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ABSTRACT 

For any smooth free action of the unit circle gl in a manifold M; the Gysin sequence of M is a long 
exact sequence relating the DeRham cohomologies of M and its orbit space M/$1 . If the action is not 
free then M/S 1 is not a manifold but a stratified pseudomanifold and there is a Gysin sequence relating 
the DeRham cohomology of M with the intersection cohomology of M/$1 . In this work we extend the 
above statements for any stratified pseudomanifold X of length 1, whenever the action of gl preserves 
the local structure. We give a Gysin sequence relating the intersection cohomologies of X and X/S I 
with a third term ~, the Gysin term; whose cohomology depends on basic cohomological data of two 
flavors: global data concerns the Euler class induced by the action, local data relates the Gysin term and 
the cohomology of the fixed strata with values on a locally trivial presheaf. 

0. FOREWORD 

A pseudomanifold is a topological space X with two features. First, there is a closed 

C X called the singular part, which is the disjoint union of  smooth manifolds. The 

set X - E is a dense smooth manifold. We call strata the connected components of  
P~ a n d  X - ~;  they constitute a locally finite partition of  X. The second feature is 
the local conical behavior of  X, the model being a product U x c(L) of  a smooth 
manifold U with the open cone of  a compact smooth manifold L called the link of  
U. A careful reader will notice that stratified pseudomanifolds with arbitrary length 
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have a richer and more complicated topological structure; in this article we deal 
with stratified pseudomanifolds of length ~< 1, which we call just pseudomanifolds.  

Between the various ways for defining the intersection (co)homology; the reader 
can see [6,8] for a definition in pl-stratified pseudomanifolds; [1,7,13] for a 
definition with sheaves; [15] for an approach with £2-cohomology; [4] for an 
exposition in Thom-Mather spaces• 

In this article, we use the DeRham-like definition exposed in [22] where the 
reader will find a beautiful proof of the DeRham theorem for stratified spaces• We 
work with differential forms in X - E and measure their behavior when approaching 
to Z, trough an auxiliary construction called an unfolding of X. Although X may 
have many different unfoldings, its intersection cohomology does not depend on any 
particular choice• This point of view is the dual of the intersection homology defined 
by King [12], who works with a broader family of  perversities. When S 1 acts on X 
preserving the local structure then the orbit space X / S  1 is again a pseudomanifold 
with an unfolding. 

The well-known Gysin sequence of a smooth manifold M with a principal action 
of$1 is the long exact sequence 

.. rr* Hi+l • -+ H i ( M )  fl-~ H i - I ( M / N I ) - ~  Hi+I (M/g l ) - ->  ( M ) - - > . . .  

where 7r* is induced by the orbit map rc:M --+ M / g  1, which is a smooth S 1- 
principal bundle. The map f is induced by the integration along the fibers and the 
connecting homomorphism e is the multiplication by the Euler class e 6 H 2 (M/S I ) .  

When the action of S 1 on M is not free then the base space is not anymore a 
smooth manifold, but a stratified pseudomanifold M / S  1 whose length depends on 
the number of orbit types. There is a Gysin-like sequence relating the DeRham 
cohomology of M with the intersection cohomology of  M / S  1 

• __+ H i ( M )  fl_~ i-1 1 _+ H i + I ( M  ) • . I-I~_~(M/S )_5> Hq+I (M/g l )  ~r* - + . . .  

where ~, 2 are perversities in M / S  1 . The connecting homomorphism is again the 

multiplication by the Euler class s 6 H 2 ( M / g l ) .  The fixed points' subspace M sl 

is naturally contained in M / S  1 . The link of a fixed stratum S c M / S  1 is always a 
cohomological complex projective space [10,14]. 

In this article we extend the above situation for any pseudomanifold X and any 
action of gl on X preserving the local structure. The orbit map Jr : X --+ X / g  1 
induces a long exact sequence 

• ' ' - +  H q ( X ) +  H i ( ~ ( X / ~ I ) ) 8 _ ~  Hq+I(x /~ I )7r  A H q + l ( x  ) --+ . . .  

relating the intersection cohomologies of X and X/$1 with a third term H * ( g q ( X /  
$1)) whose cohomology can be given in terms of local and global basic cohomo- 
logical data; we call it the Gysin term. The above long exact sequence is the Gysin 
sequence. 
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Global data concerns the Euler class e ~ H2(X/ga). For instance, if  e = 0 then 

H*(Gq(X/S1)) = H~_~(X/S 1) where ~ is the perversity defined by 

1, S a fixed stratum, 

~ ( S ) =  0, else. 

The connecting homomorphism 0 of  the Gysin sequence depends on the Euler class, 
though it's not the multiplication. The Euler class vanishes if and only if there is a 
foliation on X - I] transverse to the orbits of  the action [18,23]. 

Local data relates the Gysin term with the fixed strata. In general, there is a 
second long exact sequence 

0 / t* • • • --+ [ - / q _ ~  ( X / ~  1) --+ ni(j~pp~l(S/Sl))+ Hi+l(~gt(x/~l)) nq_~(x/~i+l 1 ) . _ +  

the residual term satisfying 

= 1-I 
S 

where S runs over the fixed strata and H*(S, 3re(e)) is the cohomology of S with 
values on a locally trivial constructible presheaf [8] 3re(e/.) with stalk 

~ =  Im{eL : Hq(S)-I(L/g 1) -+ HgI(S)+I(L/S1)} 

the image of  the multiplication by the Euler class eL c H2(L/S 1) of  the action on 
the Link L of  S. Since L may not be a sphere, this term could not vanish. 

Henceforth, when we write the word manifold we are taUdng about a smooth 
differential manifold of  class C ~ .  

1. P S E U D O M A N I F O L D S  

Recall the definition of  unfoldable pseudomanifolds. The definitions and results of  
this section where taken of  [1,17,22]; where the reader will find a general treatment 
of  stratified pseudomanifolds and unfoldings. 

1.1. Simple spaces. Let X be a Hausdorff, paracompact, second countable 
topological space. We say that X is a simple space if  

(1) There is a closed subspace 1~ c X, called the singular part; which is a disjoint 
union of  manifolds. Its complement X - Z is a dense open manifold, we call it 
the regular part. 

(2) A singular (respectively regular) stratum of  X is a connected component of  Z 
(respectively X - E). The family of  strata is locally finite. 

For instance, every manifold is a simple space whose singular part is the empty 
set. If  M is a manifold and X is a simple space then the product M x X is a simple 
space with singular part M x E. 
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Let L be a compact manifold. The cone o f  L is the quotient space 

c(L)  = L × [0, e~) /L  x (0}. 

We write [p, r] for the equivalence class of  a point (p, r). We reserve the symbol 
, for the vertex of  the cone, which by definition is the equivalence class of  L x 
{0}. By convention we define c(0) = {*}. The radium of  the cone is the function 
p : c(L)  -+ [0, ee) given by p[p,  r] = r. For each e > 0 we write ce (L) = p-1 [0, E) 
and U~(L) = p- l [o ,  E]. 

A continuous function f : X  ~ X t between two simple spaces is a morphism 

(respectively isomorphism) i f  f ( E )  c Nr, f (X  - E)  C (X  ~ - E ' )  and the restriction 
of  f to each stratum is smooth (respectively a diffeomorphism). In particular, f is 
an embedding i f  f ( X )  C Y is an open simple space with singular part f ( X )  A ~;  

and f : X --+ f (X)  is an isomorphism. 
For instance, the change of  radium 

f : c(L)  --~ cE (L), [p, r] ~-* [p, e • arctan(r)/n'] 

is an isomorphism. 

1.2. Pseudomanifolds. Let X be a simple space, S a stratum. A chart of  S in X is 
an embedding 

: U x c(L)  --> X 

where U c S is open in S and oe(u, , )  = u for each u ~ U; c(L)  is the cone of  a 
compact manifold L. The singular part of  U x c(L)  is U × {*}. 

We say that X is a pseudomanifold if  for each stratum S there is a family of  
charts, 

A s  = × c ( L )  - - ,  

such that {Ua}~ is a good covering of  S (cf. [3, p. 42]). Notice that the compact 
manifold L only depends on S, we call it a link of  S. An  atlas of  X is the choice of  
such a family of  charts for each stratum. 

