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We construct Weil numbers corresponding to genus-2 curves with
p-rank 1 over the finite field Fp2 of p2 elements. The correspond-
ing curves can be constructed using explicit CM constructions. In
one of our algorithms, the group of Fp2 -valued points of the Ja-
cobian has prime order, while another allows for a prescribed em-
bedding degree with respect to a subgroup of prescribed order. The
curves are defined over Fp2 out of necessity: we show that curves
of p-rank 1 over Fp for large p cannot be efficiently constructed
using explicit CM constructions.
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1. Introduction

The p-rank of an abelian variety A over a field k of characteristic p is the integer r = r(A) such
that the group A[p](k) of p-torsion points over an algebraic closure k of k has order pr . It satisfies
0 � r � g , where g is the dimension of A, and we call A ordinary if r is equal to g . If A is supersingular,
that is, if A becomes isogenous over k to a product of supersingular elliptic curves, then we have
r = 0, and the converse holds for abelian surfaces: if r = 0 and g = 2, then A is supersingular.

This shows that for an abelian surface A, besides the ordinary and supersingular cases, there is
only one intermediate case: the case where A has p-rank 1. Most CM constructions of curves of genus

* Corresponding author.
E-mail addresses: hitt36@gmail.com (L. Hitt O’Connor), gary.mcguire@ucd.ie (G. McGuire), michael@cryptojedi.org

(M. Naehrig), streng@math.leidenuniv.nl (M. Streng).
URLs: http://www.cryptojedi.org/users/michael/ (M. Naehrig), http://www.math.leidenuniv.nl/~streng/ (M. Streng).

1 Research of the first author supported by Science Foundation Ireland Post-Doctoral Grant 07/RFP/ENM123.
2 Research of the second author supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006.
0022-314X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2010.05.002

https://core.ac.uk/display/82019402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jnt.2010.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:hitt36@gmail.com
mailto:gary.mcguire@ucd.ie
mailto:michael@cryptojedi.org
mailto:streng@math.leidenuniv.nl
http://www.cryptojedi.org/users/michael/
http://www.math.leidenuniv.nl/{~}streng/
http://dx.doi.org/10.1016/j.jnt.2010.05.002


L. Hitt O’Connor et al. / Journal of Number Theory 131 (2011) 920–935 921
two [21,27,4,5] generate curves that are ordinary with probability tending to 1, while another [18]
constructs only supersingular curves. We focus on the intermediate case, for which no constructions
existed yet.

The p-rank r(A) depends only on the isogeny class of A over k, and any simple abelian surface A of
p-rank 1 over a finite field k is isogenous to the Jacobian of a curve over k of genus 2 (see Section 2).
By the p-rank of a curve C , we mean the p-rank of its Jacobian J C .

Let k be the finite field of order q = pn . The Frobenius endomorphism π of a simple abelian variety
over k is a Weil q-number, i.e., an algebraic integer π such that |π |2 = q holds for every embedding
of the field K = Q(π) into the complex numbers. A theorem of Honda and Tate [24] states that this
defines a bijection between the set of isogeny classes of simple abelian varieties over k and the set of
Weil q-numbers up to Galois conjugacy.

We characterize those Weil numbers corresponding to abelian surfaces with p-rank 1 in Section 2,
show their existence in Section 3 and give algorithms for finding them in Section 4. In Section 3
we also explain why curves of p-rank 1 over Fp for large p cannot be efficiently constructed using
explicit CM constructions.

The construction of an abelian variety A corresponding to a given Weil q-number π dates back
to Shimura and Taniyama [20] and Honda [12]. It exhibits A as the reduction of a characteristic-0
abelian variety with complex multiplication (CM) by Z[π ] and is also known as the CM method. We
explain this explicit CM construction in Section 5. For now, it suffices to say that the computational
complexity of this construction grows very rapidly with the size of the field K = Q(π). Therefore, our
algorithms will look for Weil q-numbers π only in fixed small input fields K .

Let A be an abelian variety over the finite field k and suppose that A(k) has a subgroup of prime
order r. The embedding degree of A with respect to r is the degree of the field extension k(ζr)/k,
where ζr is a primitive r-th root of unity. The Weil and Tate pairings on A with respect to r have their
image in 〈ζr〉 ⊂ k(ζr)

∗ , and in order to compute these pairings, one needs to work with k(ζr). As the
embedding degree is the order of q in (Z/rZ)∗ , it is close to r for most curves, while for pairing-based
cryptography, one wants r to be large and the embedding degree to be small. Algorithm 3 in Section 4
provides curves with p-rank 1 and a prescribed small embedding degree.

We used our algorithms to compute various examples, which we give in Section 8. Each example
was computed in a few seconds on a standard PC.

2. Characterization of abelian surfaces of p-rank 1

It follows from the definition that the p-rank r(A) of an abelian variety A does not change under
extensions of the base field, and that it satisfies r(A × B) = r(A)+ r(B) for any pair of abelian varieties
A and B . It is also well known that the p-rank is invariant under isogeny (see Lemma 2 below). In
particular, the non-simple abelian surfaces of p-rank 1 are exactly those isogenous to the product of
an ordinary and a supersingular elliptic curve. Both types of elliptic curves are well understood, so we
focus on simple abelian surfaces. We use the word isogeny to mean isogeny defined over the base field
k, unless otherwise stated. We use the same convention for the definition of simple abelian variety.

Our algorithms are based on a characterization of Weil numbers corresponding to simple abelian
surfaces of p-rank 1, which we give in this section. A major part of this characterization can already
be found in Goren [9] and Gonzalez [8, proof of Thm. 3.7], but we give a proof, as this result is the
foundation of our construction.

Let k be the finite field of q = pn elements and let π be a Weil q-number. For every embedding
of the field K = Q(π) into C, complex conjugation on K is given by π �→ q/π . As this automorphism
of K doesn’t depend on the choice of the embedding, we denote it by x �→ x and call it complex
conjugation. If we let K0 be the fixed field of complex conjugation, then K0 is totally real and K is
either equal to K0 or it is a CM-field, that is, a totally imaginary quadratic extension of a totally real
number field.

