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Using the Clifford algebra formalism we study the Möbius gy-
rogroup of the ball of radius t of the paravector space R ⊕ V ,
where V is a finite-dimensional real vector space. We characterize
all the gyro-subgroups of the Möbius gyrogroup and we construct
left and right factorizations with respect to an arbitrary gyro-
subgroup for the paravector ball. The geometric and algebraic prop-
erties of the equivalence classes are investigated. We show that
the equivalence classes locate in a k-dimensional sphere, where k
is the dimension of the gyro-subgroup, and the resulting quotient
spaces are again Möbius gyrogroups. With the algebraic structure
of the factorizations we study the sections of Möbius fiber bundles
inherited by the Möbius projectors.
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1. Introduction

The Möbius gyrogroup plays an important role in the theory of gyrogroups since it provides a
concrete model for the abstract theory. Its study leads to a better understanding of Lorentz trans-
formations from the special relativity theory since the Lorentz group acts on ball of all possible
symmetric velocities via conformal maps [18,9]. The Möbius gyrogroup is associated with the Poincaré
model of conformal geometry also known as the rapidity space [14], because the Poincaré distance
from the origin of the ball to any point on the ball coincides with the rapidity of a boost. The Möbius
gyrogroup has also applications in Physics for models described by equations invariant under confor-
mal transformations [9–11,18].
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Gyrogroups are group-like structures that appeared in 1988 associated with the study of Ein-
stein’s velocity addition in the special relativity theory [15,16]. Since then gyrogroups have been
intensively studied by A. Ungar (see [15–21] and the vast list of references in [17,18]) due to their
interdisciplinary character, spreading from abstract algebra and non-Euclidean geometry to mathe-
matical physics. The first known gyrogroup was the relativistic gyrogroup of the unit ball of Eu-
clidean space R3 endowed with Einstein’s velocity addition (see [15]), which is a non-associative
and non-commutative binary operation. Another example of a gyrogroup is the complex unit disc
D = {z ∈ C: |z| < 1} endowed with Möbius addition defined by

a ⊕ z = (a + z)(1 + az)−1, a, z ∈ D. (1)

Möbius addition on D is neither commutative nor associative but it is gyroassociative and gyrocom-
mutative under gyrations defined by

gyr[a,b]c = (1 + ab)c(1 + ab)−1, a,b, c ∈ D, (2)

which represent rotations of the disc in turn of the origin. Employing analogies shared by complex
numbers and linear transformations of vector spaces Ungar extended in [20] the Möbius addition
in the complex disk to the ball of an arbitrary real inner product space. The extension of gyrations
from the complex plane to a real inner product space was possible by Ungar’s abstract theory on
gyrogroups, through the following identity

gyr[a,b]c = �(a ⊕ b) ⊕ (
a ⊕ (b ⊕ c)

)
.

For the classical approach of describing Möbius transformations in several dimensions we refer to
[1,2,13]. In [2] Ahlfors realized that the natural approach to study Möbius transformations in several
dimensions is by using Clifford numbers. After Ahlfors’s work Clifford algebras become the common
tool for the study of Möbius transformations (see e.g. [3,22]). In [21] some connections were estab-
lished between the theory of Alhfors on Möbius transformations and the hyperbolic geometry through
the gyrolanguage due to Ungar. The approach of Ungar gives the right formalism for dealing with
Möbius gyrogroups. However, Ungar’s description of Möbius addition and gyrations in higher dimen-
sions is very complicated, which results in his verification of some results solely by using computer
algebra. For example, in [17,18] Ungar observed that the ball of radius t in the inner product space V
endowed with the Möbius addition defined by

a ⊕ b = (1 + 2
t2 〈a,b〉 + 1

t2 ‖b‖2)a + (1 − 1
t2 ‖a‖2)b

1 + 2
t2 〈a,b〉 + 1

t4 ‖a‖2‖b‖2

turns out to be a gyrogroup. Here 〈·,·〉 and ‖ · ‖ are the inner product and the norm that the ball
inherits from the space V . Although it was observed by Ungar that the result can be verified by com-
puter algebra it is natural and desirable to give a solid proof. To achieve this we combine Clifford
algebra with the theory of Möbius gyrogroups. The advantage of our approach lies in the fact that
Möbius gyrogroups of the ball of a real inner product space is thus analogous to the corresponding
theory in the unit disc by an algebraic formalism. For example, using Clifford algebra, formulae for
the Möbius addition and gyrations in the higher-dimensional case are the same as in the case of the
unit disc given by (1) and (2). It allow us also to identify and to obtain a spin representation of the
Möbius gyrations which makes easier the study of the structure of Möbius gyrogroups. Our approach
gives the unification of the approaches by Alhfors and Ungar for the study of Möbius transforma-
tions.

In this paper we will give a comprehensive study of the algebraic structure of Möbius gyrogroups
via a Clifford algebra approach. Starting from an arbitrary real inner product space of dimension n we
embed it into the Clifford algebra C�0,n and then we construct the paravector space R ⊕ V of C�0,n ,
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the direct sum of scalars and vectors. This paravector space will be the environment for studying
the Möbius gyrogroup on the ball. Since every non-zero paravector in C�0,n has an inverse we can
define Möbius transformations on the paravector space R ⊕ V as fractional linear mappings in C�0,n

generalizing Möbius transformations on the vector space V . Our results in paravector spaces remains
true in vector spaces by restriction.

The main achievements in this paper are the characterization of all Möbius gyro-subgroups of the
Möbius gyrogroup of the paravector ball in Section 6, the unique decomposition of the paravector
ball with respect to an arbitrary Möbius gyro-subgroup and its orthogonal complement in Section 7.1,
the geometric characterization of the equivalence classes of the quotient spaces in Section 7.3, the
construction of quotient Möbius gyrogroups in Section 7.5, and the characterization of Möbius fiber
bundles induced from Möbius addition in the last section.

In this paper we study the Möbius gyrogroup only from the algebraic point of view. However,
we would like to point out that the theory of Möbius gyrogroups has applications in analysis and
signal processing. For example, in [5] the first author used the approach of gyrogroups encoded in
the conformal group of the unit sphere in Rn , the so-called proper Lorentz group, to define spherical
continuous wavelet transforms on the unit sphere via sections of a quotient Möbius gyrogroup.

2. Gyrogroups

Gyrogroups are an extension of the notion of group by introducing a gyroautomorphism to com-
pensate the lack of associativity. If the gyroautomorphisms are all reduced to the identity map the
gyrogroup becomes a group.

Definition 1. (See [17].) A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies the following
axioms:

(G1) There is at least one element 0 satisfying 0 ⊕ a = a, for all a ∈ G;
(G2) For each a ∈ G there is an element �a ∈ G such that �a ⊕ a = 0;
(G3) For any a,b, c ∈ G there exists a unique element gyr[a,b]c ∈ G such that the binary operation

satisfies the left gyroassociative law

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ gyr[a,b]c; (3)

(G4) The map gyr[a,b] : G → G given by c 
→ gyr[a,b]c is an automorphism of the groupoid (G,⊕), that is
gyr[a,b] ∈ Aut(G,⊕);

(G5) The gyroautomorphism gyr[a,b] possesses the left loop property

gyr[a,b] = gyr[a ⊕ b,b]. (4)

Definition 2. A gyrogroup (G,⊕) is gyrocommutative if its binary operation satisfies

a ⊕ b = gyr[a,b](b ⊕ a), ∀a,b ∈ G.

The solution of the basic equations in a gyrogroup is given by Ungar.