Remark that the topology of  a stratified pseudomanifold is in general more 
complicated; see [8,17]. A familiarized reader will notice that we work with 
stratified pseudomanifolds of  length 0 or 1; which we call just pseudomanifolds. 
Also we allow the singular strata to have codimension 1; this will be justified in the 
next section, when we present the definition of  intersection cohomology. 

For instance, any product U x c(L)  of  a manifold U and a cone of  a compact 
manifold L is a pseudomanifold. Since we can adjust the size of  the charts, any 
open subspace of  a pseudomanifold is again a pseudomanifold. 

1.3. Unfoldings. One way for defining the DeRham-like intersection cohomology 
of  X is to control the behavior of  differential forms on X - N when approaching 
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to ~.  This control is imposed through an unfolding of  X; which is a manifold ig; a 
surjective, proper, continuous function 

/2:~--+ X 

and a family {£L : L --+ L}L of  smooth finite trivial coverings of  the links of  X; 
satisfying 

(1) The open £ ~ - l ( x  -- ~ )  is a union of  finitely many copies of  X - N; and the 
restriction of/2 to each copy is a diffeomorphism. 

(2) For each singular stratum S and each z e £ -1  (S), there is an unfoldable chart; 
i.e., a commutative diagram 

U x f i x R  s >~ 

U x c(L) ~ > X 

where 
(a) ol is a chart. 
(b) & is a diffeomorphism onto/2-1 (Im(o0). 
(c) The left vertical arrow is c(u, p, t) = (u, [/2L(p), Itl]) for each u e U, p c 

L, t c R .  

We say that X is unfoldable when it has an unfolding. 

For instance, if  £ : .g --+ X is an unfolding then, for each link L, the covering 
/2c :/~ -+ L is an unfolding of L. The product t x / 2  : M x X -+ M x X is an 
unfolding for each manifold M. The left vertical arrow in the commutative diagram 
(2) of  Section 1.3 is an unfolding. 

An unfoldable morphism is a commutative square 

X ~ > X '  

where the vertical arrows are unfoldings, oe is a morphism and 6e is smooth. 
The next result can be easily verified by using the definition of  Section 1.3. 

1.4. Lemma.  Let/2 : X --+ X be an unfolding. Then 

(1) The restriction £ :Z;-I(A) --+ A is an unfolding for each open subset A C X. 
(2) The restriction £ :/2 -1 ( S) --+ S is a smooth locally trivial fiber bundle with fiber 

L, for each singular stratum S with link L. 
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2. INTERSECTION C O H O M O L O G Y  

Now we recall the definition an properties of  intersection cohomology as it is 
exposed in [22]. Some of  the results of  this section were taken from [6]. 

2.1. Liftable forms. Fix an tmfolding £:~" ---> X. A form co c f2*(X - E) is 
liftable i f  there is a form & c f2*(~') such that £*(co) = & on £ - I ( X -  E). If  
does exist then it is unique by density; we call it the lifting of  co. If  co, ~ are lifiable 
forms then do) is also lifiable and d"~ = dc~ and co +~'-~ = & + ~ and ~ - ~  -- co/x 7. 

2.2. Intersection cohomology. Let p:M--+ B be a surjective submersion. 
A smooth vector field ~ in M is vertical i f  it is tangent to the fibers of  p. The 
perverse degree Ilcoll~ of  a differential form co 6 f2(M) is the first integer m such 
that the contraction 

i~o . . .  i~m (co) = 0 

for each vertical vector fields ~0 . . . . .  ~m. Since contractions are antiderivatives of  
degree - 1, for each co, v 6 f2 (M) 

(1) Ilco + vllg ~ max{ IlcollB, [[vlln}, 1to9 A vlln ~ IICO[IB + IIvI[~. 

By convention 1101[ B = - e c .  
We define the DeRham-like intersection cohomology of  X by means of liftable 

differential forms and an additional parameter which controls their behavior when 
approaching to ~. This new parameter is a map c7 which sends each singular stratum 
S to an integer ~¢(S) 6 Z; we call it a perversity. For instance, given an integer 
n ~ Z we denote by ~ the constant perversity assigning n to any singular stratum. 
Another example is the top perversity defined by i(S) = codim(S) - 2 on each 
singular stratum S. 

Fix a perversity ~. A ~-form on X is a liftable form co on X - E satisfying 

max{llcolls, Ildcolls} ~ ~(S) VS singular stratum 

where, with a little abuse of  language, we denote by I[~olls the perverse degree 
of  the restriction cSIL_~(s ) with respect to the submersion £ : £ - I ( s )  --+ S. The 
~-forms define a differential subcomplex f2q(X) whose cohomology Hq(X) is the 
~-intersection cohomology of  X. 

2.3. Topological invarianee of intersection cohomology. When Goresky and 
MacPherson defined the intersection (co)homology on stratified pseudomanifolds 
for the first time, they showed that it does not depend on the choice of  a particular 
stratification, provided that there were no strata of  codimension 1. This is quite 
natural since originally a perversity was a parameter depending on the dimensions 
of  the singular strata, but not on the strata themselves. 

By the other hand, the works of  King and Saralegi enlarged the family of  
allowed perversities (see [12,22]). In Section 2.2 a perversity is an arbitrary 
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integer-valued function defined on the family of singular strata, thus depending on 
the stratification. Nevertheless, if  we fix a stratification of X and then we declare 
new artificial strata by decomposing the regular part X - E; then the intersection 
(co)homology does not change. This happens because the link of an artificial 
stratum is a (co)homological sphere. In general, we have the following invariance 
properties: 

(a) H~(X) does not depend on the particular choice of  an unfolding, for any 
perversity ~. 

(b) If  c7 > i then H~(X) = H*(X - ~)  is the DeRham cohomology o fX  - ~. 

(c) If  ~ < 6 then Hq (X) = H* (X, N) is the relative cohomology of  the pair. 
(d) If  X is a manifold then H~ (X) coincides with the DeRham cohomology H* (X), 

for any perversity 0 ~< c~ ~< i. 
(e) A controlled form is a 0-form. The 0-intersection cohomology H6(X ) is a 

differential graded algebra and Hq(X) is an H6(X)-module for any perversity 

~, see Eq. (1). The 0-intersection cohomology Ho(X) coincides with the 

singular cohomology H*(X N) of the normalization X N of X. For a brief 
introduction to normalizations the reader can see [8,16]; we will give more 
details in Appendix A. 

3. MODELLED ACTIONS 

We introduce the family of modelled actions, whose main property is that the orbit 
spaces always remain in the category of  unfoldable pseudomanifolds. Henceforth, 
we denote by S 1 the unit circle. We fix a pseudomanifold X and a continuous 
effective action 

q~:51 × X--~ X. 

We will write ~ ( g , x )  = gx,  B = X/N 1 for the orbit space and Jr :X ~ B for the 
orbit map. 

3.1. Modelled actions. We say that q~ is a modelled action whenever it satisfies 
conditions MA(1), MA(2), MA(3) and MA(4) stated below. First notice that g 1 x X 
is a pseudomanifold with singular part 51 x Z. 

MA(1). The action c~ :51 × X - +  X is a morphism. 

In consequence, for each g E S 1 the function ~g : X --~ X is an isomorphism. 
Notice that each stratum is S 1-invariant. 

MA(2). For each stratum S o f  X the points in S have the same isotropy subgroup 

Hs. In particular, the action on X - E is free. 
So the restriction Jr : S -+ a-(S) is a smooth locally trivial fibre bundle with fiber 

S1/Hs,  for each stratum S of  X. 
An equivariant unfolding of X is an unfolding 12 : X ~ X such that there is a 

smooth free action $ : 51 x X -+ X and the function/2 is 51-equivariant. 
MA(3). There is an equivariant unfolding/2 : X -+ X. 
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When ~ = 0 the above condition is trivial. For each stratum S the restriction 

Z;:/2-~(S) ~ S is an equivariant locally trivial fiber bundle; so there is a smooth 
free action of  the isotropy Hs on the covering L of  the link L and an Hs-equivariant 

trivializing attas of  the fiber bundle. 
Now we describe the local behavior of  the action near the singular part. Take a 

singular stratum S with link L. A modelled chart is an unfoldable chart 

UxLxR '~>~ 

U x c(L) ~ > X 

s~ i s~ ing  

(a) The above diagram is Hs-equivariant; i.e., for each g e Hs, u E U, p c L and 

t e n  

£6e(u, gp, t) : gc~(u, [p, it[]). 