Lemma 1. A simple abelian variety A over the field k of q = pn elements has dimension 2 and p-rank 1 if and
only if the following three conditions hold for its Frobenius endomorphism π :



922 L. Hitt O’Connor et al. / Journal of Number Theory 131 (2011) 920–935
(1) the field K = Q(π) is a CM-field of degree 4,
(2) the prime p factors in K as pO K = p1p1p

e
2 , with e ∈ {1,2}, and

(3) we have π O K = pn
1p

en/2
2 with e as in (2).

Note that condition (3) implies that en is even.

We prove Lemma 1 using the following formula for the p-rank of an abelian variety.

Lemma 2. (See [8, Prop. 3.1].) Let A be a simple abelian variety over k and let K = Q(π), where π is the
Frobenius endomorphism of A. There is an integer m such that 2 dim(A) = m deg K holds. Suppose that p
factors in K as pO K = ∏

i p
ei
i and let f i be given by #(O K /pi) = p fi . Then we have r(A) = ∑

mei fi , where
the sum is taken over those i for which π /∈ pi holds.

Proof. The degree deg g and separable degree degs g of an isogeny g : A → B of abelian varieties
are defined to be the degree and separable degree of the induced embedding of function fields
g∗ : k(B) → k(A). We have #(ker g)(k) = degs g , hence pr(A) is the separable degree of the
multiplication-by-p map on A. As the separable degree is multiplicative under composition, we find
that the p-rank of A depends only on its isogeny class, hence we can assume that Endk A contains
the maximal order O K by [20, Prop. 7 in §7.1].

The existence of m follows from [24, Thm. 1(2)]. The theory in [20, §7] shows how to fac-
tor the multiplication-by-p map into multiplication-by-pi maps for prime ideals pi , and that the
multiplication-by-pi map has degree p fim . The Frobenius endomorphism π is totally inseparable by
[20, Thm. 1(iii) in §2.8], hence so is multiplication-by-pi if pi contains π . If pi is coprime to π , then
[20, Prop. 6 in §2.8] shows that it is separable, hence satisfies degs pi = degpi . �
Proof of Lemma 1. If A has dimension 2 and p-rank 1, then Lemma 2 tells us m = 1, hence K has
degree 4 and exactly one prime p1|p with π /∈ p1, which is unramified and has residue degree 1. This
implies pO K = p1p1q, where q is prime in the fixed field K0 of complex conjugation.

To prove that (2) and (3) hold, it now suffices to prove that q does not split in K/K0. Suppose
that it does, say q = q1q1. Then by [24, Thm. 1(1)], the fact m = 1 implies that ordq1 (π) is either 0 or
equal to the degree n = deg k/Fp . We also have ordq1 (π) + ordq1 (π) = ordq1 (ππ) = n, hence one of
q1 and q1 does not divide π , i.e., contradicts uniqueness of p1.

Conversely, if π satisfies (1), (2), and (3), then Lemma 2 implies r(A) = m with 2 dim(A) = m deg K
and [24, Thm. 1(1)] implies m = 1. �
Corollary 3. A simple abelian surface A/k of p-rank 1 is absolutely simple, that is, simple over k, and is isoge-
nous to the Jacobian of a curve C over k.

Proof. Suppose that k′/k is an extension of degree d such that we have Ak′ ∼ E × F . The Frobenius
endomorphism of Ak′ is πd and the characteristic polynomial of its action on the �-adic Tate module
of A for l �= p is the product of the (quadratic) characteristic polynomials of the action on the Tate
modules of E and F .

On the other hand, part (3) of Lemma 1 implies that Q(πd) is equal to K , which is a field of
degree 4. This is a contradiction, hence A is absolutely simple.

By [15, Thm. 4.3], any absolutely simple abelian surface over a finite field k is isogenous to the
Jacobian of a curve. �
Remark 4. The conditions (1), (2), and (3) of Lemma 1 are equivalent to conditions (M) of Theorem 2.9
of Maisner and Nart [15], i.e., to the characteristic polynomial f = X4 −a1 X3 +(a2 +2q)X2 −qa1 X +q2

of π satisfying

(1) f is irreducible,
(2) ordp(a1) = 0,
(3) ordp(a2) � n/2,
(4) and that (a2 + 4q)2 − 4qa2

1 is not a square in the ring of p-adic integers Zp .
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Remark 5. For an elliptic curve E over a finite field k, the rank of the Z-algebra Endk(E) of k-
endomorphisms is either 2 or 4, and these cases correspond exactly to the cases r(E) = 1 and
r(E) = 0.

For abelian surfaces A, the p-rank r(A) cannot be computed from the Z-rank of the endomorphism
algebra. In fact, for absolutely simple abelian surfaces A, the ring Endk(A) ⊗ Q is always a CM-field of
degree 4, while both r(A) = 1 and r(A) = 2 occur (see also [8, Thm 3.7(ii)]).

3. Existence of suitable Weil numbers

Let p be a prime that factors in K as in (2) of Lemma 1. The fact that not all primes over p have
the same ramification index or residue degree implies that the degree-4 extension K/Q is not Galois.
As K has a non-trivial automorphism, complex conjugation, the normal closure L of K has Galois
group D4. We therefore have to restrict to non-Galois quartic number fields K with Galois group D4.

In the case e = 2, the prime p ramifies in K , hence divides its discriminant. Since explicit CM
constructions are feasible only for small fields K , i.e., fields K of small discriminant, this means that
we can construct the curve C corresponding to π only for very small values of p. For such small
values of p, not only are the curves less interesting, especially from a cryptographic point of view,
it also becomes possible to construct them using a more direct approach such as by enumerating all
curves C of genus 2 over Fp and computing the group orders of their Jacobians. Therefore, we will
focus on the case e = 1. For e = 1, condition (3) of Lemma 1 implies 2|n, so that curves are defined
only over fields containing Fp2 . This is the reason why we construct our curves over Fp2 and not
over Fp , and this is why curves of p-rank 1 over Fp for large p cannot be efficiently constructed
using explicit CM constructions.

We have found that all fields with p-rank-1 Weil p2-numbers are quartic non-Galois CM-fields.
However, not all quartic non-Galois CM-fields have p-rank-1 Weil p2-numbers, and we give a com-
plete characterization in Section 6.