Proposition 3. (See [17].) Let (G,⊕) be a gyrogroup, and let a,b, c ∈ G. The unique solution of the equation
a ⊕ x = b in G for the unknown x is x = �a ⊕ b and the unique solution of the equation x ⊕ a = b in G for the
unknown x is x = b � gyr[b,a]a.

The gyrosemidirect product is a generalization of the external semidirect product of groups and it
gives rise to the construction of groups.
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Proposition 4. (See [17].) Let (G,⊕) be a gyrogroup, and let Aut0(G,⊕) be a gyroautomorphism group of G
(any subgroup of Aut(G) which contains all the gyroautomorphisms gyr[a,b] of G, with a,b ∈ G). Then the
gyrosemidirect product G × Aut0(G) is a group, with group operation given by the gyrosemidirect product

(x, X)(y, Y ) = (
x ⊕ X y,gyr[x, X y]XY

)
. (5)

3. Clifford algebras

In this section we will consider the structure of a real Clifford algebra over an inner vector space V
(see e.g. [4,12]). With the embedding of V into its real Clifford algebra we will give, in the next
section, a nice description of the gyrogroup structure of the paravector ball of R ⊕ V in terms of
Clifford addition operator and Möbius transformations. Moreover, the description of gyrations will
be made by elements of the Spoin group, which is the double covering group of the rotation group
SO(R ⊕ V ) in paravector space.

Let V be an n-dimensional real inner product space and let {e j}n
j=1be an orthonormal basis of V .

We denote the inner product and the norm on V by 〈·,·〉 and ‖ · ‖ respectively. The Clifford algebra
C�0,n on V is the associative algebra generated by V and R subject to the relation

v2 = −‖v‖2, for all v ∈ V .

This last relation implies

uv + vu = −2〈u, v〉.
Therefore, we have the following relations: e jek + eke j = 0, j �= k, and e2

j = −1, j = 1, . . . ,n. The
Clifford algebra C�0,n admits a basis of the form eα = eα1 . . . eαk , α = {α1, . . . ,αk}, with 1 � α1 <

· · · < αk � n, and e∅ = 1. Thus, an arbitrary element x ∈ C�0,n can be written as x = ∑
xαeα , xα ∈ R.

In V we can define the geometric product

uv = 1

2
(uv + vu) + 1

2
(uv − vu), (6)

which is composed by the symmetric part 1
2 (uv + vu) = −〈u, v〉 and the anti-symmetric part

1
2 (uv − vu) := u ∧ v , also known as the outer product.

In the Clifford algebra C�0,n the principal automorphism satisfies v ′ = −v , v ∈ V and (ab)′ = a′b′ ,
a,b ∈ C�0,n and the reversion (or principal anti-automorphism) satisfies v∗ = v , v ∈ V and (uv)∗ =
v∗u∗ , u, v ∈ C�0,n , and these involutions are extended by linearity to the whole Clifford algebra. Their
composition is the unique anti-automorphism satisfying u = −u, u ∈ V and uv = vu. We will denote
by � the Clifford norm function � : C�0,n → C�0,n , defined by �(v) = v v . The norm function satisfies
the properties �(ab) = �(a)�(b) if �(a) ∈ R or �(b) ∈ R, �(a′) = �(a∗) = �(a) = �(a), and �(λa) =
λ2�(a), λ ∈ R, cf. [12, 5.14–5.16]. Moreover, if �(a) �= 0, then a is invertible and the inverse is given
by a−1 := (1/�(a))a.

In this paper we will work in the subspace R ⊕ V ⊂ C�0,n of paravectors. From now on we will
denote W = R⊕ds V reserving the symbol ⊕ for Möbius addition and denoting by ⊕ds the direct sum
of vector spaces. The quadratic space (W ,�) arises naturally as an extension of (V ,‖ · ‖). An element
of W will be denoted by x = x0 + x and it satisfies �(x) = |x0|2 + �(x), x0 ∈ R and x ∈ V . Thus, any
non-zero paravector is invertible and the inverse is given by x−1 = x

�(x) . To keep the same notations

as in [6] we shall also denote ‖x‖2 := �(x), x ∈ W . The extension of the geometric product (6) to the
paravector case is given by

xy = 1
(xy + yx) + 1

(xy − yx). (7)

2 2
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The symmetric part of xy in (7) defines a positive bilinear form on W :

〈x, y〉 := 1

2
(xy + yx). (8)

From (8) two paravectors are orthogonal if and only if xy = yx. The anti-symmetric part of xy is
1
2 (xy − yx). It represents the directed plane in paravector space that contains x and y. It is also called
a biparavector. Biparavectors arise most frequently as operators in paravectors since they generate
rotations in the paravector space. This anti-symmetric part allow us to characterize the parallelism
between two paravectors:

x ‖ y ⇔ xy = yx. (9)

The Spoin group is defined by

Spoin(V ) = {
w1 · · · wk: wi ∈ W , �(wi) = 1

}
.

It is the double covering group of the special orthogonal group SO(W ) (cf. [12, 6.12]), with the double
covering map given by

σ : Spoin(V ) → SO(W ),

s 
→ σ(s) (10)

with σ(s)(w) = sws∗ for any w ∈ R ⊕ V .
If P̃ ⊆ W is a closed subspace of W then we denote by Spoin( P̃ ) the corresponding Spoin group.

It holds Spoin( P̃ ) ⊆ Spoin(V ).

4. Möbius addition in the paravector ball

In [19] Ungar introduced the Möbius addition in the ball of any real inner product space. In this
section we will provide basic knowledge for the Möbius gyrogroup in the framework of Clifford alge-
bra theory. Although the results in this section are known, we prefer to give the proofs with the tool
of Clifford algebra.

Starting from the paravector space W embedded into the Clifford algebra C�0,n we consider the
Möbius transformation on the unit ball B1 = {x ∈ W : ‖x‖ < 1} of W defined by

ϕa(b) := (a + b)(1 + ab)−1, a,b ∈ B1. (11)

For more details about Möbius transformations on the unit ball see e.g. [1–3]. From now on we
will always use the notation Bt as the open ball of radius t > 0 in the paravector space W , that is,
Bt = {a ∈ W : ‖a‖ < t}.

Definition 5. The Möbius transformation on Bt is defined by

Ψa(z) := tϕ a
t

(
z

t

)
. (12)

The Möbius transformation Ψa is a bijection on Bt with inverse mapping given by Ψ −1
a (z) =

Ψ−a(z). Moreover, it holds Ψa(0) = a and Ψa(−a) = 0.
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Definition 6. The Möbius addition on Bt is defined by

a ⊕ b := Ψa(b), a,b ∈ Bt . (13)

Proposition 7. Möbius addition in (13) can be written as

a ⊕ b = (1 + 2
t2 〈a,b〉 + 1

t2 ‖b‖2)a + (1 − 1
t2 ‖a‖2)b

1 + 2
t2 〈a,b〉 + 1

t4 ‖a‖2‖b‖2
. (14)

Proof. By definition we have

a ⊕ b = Ψa(b) = tϕ a
t

(
b

t

)
= (a + b)

(
1 + ab

t2

)−1

. (15)

First we observe that the above expression is well defined. Since 1 + ab
t2 = 0 if and only if b =

−t2 a
‖a‖2 and ‖b‖ = t2

‖a‖ > t we conclude that 1 + ab
t2 is invertible on Bt .