(b) For each u c U, g c S 1; i f  ¢Ji)g (0/({U } X c(L))) n Im(oe) 7~ 0 then the arrow 

ot-lc~gOl[u "{u} x c(L) --+ {gu} x c(L) 

is an isomorphism and commutes with the radium p : U x c(L) --+ [0, e~). 

MA(4). For each singular stratum S there is a smooth free action qJs : Hs x L -+ 
L o f  the isotropy o f  S on its link, such that S is covered by Hs-modelled charts. 

3.2. Some examples of modelled actions. 

(1) I f  G x X ~ X is a modelled action on a pseudomanifold X then, for each 
manifold M, the induced action on M x X which is trivial in the factor M is a 
modelled action. 

(2) Each free smooth action G x L --+ L of a compact Lie group G on a compact 
manifold L, induces on c(L) a modelled action given by the rule 

G x c ( L ) ~ c ( L ) ,  g[p, r l = [ g p ,  r]. 

(3) A Thom-Mather equivariant space is a Thom-Mather  space X together with a 
compact Lie group G and an effective action G x X -+ X preserving the tubular 
neighborhoods; i.e., each tubular neighborhood is a G-equivariant locally trivial 
fiber bundle with a suitable family of  cocycles (see [17,24]). Indeed, the 
definition of  a modelled chart is inspired in the behavior of  these cocycles. 
When X is a pseudomanifold then the action of  G on X is modelled. 

(4) For each manifold M and each smooth effective action S I x M --+ M, the de- 
composition of  M in orbit types induces a Thom-Mather  equivariant structure 
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in M. When the action has locally few orbit types then M is a pseudomanifold 
and the action is modelled. 

(5) The following is an example of  an iterated modelled toric action on a manifold 
M (see [5]). Let ~ = ~1 x ~1 be the 2-torus, M a manifold and ~ x M --+ M a 
smooth effective action with fixed points and with locally few orbit types. By 
the above examples this action is modelled, the restriction of  the action to the 
first factor gl is a modelled action. As we will see immediately in Section 3.3, 

the orbit space X1 = M / S  ~ is a pseudomanifold. There is a natural action of  the 
second factor gl on X1 which preserves the strata, this action is again modelled 
and the orbit space X2 - X 1 / S  1 is again a pseudomanifold. 

Now we use conditions MA(1) . . . . .  MA(4) in order to describe the orbit space. 

3.3. Proposition. Let  • : $1 x X --+ X be a model led action. Then the orbit space 

B = X / g  1 is apseudomani fo ld  and the induced map; 

z; > X  

is an unfolding. 

Proof. The orbit map rc : X --+ B is open and closed, so B is also a Hausdorff, 
paracompact, 2nd countable space. Conditions MA(1) and MA(2) imply that B is a 
simple space and Jr is a morphism. We proceed in two steps. 

® B is a pseudomanifold:  Take a modelled chart 

of" U x c(L)  --+ X 

whose existence is guaranteed by MA(4). Assume that U = W V  where W c S 1 is a 
contractible open neighborhood of 1 s S I, V a slice in the stratum S containing U. 

Write rrc : L -+ L / H s  for the orbit map. Since c~ is Hs-equivariant, V is a slice and 
the transformations of  gl preserve the radium of a; the function 

fi: V x c ( L / H s )  --+ B, f i (y ,  [JrL(p), r]) = Try(y, [p, r]) 

is well defined. More over 

(a) fi is an homeomorphism: Since B and L / H s  have their respective quotient 
topologies, /~ is a continuous function. But any continuous bijection from a 
compact space onto a Hansdorff space is an homeomorphism, so it is enough 
to reduce the domain of/~ in a convenient way. 
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(b) fi preserves diffeomorphically each stratum: Since V is a slice, on the singular 
part the function/~ : V x {,} ~ re(V) is a diffeomorphism. Restricted to V x 
L x JR+ we obtain the following commutative square 

V x L x JR+ ~ > S I 

V x L / H s x R  + ~ >zr(S 1) 

where S I is the stratum containing a (V x L x JR+). The vertical arrows are 
submersions and o~ is smooth, then so is o/. The same argument can be applied 
to the inverse fi-1. 

* /2B : B --+ B is an unfolding: The function/2B is well defined because/2 is 
equivariant. I f  E = 0 the proof is immediate, because on each connected component 

of  X the map 12 is a trivial covering. Assume that E # 0. By the above remark, 
/2B satisfies (1) of  Section 1.3. We verify the existence of  unfoldable charts. Take 

a singular stratum S with link L. Since (again) L has no singular part, the Hs- 

equivariant unfolding/2t : L --+ L induces an unfolding/2t/ns : L /H s  ~ L /Hs .  
Let re : U x L x JR --+ ig be the unfolding of  the modelled chart a given before. 

Define 

fi: V x L /Hs  x JR -+ ~(Im(60),  fi(y, ~L(/5), t) = :~6t(y,/5, t). 

Then fi is an unfolding of  the chart fl : V x c(L/Hs)  -+ B induced in the first step 
of  this proof. We leave the details to the reader. [] 

4. INVARIANT FORMS 

Now we display the algebraic tools involved on modelled circle actions. Some 
results of  this section where taken of  [10,14]; these references deal with smooth 
non-free circle actions on manifolds, but the same proofs still hold in our context. 
From now on, we fix a pseudomanifold X, a modelled action 

@ : S l x  X - + X  

and an equivariant unfolding/2 : X --+ X with modelled charts. 

4.1. Invariant cohomology. A a-form co on X is invariant i f  for each g ~ 51 the 
equation g* (oJ) = co holds. Since 

X %> X 
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is an unfoldable isomorphism, g* : f2q(X) --+ f2q(X) is an isomorphism of  differ- 
ential complexes. Invariant a-forms define a differential complex, denoted If2q (X). 
The inclusion 

induces an isomorphism in cohomology. 

Next we will study the algebraic decomposition of  an invariant a-form; this 
decomposition depends on the existence of  a Riemannian metric and a connection 
form compatible with the equivariant unfolding. All this will be useful for later 
purposes, when we have to write the Gysin sequence of  X. 

The fundamental vector field on X is the smooth vector field C defined on X - E 
by the rule 

0 CX =df~PX(~g)g=l" 
In other words, C is the smooth vector field tangent to the orbits of the action. It 
never vanishes because X - E has no fixed points. The lifted action ~ : ~1 × ~- ~ 
defines a fundamental vector field C on X. 

We establish a little convention in order to classify the strata of  X: A stratum S 
is mobile (respectively fixed) i f  Hs ~ ~1 (respectively Hs = ~1). For a proof of  the 
next result the reader can see [10]; although it deals with smooth effective actions 
on manifolds, the proof is still valid in our context. 

4.2. Lemma. There are Riemannian metrics Iz, /2 respectively on X - E ,  X; 
satisfying 

(1) /z and/2 are ~l-invariant. 
(2) £*(/z) = /2  o n  £ - l ( x  - ~). 

(3) /~(C, C) =/2(C, C) = 1. 
(4) For each mobile stratum S and each vertical veetor field v respectively the 

submersion £-1 ( S) ~ S; the following equation holds:/2(C, v) -=- O. 

Let # be an invariant Riemannian metric on X - Z. The fundamental form 
induced by/~  is the 1-form X defined by the rule X(v) =/z(C,  v). By the other 
hand, we will say that /z  is unfoldable i f  there is a Riemannian metric /2 in ~7 
satisfying Lemma 4.2. In that case/2 is unique by density and, by Lemma 4.2(2), 
the fundamental form X on X lifts to the fundamental form ~ = lg (/2) on X. 