For now, we give two lemmas that put a condition on the CM-fields K that is slightly too strong,
but is easy to check and is satisfied by ‘most’ non-Galois quartic CM-fields.

Lemma 6. Let K be a quartic CM-field and let p be a prime that factors in K as pO K = p1p1p2 . Suppose that
p1 = αO K is principal. Then π = αα−1 p is a Weil p2-number that satisfies the conditions of Lemma 1.

Proof. The number π satisfies ππ = p2, hence is a Weil p2-number. Conditions (1) and (2) of
Lemma 1 are satisfied by assumption. Moreover, we have p2 = p(p1p1)

−1 = p(αα)−1 O K , so that we
have π O K = p2

1p2, i.e., condition (3) is also satisfied. �
The condition on p of Lemma 6 is stronger than the condition that there exists a Weil p2-number

in K with e = 1. The following lemma gives a necessary and sufficient criterion on K for the existence
of primes p satisfying this stronger condition.

For a non-Galois quartic CM-field K , let L be its normal closure over Q and let d be the discrimi-
nant of the real quadratic subfield K0 of K . Then we have K = K0(

√
r) for a totally negative element

r ∈ K0, and s = NK0/Q(r) ∈ Q is not a square, because K is non-Galois. Let dr be the discriminant of
the real quadratic field K r

0 = Q(
√

s). Note that this field is independent of the choice of r. Indeed, the
element r is well-defined up to squares in K ∗

0 , hence s is well-defined up to squares in Q∗ .
A prime discriminant is a number that is −4 or ±8 or is ±p ≡ 1 (mod 4) for an odd prime p. The

discriminant of a quadratic field can be written uniquely as a product of distinct prime discriminants
in which at most one even factor occurs.

Lemma 7. Let K be a non-Galois quartic CM-field. The following are equivalent

(1) there exists a prime p that factors in K as pO K = p1p1p2 with p1 principal;
(2) the Dirichlet density of the set of primes p as in (1) is (4hK )−1 , where hK is the class number of K ;
(3) there is a prime that ramifies in L/K ;
(4) not all prime discriminants in the discriminant factorization of dr occur in that of d.
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Proof. The implication (2) ⇒ (1) is trivial. Now suppose that (1) holds, so the decomposition
group of p1 in Gal(L/Q) is Gal(L/K ) and the ideal class of p1 is trivial. By the Artin isomorphism
ClK → Gal(H/K ), this implies that the decomposition group of p1 in Gal(H/K ) is trivial for the Hilbert
class field H of K . As the decomposition group of p1 in Gal(L/K ) is non-trivial, this implies that L is
not contained in the maximal unramified abelian extension H of K , so L/K ramifies at some prime
and (3) holds.

For the proof of (3) ⇒ (2), we use again that the primes p as in (1) are those for which there exists
a prime in L over p with decomposition group Gal(L/K ) in L/Q and trivial decomposition group H/K .
Let M ⊃ H be Galois over Q. Since (3) implies L ∩ H = K , we find Gal(H L/K ) = Gal(H/K ) × Gal(L/K )

and hence that exactly 1 in every 8hK elements σ ∈ Gal(M/Q) satisfies 〈σ|L〉 = Gal(L/K ) and σ|H = 1.
The conjugation class of Gal(L/K ) in Gal(L/Q) has two elements, hence the set of all σ yielding
the appropriate factorization is twice as large, i.e., consists of 1 in every 4hK elements of Gal(M/Q).
By Chebotarev’s density theorem [17, Thm. 13.4], this implies that the density of primes with this
factorization is (4hK )−1, which proves (2).

Now, it remains to prove (3) ⇔ (4). Let L0 be the compositum of K0 and K r
0 in L. A prime q ∈ Z

ramifies in L/K if and only if its inertia group in Gal(L/Q) contains Gal(L/K ) or its conjugate. This
is equivalent to q ramifying in L0/K0, that is, to the prime discriminant in dr corresponding to q not
occurring in the prime discriminant factorization of d. �
Example 8. The field K = Q[X]/(X4 + 12X2 + 2) does not satisfy the conditions of Lemma 7, because
it has d = 8 · 17 and dr = 8.

For ‘most’ non-Galois quartic CM-fields K , the discriminant dr does not divide d, in which case the
conditions of Lemma 7 hold. This means that if we try to find our Weil numbers by taking random
primes p and checking if there exists a Weil p2-number π ∈ K as in Lemma 1, then we have a
probability (4hK )−1 of success.

4. The algorithms

The discussion in Section 3 leads to the following algorithm.

Algorithm 1.
Input : A non-Galois CM-field K of degree 4 and a positive integer �.
Output: A prime p of � bits and a Weil p2-number π corresponding to the Jacobian J C of a curve of
genus 2 over Fp2 such that # JC (Fp2 ) is prime.

(1) Take a random positive integer p of � bits.
(2) If p is prime, continue. Otherwise, go to Step 1.
(3) If pO K factors as p1p1p2, continue. Otherwise, go to Step 1.
(4) If p2

1p2 is principal, let π0 be a generator and let v = π0π0 p−2 ∈ O∗
K0

. Otherwise, go to Step 1.

(5) If we have v = NK/K0 (w) for some w ∈ O∗
K , then put π = w−1π0. Otherwise, go to Step 1.

(6) If N(uπ − 1) is prime for some u ∈ {±1}, then replace π by uπ . Otherwise, go to Step 1.
(7) return p,π .

Note that the group order N(π − 1) of J C has about 4� bits since we have N(π − 1) ≈ N(π) = p4.

Theorem 9. If Algorithm 1 terminates, then the output is correct.
Fix the input field K and assume that it satisfies the conditions of Lemma 7. If K has no prime ideal of

norm 2, and no prime above 2 is ramified in K/K0 , then the heuristic expected runtime of the algorithm is
polynomial in �.
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Proof. The output π is a Weil p2-number satisfying the conditions of Lemma 1, and the correspond-
ing abelian surface A has #A(Fp2 ) = N(π −1) rational points, which proves that the output is correct.