Moreover, by direct computations we have

aba =
(

1

2
(ab + ba) + 1

2
(ab − ba)

)
a

=
(

〈a,b〉 + 1

2
(ab − ba)

)
a

= 〈a,b〉a + 1

2
aba − 1

2
‖a‖2b

so that aba = 2〈a,b〉a − ‖a‖2b. Therefore, we obtain

a ⊕ b = Ψa(b) = t2 (a + b)(t2 + ba)

‖t2 + ba‖2
= t2(t2a + aba + t2b + ‖b‖2a)

t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2

= t2(t2 + 2〈a,b〉 + ‖b‖2)a + t2(t2 − ‖a‖2)b

t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2

= (1 + 2
t2 〈a,b〉 + 1

t2 ‖b‖2)a + (1 − 1
t2 ‖a‖2)b

1 + 2
t2 〈a,b〉 + 1

t4 ‖a‖2‖b‖2
. �

In the limit t → +∞, the ball Bt expands to the whole of its space W and Möbius addition (14)
reduces to vector addition in W .

Theorem 8. (Bt ,⊕) is a gyrogroup.

Proof. Axioms (G1) and (G2) of Definition 1 are easy to prove since the neutral element is 0 and each
a ∈ Bt has an inverse given by −a. Now we will prove the left gyroassociative law, which is given in
our case by

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ (
qcq∗), with q = t2 + ab

2
. (16)
|t + ab|
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Indeed, on the one hand, we have

a ⊕ (b ⊕ c) = a ⊕
(

(b + c)

(
1 + bc

t2

)−1)

=
(

a + (b + c)

(
1 + bc

t2

)−1)(
1 + 1

t2
a(b + c)

(
1 + bc

t2

)−1)−1

=
(

a

(
1 + bc

t2

)
+ b + c

)(
1 + bc

t2

)−1(
1 + bc

t2

)(
1 + bc

t2
+ ab

t2
+ ac

t2

)−1

=
(

a + b + c + abc

t2

)(
1 + 1

t2
(bc + ab + ac)

)−1

.

On the other hand, starting from the identities

a ⊕ b = (a + b)

(
1 + ab

t2

)−1

=
(

1 + ba

t2

)−1

(a + b) (17)

and

qcq∗ =
(

1 + ab

t2

)
c

(
1 + ab

t2

)−1

(18)

we obtain

(a ⊕ b) ⊕ (
qcq∗) =

(
(a + b)

(
1 + ab

t2

)−1

+ qcq∗
)(

1 + 1

t2
(a + b)

(
1 + ab

t2

)−1

qcq∗
)−1

=
(

(a + b)

(
1 + ab

t2

)−1

+ qcq∗
)(

1 + 1

t2

(
1 + ba

t2

)−1

(a + b)qcq∗
)−1

=
(

(a + b)

(
1 + ab

t2

)−1

+
(

1 + ab

t2

)
c

(
1 + ab

t2

)−1)

×
(

1 + 1

t2
(a + b)

(
1 + ab

t2

)−1(
1 + ab

t2

)
c

(
1 + ab

t2

)−1)−1

=
(

a + b +
(

1 + ab

t2

)
c

)(
1 + ab

t2

)−1(
1 + ab

t2

)(
1 + ab

t2
+ 1

t2
(a + b)c

)−1

=
(

a + b + c + abc

t2

)(
1 + 1

t2
(bc + ab + ac)

)−1

.

This proves axiom (G3).
Thus, gyrations are given by

gyr[a,b]c = qcq∗ (19)
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for all a,b, c ∈ Bt , with

q = t2 + ab

|t2 + ab| = a

|a|
t2a−1 + b

|t2a−1 + b| .

Therefore, q is a product of unit paravectors, which means that q ∈ Spoin(V ). Hence, qcq∗ is an or-
thogonal transformation on W and this proves axiom (G4).

It only remains to check axiom (G5). It is easy to show that

qcq∗ =
(

1 + ba

t2

)−1

c

(
1 + ba

t2

)
=

(
1 + ab

t2

)
c

(
1 + ab

t2

)−1

. (20)

From (17), (19) and (20) we obtain

gyr[a ⊕ b,b]c =
(

1 + 1

t2
(a + b)

(
1 + ab

t2

)−1

b

)
c

(
1 + 1

t2
(a + b)

(
1 + ab

t2

)−1

b

)−1

=
(

1 + 1

t2

(
1 + ba

t2

)−1

(a + b)b

)
c

(
1 + 1

t2

(
1 + ba

t2

)−1

(a + b)b

)−1

=
(

1 + ba

t2

)−1(
1 + ba

t2
+ 1

t2

(
ab + ‖b‖2))c

(
1 + ba

t2
+ 1

t2

(
ab + ‖b‖2))−1(

1 + ba

t2

)

=
(

1 + ba

t2

)−1(
1 + 2

t2
〈a,b〉 + ‖b‖2

t2

)
c

(
1 + 2

t2
〈a,b〉 + ‖b‖2

t2

)−1(
1 + ba

t2

)

=
(

1 + ba

t2

)−1

c

(
1 + ba

t2

)
= gyr[a,b]c.

In the first step we used (17) and (20) while in the second case we used (19). �
Remark 9. From the proof of Theorem 8 we know that Möbius gyrations are given by

gyr[a,b]c = qcq∗ with q = t2 + ab

|t2 + ab| .

5. Properties of the gyrogroup (BBBt,⊕)

Although Möbius addition is non-associative and non-commutative it is crucial for applications to
know when elements in Möbius gyrogroup are associative or commutative. In this section we first give
the characterization of the associativity and commutativity of the elements of the Möbius gyrogroup
(Bt ,⊕). Next, for applications, we introduce a homomorphism of Spoin(V ) onto the Möbius gyrogroup
(Bt ,⊕).

Lemma 10. Let a,b, c ∈ Bt . Then

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c,

if and only if either 〈a, c〉 = 〈b, c〉 = 0 or a ‖ b.
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Proof. We have to solve the equation qcq∗ = c. Computing the left-hand side we have

qcq∗ = t2 + ab

|t2 + ab| c
t2 + ba

|t2 + ab| = t4c + t2cba + t2abc + abcba

t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2
. (21)

Since ab + ba = ab + ba = 2〈a,b〉 we obtain

abc = (
2〈a,b〉 − ba

)
c

= 2〈a,b〉c − bac

= 2〈a,b〉c − b
(
2〈a, c〉 − ca

)
= 2〈a,b〉c − 2〈a, c〉b + bca

= 2〈a,b〉c − 2〈a, c〉b + (
2〈b, c〉 − cb

)
a

= 2〈a,b〉c − 2〈a, c〉b + 2〈b, c〉a − cba

and

abcba = ab
(
2〈c,b〉 − bc

)
a

= 2〈c,b〉aba − ‖b‖2aca

= 2〈c,b〉(2〈a,b〉 − ba
)
a − ‖b‖2(2〈a, c〉 − ca

)
a

= 4〈c,b〉〈a,b〉a − 2〈b, c〉‖a‖2b − 2〈a, c〉‖b‖2a + ‖a‖2‖b‖2c.

Then

qcq∗ = (t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2)c − 2(t2〈a, c〉 + 〈b, c〉‖a‖2)b

t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2

+ 2(〈b, c〉(t2 + 2〈a,b〉) − 〈a, c〉‖b‖2)a

t4 + 2t2〈a,b〉 + ‖a‖2‖b‖2
. (22)

Thus, qcq∗ = c if and only if

(
t2〈a, c〉 + 〈b, c〉‖a‖2)b = (〈b, c〉(t2 + 2〈a,b〉) − 〈a, c〉‖b‖2)a.

The last equality is true when 〈c,a〉 = 0 and 〈b, c〉 = 0 or a = λb, for some λ ∈ R. �
By Definition 2 the gyrogroup (Bt,⊕) is gyrocommutative since it satisfies the relation

a ⊕ b = q(b ⊕ a)q∗, with q = t2 + ab

|t2 + ab| . (23)

For the commutativity of the elements of (Bt ,⊕) we have the following result.