4.3. Lemma.  For each unfoldable metric # in X the fundamental form X satisfies 

1, S a fixed stratum, 
IIx IIs = 0, S a mobile stratum. 
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Proof .  The equation arises directly from (3) and (4) o f  Lemma 4.2. [] 

Henceforth, we fix an unfoldable metric/z.  

4.4. Decomposi t ion  o f  an  invar iant  form.  A form ~ on X - E is basic i f  one o f  

the following equivalent statements holds: 

(a) ~ is invariant and tc (7) = 0. Notice that 

0 = Lc@) = d~c@) + ~cd@) = ~cd@) 

where Lc is the Lie derivative with respect to the fundamental vector field. 

(b) ~ = zr*(~) for some differential form 0 on B - E = zc(X - Z). I f  there is such 

a ~ then it is unique, because ~r* is injective. 

For each invariant form co ~ IS2* (X - ~ )  there are v ~ f2*(B - Z) and 0 6 f2 *-1 (B - 

~)  satisfying 

O9 = ~*(V) + X A 7g*(0). 

The above expression is the decomposition of  co. The forms v, 0 are uniquely 
determined by the following equations 

Jr*(0) =~e(~o), rr*(v) = w - X  Ate(co). 

When w is a liflable form then 

= r~* (~) + 2" A ~*(O). 

So v, 0 lift respectively to ~, 0. 

4.5. The  Gysin  sequence o f  a free smooth  action. Assume that Z = 0. Then X 

is a manifold, • : 51 X X -+ X is a free smooth action and n" : X --+ B is a smooth 
51-principal fiber bundle. There is a morphism o f  integration along the orbits 

f = (--1)i-lzc-*~e :Ig2i(x) --+ g2i-I(B ) 

defined by 

f CO = (--1)i-10, co=7g*(v)+XAyc*(O)EI~2i(x). 

We obtain a short exact sequence 

0 -+ f2*(B) --+ If2*(X) £ ~ * - I ( B )  --+ 0. 
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The induced long exact sequence 

(2) . . .  ~ H i ( x )  ~ H i - I (B )  --~ Ht+I(B) -~ Hi+I(x)  --+ . . .  

is the Gysin sequence of  X by the action qs. It does not depend on the particular 
choice of  a metric #. The form dx is basic, so there is a unique e 6 ~22(B) such that 

dx  = ~*(e). 

This e is the Eulerform induced by the action q5 and the metric/x. The cohomology 
class e = [e] 6 H2(B) is the Euler class of  B. The connecting homomorphism e 
of the Gysin sequence (2) is the multiplication by the Euler class e = [e] 6 H2(B). 
The Euler class e does not depend on the particular choice of  a metric/z. Following 
[9,23] we get the equivalent propositions 

(a) The Euler class e ~ H2(B) vanishes. 
(b) H(X)  = H(B)  ® H(N1); then we say that X is a cohomologicalproduct in the 

DeRham cohomology. 

(c) There is a foliation 5 on X transverse to the orbits of  the action. 

Now we return to the stratified case. Since/x is an unfoldable metric, the Euler 
form e on B - Z can be lifted to the Euler form g on B induced by the metric/2. 
Notice that e E f2~(B). 

4.6. Proposition. The Euler class ~ ~ H2(B) vanishes i f  and only i f  there is a 

foliation jc on X - ~ transverse to the orbits o f  the action. 

Proofi By the above equivalences (a), (b) and (c) applied to X - Z; it is enough to 
verify that the Euler class vanishes in H~(B) i f  and only if  it vanishes in H2(B - Z).  

By (b) of  Section 2.3, there is an isomorphism 

I-ti2~(B ) -+ H2(B -- ~)  

induced by the inclusion of  the respective complexes. So it is enough to verify that 
the Euler class vanishes in H~(B) i f  and only if  it vanishes in Hi2[(B). 

Take a representative e 6 S2~+[(B) of  the Euler class and suppose that e = dO 

for some 0 6 S2~+i(B). Since the perverse degree of  a form is lower or equal to its 

usual degree, 0 ~ f2~(B) and e is a border in S2~(B). This proves one implication, 
the converse is trivial. [] 

We finish this section with a description of  the perverse degree of  the invariant 
forms. For a proof of  the following lemma the reader can see [10]. 
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4.7. Lemma.  Take a perversity ~ on X, write also ~ for the perversity induced on 
B in the obvious way. Then the arrow 

Jr*: faq(B) -+ IS2q(X) 

is well defined What's more, for each invariant form a) = zr*(v) + X /x rr*(O) and 
each singular stratum S, we have 

Ilcolls = max{llvll~(s), Ilxlls + ll011~(s)}. 

Now we refine our classification of  the fixed strata: A fixed stratum S is perverse 
if  and only if  its link is not a cohomological product. 

4.8. Proposition. There is an unfoldable metric IX such that, for each singular 
stratum S with link L, the Euler form satisfies 

• [tell~(s) ~ 0 i fS  is a mobilestratum. 
• Ilelt~(s) ~ 1 i f S  is afixed nonperverse stratum. 
• Ilell~(s) = 2 i fS  is aperverse stratum. 

Proof. See Appendix A. [] 

5. THE GYSIN SEQUENCE 

Given a modelled action d i ) : S  1 X X -+ X we want to know the cohomological 
relationship between X and B. The answer is a long exact sequence relating the 
intersection cohomologies of  X, B with a third algebraic complex; we call it the 
Gysin sequence of  X. The third complex is the Gysin term, whose cohomology 
depends on B plus some data on the perverse strata. 

As we have seen, if E = 0 then we get the Gysin sequence by integrating along 
the fibers. If  X is a manifold and • is a smooth effective action with fixed points; 
then B is not a manifold but a stratified pseudomanifold. There is a Gysin sequence 
relating the DeRham cohomology of  X with the intersection cohomology of  B [ 10]. 
Something analogous happens for smooth actions ofN 3 and qpn with few local orbit 
types [21,20], and for Riemannian flows [19]. 

5.1. The Gysin sequence. Fix a modelled action q b : ~  1 X X ~ X. Take a 
perversity ~ in X, write also 7/for the perversity induced on B in the obvious way. 
The ~-Gysin term is the cokernel 

7g* 
- +  0--+ ff2q+l(B) Iff2q+l(x) ~ ~q(B) ~ 0. 

The induced long exact sequence 

(3) Hq+,(x) H +2(B) - ,  
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is the Gysin sequence of  X. By Section 2.3, when ~ > i the sequence (3) is 
the usual Gysin sequence (2) of  X - E; when ~ < 0 it is the Gysin sequence 
of  the pair (X, I]). Looking at the free smooth case, the reader could think that 
H*(O~(B)) coincides with the intersection cohomology of  B and the connecting 
homomorphism is the multiplication by the Euler class. As we will see, this is 
just a naive conjecture. The real situation is more complicated. Define on B the 

fundamental perversity 

1, S a fixed stratum, 
~(~r(S))=llxlls= O, else 

and the Eulerperversity 

0, S is a mobile stratum, 

(Jr (S)) = 1, S is a fixed non perverse stratum, 

2, S is a perverse stratum 

(cf. Lemma 4.3, Proposition 4.8). Notice that, by definition X E £21(B) while e E 

The Gysin term can be written by means of  basic differential forms. 

5.2. Lemma.  For each perversity 6 <~ Cl <. i there is a differential isomorphism 

~q(B) ~ {0 E f2q_y(B)/3v E f2*(B - ~): (1) v is liftable; 

(2) max{][vHs, Hdv + e A O[[s} ~< c7(S) VSperverse stratum}. 

Under this identification, the connecting homomorphism is 

a:Hi(G~(B))-+ Hq+2(B), 0 [ O ] = [ d v + e A O ] ,  

Proof. By definition 

I~q+l (X) 

Gq(B) = jr,(~2q+ 1 (B)) 

is a quotient complex with differential operator d(~) = d-w, where c~ is the 
equivalence class of  a differential form co E If2q(X). Take an invariant form co = 
rr*v + X A zr*O. Then 

r~= X A 7r*(0), dco=X A 7r*(-d0). 