All numbers encountered have logarithmic absolute values and heights that are bounded linearly
in �, while the field K is fixed. This shows that, using the algorithms of [2], all steps, including the
primality and principality tests, as well as finding a generator of p2

1p2 and trying to extract a square
root of v , take time polynomial in �. It therefore suffices to prove that the heuristic expected number
of iterations of Step 1 is quadratic in �.

The number p has a heuristic probability 1/(� log 2) to be prime by the Prime Number Theorem.
This shows that for each time Step 3 is reached, one expects to run Step 1 about � log 2 times.

We will ‘prove’ that the heuristic bound holds even if we restrict in Step 3 to p1 principal and
generated by α. By Lemma 7, the density of the set of primes p that factor in the appropriate way
and for which α exists is (4hK )−1, so we arrive at Step 4 (with p1 = (α)) with probability (4hK )−1.

Note that π = −αα−1 p is a generator of p2
1p2, so we pass Step 4 with π0 = wπ for some unit

w ∈ O∗
K .

Note that we have p2 = ππ , hence v = w w , proving that we pass Step 5 as well.
We now only need to show that N(π − 1) is prime with sufficiently high probability. Treating α

as a random element of O = O K , we wish to know the probability that X = N(π − 1) is prime, i.e.,
not divisible by any prime q < X . For each such q, we consider the homomorphism

ϕ : (O/qO)∗ → (O/qO)∗ : x �→ xx−1N(x),

which sends (α mod q) to (−π mod q). Now we have q|N(π − 1) if and only if π ≡ 1 (mod q) for
some prime q|q of K . Let ϕq be the composition of ϕ with the natural map (O/qO)∗ → (O/q)∗ . Note
that we have π ≡ 1 (mod q) if and only if α is an element of ϕ−1

q (−1). If we define

Pq = 1 − #
⋃

q|q ϕ−1
q (−1)

#(O/qO)∗
,

then the heuristic probability of q � N(π − 1) equals Pq . As the homomorphism ϕ sends 1 to 1, we
find Pq > 0 for all q > 2.

For q = 2, note that we have N(x) = 1. Then for all q | q with q = q, take (x mod q) ∈ (O/q)∗
with x �= x, which is possible, because 2 is unramified in K/K0. For q | q with q �= q, take exactly one
of (x mod q) and (x mod q) equal to 1, which is possible because q has norm � 4. Then xx−1 �≡ 1
≡ −1 (mod q) for all q | q, which proves P2 > 0.

We use the lower bound Pq > 0 for q � 17.
For q � 19, note that we have

Pq � 1 −
∑
q|q

# kerϕq

#(O/qO)∗
� 1 −

∑
q|q

1

# imϕq

and that imϕq ⊃ ϕq(F∗
q) = (F∗

q)4 has order � (q − 1)/4, hence we have

Pq � 1 − 4
4

q − 1
> 1 − 17

q
.

We thus find heuristically that N(π −1) is prime with probability at least a positive constant times

Y =
∏

19�q<X
prime

(
1 − 17

q

)
.
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We find log(Y ) > −∑
q

17
q , and the right-hand side, by Mertens’ theorem [10, Thm. 427 in 22.7], is

17 log log X plus something that converges to a constant if X tends to infinity. In particular, we find
that 1/Y is at most polynomial in log X ≈ 4�, which is what we needed to prove. �
Remark 10. For more detailed heuristics on prime order Jacobians of curves of genus 2 than what is
in the proof of Theorem 9, see [26, §5.2.2].

Remark 11. The conditions of Lemma 7 are sufficient in Theorem 9 and, as we said before, they hold
for ‘most’ non-Galois quartic CM-fields. They are however not necessary, and we give strictly weaker
conditions in Section 6.

The following lemma shows that the conditions on the decomposition of 2 in K are necessary in
Theorem 9, and that these conditions are not specific to p-rank 1, or even to abelian surfaces. These
conditions vanish however if one allows the group order to be ‘almost prime’ in the sense that it is a
prime times a ‘small’ (say � 16) positive integer.

Lemma 12. Let π be the Frobenius endomorphism of an abelian variety A over a finite field k of odd charac-
teristic, and let K = Q(π). If one of the following conditions holds, then the order of A(k) is even.

(1) K has a prime ideal q of norm 2,
(2) K is totally real, or
(3) K is a CM-field with totally real subfield K0 and K has a prime ideal q|2 that is ramified in K/K0 .

Proof. If q has norm 2, then we have π �≡ 0 (mod q), hence π − 1 ≡ 0 (mod q), which implies
2|N(π − 1).

In the other two cases, complex conjugation is trivial on the group (O/q)∗ of odd order. Note that
ππ ∈ Q implies that π2 = ππ is trivial in that group, hence so is π . We see again that π − 1 ≡
0 (mod q) implies 2|N(π − 1). �

Our second algorithm is a modification of Algorithm 1 in which we start with an element α ∈ O K ,
instead of with a prime p, and check if p = N(α) is a prime that decomposes in the appropriate
manner. We use Algorithm 2 as a stepping stone towards Algorithm 3, which allows one to prescribe
the embedding degree of the output by imposing congruence conditions on α.

Algorithm 2.
Input: A non-Galois CM-field K of degree 4 and a positive integer �.
Output: A prime p of � bits and a Weil p2-number corresponding to the Jacobian J C of a curve C of
genus 2 over Fp2 such that JC has p-rank 1 and a prime number of Fp2 -rational points.

(1) Take a random element α of O K of which the norm N(α) has � bits.
(2) If p = N(α) is prime in Z, continue. Otherwise, go to Step 2.
(3) If the prime β = pα−1α−1 of O K0 remains prime in O K , then let π = α2β . Otherwise, go to

Step 2.
(4) If N(uπ − 1) is prime for some u ∈ {±1}, then replace π by uπ . Otherwise, go to Step 2.
(5) return p,π .

Theorem 13. If Algorithm 2 terminates, then the output is correct.
Fix the input field K and assume that it satisfies the conditions of Lemma 7. If K has no prime ideal of

norm 2, and no prime above 2 is ramified in K/K0 , then the heuristic expected runtime of the algorithm is
polynomial in �.
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Proof. By Lemma 6, the output π is a Weil p2-number satisfying the conditions of Lemma 1, and
the corresponding abelian surface A has #A(Fp2 ) = N(π − 1) rational points, which proves that the
output is correct.

