorphic copy of some regular
stratum. We will say that X is primary if, for any link L of X, the unfolding
L1 :L — L is an isomorphism (and then we will write L = L).

B.3. Lemma. Up to an equivariant normalization, each modelled action @ : st x
X — X has a equivariant unfolding L: X — X satisfying:

e X is primary.
(2) There is a smooth equivariant collar

T @) xR—>X
such that LT (z,t) = LT (z, —t) foreach z € L7(Z), t e R.

Proof. Suppose X is not a primary unfolding. Assume that X is normal and
connected. Since the links are connected then X — ¥ = R is a unique regular stratum
R. Fix a numeration Ny, ..., Ni of the bubbles, k£ > 1. Write

¢i,j=[:‘1[,:Ni——>Nj.

Take also a numeration Sp, ..., S,, ... of the singular strata and a disjoint family
of open Sl-invariant sets Ao, ..., A, ... separating them. Write H; (respectively
L;) for the isotropy (respectively the link) of S;. For each i let’s fix a connected
component C; C £71(S;). By Lemma 1.4; there are integers

0<La; <b; <k

such that C; is a border of the bubbles N, , Ny, . In other words, C; is a connected
component of 7\7; N Nb_i . Since S! is connected, the restriction £:C; — S; is a
S!-equivariant submersion; so it is a locally trivial fiber bundle with fiber L;. There
is a smooth free action of H; on L; and a trivializing atlas of £: C; — S; consisting
of H;-equivariant trivializing charts.
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Definition of a primary unfolding: Notice that W; = L™1(4;) N (Ng; UC; UN,)
is an open S!-invariant neighborhood of C;. Consider the amalgamated sum

X' =[No uNl]U[I_I Wi]
foi

where the collating map f:| |,(W; N[Ny U Ny 1) = No U Nj is given by the
change of bubbles

¢ai,0(z) ifzeW;N Na,-»
fl@= .

¢bi,1(Z) ifzeW;N Nb,--
Write [z] for the equivalence class of z € No LU N1 |J; W;. Then S! acts on X' by
the rule g[z] = [gz], this action is well defined because f is S!-equivariant. X’
has a unique smooth structure such that

L:X' =X, Llzl=L(k)

is a primary S'-equivariant unfolding. The existence of unfoldable charts is left
to the reader.

Existence of the equivariant collar: Assume that £:X — X is the primary S!-
equivariant unfolding given in the first step of this proof. Notice that X has only
two bubbles N, N’. The closure N is a manifold with border and

N=N—-3dN=ZX-%, N=L"' D).

So we can obtain X as two copies of N glued by the border. There is a S!-
equivariant collar y : £~1(Z) x [0, 00) — N. Define

y(z, 1), =20,

ML) xR—>X, [(z.t)= {

¢y (z,—1), t<0
where ¢ = £71L: N — N’ is the change of bubbles. Then I' is an homeomor-
phism on an open set, and its restriction to L7YZ) x (R — {0}) is a smooth
embedding. Give a new smooth structure on X by declaring that I is smooth.
Then I is the desired collar. It is immediate that X is still an unfolding with
the new smooth structure since, for each unfoldable chart &:U x L x R — X
in the old smooth structure,

au, p,t), t =0,

“lp = { pa(u, p,—1), t<0

is an unfoldable chart of X (up to a correction of sign) with the new smooth
structure. O



B.4. Corollary. Each unfoldable pseudomanifold X can be obtained as the quo-
tient of a manifold with border M. Each connected component C C M is the total
space of a smooth fiber bundle p . C — S with base a singular stratum S and fiber
L the link of S. The quotient projection q : M — X identifies two points z,7 € 0M
if they are in the same connected component C and p(z) = p(z').

B.5. Propesition. Up to an equivariant normalization, any pre-modelled action is
modelled.

Proof. Fix a pre-modelled action ®:S' x X — X induces on X on a normal
pseudomanifold X, a primary equivariant unfolding £ : X — X and a S'-equivariant
collar I': L71(Z) x R —» X as in Lemma B.3. Also take a point z € £71(S) in
the preimage of a singular stratum S. Since the link L of S is connected, any
unfoldable chart of z sends different bubbles to different bubbles. In consequence,
the unfolding Lz : L — L is a diffeomorphism and we can write L = L.

Fix an Hs-equivariant trivialization

$:Ux LS L7NU)
of the smooth S!-equivariant fiber bundle £: £~1(S) — S. Consider the function
&GUXLxR—X, (@ p,0T(pw,p)1).

Then & = I o [¢p x 1g] is a Hs-equivariant smooth embedding onto an open subset.
Define

o:Uxe(l)y— X, a(u, Lp, r]) =La(u, p,r).

e « is well defined and injective: For r = 0 it’s trivial. For r > 0, since L is
connected; the set @(U x L x R™) is contained in some bubble N C X , and
the restriction £|y is a diffeomorphism.

e « is an isomorphism: This map is continuous because L& is. Also « is smooth
on each stratum, so it is a morphism. For seeing that ¢ is an isomorphism one
can reduce the domain of the function, because any continuous bijection from
a compact space onto a Hausdorff space is an homeomorphism.

e & is an unfoldable chart: Because LT is an even function with respect to R.

e « is an Hg-equivariant chart: It is straightforward.

o S! preserves the radium: Because « is defined trough a S!-equivariant col-
lar. O

B.6. Remark. We can substitute a pre-modelled action on an arbitrary pseudo-
manifold X by a modelled action on its normalizer X~. Whenever it make sense,
the intersection cohomology of the orbit space B = X/S! is the intersection
cohomology of XV /S! (which always makes sense).
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B.7. Remark. All the statements in this appendix still hold if we drop S! and write
instead a torus T".
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