The function 

* B * f:~0()-+~o_~(B), ~ 0  
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is well defined and injective and linear. The right term appearing in our statement is 
the image Im(f) .  Since d f  = - f~l ,  the map f is an isomorphism (modulo a sign) 
and induces an isomorphism in cohomology. The connecting homomorphism arises 
as usual from the Snake's lemma. [] 

The above lemma allows us to calculate directly H*(~(B))  when X has no 
perverse strata. In that case, the cohomology of the Gysin term is closer of our 
naive conjecture. 

5.3. Proposition. I f  X has no perverse strata then the Euler class s is in Hf(B) 
and, for each perversity 0 <~ ~ <~ ~, the Gysin sequence (3) becomes 

• . . - +  . . .  

where the connecting homomorphism is the multiplication by the Euler class. I f  
additionally X has no fixed strata then e E HZ(B) and then the above sequence 
becomes 

• ''-+ Hq+I(x)P~ Hq(B)-~ Hq+2(B)~ Hq+2(X)-+ ..-. 

Proof. By Lemma 5.2, the Gysin term is an intermediate complex 

(4) aq_~(B) C Gq(B) < aq_~(B). 

If  X has no perverse strata then ~ = ~ and the extremes in the above inequality are 
equal; so G~(B) = ~2~_e(B). The remark about the connecting homomorphism is 
immediate and the second statements are straightforward. [] 

5.4. Corollary. I f  the Euler class s ~ H?e (B) vanishes then, for each perversity 
6 ~ < ~ < i ;  

@additionally X has no fixed strata, then 

H~(X) = H~(B) + H(sl ) ,  

i.e., X is a cohomological product for intersection cohomology. 

Proof. If e e H[(B) vanishes then X has no perverse strata. [] 

5.5. Residual approximations. In the rest of this work we will calculate 
H*(~(B))  for a modelled action with perverse strata. For this sake, we introduce 
the residual approximations of the Gysin term. These are the quotient complexes 
induced by the inequality (4); 

0 --+ aq_~(B) -+ ~q(B)B ~ ~OrOq(B) --+ 0, 

0 -+ Gq(B)B --~ f2q_~(B) P-~ gppq(B) -+ O. 
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We call £OrOq(B) (respectively Ltppq(B)) the lower residue (respectively upper 
residue). The induced long exact sequences 

(5) 

(6) 

i+1 • ..--> Hq_~(B)-+ H i ( ~ t ( B ) ) P ~  si(,~otl2~(S))---> H~_~(B)-+ ... ,  

• ''--+ H i ( ~ ( B ) ) - - )  " Hq_~(B)  g Hi(~lapEl(U))---> H i + I ( ~ ( B ) ) - - >  .. .  

are the residual approximations. As we will see in Section 6, £OrOq(B), tJ.ppq(B) 
are local terms. Next consider the cokernel 

q - - e  

its cohomology Hq_~ (B) is called the step intersection cohomology of B [11]. The 
q - - e  

residual approximations are related by the long exact sequences 

i i+1 • ..--> Hq_o(B) -+ Hq_~(B) -+ H-_~_(B) -+ H~_~(B) -->..., 
q - - e  

• ..--> H i ( e o ~ ( B ) )  -+ Hq_~ (B) ---> Hi(LOppq(B)) -+ Hi (Coro t (B) )  - + . . . .  
q--e 

These sequences can be arranged in a commutative exact diagram; called the @sin 
braid 

f 
f 

H~_o(B) 

H i(~q(B)) H ~  (B) H i+l(~(B)) 

Hi-lolpp~(B)) Hi(£oro~,(B)) Hq+~(B) 

I-I~_~ (B) H i (~ppq  (B))  H i+1 (,goroq (B)) 

i+1 

5.6. Remark. The cohomology complexes in this section are Ho(B)-modules. For 
instance, the linear action of Ho(B) in H~(X) is given by the rule 

Ho (B ) x Hq(X) --> Hq(X), (0, w) ~-+ zr*(O) A co. 

The reader is invited to cheek that also the arrows are morphisms of Ho(B)- 
modules. 

6. LOCAL CALCULATIONS 

In this section we present the local properties of the Gysin term and the residues. 
Some results were taken from [22]. 
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An introduction to presheaves and the Cech cohomology can be found for 
instance in [3]. A presheaf 7 ~ on X is complete if  for any open cover/4 = {X~}~ 
of  X the augmented Cech differential complex 

0 --+ ~O(X) ~ C0(/A/, P) ~ CI(u, P) ~ C2(U, ~r)) _+... 

is exact, where CJ(bl, 7 ~) : l~0<-.-<~j 7~(X~0 N. . .  N X~j) and 3 is given coordi- 
natewise by the alternating sum of  the restrictions. 

For each perversity ~, the complex of ~-forms g2q(-) is a presheaf on X (and 
also on B). The complex IS2q(-) of invariant ~-forms is a presheaf on X but it is 
defined in the topology of invariant open sets; and gq ( - ) ,  £OrOq(-) and llppq ( - )  
are presheaves on B. 

6.1. Lemma. Thepresheaves aq(-), Iaq(-), gq(-), 11OrOq(-) andSAppq(-)  are 

complete. 

Proof. The presheaf fgq(-) (respectively If2q(-)) is complete because for each 
open cover/2 of X there is a controlled (respectively also invariant) partition of 
the unity subordinated to/,/. A proof for can be seen in [3, p. 94]. The Gysin term 
and the residues are complete presheaves because they are quotients of complete 
presheaves. [] 

Now we calculate the cohomology of a product U x c(L)  with values on those 
presheaves. 

6.2. Lemma. Let  cb : 51 x X --+ X be a model led actions. Consider on R x X 

the induced modelled action which is trivial in the ]K factor. Then the project ion 

pr  : N x X ~ X induces the fo l lowing  isomorphisms 

H$(R × X) : Hq(X), m(~O(R × 8)) : U~(~(B)), 

Hi(~otl3@(~ x B)) = Hi(~ot'Ogl(B)), Hi (~2pp@(]~ x B)) : Hi(~[ppKl(B)). 

Proof. The first isomorphism can be seen at [22], we will verify the other three. 
Notice that the orbit space o f R  x X is R x B and the orbit map is 1 x rr : ]R x X --+ 
1R x B. There is a commutative diagram 

t t l t 
where the horizontal rows are Gysin sequences and the vertical arrows are induced 
by the projections p r  : IR x X ~ X and p r  : R x B --+ B. By the Five Lemma, 
H i (~7t(]~ x B))  = H i (~cT(B)); the same argument holds for the residues. [] 
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6.3. Lemma.  Let ~ : gl x L --+ L be a smooth free circle action on a compact 
manifold. Then for  each r > 0 the inclusion tr : L --+ c(L) defined by x ~ Ix, r] 
induces the following isomorphisms 

Hq(C(L)) = { o,Hi(L)' 

H i ( ~ ( c ( L / ~ l ) ) )  = 

0 <~ i <~ F t (*), 

else, 

Hi(L/gl), 
ker[s : Hq(*)- l (L/g l )  -+ Hq(*)+l(L/gl)], 

O, 

i <. q ( , )  - 2, 

i = q(*) - 1, 

i >~ Ft(*) 

where s is the multiplication by the Euler class s e Ha(L/S1).  What's more 

i = UI(*) - 1, 

i 5~ Ut (*) - 1, 

i = q(*) - 1, 

i ¢Ut (*) - 1. 