Lemma 7 shows that among the elements α of O K of prime norm, at least about 1 in every 4hK

has the appropriate factorization, so if we treat N(α) and N(π − 1) as random integers as we did in
the proof of Theorem 9, then we find again that the heuristic expected runtime is polynomial in �. �
Remark 14. Actually, the heuristic probability of passing from Step 3 to Step 4 in Algorithm 2 is 1/2
instead of only (4hK )−1 as can be seen by applying Chebotarev’s density theorem to the quadratic
extension LH/H from the proof of Lemma 7.

Algorithm 3 constructs p-rank-1 curves with prescribed embedding degree by imposing con-
gruence conditions on α in a way that is similar to what is done in the algorithm of Freeman,
Stevenhagen, and Streng [5].

Algorithm 3.
Input: A non-Galois CM-field K of degree 4, a positive integer κ and a prime number r ≡ 1 (mod 2κ)

that splits completely in K .
Output: A prime p and a Weil p2-number π corresponding to the Jacobian J C of a curve C of genus 2
over Fp2 that has p-rank 1 and embedding degree κ with respect to a subgroup of order r.

(1) Let r be a prime of K dividing r, let s = rr−1r−1 and compute a basis b of O K .
(2) Take a random element x of F∗

r and a primitive 2κ-th root of unity ζ ∈ F∗
r .

(3) Take the ‘small’ α ∈ O K such that α mod r = x, α mod r = xζ and α mod s = x−1. Here ‘small’
means that the coordinates with respect to the basis b are � r/2, and x−1 is interpreted with
respect to the natural inclusion of F∗

r into O K /s.
(4) If p = NK/Q(α) is prime in Z, continue. Otherwise, go to Step 3.
(5) If the prime β = pα−1α−1 of O K0 remains prime in O K , let π = α2β . Otherwise, go to Step 3.
(6) return p,π .

Theorem 15. If Algorithm 3 terminates, then the output is correct. If the input field K is fixed and satisfies the
conditions of Lemma 7, then the heuristic expected runtime of the algorithm is polynomial in r.

Proof. The facts that the output has p-rank 1 and a Jacobian of order N(π − 1) are proven as in the
proof of Theorem 13.

If r divides the group order N(π − 1), then the embedding degree is the order of (p2 mod r) in
the group F∗

r (see also [5, Prop. 2.1]). So to prove that J C has embedding degree κ with respect to r,
it suffices to prove that p2 mod r is a primitive κ-th root of unity in F∗

r and that r divides N(π − 1).
Let φ be the non-trivial automorphism of K0. Then we have β = φ(αα), hence π mod r =

(α mod r)2(φ(αα) mod r). Inside Fr , we have(
φ(αα) mod r

) = (αα mod s) = (α mod s)(α mod s)

= (α mod s)2 = x−2,

hence we have (π mod r) = 1, so r divides N(π − 1). Moreover,(
p2 mod r

) = (
p2 mod r

) = (α mod r)2(α mod r)2(φ(αα) mod r
)2

= (α mod r)2(α mod r)2x−4 = ζ 2

is a primitive κ-th root of unity.



928 L. Hitt O’Connor et al. / Journal of Number Theory 131 (2011) 920–935
This finishes the proof of the correctness of the output. Next we prove the heuristic runtime. As
r splits completely, α is a lift of some element modulo r. We treat its norm p = N(α) as a random
integer of 4 log2 r bits. The rest of the proof is as the proof of Theorem 13. �
Remark 16. Actually, the prime r does not need to split completely in Algorithm 3. It suffices to have
rO K = rrs, where r is prime and s may be prime or composite.

Remark 17. Note that if Algorithm 2 or 3 terminates, then K satisfies the conditions of Lemma 7,
which are therefore not only sufficient, but also necessary for each of these algorithms to terminate.

Let A be a g-dimensional abelian variety over the finite field k of q elements. Its ρ-value with
respect to a subgroup of A(k) of order r is defined to be ρ = g log q/ log r. As we have log #A(k) ≈
g log q, the ρ-value measures the ratio between the bit size of r and the bit size of the order of the
full group of rational points on A. It is at least about 1 if q is large. If we have A = J C , then a point
on A can be represented by a g-tuple of points on C , hence ρ is also the ratio between the bit size
of a group element of A and the bit size of r. For cryptography, one wants the ρ-value to be as small
as possible to save bandwidth when transmitting points on J C .

The prime p, computed as the norm of the element α in Step 3, is expected to satisfy log(p) ≈
4 log(r). Since our p-rank-1 curve is defined over Fp2 , its ρ-value is ρ = 2 log(p2)/ log(r) ≈ 16. For a
more detailed version of this heuristic analysis of the ρ-value, see Freeman, Stevenhagen, and Streng
[5], who compute a ρ-value of about 8 for their ordinary abelian surfaces with prescribed embedding
degree. For cryptographic applications, a ρ-value of 16 or even 8 is larger than desired, but it does
show that pairing-based cryptography is possible for curves of genus 2 with p-rank 1.

When working with odd embedding degree κ , the embedding field Fp(ζr) could be smaller than
the field Fp2 (ζr) = Fp2κ that is suggested by the embedding degree κ (see also Hitt [11]). This may
influence the security of pairing-based cryptography, but can easily be avoided by restricting to even
embedding degree κ , or by only accepting primes p such that r does not divide pκ − 1.

5. Constructing curves with given Weil numbers

We will now explain the explicit CM construction of a curve C/Fp2 such that J (C̃) corresponds to

our Weil p2-number π . A more detailed exposition can be found in [6].
Honda’s CM construction of the abelian variety corresponding to a given Weil q-number π is based

on the theory of complex multiplication of abelian varieties of Shimura and Taniyama [20, in particular
§13, Thm. 1]. The analogous theory for elliptic curves is even more classical and dates back to the
early 19th century. The first algorithmic application of the CM construction of elliptic curves is its
application to primality proving by Atkin and Morain [1].