Lemma 11. Let a,b ∈ Bt . Then

a ⊕ b = b ⊕ a ⇔ a ‖ b.



M. Ferreira, G. Ren / Journal of Algebra 328 (2011) 230–253 239
Proof. From (17) it is easy to see that a ⊕ b = b ⊕ a if and only if ab = ba, which means that a and b
are parallel by (9). �

Next we define a homomorphism of Spoin(V ) onto the gyrogroup (Bt ,⊕).

Lemma 12. For any s ∈ Spoin(V ) and a,b ∈ Bt we have

s(a ⊕ b)s∗ = (
sas∗) ⊕ (

sbs∗). (24)

Proof. By (15) we have

(
sas∗) ⊕ (

sbs∗) = (
sas∗ + sbs∗)(1 + sas∗sbs∗

t2

)−1

= s(a + b)s∗
(

1 + s∗assbs∗

t2

)−1

= s(a + b)s∗(s∗)−1
(

1 + ab

t2

)−1(
s∗)−1

= s(a ⊕ b)s∗. �
Remark 13. The identity (24) has two equivalent forms

(i)
(
sas∗) ⊕ b = s

(
a ⊕ (

sbs∗))s∗; (25)

(ii) a ⊕ (
sbs∗) = s

((
sas∗) ⊕ b

)
s∗. (26)

Applying the left gyroassociative law (16) we can deduce the left and the right cancellation laws:

(−b) ⊕ (b ⊕ a) = a; (27)

(a ⊕ b) ⊕ (
q(−b)q∗) = a, (28)

for all a,b ∈ Bt , with q = t2+ab
|t2+ab| .

Since Spoin(V ) is an automorphism group that contains all the gyrations (19), from Proposition 4,
we obtain that Spoin(V ) × Bt is a group for the gyrosemidirect product given by

(s1,a) × (s2,b) = (
s1s2q,b ⊕ (

s2as∗
2

))
, with q = t2 + s2as∗

2b

|t2 + s2as∗
2b| . (29)

6. Gyro-subgroups of (BBBt,⊕)

A gyrogroup has sub-structures like subgroups or gyro-subgroups. In [6] we have proposed a defi-
nition for gyro-subgroups.

Definition 14. (See [6].) Let (G,⊕) be a gyrogroup and K a non-empty subset of G . K is a gyro-
subgroup of (G,⊕) if it is a gyrogroup for the operation induced from G and gyr[a,b] ∈ Aut(K ) for all
a,b ∈ K .

The next theorem gives the characterization of all Möbius gyro-subgroups of (Bt ,⊕).



240 M. Ferreira, G. Ren / Journal of Algebra 328 (2011) 230–253
Theorem 15. A non-empty subset P of Bt is a Möbius gyro-subgroup of (Bt ,⊕) if and only if P = P̃ ∩ Bt ,
where P̃ is a closed subspace of W .

Proof. If P̃ is a closed subspace of W then by (14) we have that a ⊕ b ∈ P̃ , for any a,b ∈ P̃ and
therefore, a ⊕ b ∈ P , for any a,b ∈ P , where P = P̃ ∩ Bt . Moreover, by (22) we have that gyr[a,b]c =
qcq∗ ∈ P , for any a,b, c ∈ P . Thus, we conclude that (P ,⊕) is a gyro-subgroup of (Bt ,⊕). Conversely,
if (P ,⊕) is a gyro-subgroup of (Bt ,⊕) then its linear extension to W , P̃ , is a subspace of W . As in
any finite-dimensional normed linear space all subspaces are closed, we conclude that P̃ is a closed
subspace of W . �
Corollary 16. If (P ,⊕) is a gyro-subgroup of (Bt ,⊕) then (P⊥,⊕) is also a gyro-subgroup of (Bt ,⊕).

From now on we will denote by P̃ a closed subspace of W such that P = P̃ ∩ Bt is a Möbius
gyro-subgroup.

Definition 17. The dimension of the Möbius gyro-subgroup P is defined by

dim P = dim P̃ .

As observed in [6] the subspaces Lω = {a ∈ Bt : a = λω, |λ| < t}, where ω ∈ S: = {x ∈ W :
‖x‖ = 1}, give rise to subgroups. Indeed, they are the only subgroups of (Bt,⊕) as shown by the
next proposition.

Proposition 18. A Möbius gyro-subgroup P of Bt is a subgroup of Bt if and only if P = Lω for some ω ∈ S.

Proof. If dim P = 1 then P = Lω , for some ω ∈ S. Therefore, by Lemma 10 we have the associativity
of the Möbius addition in Lω .

If dim P > 1 then the Möbius addition is not associative in P . Otherwise, for any a,b, c ∈ P we
would have

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c. (30)

But, if we take non-zero and non-parallel a,b ∈ P and c = a then by Lemma 10 we obtain 〈a,a〉 = 0,
i.e. a = 0, which is a contradiction to our choice of a. �
7. Decompositions and factorizations of (BBBt,⊕)

7.1. Möbius decompositions of Bt

From now on we assume that V is a finite-dimensional real Hilbert space. Thus, if P̃ ⊆ W is a
closed subspace of W then P̃⊥ is closed and it holds the orthogonal decomposition

W = P̃ ⊕ds P̃⊥. (31)

Since (W ,+) is the limit case of (Bt ,⊕) when t → ∞, it is natural to consider the decompositions
of Bt with respect to Möbius addition (14). We would like to mention that there is a decomposition
theory for groups into twisted subgroups, which are related with gyrogroups [7,8]. However, there is
no decomposition theory for gyrogroups into gyro-subgroups.

In this section we will give the corresponding Möbius decompositions of the paravector ball Bt

with respect to gyro-subgroups. Our starting point will be (31). Since in the Möbius case the addition
is non-commutative we will have to consider factorizations both from the left and from the right.
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To keep the notation clear we will use the symbol l to denote the left case and the symbol r to
the right case. The next theorem gives the decomposition of Bt with respect to an arbitrary Möbius
gyro-subgroup. By restricting to the vector case and dim P = 1 we recover the known result in [6].

Theorem 19. Let P be a Möbius gyro-subgroup of Bt and P⊥ its orthogonal complement in Bt . Then for each
c ∈ Bt there exist unique b, u ∈ P and a, v ∈ P⊥ such that c = a ⊕ b and c = u ⊕ v.

Proof. First we prove the existence of the decomposition c = a ⊕ b. Let P̃ be the linear extension of
P to W and c ∈ Bt be arbitrary. Since W = P̃ ⊕ds P̃⊥ then there exist unique c1 ∈ P̃ and c2 ∈ P̃⊥ such
that c = c1 + c2. Moreover, as c ∈ Bt it follows that c1 ∈ P and c2 ∈ P⊥ . If c1 = 0 then we can take
b = 0 and a = c2. If c1 �= 0 we take b = α1c1 ∈ P and a = β1c2 ∈ P⊥ such that

c = c1 + c2 = (β1c2) ⊕ (α1c1) = (t2 − β2
1‖c2‖2)t2α1

t4 + β2
1α2

1‖c1‖2‖c2‖2
c1 + (t2 + α2

1‖c1‖2)t2β1

t4 + β2
1α2

1‖c1‖2‖c2‖2
c2. (32)

In the last step we used formula (14) for the Möbius addition. Now we have to find β1 and α1
satisfying (32). The resulting system of equations has a unique solution given by

α1 = −t2 + ‖c‖2 + √
(t2 − ‖c‖2)2 + 4t2‖c1‖2

2‖c1‖2
(33)

and

β1 = 2t2

t2 + ‖c‖2 + √
(t2 − ‖c‖2)2 + 4‖c1‖2t2

. (34)

It is easy to verify that ‖b‖ = α1‖c1‖ < t and ‖a‖ = β1‖c2‖ < t since ‖c‖ < t and ‖c1‖ �= 0. Thus, we
proved the existence of the first decomposition.