Hi (j2oroq(c(L/Sl))) = [ ker[e : H q(*)-I (L/S 1) -+ H ~(*)+1 (L/N1)], 

[ O, 

Im[e : H q(*)-I (L/S 1) ~ H ~(*)+1 (L/S1)], 

= o, 

Proof. As before, the first isomorphism can be found in [22]. For i ~ q( , )  - 2 there 
is a commutative diagram 

> H~+I(c(L/~I)) > H~q-l(c(L)) > Hi(Ogl(c(L/sl))) > Hi~-t-2(e(L/~I)) 

> Hi+I(L/N I) > Hi+I(L) > Hi(Oq(L/$1)) > Hi+2(L/S 1) 

>- Hiq+2(c(L/Nl)) > 

> Hi+2(L) > 

where again the horizontal rows are Gysin sequences and the vertical arrows are 
induced by ~r. By the Five Lemma 

H i ( ~ ( c ( L / g l ) ) )  = H i ( ~ ( L / ~ I ) )  = H i ( L / ~ I )  

because L has no singular part. For i ---- q( , )  - 1 the upper horizontal row has two 
zeros in the fight side. By Proposition 5.3 

Hq(*)(~q(c(L/gl)))  = coker(rc*) = ker[s : Hq(*)- l (L /g l )  --> Hq(*)+l(n/~l)]. 

For i/> c/(.) the upper horizontal row has four zeros, hence H i ( ~ ( c ( L / S 1 ) ) )  = O. 
Since L / S  1 has no singular part the Gysin residues vanish on L / S  1. With an 

analogous procedure the cohomology of  the residues of  c ( L / S  1) can be easily 
deduced. [] 

7. RESIDUAL COHOMOLOGY AND THE GYSIN THEOREM 

We want to calculate the cohomology of  the Gysin term in the general case. For 
this sake we will use the upper approximation given in Section 5.5. This long 
exact sequence relates H * ( ~  (B)) with Hq_2(B) and the upper residue. Trough the 
following two lemmas we give an explicit calculation of  the residual cohomology. 
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7.1. Lemma.  Take a family H = {Vs: a-(S) C E} of  disjoint open sets separating 
the singular strata in B. Then 

) = 1-I H' ) 
S 

where S runs over the perverse strata. 

Proof. Apply Lemma 6.1 to the open cover H U {B - Z}. Notice that the presheaf 
LLppq(-) vanishes on any open subset of  B - Z and on Vs whenever S is a mobile 
stratum or its link is a cohomological product (cf. Propositions 4.8, 5.3). [] 

7.2. Lemma.  In the situation of  Lemma 7.1, H*(kipp~(Vs)) is the cohomology of  
S with values on thepresheaf 

~m~(0)(U) : Im[O:H~(S)-I(w) -+ H~(s)+I(w)], U = S n w,  w c Vs 

for each perverse stratum S. Here O is the connecting homomorphism of  a Gysin 
sequence. 

Proof. We do it in two steps. 
• The restricted presheaf makes sense: Take U C S open. Define 

for any W C Vs open such that U : W n S. I f  W' C Vs is open and W ~ rq S = 
W n S then £tppq (W) = £q0pq (W'), because the residual presheaf is complete and it 
vanishes on each open subset o f  Vs - S. 
• Hi(L[pp~(Vs)) = Hi(s,  2m~(0)): After a convenient adjust in the size of  Vs, we 

can take an open cover of  Vs by modelled charts 

H =  {61 : Ua x c(L/S  1) ---+ Vet C gslet 

such that {Uet}et is a good covering of  S and each finite intersection of  open sets in 
H admits a decomposition 

Then 

V~l  fq . . . n v,~,, = A U V ~,  A C Vs - S, V~ E Lt. 

H/(~p~(Vet, n . . .  n v~.)) 
= [ Im[e:Hq(S)-l(L/S1) -+ Hq(S)+~(L/S1)], i = ~(S) - 1, 

I O, i 5~ ~(S) - 1. 

By Lemma 6.3 the double complex (cJ(Lt, Ltppq(-)), 6, d) has horizontal rows 
exact on each level j and vertical rows exact but in level ~(S) - 1. Following [3, 
p. 130], 

Hi(~.pp77(Ws)) oi-~l(S)+l(~[, ~(*)--1 : 7-~.~-pp?l ) = g i-?l(S)+l (S, ~m~(a)). [] 
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The above two lemmas show us that the cohomology of  the Gysin term depends 
both of  local and global basic information. Global information concerns the 
behavior of  the Euler class, local information depends on the perverse strata. We 
summarize it in the following 

7.3. Theorem (The Gysin theorem). For each modelled circle action 51 x X --+ 
X and each perversity 0 <~ ~1 <~ i there are two long exact sequences relating the 
intersection cohomology o f  X and B: The Gysin sequence 

• .. --+ Hq+l(x)  --+ --+ gq+2(X) - + . . .  

and a second long exact sequence 

(7) • i + 1  • . . -+ H~_~(B) -+ U Hi(  S' 3m~(8)) -+ H i + I ( ~ ( B ) )  -+ Hq_~(B) -+ . . .  
S 

where S runs over the perverse strata, H i ( S, 3m~(O)) is the cohomology o f  S with 
values on a locally trivial presheaf whose fiber is 

Im[s: H ~(S)-I  ( L / a  1) - +  H ~(S)+l ( L / S 1 ) ]  

the image o f  the multiplication by the Euler class e c H2(L /gl).  

7.4. Remark.  Apply the same procedure to the lower residue £OrOq(-). You will 
get that a third long exact sequence 

(8) i+1 ...---~ Hq_~(B)-+ Hi(~I(B))-+ U Hi(S'N¢r'q(O)) --> Hq_~(B)"-+ "" 
s 

relating the Gysin term with the cohomology of  the perverse strata with values on 
a locally trivial presheaf.Rer~(0) whose fiber is 

ker[e : Hq(S)- l (L /g l )  -+ Hq(S)+I(L/S1)] 

APPENDIX A. SOME PROPERTIES OF THE EULER CLASS 

A.1. The perverse degree of the Euler form. In this appendix we provide a proof 
of  Proposition 4.8. 

By Lemma 4.2(4); for any unfoldable metric tz on X and any mobile stratum S 
we have ]lellrr(s) = 0. So we restrict our attention to the fixed strata. We must give 
an unfoldable metric/x such that the induced Euler form e satisfies 

(A.1) Ilell~(s) = 2 ¢> S is a perverse stratum 

for each fixed stratum S in X. Any unfoldable metric # satisfying this property will 
be called a good metric. 
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• Construction o f  a global good metric Izfrom a family of  local ones: 
We give an invariant open cover b / =  {X, }6 of  X, and a family {/x~ }~ of  unfoldable 
metrics such that each/x~ is a good metric in X~. 

(a) The complement of  the fixed points' set X0 = X - X al belongs to/g. We take 
on X0 an unfoldable metric/z0. 

(b) For each fixed stratum S we take a family of  modelled charts 

ee:Uc~ x c(L)-+ X 

as in (2) of  Section 3.1; such that {Ua}~ is a good cover of  S. We put Xa = 
Im(a) and take 

#~ = ol-* (IzU~ + IZL -t- dr 2) 

where/zu~ (respectively/xL) is a Riemannian (respectively and also invariant) 
metric in U~ (respectively in L). So Iz~ is a good metric in X,.  

Fix an invariant controlled partition of  the unity {p~ }a subordinated to b/. Define 

(A.2) /z = E p~tM. 

• Goodness oflz on a fixed stratum S: We verify the property (A.1) on S. 

( 3 )  Write X, e (respectively X,, e~) for the characteristic form and the Euler form 
induced by/z on X (respectively by/z~ on X~). Notice that 

o/ c~ 

In the above expression, the first sum of the fight side has perverse degree 1 
(see Lemma 4.3). Recall that, by Lemma 4.7, Ilell=(s) = Ildx Ils- If  [Idx Ils --- 2 
then, by Eq. (A.3), 

Ildx= II s n x =  = Ile  II: (snx=) = 2 

for some X~ intersecting S. So eL ~ 0 because/z~ is a good metric. 
( ~ )  In the rest of  this proof we use some local properties of  intersection cohomol- 

ogy. In particular, we use the step cohomology of  a product U x c(L/$1) as it is 
defined in [ 11 ]. In Section 6 the reader will find more details. Let's assume that 
I]elbr(s) < 2 and take some X~ = Im(o0 ~ L/, the image of  a modelled chart o~ 
on S. Write B~ = Jr(X~) ~ U~ x c(L/~I); so that [[e[B~ []U~ < 2. Consider the 
short exact sequence of  step intersection cohomology 

o -+ 4 o 
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which induces the long exact sequence 

The inclusion tE : L/• 1 --> Uc~ x c (L/~  1) given by p w+ (x0, [p, E]), induces 
the isomorphism 

*. 2 c(L/al))  _~ H2(L/al)  Hi/(U  × 

where x0 ~ Ua and e > 0. Since llel[=(s) ~ 1, then the double equivalence 
class [~[B~] vanishes on H~/[(Ba). By the above remarks, (alE)-*(eL) = 
pr*[elB~] = 0; SO eL = 0. 