The construction starts by taking an abelian variety A over a number field F such that we have
End(A) ∼= O K , where K is a field containing π , and reduces this variety modulo an appropriate prime
P of F . For our p-rank-1 Weil numbers π , one can take K = Q(π) and any prime P dividing p.

In the dimension-2 case, instead of writing down the abelian surface A itself, one only writes
down the absolute Igusa invariants j1, j2, j3 ∈ F of the curve C of which A is the Jacobian. These
invariants are the first three of a set of 10 invariants given on page 641 of [13]. One then reduces the
invariants modulo P and, assuming ( j1 mod P) is a unit, constructs C̃ = (C mod P) from the reduced
invariants using Mestre’s algorithm [16]. Honda’s construction shows that J (C̃) or its quadratic twist
corresponds to our Weil p2-number π .

In all practical implementations, the invariants jn ∈ F are represented by polynomials H1, H2, H3
or H1, Ĥ2, Ĥ3 called Igusa class polynomials. We explain the polynomials Ĥn later, but the polynomials
Hn are given by

Hn =
∏(

X − jn(C)
)
,

C
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where the product ranges over isomorphism classes of curves C such that we have End( J (C)) ∼= O K .
For every triple ( j1, j2, j3) of zeroes jn ∈ Fp of Hn with j1 �= 0, one thus obtains a unique Fp -
isomorphism class of curves. Assuming j1(C) /∈ P for some C , a twist of at least one of the curves
we obtain has Weil number π . Let C̃ be such a curve. As we know the group order N(π − 1) of
J (C̃)(Fp2 ), we can quickly check whether we have the correct curve by taking random points on its
Jacobian and multiplying them by N(π − 1).

As the field K is fixed, so are its class polynomials. They can therefore be precomputed using
any of the three known algorithms: the complex analytic method of Spallek [21] and van Wame-
len [25], for which Streng [23] recently gave the first runtime analysis and proof of correctness, the
2-adic method of Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng [7], and the Chinese remainder
method of Eisenträger and Lauter [3]. Alternatively, class polynomials can be found in the ECHIDNA
database [14].

The alternative class polynomials Ĥn are given by

Ĥn =
∑

C

jn(C)
∏

C ′�C

(
X − j1

(
C ′)) (n = 2,3)

where both the product and the sum range over isomorphism classes of curves C for which
End( J (C)) ∼= O K holds. For any such C , we have jn(C)H ′

1( j1(C)) = Ĥn( j1(C)). This implies that if
every coefficient of H1 has a denominator that is not divisible by p, and (H1 mod p) has a non-zero
root of multiplicity 1, then we can compute the Igusa invariants of a curve C̃ , which is automatically
either the curve we want or a quadratic twist. The idea of using Ĥn and not the more standard La-
grange interpolation is due to Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng, who show in [7]
that Ĥn heuristically has a much smaller height.

6. A sufficient and necessary condition for Algorithm 1

As said before, the conditions of Lemma 7 are sufficient for all three algorithms to work and nec-
essary for Algorithms 2 and 3. They are also easy to check and true for ‘most’ non-Galois quartic
CM-fields. The current section gives a weaker condition that is both sufficient and necessary for Algo-
rithm 1 to work. We also give examples to show that this condition is non-trivial and strictly weaker
than that of Lemma 7.

Let K be a non-Galois CM-field of degree 4. Let C/K be a curve of genus 2 over the algebraic
closure K of K such that End( J C ) ∼= O K holds. Such C are known to exist. The field Q( j) ⊂ K gener-
ated over Q by all 10 absolute Igusa invariants j1(C), . . . , j10(C) of [13, page 641] is called the field
of moduli of C . For any subfield X ⊂ K , let X( j) be the compositum X · Q( j). Write K = K0(

√
r) for

some r ∈ K0 and let K r
0 = Q(

√
NK0/Q(r)) (as before).

Lemma 18. Let K , K r
0, K ( j) be as above and let G be the Galois group of the normal closure of K ( j) over Q.

Let S be the set of primes p that factor in K as pO K = p1p1p2 and such that there exists a Weil p2-number π
such that we have π O K = p2

1p2 .
The Dirichlet density of S is

#{σ ∈ G | ordσ = 2,σ|K r
0
�= idK r

0
}

#G
.

If S is non-empty, then it has positive density.

Corollary 19. If Algorithm 1 terminates on input K , then σ as in Lemma 18 exists for K . Conversely, if K is
fixed and σ exists for K , then Algorithm 1 heuristically has a polynomial runtime.
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Fig. 1. Inclusions between the fields.

Proof of Corollary 19. If Algorithm 1 terminates, then S is non-empty, hence σ exists by Lemma 18.
If σ exists, then the proof of Theorem 9 is valid, so Algorithm 1 heuristically has a polynomial run-
time. �

To prove Lemma 18, we need some more theory. Let L be the normal closure of K . A CM-type of
K is a set Φ of two embeddings ϕ : K → L that satisfies Φ ∩ Φ = ∅. Let C be a curve as above, and
let Φ = {ϕ1,ϕ2} be its CM-type as defined in [20, §5.2]. The exact definition of this CM-type will not
be important to us.

The reflex field

K r = Q
( ∑

i

ϕi(x): x ∈ K

)
⊂ L

of K with respect to Φ is one of the two non-Galois CM subfields of L of degree 4 that are not
conjugates of K . Its real quadratic subfield K r

0 does not depend on Φ and is exactly the field K r
0

that we have seen above Lemma 7. By [19, Prop. 20.3(i)], we have K r
0 ⊂ Q( j), so that we have the

inclusions of fields shown in Fig. 1.
The main theorem of complex multiplication gives K r( j) as an unramified abelian extension of K r.

To state it, we need to define the type norm of the reflex type of Φ . Let ΦL be the set of extensions of
elements of Φ to L, so ΦL is a CM-type of L and so is the set Φ−1

L of inverses of elements of L. The
set of restrictions of Φ−1

L to K r is a CM-type Φr = {ψ1,ψ2} of K r called the reflex of Φ [20, §8.3]. By
[20, §8.3 Prop. 29], for any fractional O K r -ideal a, there is a unique fractional O K -ideal NΦr (a) such
that we have

NΦr(a)OL =
2∏

i=1

ψi(a)OL .