To prove the uniqueness of the decomposition we suppose that there exist a,d ∈ P⊥ and b, f ∈ P
such that c = a ⊕ b = d ⊕ f . Then b = (−a) ⊕ (d ⊕ f ), by (27). As a ⊥ f and d ⊥ f we have b =
((−a) ⊕ d) ⊕ f , by Lemma 10. Since by hypothesis b, f ∈ P then (−a) ⊕ d must be an element of P .
This is true if and only if (−a) ⊕ d = 0. This implies a = d and consequently b = 0 ⊕ f = f , as we
wish to prove.

To prove the decomposition c = u ⊕ v we have again two cases: if c2 = 0 then we take v = 0 and
u = c1, otherwise we consider u = α2c1 ∈ P and v = β2c2 ∈ P⊥ such that

c = c1 + c2 = (α2c1) ⊕ (β2c2) = (t2 + β2
2‖c2‖2)t2α2

t4 + α2
2β2

2‖c1‖2‖c2‖2
c1 + (t2 − α2

2‖c1‖2)t2β2

t4 + α2
2β2

2‖c1‖2‖c2‖2
c2. (35)

Now we have to find α2 and β2 satisfying (35). The resulting system of equations has an unique
solution given by

β2 = −t2 + ‖c‖2 + √
(t2 − ‖c‖2)2 + 4‖c2‖2t2

2‖c2‖2
(36)

and

α2 = 2t2

t2 + ‖c‖2 + √
(t2 − ‖c‖2)2 + 4‖c ‖2t2

. (37)

2
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Again it is easy to verify that ‖u‖ = α2‖c1‖ < t and ‖v‖ = β2‖c2‖ < t since ‖c‖ < t and ‖c2‖ �= 0.
Thus, the existence of the decomposition c = u ⊕ v is proved. The proof of the uniqueness of this
decomposition is analogous to the previous one. �

By the previous theorem Bt has two unique decompositions Bt = P ⊕ P⊥ = P⊥ ⊕ P . The relation
between them is given more precisely in the next theorem.

Theorem 20. Let a,b ∈ Bt non-zero such that a ⊥ b. Then

a ⊕ b = (
λ(a,b)b

) ⊕ (
μ(a,b)a

)
(38)

with

λ(a,b) = 2t2(t2 − ‖a‖2)√
(t2 − ‖b‖2)2(t2 + ‖a‖2)2 + 16‖a‖2‖b‖2t4 + (t2 + ‖a‖2)(t2 + ‖b‖2)

(39)

and

μ(a,b) = (t2 − ‖a‖2)(‖b‖2 − t2) + √
(t2 − ‖b‖2)2(t2 + ‖a‖2)2 + 16‖a‖2‖b‖2t4

2‖a‖2(t2 + ‖b‖2)
. (40)

Proof. Let c ∈ Bt with c /∈ P and c /∈ P⊥ . By (32) and (35), we can write

c = β1c2 ⊕ α1c1 = α2c1 ⊕ β2c2

with c1 ∈ P , c2 ∈ P⊥ , and α1, α2, β1, β2 being given in (33), (34), (36), and (37). Now we take
a = β1c2 and b = α1c1. By direct computations, we have

λ(a,b)b = α2c1, μ(a,b)a = β2c2. �
Remark 21. Since (Bt ,⊕) is a gyrocommutative group we know that

a ⊕ b = gyr[a,b](b ⊕ a)

= (
gyr[a,b]b) ⊕ (

gyr[a,b]a)
,

and thus, the gyration operator plays the role of changing the order in Möbius addition. However it
does not provide the decomposition of the form P ⊕ P⊥ as shown in (38).

7.2. Möbius orthogonal projectors

From (33), (34), (36), and (37) we can define Möbius orthogonal projectors for Bt , with respect to
the gyro-subgroups P and P⊥ . Projections to the gyro-subgroup P will be denoted by Pr

t and Pl
t and

projections to P⊥ will be denoted by Qr
t and Ql

t .
In the first case, Bt = P⊥ ⊕ P , we obtain the Möbius orthogonal decomposition in Bt

I = Ql
t ⊕ Pr

t , (41)

namely, c = Ql
t(c) ⊕ Pr

t (c), ∀c ∈ Bt . Here, the operators Pr
t : Bt → P and Ql

t : Bt → P⊥ are defined by
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Pr
t (c) = −t2 + ‖c‖2 + √

(t2 − ‖c‖2)2 + 4‖c1‖2t2

2‖c1‖2
c1 (42)

and

Ql
t(c) = 2t2

t2 + ‖c‖2 + √
(t2 − ‖c‖2)2 + 4‖c1‖2t2

c2, (43)

where c = c1 + c2 ∈ Bt , with c1 ∈ P and c2 ∈ P⊥ .
Notice that when c1 = 0, we have

Pr
t (c1 + c2)|c1=0 = lim‖c1‖→0

Pr
t (c1 + c2).

Theorem 22. For any a ∈ P⊥ and b ∈ P we have

Pr
t (a ⊕ b) = b, Ql

t(a ⊕ b) = a,

Pr
t (b ⊕ a) = μ(b,a)b, Ql

t(b ⊕ a) = λ(b,a)a,

where λ and μ are given by (39) and (40) with the order of a and b being changed.

In the second case, Bt = P ⊕ P⊥ we obtain the Möbius orthogonal decomposition in Bt

I = Pl
t ⊕ Qr

t , (44)

where

Pl
t(c) = 2t2

t2 + ‖c‖2 + √
(t2 − ‖c‖)2 + 4‖c2‖2t2

c1 (45)

and

Qr
t (c) = −t2 + ‖c‖2 + √

(t2 − ‖c‖2)2 + 4‖c2‖2t2

2‖c2‖2
c2, (46)

where c = c1 + c2 ∈ Bt , with c1 ∈ P and c2 ∈ P⊥ .
Here, in this case, when c2 = 0 we have

Qr
t (c1 + c2)|c2=0 = lim‖c2‖→0

Qr
t (c1 + c2).

Theorem 23. For any a ∈ P⊥ and b ∈ P we have

Pl
t(b ⊕ a) = b, Qr

t (b ⊕ a) = a,

Pl
t(a ⊕ b) = λ(a,b)b, Qr

t (a ⊕ b) = μ(a,b)a,

where λ and μ are given by (39) and (40).
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All the operators are projectors so that the following identities hold

(
Pr

t

)2 = Pr
t ,

(
Pl

t

)2 = Pl
t,

(
Qr

t

)2 = Qr
t ,

(
Pl

t

)2 = Pl
t . (47)

In the limit case, when t → ∞ we recover the Euclidean projectors, since Pl∞(c) = c1, Ql∞(c) = c2,
Pr∞(c) = c1, and Qr∞(c) = c2. Thus, in the Euclidean case we have that Pl∞ = Pr∞ and Ql∞ = Qr∞ .
Therefore, (41) and (44) reduce to

I = Ql∞ + Pr∞ = Pl∞ + Qr∞ in W . (48)

7.3. Factorizations of (Bt ,⊕) by (P ,⊕)

In the Euclidean case the factorization of W by an arbitrary subgroup P̃ with respect to vector
addition in W is defined by the equivalence relation:

∀u, v ∈ W , u ∼ v ⇔ ∃w ∈ P̃ : u = v + w. (49)

In the Möbius case we cannot use (49) to obtain the factorization of Bt by an arbitrary gyro-subgroup
P due to the non-associativity of the Möbius addition. To define equivalence relations on Bt , we adopt
a constructive approach by providing convenient partitions of Bt . We will consider first left cosets.