A.2. Chasing the Euler form in a double complex. In this appendix we show 
that the Euler form is cohomotogous to a controlled form whenever ~ ~< ~-. In order 
to simplify the proof we will assume that X has a unique singular stratum S. If  S is 
mobile there is nothing to do. If  S is a fixed (non-perverse) stratum we consider the 
long exact sequence of  step cohomology 

2 z* H2(B ) -=+ H3(B ) --> • .. --+ H 0 (B) --+ H~/o(B) =+ . . . .  

The Euler form e is cohomologous to a controlled form e> in step cohomology 
the double class [~] vanishes. Take an atlas b /and  a good met r ic / ,  on X as in 
Appendix A. 1. For each B~ = a'(X=) we obtain 

(A.4) H~/o(B°*) = { o,HI(L/N1)' i ~k = 1, 

By the above equation, the double complex 

(xi,J = cJ (u, %6), d, ) 

satisfies the following conditions: The horizontal rows (K i'* , ~) are exact and the 
vertical rows (K *'j, d) are exact in dimension i 7 ~ 1. Following [3], there are two 
isomorphisms 

(A.5) H i (H, H1/O) ~> HiD(H, f]}/6) <--- H~/6(B) 

where the middle term is the diagonal cohomology of  the double complex, the first 
arrow is given by chasing in the braid of  the double complex and the second arrow 
is induced by the restrictions to the open sets B~ = 7r(X~). 

A double class [[0]d]8 ~ HJ(bt, H~/6) is always represented by an element 0 = 

( 0 ~ ) ~  c K 1,1 such that dO = O, 80 = - d r  for some v c K °,2, and 8v = 0. Hence 
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q~ = 0 + v 6 K ~ is a D-cocycle, where D is the diagonal differential operator. By 
exactness of  the horizontal rows, 4~ is D-cohomologous to a D-cocycle do) 6 K 2'° 

1) I ..-+ 

4, 
co -+ O, d v  ~ 

4, 4, 

o 

4, 
0 

v ~ O  

$ 4 9 = O + v  Dq~=0 

• 3v ~, co: 6v ~ = v, 6o9 = 0 - d v  ~ 

~ t  = -  CO _ 1)t 

~b + Dfb' = (v -- 6v') q- (0 + d r '  + aco) + do) 

= do) 

This do) is a representative element of  a unique global cohomology class [do)] 6 

H ~/6 ( B ) . 

Next we show that the double class [~] = 6  H2/o(B)  vanishes. 

• Def in i t ion  o fO = (0a~),~ 6 K 1,1: Take ~ = )@ - X~ on each intersection X~ f3 

X~; where )~ = o~- *(XL). These forms ~ are basic; so ~ = rr* (0~)  for a unique 
form 0 ~  on B ~ .  Since L is a cohomological product, we can assume that d)~L = 0; 

SO 

yr * ( dOo~ ) = dzr * ( Oc~B ) = d~,~p = d Xc, - d ) ~  = 0 

and 

Since re* is injective we deduce that dO = 80 = 0. So 0 is a representative element 

of  a D-cocycle in the g2 i/0-double complex. By exactness of  the horizontal rows in 
the f2[-double complex, there is some co -- (co~)a such that 8co = 0. So [[0]d]~ = 0. 

• Def ini t ion o f  co = (co~)a 6 g l , ° :  By Eq. (A.3) we have 

on X~. Define cob = Y~  p~O~ on B~. Then 

o/ 13/ 

This implies that the double class [~] of  e in step cohomology is the image of  a 

3d-boundary by the isomorphism (A.5). 

APPENDIX B. ON THE E X I S T E N C E  OF M O D E L L E D  A C T I O N S  

From now, a p r e - m o d e l l e d  act ion is an action @ : ~1 x X -+ X of the unit circle on a 
pseudomanifold X satisfying conditions MA(1), MA(2), and MA(3) of  Section 3.1. 
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The only difference between pre-modelled and modelled actions is the existence of 
modelled charts, we devote this section to study that problem. 

A pseudomanifold is normal  when its links are connected. For each pseudoman- 
ifold X there is a normal pseudomanifold X N and a morphism 

n : x N - - >  X 

which is an isomorphism in intersection homology. The construction of X N is 
functorial, thus unique; we call it a normalization of X. The arrow n is the 
normalization map. For a detailed introduction the reader can see [8,6]. 

Recall that the definition of intersection cohomology given in Section 2.2 
depends on the prefixed stratification, and it deals with a broader family of 
perversities. In [16] we show that for these perversities, the normalization still 
preserves the intersection homology. The proof depends on the fact that, when 
restricted to any stratum S in X, the arrow n : n - l ( s )  --+ S is a smooth finite 
coveting. By the DeRham Theorem, the intersection cohomology can be deduced 
from the intersection homology [22]. So, the normalizations also preserve the 
intersection cohomology. As we will see, this property can be directly deduced by 
topological arguments. 

Let q~:$I x X -+ X be a pre-modelled (respectively a modelled) action. An 
equivariant normalization is a normalization n : X  N ~ X together with a pre- 
modelled (respectively a modelled) action ~N : $1 x X N -+ X N and an equivariant 
unfolding £ N : ~  ~ X N such that the morphism n is gl-equivatiant; and the 
diagram 

x N c~  

x 

is commutative. 

B.1. Proposition. Any  pre-model led  (respectively modelled) action has an equi- 

variant  normalization. 

Proof. Fix a pre-modelled action • : ~1 × X ~ X. Take a normalization n: X N 

X. We proceed in two steps. 
• Definition ofcb N :gl × X N ~ xN: Since • is a morphism and 

-..+ 

t xn:@ 1 x X N--+@I x X 

is a normalization, by functoriality q5 lifts to a unique morphism (I ON : ~1 X X N -'--> 

X u .  This qb u is indeed an action, so MA(1) holds by construction. For each stratum 
S in X the restriction 

n : n - l ( s )  ~ S 
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is a smooth finite covering. The strata of  X N contained in the preimage of S are the 
connected components of  n -1 (S). Since the arrow is equivariant and the isotropy 
of  S is constant Hs, there is a smooth action of  Hs in the fiber and a smooth Hs- 
equivariant trivializing atlas of  the covering. By an argument of  connectedness we 
get MA(2). 

• Definition o f £  u : .g --+ X: Take an equivariant unfolding £ : X --+ X. For each 
singular stratum S with link L; The cone c(L) has an Hs-equivariant normalization 

no:c(L)  u = U e ( K j ) ,  [p,r]j ~ [p,r] 

J 

where {Kj }i are the connected components of  L and [p, r]i is a point in c(Kj).  The 
arrow 

cN; L × ]~ ---> c(L) N, oN(p, t) = (u, [~N(/~), [t[]j) ifZ2LN(/~) ~ Kj 

is an Hs-equivariant unfolding of  U x c(L) N. Next we give the Sl-equivariant 
unfolding of  X N as follows. Recall the restriction n: X N - Z = n - l ( x  - N) --+ 
X - N is a diffeomorphism. Define 

n-lZ;(z), £(z) ~ (X - X), 

~N : ~ ~ X N, £N(z) = otNcN(oI) - I(z) ,  & an unfoldable chart and z ~ Im(60 

where a N is the unique embedding such that the diagram 

(B.I) 

U x c(L) N °iN> X N 

I t x 13. 0 In 

U x c(L) a > X 

commutes. In order to see that £N is well defined take some z 6 X. I f z  ~ £ - l ( X  - 
E) C? Im(&) for some unfoldable chart &; then the above diagram implies that 

oIN cN (~) -1 = n- l  •. 