The map NΦr from ideals of K r to ideals of K is called the type norm with respect to Φr.

Theorem 20 (Main Theorem 1 in §15.3 of [20]). The extension K r( j)/K r is abelian and unramified. Its Galois
group corresponds via the Artin map to ClK r /H0 , where H0 is the group of ideal classes [a] such that NΦr (a)

is principal and generated by an element μ ∈ K with μμ ∈ Q∗ . �
The following lemma computes NΦr (q) for certain primes q.
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Lemma 21. Let K be a quartic CM-field and p a prime that factors in K as pO K = p1p1p
e
2 .

(1) The prime p factors in K r
0 as se for a prime s, which splits in K r as sO K r = qq; and

(2) we have NΦr (q) = p2/e
1 p2 (up to complex conjugation).

Proof. Let P ⊂ OL be the unique prime over p1. Part (1) follows from the fact that the decomposition
group of P is Gal(L/K ) and that the inertia group has order e.

For part (2), let s be the generator of Gal(L/K ), let s′ be the generator of Gal(L/K r) and set
r = ss′ . Then ΦL ⊂ Gal(L/Q) has 4 elements and satisfies ΦL〈s〉 = ΦL and Φ−1

L 〈s′〉 = Φ−1
L , hence Φ−1

L
is {1, s, s′, ss′} or its complex conjugate, and we have Φr = {1, s|K r } up to complex conjugation. Take
ψ1 = 1,ψ2 = s. We compute

NΦr(q)OL = (qOL)
( sqOL

) = (
P

( s′P
))(( sP

)( ss′P
))

= P2(( s′P
)( ss′P

)) = (
p

2/e
1 OL

)
(p2 OL),

up to complex conjugation, which proves (2). �
Proof of Lemma 18. Let p be a prime number that is unramified in K . We prove that p is in S
if and only if its decomposition group in the normal closure of K ( j) is of order 2 and acts non-
trivially on K r

0. Chebotarev’s density theorem [17, Thm. 13.4] then proves the formula for the density.
Moreover, if S is non-empty, then σ exists, hence the density is positive.

Let p be a prime number and let σ ∈ G be its p-th power Frobenius. Suppose p is in S and write
pO K = p1p1p2. The image of σ in Gal(L/Q) generates Gal(L/K ) or its conjugate, hence has order 2. It
follows that p is inert in K r

0/Q and splits into two factors q and q in K r. Lemma 21 shows that the
type norm of q is NΦr (q) = p2

1p2 = π O K or its complex conjugate, and we have ππ ∈ Q∗ , so we find
[q] ∈ H0, hence σ 2 is trivial on K r( j) and in particular on Q( j).

Recall that Q( j) is the field generated over Q by the absolute Igusa invariants of C and that C is
any curve with CM by O K . In particular, we can replace C by τ C for any automorphism τ of K/Q.
This shows that σ 2 is also trivial on τ Q( j) for any τ , and hence σ 2 is trivial on the normal closure
of Q( j). As it is also trivial on the normal closure L of K , we find that it is trivial on the normal
closure of K ( j) and hence σ is in the set of Lemma 18.

Conversely, suppose that σ 2 is trivial and σ is non-trivial on K r
0. As σ|L generates Gal(L/K ) or a

conjugate, we find that p factors as pO K = p1p1p2. Again, the prime p is inert in K r
0/Q and splits

into two factors q and q in K r with type norms p2
1p2 and its complex conjugate. As we have σ 2 = 1,

we find by Theorem 20 that p2
1p2 = π O K holds for some π ∈ O K that satisfies ππ ∈ Q∗ . Since also

ππ is positive and has absolute value p2, it is a Weil p2-number and p is in S . �
Example 22. For the field K = Q[X]/(X4 + 12X2 + 2) of Example 8, we can find Q( j) in the ECHIDNA

database [14] and compute that Q( j) contains the field F = Q(
√

2 + √
2), which is cyclic Galois over

Q and contains K r
0 = Q(

√
2). Any automorphism of F of order 2 is trivial on K r

0, so the density of S
in Lemma 18 is 0 and none of our algorithms work for this field.

Example 23. For the field K = Q[X]/(X4 + 20X2 + 5), we have 13 ∈ S , so that S has positive density
and Algorithm 1 works for K . However, the discriminant dr = 5 of K r

0 = Q(
√

5) is a prime discriminant
and occurs in the prime discriminant factorization d = (−4) · (5) · (−19) of K0. This shows that K does
not satisfy the conditions of Lemma 7, which are therefore too strong for Algorithm 1.

7. Factorization of class polynomials modulo p

While experimenting with the explicit CM construction for curves of p-rank 1, we found that in
the (ramified) case e = 2 of Lemma 1, the polynomial H1 mod p has no roots of multiplicity 1 in Fp ,
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which made working with Ĥn impossible. The current section explains this phenomenon, and shows
how to adapt H1, Ĥ2, Ĥ3 to deal with this situation. We also explain the analogue of this for the
situation e = 1, for which there is no problem.

Let K , C , and j be as in Section 6. If j1(C) �= 0 is a simple root of H1, which is ‘usually’ the case,
then we have Q( j) = Q( j1(C)) since we can compute jn(C) from j1(C) using the polynomials Ĥ2 and
Ĥ3 as we have seen in Section 5. The Kummer–Dedekind theorem thus relates the factorization of
(H1 mod p) ∈ Fp[X] to the factorization of p in (an order in) Q( j).

Lemma 24. Let p be a prime that factors in K as pO K = p1p1p2 , and let n be the smallest positive integer
such that en is even and (p1p

e/2
2 )n is generated by a Weil pn-number π . Then any prime q of K r lying over p

decomposes in K r( j)/K r into distinct primes of residue degree en/2.

Proof. Recall from Theorem 20 that K r( j) is the unramified abelian extension of K r such that the
Artin map induces an isomorphism ClK /H0 → Gal(K r( j)/K r), where H0 ⊂ ClK is the subgroup of
ideal classes [a] such that NΦr (a) is principal and generated by an element μ ∈ K with μμ ∈ Q∗ .