Lemma 24. Let P be an arbitrary Möbius gyro-subgroup of Bt . If a ∈ P⊥ and b, c ∈ P such that a ⊕b = c then
a = 0 and b = c.

Proof. By (14) we have

c = a ⊕ b = 1 + 1
t2 ‖b‖2

1 + 1
t4 ‖a‖2‖b‖2

a + 1 − 1
t2 ‖a‖2

1 + 1
t4 ‖a‖2‖b‖2

b.

Since a ∈ P⊥ and b, c ∈ P by assumption it follows that a ∈ P⊥ ∩ P = {0}. Then a = 0 and b = c. �
Proposition 25. Let P be an arbitrary Möbius gyro-subgroup of Bt . Then the family {a ⊕ P : a ∈ P⊥} is a
disjoint partition of Bt , i.e.

Bt =
⋃

a∈P⊥
(a ⊕ P ).

Proof. We first prove that this family is indeed disjoint. Let a, c ∈ P⊥ with a �= c and assume that
(a ⊕ P ) ∩ (c ⊕ P ) �= ∅. Then there exists f ∈ Bt such that f = a ⊕ b and f = c ⊕ d for some b,d ∈ P .
By (27) and Lemma 10 we have that

b = (−a) ⊕ (c ⊕ d) = (
(−a) ⊕ c

) ⊕ d, (50)

since 〈−a,d〉 = 0 and 〈c,d〉 = 0. Due to a, c ∈ P⊥ we have (−a) ⊕ c ∈ P⊥ . Then (50) and Lemma 24
imply (−a)⊕ c = 0, i.e. a = c. But this contradicts our assumption. Thus, (a ⊕ P )∩ (c ⊕ P ) = ∅ provided
a, c ∈ P⊥ and a �= c. Finally, by Theorem 19 we have that Bt = ⋃

a∈P⊥ (a ⊕ P ). �
This partition induces a left equivalence relation ∼l on Bt :

∀c,d ∈ Bt, c ∼l d ⇔ c ⊕ P = d ⊕ P . (51)
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Corollary 26. The space (Bt/P ,∼l) is a left coset space of Bt whose cosets are of the form a ⊕ P with a ∈ P⊥ .

By Corollary 26 we have the following bijection:

(Bt/P ,∼l) ∼= P⊥.

The next proposition gives a geometric characterization of the cosets a ⊕ P in terms of a curve
under the action of the Spoin group.

Theorem 27. Let a ∈ P⊥ and c ∈ P be fixed. Then

a ⊕ P = {
σ(s)γ(a,c): s ∈ Spoin(P )

}
,

where the curve

γ(a,c) :=
{

a ⊕
(
α

c

‖c‖
)

: |α| < t

}

is in the sphere orthogonal to the boundary of Bt , with center at C = t2+‖a‖2

2‖a‖2 a and radius τ = t2−‖a‖2

2‖a‖ .

Proof. Let a ∈ P⊥ and ω = c
‖c‖ ∈ S. Since

a ⊕ (αω) = (t2 + α2)t2

t4 + ‖a‖2α2
a + (t2 − ‖a‖2)t2

t4 + ‖a‖2α2
αω (52)

we know that γ(a,c) is a curve inside Bt in the ωξ -plane. For any b ∈ P we take α = ‖b‖. Since
‖b‖ = ‖αω‖, there exists an orthogonal transformation O ∈ SO(n) such that b = O (αω) and O leaves
P invariant and takes each element of P⊥ as a fixed point. This means that each b ∈ P can be written
as b = s(αω)s∗ for some s ∈ Spoin(P ) fixing each element of P⊥ . In particular sas∗ = a since a ∈ P⊥ .
By (26) we have

a ⊕ b = a ⊕ (
s(αω)s∗) = s

((
sas∗) ⊕ (αω)

)
s∗ = s

(
a ⊕ (αω)

)
s∗.

Thus, a ⊕ P is given by the action of the group Spoin(P ) on the curve γ(a,c) , i.e.,

a ⊕ P = {
s
(
a ⊕ (αω)

)
s∗: |α| < t, s ∈ Spoin(P )

}
.

By (53) and (52) we have

∥∥(a ⊕ b) − C
∥∥2 = ∥∥(

a ⊕ (
s(αω)s∗)) − C

∥∥2

=
∥∥∥∥
(

(t2 + α2)t2

t4 + ‖a‖2α2
− t2 + ‖a‖2

2‖a‖2

)
a + (t2 − ‖a‖2)t2α

t4 + ‖a‖2α2
sωs∗

∥∥∥∥2

=
(

(t2 + α2)t2

t4 + ‖a‖2α2
− t2 + ‖a‖2

2‖a‖2

)2

‖a‖2 +
(

(t2 − ‖a‖2)t2α

t4 + ‖a‖2α2

)2

= (t2 − ‖a‖2)2

2
(53)
4‖a‖
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for all |α| < t and all s ∈ Spoin(P ). Since (53) is independent of α and s we conclude that all points of

a⊕ P belong to the sphere centered at C = t2+‖a‖2

2‖a‖2 a and radius τ = t2−‖a‖2

2‖a‖ . To prove the orthogonality

between this sphere and the boundary of Bt we will use the well-known fact that two spheres S1
and S2, with centers A1 and A2 and radii τ1 and τ2, respectively, intersect orthogonally if and only if
〈A1 − y, A2 − y〉 = 0 for any y ∈ S1 ∩ S2, or equivalently, if and only if

‖A1 − A2‖2 = τ 2
1 + τ 2

2 . (54)

As in our case ‖C − 0‖2 = τ 2 + t2 we conclude our result. �
Since (Bt ,⊕) is a gyrocommutative gyrogroup we can consider right coset spaces arising from the

decomposition of Bt by P . The results are analogous to the left case and therefore the proofs will be
omitted.

Proposition 28. The family {P ⊕ a: a ∈ P⊥} is a disjoint partition of Bt , i.e.

Bt =
⋃

a∈P⊥
(P ⊕ a).

This partition induces a left equivalence relation ∼r on Bt :

∀c,d ∈ Bt, c ∼r d ⇔ P ⊕ c = P ⊕ d. (55)

Corollary 29. The space (Bt/P ,∼r) is a left coset space of Bt whose cosets are of the form P ⊕ a with a ∈ P⊥ .

From Proposition 28 we obtain the bijection

(Bt/P ,∼r) ∼= P⊥.

Next we will give a geometric characterization of the cosets P ⊕ a.

Theorem 30. Let a ∈ P⊥ and c ∈ P be fixed. Then

P ⊕ a = {
σ(s)Γ(a,c): s ∈ Spoin(P )

}
,

where the curve

Γ(a,c) :=
{(

α
c

‖c‖
)

⊕ a: |α| < t

}

is in the sphere with center at C1 = ‖a‖2−t2

2‖a‖2 a and radius τ1 = t2+‖a‖2

2‖a‖ .

Remark 31. Surprisingly left and right cosets have different geometric behavior. We have shown that
the left cosets a ⊕ P are orthogonal to the boundary of Bt , however, the right cosets P ⊕ a are not

orthogonal to ∂ Bt as shown by (54), since ‖C1 − 0‖2 �= t2 + τ 2
1 for C1 = ‖a‖2−t2

2‖a‖2 a and τ1 = t2+‖a‖2

2‖a‖ .



M. Ferreira, G. Ren / Journal of Algebra 328 (2011) 230–253 247
7.4. Extension of the cosets P ⊕ a and a ⊕ P to the whole space W

From (53) we observe that the restriction |α| < t is not used in the proof of Theorem 27. This
means that we can consider the linear extension on W of P to P̃ obtaining the extension of the
cosets a ⊕ P to a ⊕ P̃ .