By the other hand, i f z  ~ Z;-l(r ,)  and 6~,/~ are two unfoldable charts of  z; then by 
an argument of  density 

oIN cN (oI) -1 (Z) : flN cN (/~)--1 (Z). 

So ~N is well defined. The above equations imply that each unfotdable chart of  
£ : X ---> X induces unfoldable charts of  £N : ~ _+ X u. In consequence, condition 
MA(3) also holds. 

Finally, if  • is modelled then for each modelled chart ~ : U x c(L) --+ X the 
induced chart O~ N given in Eq. 03.1) restricted to each connected component of  
U × c ( L )  N induces a modelled chart. This proves MA(4), we leave the details to 
the reader. [] 
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B.2. Remark.  Fix an equivariant normalization n : X N ~ X. Since for any stratum 
S in X the restriction u:n-~(S)  --+ S is a smooth finite covering; the induced map 
n* : f2q(X) --+ ~2q(X N) is an isomorphism of  differential complexes. Hence, for 

each perversity t3 ~< ~ <~ i in X; there is an isomorphism 

n* : Hq(X N) 

in intersection cohomology. 

Next we want to verify the existence of  modelled charts. In order to do this, 
we will simplify some 51-equivariant unfolding 12 : .Y -+ X. A bubble on .~ is a 
connected component of  12-1 (X - Z), i.e.; a diffeomorphic copy of  some regular 
stratum. We will say that ~" is primary if, for any link L of  X, the unfolding 
£L :/~ ~ L is an isomorphism (and then we will write L = L). 

B.3. Lemma.  Up to an equivariant normalization, each modelled action ¢b : 51 X 
X "+ X has a equivariant unfolding E : X -+ X satisfying: 

(1) X is primary. 

(2) There is a smooth equivariant collar 

F :12-1(E) x IR - +  .Y 

such that £F  ( z, t) = £V ( z, - t  ) for each z e 12-1( ~ ), t e R. 

Proof. Suppose ~" is not a primary unfolding. Assume that X is normal and 
connected. Since the links are connected then X - E = R is a unique regular stratum 
R. Fix a numeration No . . . .  , Ark of  the bubbles, k > 1. Write 

(9i, j = ~ . - l  l2 : Ni --~ N j .  

Take also a numeration So . . . . .  Sn . . . .  of  the singular strata and a disjoint family 
of  open 51-invariant sets Ao . . . . .  An . . . .  separating them. Write Hi (respectively 
Li) for the isotropy (respectively the link) of  Si. For each i let's fix a connected 
component Ci c 12 - l(Si) .  By Lemma 1.4; there are integers 

O ~ a i < b i ~ k  

such that Ci is a border of  the bubbles Nai, Nbi. In other words, Ci is a connected 
component of  Nai n Nbi. Since 51 is connected, the restriction £ : Ci ~ Si is a 
51-equivariant submersion; so it is a locally trivial fiber bundle with fiber Li. There 
is a smooth free action of  Hi on Li and a trivializing atlas o f £  : Ci --+ Si consisting 
of/4/-equivariant trivializing charts. 
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(a) Definition of a primary unfoMing: Notice that Wi = 12-1(Ai) n ( Nai U Ci U Nbi ) 
is an open S 1-invariant neighborhood of Ci. Consider the amalgamated sum 

~t [NoLINI]Uf [ yWi  ] 

where the collating map f :  LJi(wi n [Nai U Nbi]) ---> NO U N1 is given by the 
change of bubbles 

/ Cai,0(z) i fz  c Win Nai, 
f(z) 

I ~bbi,l(Z) i fz  E Wi n Nbi. 

Write [z] for the equivalence class ofz E No u N1 Hi Wi. Then gl acts on .g~ by 
the rule g[z] = [gz], this action is well defined because f is S 1-equivariant. ig t 
has a unique smooth structure such that 

~ : ~ "  ---> x,  £[z] = 12(z) 

is a primary S 1-equivariant unfolding. The existence ofunfoldable charts is left 
to the reader. 

(b) Existence of the equivariant collar: Assume that 12 : ~" ---> X is the primary S 1- 
equivariant unfolding given in the first step of this proof. Notice that ~" has only 
two bubbles N, N ~. The closure N is a manifold with border and 

N = N - O N ~ X - E ,  0N = 12-1(~). 

So we can obtain X as two copies of N glued by the border. There is a gl_ 
equivariant collar y :12"1(N) x [0, cx~) --~ N. Define 

I~:/~-1(2) x]i~'-+ X' F(z't)= { ~'(z't)'OV(z,-t), tt >>'O'< 0 

where ¢ = 12-112 : N --* N t is the change &bubbles. Then F is an homeomor- 
phism on an open set, and its restriction to 12-1(2) x (IR - {0}) is a smooth 
embedding. Give a new smooth structure on ~" by declaring that F ~ is smooth. 
Then F ~ is the desired collar. It is immediate that X is still an unfolding with 
the new smooth structure since, for each unfoldable chart & : U x L x IR ~ 
in the old smooth structure, 

[ 6~(u, p, t), t ~> O, 
~ ' ( u , p , t ) =  q~g~(u, p, - t ) ,  t < O  

is an unfoldable chart of -Y (up to a correction of sign) with the new smooth 
structure. [] 
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B.4. Corollary. Each unfoldable pseudomanifold  X can be obtained as the quo- 

tient o f  a manifold with border M. Each connected component C C O M is the total 

space o f  a smooth f iber  bundle p : C --+ S with base a singular stratum S and f iber  

L the link o f  S. The quotientprojection q : M --+ X identifies twopoints  z, z I ~ OM 

i f  they are in the same connected component  C and p(z )  = p(zl). 

B.5. Proposition. Up to an equivariant normalization, any pre-model led action is 

modelled. 

Proof. Fix a pre-modelled action @:S i x X ~ X induces on X on a normal 

pseudomanifold X, a primary equivariant unfolding £ : ~7 --+ X and a gl_equivariant 
collar F : E - I ( ~ ] )  x IR-+ ~" as in Lemma B.3. Also take a point z e £-1(S)  in 

the preimage of a singular stratum S. Since the link L of  S is connected, any 
nnfoldable chart of  z sends different bubbles to different bubbles. In consequence, 

the unfolding LL : L --> L is a diffeomorphism and we can write/~ = L. 
Fix an Hs-equivariant trivialization 

~b:U x L - ~ / 2 - 1 ( U )  

of  the smooth gl_equivariant fiber bundle £ : /2  -1 (S) ~ S. Consider the function 

~ : U  x L x R - + . ~ ,  ( u , p , t ) ~ + r ( q b ( u , p ) , t ) .  

Then & = F o [~b x 1~] is a Hs-equivariant smooth embedding onto an open subset. 

Define 

o~ : U x c(L)  ~ X,  ~(u,  [p, r]) = £&(u, p, r). 

• ol is well defined and injeetive: For r = 0 it's trivial. For r > 0, since L is 
connected; the set &(U x L x R +) is contained in some bubble N C -g, and 
the restriction £[U is a diffeomorphism. 

• ~ is an isomorphism: This map is continuous because £& is. Also a is smooth 

on each stratum, so it is a morphism. For seeing that a is an isomorphism one 
can reduce the domain of  the function, because any continuous bijection from 
a compact space onto a Hausdorff space is an homeomorphism. 

® ~ is an unfoldable chart: Because £ F  is an even function with respect to R. 
• oe is an Hs-equivariant chart: It is straightforward. 
. gl  preserves the radium: Because et is defined trough a gl-equivariant col- 

lar. [] 

B.6. Remark .  We can substitute a pre-modelled action on an arbitrary pseudo- 
manifold X by a modelled action on its normalizer X N. Whenever it make sense, 
the intersection cohomology of  the orbit space B = X / S  1 is the intersection 
cohomology of  X x / g l  (which always makes sense). 
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B.7. R e m a r k .  A l l  the s ta tements  in this append ix  still  ho ld  i f  we  drop ~1 and wr i te  

ins tead a torus  qI 'n. 
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