The Artin isomorphism sends [q] to a generator of the decomposition group of q, so it suffices
to prove that [q] has order en/2 in the quotient group ClK r /H0. Lemma 21 computes that NΦr (qm)

is either (p2/e
1 p2)

m or its complex conjugate, so the smallest integer m with [qm] ∈ H0 is exactly
m = en/2. �
Corollary 25. Let p,n be as in Lemma 24. Then p splits into prime factors of residue degree n in Q( j)/Q. Each
factor occurs exactly e times.

Proof. Each prime factor p has residue degree en/2 in K r( j)/K r by Lemma 24 and 2/e in K r/Q
by Lemma 21, hence n in K r( j)/Q. As all ramification of p takes place in K r

0/Q, we find that the
ramification index of p in K r( j)/Q is e.

We have seen in Fig. 1 on page 930 that Q( j) contains K r
0. As the residue degree and ramification

index of p in K r/K r
0 are 1, we find that the residue degree and ramification index of p are also n and

e in Q( j)/Q. �
Corollary 26. If p factors in K as pO K = p1p1p

2
2 , then (H1 mod p) ∈ Fp[X] has no roots of multiplicity 1

in Fp .

Proof. The polynomial H1 ∈ Q[X] is monic and the denominators of the coefficients are not divisible
by p because they are Igusa invariants of a curve that has potential good reduction modulo p. Let
c ∈ Z not divisible by p be such that H1(c X) is in Z[X] and let f ∈ Z[X] be an arbitrary irreducible
factor of H1(c X) ∈ Z[X]. We find an order O = Z[X]/ f in Q( j). Each irreducible factor g ∈ Fp[X]
of (H1 mod p) corresponds to the prime ideal p = (p, g(X)) of O. As every prime over p ramifies
in Q( j)/Q by Corollary 25, we find that p is either ramified or singular. By the Kummer–Dedekind
theorem (Theorem 8.2 of [22]), both cases imply that the roots of g have multiplicity at least 2 as
roots of H1. �

This shows that H1, Ĥ1, Ĥ2 cannot be used for the case e = 2. To get around this, we replace H1
by an irreducible factor f ∈ K r

0[X] and Ĥn by the unique polynomial Sn of degree at most deg( f ) − 1
that is congruent modulo f to Ĥn(H1/ f )−1. If we write pO K r = s2, then ( f mod s), (S2 mod s),
(S3 mod s) ∈ Fp[X] can be used in exactly the same way as (H1 mod p), (Ĥ2 mod p), (Ĥ3 mod p)

and do not suffer from Corollary 26.

Corollary 27. For all but finitely many of the primes p that decompose as pO K = p1p1p
e
2 , the reduction

(H1 mod p) ∈ Fp[X] is a product of distinct irreducible polynomials in Fp[X] of degree n for n given in
Lemma 24 (and depending on p).
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Proof. We exclude the primes dividing the denominator of any coefficient of H1, as well as those
dividing the discriminant. Then all roots of (H1 mod p) in Fp are simple roots. Let f , O be as in the
proof of Corollary 26. Then p does not divide the index of O in its maximal order. The fact that every
prime of Q( j) has residue degree n implies that every irreducible factor of f mod p has degree n. �
8. Examples

Algorithm 1. We provide examples of p-rank-1 curves C/Fp2 such that the Jacobian JC is simple
and has prime order. The CM-field for all examples is K = Q(α), where α is a root of the polynomia
X4 + 34X2 + 217 ∈ Q[X], which satisfies the conditions of Lemma 7. We give the prime p, the coeffi-
cients a1 and a2 of the minimal polynomial

f = X4 − a1 X3 + (
a2 + 2p2)X2 − a1 p2 X + p4

of the Frobenius endomorphism and the coefficients ci ∈ Fp2 of the curve equation

C : y2 = c6x6 + c4x4 + c3x3 + c2x2 + c1x + c0.

The group order of the Jacobian is # J C (Fp2 ) = N(π −1) = f (1). The field Fp2 is given as Fp(σ ), where

σ 2 = −3. Section headings describe the number of bits of the group order # J C (Fp2 ).
Each example was generated in a few seconds on a standard PC after pre-computation of the Igusa

class polynomials of K .

160-bit group size.

p = 924575392409, a1 = 3396725192754

a2 = 2876182159630959921399337, c6 = σ

c4 = 349419850452 · σ + 621473390194

c3 = 638315825844 · σ + 895470286740

c2 = 247903071476 · σ + 504258872407

c1 = 494346973570 · σ + 326558224146

c0 = 721392332677 · σ + 210623692149

192-bit group size.

p = 236691298903769, a1 = −9692493559086

a2 = −58992172275797931791883572663, c6 = σ

c4 = 144046547562595σ + 31854049506043

c3 = 134634542821316σ + 20155601614364

c2 = 159093189820788σ + 52669766944798

c1 = 223684436822489σ + 66232364455191

c0 = 206430094481010σ + 170879851904277
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256-bit group size.

p = 15511800964685067143, a1 = 2183138494024250742

a2 = −871403391229975003782565554464700664457, c6 = 1

c4 = 7019198877313644539 · σ + 8886572032497699458

c3 = 8069566800142565548 · σ + 11092851174307405252

c2 = 8339873208295381793 · σ + 13688811293938352344

c1 = 10474983032301001361 · σ + 14509908493781086362

c0 = 4803877905347330504 · σ + 12900291622358663970

Algorithm 3.

192-bit group size, embedding degree 12. Let K be the field K = Q[X]/(X4 +13X2 +41) and let κ = 12.
It took a few seconds to find the smallest prime r > 2192 that splits completely in K and Q(ζ12), which
is r = 2192 + 18513. We ran Algorithm 3 with input K , κ, r. The algorithm terminated after about 11
minutes and found a prime p and a Weil p2 number with p-rank 1 and embedding degree 12 with
respect to a subgroup of order r. Using p and precomputed Igusa class polynomials, we were able to
find an equation for the corresponding hyperelliptic curve C in less than a second. We only give p,
because π and the coefficients of C would take up too much space.

p = 1420038565958074827476353870489770880715201360323415690146120568

6404970976014364663695672498066437749119607973051961772352102985

5649462172148699393958968638652107696147277436345811056227385195

781997362304851932650270514293705125991379
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