Proposition 32. The coset a ⊕ P is the restriction of a ⊕ P̃ to Bt , i.e.,

a ⊕ P = (a ⊕ P̃ ) ∩ Bt .

Proof. The inclusion a ⊕ P ⊂ (a ⊕ P̃ )∩ Bt is obvious since P = P̃ ∩Bt . For the converse if c ∈ (a ⊕ P̃ )∩
Bt then c = a ⊕ b, for some b ∈ P̃ . As c ∈ Bt and a ∈ P⊥ ⊂ Bt then b ∈ Bt . Thus, b ∈ P̃ ∩ Bt = P , which
proves that c ∈ a ⊕ P . �

Let P̃ be a subspace of R ⊕ V with dim P̃ = k. Without loss of generality we will assume 1 � k �
n − 1. The k-dimensional ball in P̃ with center at the point C and radius τ is denoted by Bk(C, τ )

while its boundary, the (k − 1)-dimensional sphere centered at C with radius τ , will be denoted by
Sk−1(C, τ ).

We can now characterize the extended cosets a ⊕ P̃ .

Theorem 33. Let a ∈ P⊥ and c ∈ P̃ be fixed. Then

a ⊕ P̃ = {
σ(s)γ(a,c): s ∈ Spoin(P )

} = Sk(C, τ )\
{

t2

‖a‖2
a

}
,

where

γ(a,c) :=
{

a ⊕
(
α

c

‖c‖
)

: α ∈ R

}

is a circle and Sk(C, τ ) is the k-dimensional sphere orthogonal to the boundary of Bt , with center at C =
t2+‖a‖2

2‖a‖2 a and radius τ = t2−‖a‖2

2‖a‖ .

Proof. The first identity

a ⊕ P̃ = {
σ(s)γ(a,c): s ∈ Spoin(P )

}
and the orthogonality of the sphere Sk(C, τ ) with the boundary of Bt are true by following the same
reasonings as in the proof of Theorem 27.

For the second identity we firstly prove that

σ
(
Spoin( P̃ )

)
γ(a,c) ⊂ 〈a, P̃ 〉 ∩ S(C, τ )\

{
t2

‖a‖2
a

}
,

where 〈a, P̃ 〉 stands for the subspace of W generated by a and P̃ and S(C, τ ) is the sphere in W with

C = t2+‖a‖2

2‖a‖2 a and τ = t2−‖a‖2

2‖a‖ . Since a ⊥ P̃ and C is a multiple of a, it follows that

σ
(
Spoin( P̃ )

)
S(C, τ ) = S(C, τ )
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and

σ
(
Spoin( P̃ )

)〈a, P̃ 〉 = 〈a, P̃ 〉.

As shown in the proof of Theorem 27, we have

γ(a,c) ⊂ 〈a, P̃ 〉 ∩ S(C, τ ). (56)

Combining the above facts together we have

σ
(
Spoin( P̃ )

)
γ(a,c) ⊂ 〈a, P̃ 〉 ∩ S(C, τ ).

Since when |α| → ∞ we have that a ⊕ c = t2

‖a‖2 a we know that γ(a,c) ∪{ t2

‖a‖2 a} is a circle. From (56)

two circles coincide, i.e.,

γ(a,c) ∪
{

t2

‖a‖2
a

}
= 〈a, c〉 ∩ S(C, τ ). (57)

Since Spoin( P̃ ) leaves a as well as the point t2

‖a‖2 a invariant we finally conclude that

σ
(
Spoin( P̃ )

)
γ(a,c) ⊂ 〈a, P̃ 〉 ∩ S(C, τ )\

{
t2

‖a‖2
a

}
.

Now we prove the reverse inclusion. For any b ∈ 〈a, P̃ 〉 ∩ S(C, τ )\{ t2

‖a‖2 a}, since a ⊥ P̃ we can write

b = λ1a + b1 for some b1 ∈ P̃ . There exists O ∈ SO( P̃ ) such that Ob1 is a multiple of c ∈ P̃ . Now we
take b̂ = Ob. Then

b̂ = λ1a + Ob1 ∈ 〈a, c〉 ∩ S(C, τ )\
{

t2

‖a‖2
a

}
.

Therefore, from (57) we have

b = O −1̂b ∈ σ
(
Spoin( P̃ )

)̂
b ⊂ σ

(
Spoin( P̃ )

)
γ(a,c). �

By Theorem 33 and Proposition 32 we obtain a new characterization of the cosets a ⊕ P .

Corollary 34. We have

a ⊕ P = Sk(C, τ ) ∩ Bt,

where Sk(C, τ ) is the k-dimensional sphere orthogonal to the boundary of Bt , with center at C = t2+‖a‖2

2‖a‖2 a and

radius τ = t2−‖a‖2

2‖a‖ .

Remark 35. Similar results also hold for the right cosets P ⊕ a.
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7.5. Quotient Möbius gyrogroups

In this subsection we will consider the gyrogroup structure of the quotient spaces (Bt/P ,∼l) and
(Bt/P ,∼r) and the action of (Bt ,⊕) on them.

In the limit case t → ∞, P̃ is a normal subgroup in R ⊕ V , so that left and right cosets are equal
and coincide with W / P̃ , which is a quotient group under the usual binary operation defined by

(a ⊕ P̃ ) + (b ⊕ P̃ ) = (a + d) + P̃ , a,d ∈ P̃⊥. (58)

Although in the Möbius gyrogroup case left and right cosets are different we can define a binary
operation on the quotient spaces (Bt/P ,∼l) and (Bt/P ,∼r) such that the resulting structure is a
gyrogroup. We will call these spaces quotient Möbius gyrogroups.

Proposition 36. The quotient space (Bt/P ,∼l), endowed with the binary operation ⊕ defined by

(a ⊕ P ) ⊕ (d ⊕ P ) := (a ⊕ d) ⊕ P , with a,d ∈ P⊥, (59)

is a quotient Möbius gyrogroup.

Proof. The first two axioms of Definition 1 are obviously true since the coset 0 ⊕ P is the left identity

(0 ⊕ P ) ⊕ (a ⊕ P ) = (0 ⊕ a) ⊕ P = a ⊕ P

and left inverse of the coset a ⊕ P is the coset (−a) ⊕ P because

(
(−a) ⊕ P

) ⊕ (a ⊕ P ) = (
(−a) ⊕ a

)
P = 0 ⊕ P .

With respect to the gyroassociative law we have

(a ⊕ P ) ⊕ [
(b ⊕ P ) ⊕ (c ⊕ P )

] = (
a ⊕ (b ⊕ c)

) ⊕ P

= (
(a ⊕ b) ⊕ qcq∗) ⊕ P , by (16)

= [
(a ⊕ P ) ⊕ (b ⊕ P )

] ⊕ ((
qcq∗) ⊕ P

)
with q = t2+ab

|t2+ab| and a,b, c ∈ P⊥ . Note that qcq∗ is an element of P⊥ since a,b, c ∈ P⊥ . Gyrations over

the quotient space (Bt/P ,∼l) are defined by

gyr[a,b](c ⊕ P ) := (
gyr[a,b]c) ⊕ P = (

qcq∗) ⊕ P , a,b, c ∈ P⊥

and belong to the group of automorphisms of (Bt/P ,∼l). Finally the loop property (4) holds since

gyr[a ⊕ b,b](c ⊕ P ) = (
gyr[a ⊕ b,b]c) ⊕ P

= (
gyr[a,b]c) ⊕ P

= gyr[a,b](c ⊕ P ). �
Analogous result holds true for the right quotient space (Bt/P ,∼r).
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Proposition 37. The quotient space (Bt/P ,∼r) endowed with the binary operation ⊕ defined by

(P ⊕ a) ⊕ (P ⊕ d) = P ⊕ (a ⊕ d) with a,d ∈ P⊥ (60)

is a quotient Möbius gyrogroup.

It is readily seen that the gyrogroup operations (59) and (60) reduce to the group operation (58)
in the limit case.

To define appropriately the action of (Bt ,⊕) on the quotient Möbius gyrogroups (Bt/P ,∼l) and
(Bt/P ,∼r) let us see first what happens in the limit case. For u = v + w with v ∈ P̃ and w ∈ P̃⊥ , the
action of W on the quotient group (W )/ P̃ is defined by

u + (a + P̃ ) := (w + a) + P̃ . (61)

From this observation, the Möbius orthogonal projectors defined in Section 7.2 can be used to
define a transitive action of Bt on (Bt/P ,∼l) and (Bt/P ,∼r).

Proposition 38. The action of the gyrogroup (Bt,⊕) on the quotient Möbius gyrogroup (Bt/P ,∼l) defined by

c ⊕ Sl
a := Sl

Ql
t (c)⊕a

is transitive.

Proof. Let a ⊕ P and d ⊕ P be two arbitrary cosets of (Bt/P ,∼l). We want to find c ∈ Bt such that
c ⊕ (a ⊕ P ) = d ⊕ P , that is,

(
Ql

t(c) ⊕ a
) ⊕ P = d ⊕ P .

This is true if and only if Ql
t(c) ⊕ a = d. By Proposition 3 we have that

Ql
t(c) = d � gyr[d,a]a = d ⊕ q(−a)q∗,

with q = t2−da
|t2−da| . Therefore, all the points c ∈ (d ⊕ q(−a)q∗) ⊕ P are solution for our problem. �

Analogously, using the Möbius orthogonal projector Qr
t we can define a transitive action of (Bt ,⊕)

on (Bt/P ,∼r).

Proposition 39. The action of the gyrogroup (Bt ,⊕) on the quotient Möbius gyrogroup (Bt/P ,∼r) defined
by

c ⊕ (P ⊕ a) := P ⊕ (
a ⊕ Qr

t (c)
)

is transitive.
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8. Möbius fiber bundles

We denote (Bt , X,π, Y ) as a fiber bundle with base space X , fiber Y and bundle map π : Bt → X .
A global section of the fiber bundle (Bt , X,π, Y ) is a continuous map f : X → Bt such that
π( f (y)) = y for all y ∈ X , while a local section is a map f : U → Bt , where U is an open set in
X and π( f (x)) = x for all x ∈ U .

For the construction of these sections in the vector case and applications to spherical continuous
wavelet transforms we refer to [6,5].

We have four different fiber bundle structures on Bt with fiber bundle mappings given by

π1 : P ⊕ P⊥ → (Bt/P ,∼r), π2 : P⊥ ⊕ P → (Bt/P ,∼l),

b ⊕ a 
→ [a] = P ⊕ a, a ⊕ b 
→ [a] = a ⊕ P ,

π3 : P⊥ ⊕ P → (Bt/P ,∼r), π4 : P ⊕ P⊥ → (Bt/P ,∼l),

a ⊕ b 
→ [a] = P ⊕ a, b ⊕ a 
→ [a] = a ⊕ P .

It is easy to see that the first and the second bundles are trivial ones. The first bundle is isomorphic
to the trivial bundle defined by the Möbius projector

Q r
t : P ⊕ P⊥ → P⊥.

Hence, the following diagram commutes:

Bt = P ⊕ P⊥

id

π1
(Bt/P ,∼r)

Φ1

P ⊕ P⊥ Q r
t

P⊥

where Φ1(P ⊕ a) = a for any a ∈ P⊥ . All global sections of the first fiber bundle are given by

f (P ⊕ a) = g
(
Φ1(P ⊕ a)

) ⊕ Φ1(P ⊕ a) = g(a) ⊕ a,

for any continuous map g : P⊥ → P .
The second bundle is isomorphic to the trivial bundle defined by the Möbius projector

Q l
t : P⊥ ⊕ P → P⊥.

Indeed, the following diagram commutes

Bt = P⊥ ⊕ P

id

π2
(Bt/P ,∼l)

Φ2

P⊥ ⊕ P
Q l

t

P⊥

where Φ2(a ⊕ P ) = a for any a ∈ P⊥ . All global sections of the second fiber bundle are given by
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f (a ⊕ P ) = Φ2(a ⊕ P ) ⊕ g
(
Φ2(a ⊕ P )

) = a ⊕ g(a),

for any continuous map g : P⊥ → P .
In the third and fourth bundles we will consider the sections of the form b ⊕ a or a ⊕ b. In the

third case if we consider the map τ
(1)

b defined by

τ
(1)

b : (Bt/P ,∼r) → Bt,

[a] 
→ a ⊕ b

for any b ∈ P fixed and a ∈ P⊥ we obtain a global section. Clearly, π3τ
(1)

b ([a]) = [a] for any a ∈ P⊥ ,

which means that τ
(1)

b is a global section for any b ∈ P .

However, if we consider the map τ
(2)

b defined for any b ∈ P\{0} by

τ
(2)

b : (Bt/P ,∼r) → Bt,

[a] 
→ b ⊕ a

we obtain only a local section. By Theorem 20 we have

π3
(
τ

(2)

b

([a])) = π3(b ⊕ a) = π3
(
λ(b,a)a ⊕ μ(b,a)b

) = P ⊕ (
λ(b,a)a

)
with λ(b,a) given by (39) changing the order of b and a. Now, for each t and b ∈ P\{0} fixed λ(b,a)

reaches a maximum equal to t2−‖b‖2

t2+‖b‖2 in ‖a‖ = 0, i.e., a = 0, which is strictly less than one. Hence, for

any a ∈ P⊥ we have

∥∥λ(b,a)a
∥∥ = λ(b,a)‖a‖ � t2 − ‖b‖2

t2 + ‖b‖2
t,

which does not provide all the cosets of (Bt/P ,∼r). Hence, the mapping τ
(2)

b is only a local section
for the fiber bundle defined by π3. The case b = 0 gives a global section since

π3
(
τ

(2)
0

([a])) = π3(0 ⊕ a) = π3(a ⊕ 0) = [a] for any a ∈ P⊥.

In the fourth case we consider, for any b ∈ P , the sections τ
(3)

b and τ
(4)

b defined by

τ
(3)

b : (Bt/P ,∼l) → Bt,

[a] 
→ b ⊕ a
and τ

(4)

b : (Bt/P ,∼l) → Bt,

[a] 
→ a ⊕ b.

These are global sections for the fiber bundle defined by π4. Indeed, as π4(τ
(3)

b ([a])) = [a] for any

a ∈ P⊥ then τ
(3)

b is a global section for π4. With respect to τ
(4)

b we observe by Theorem 20 that

π4
(
τ

(4)

b

([a])) = π4(a ⊕ b) = π4
(
λ(a,b)b ⊕ μ(a,b)a

) = (
μ(a,b)a

) ⊕ P

with μ(a,b) given by (40). As for each b ∈ P fixed we have that

0 �
∥∥μ(a,b)a

∥∥ = μ(a,b)‖a‖ < t,



M. Ferreira, G. Ren / Journal of Algebra 328 (2011) 230–253 253
with lim‖a‖=0 μ(a,b)‖a‖ = 0 and lim‖a‖=t μ(a,b)‖a‖ = t we conclude that τ
(4)

b is a global section for
any b ∈ P .
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