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The finitely additive nonlinear filtering problem for the model yr = h,(X,)+ e, is solved when 
the function h is unbounded and satisfies no growth conditions whatever. 
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1. Introduction 

In [6], we began a systematic study of nonlinear filtering theory with Gaussian 
white noise (on a finitely additive probability space) replacing the differential of 
Brownian motion as noise in the conventional model for nonlinear filtering based 
on stochastic calculus. The finitely additive approach has several advantages over 
the conventional approach. First, we do not have to enlarge the sample space of 
observations, but instead, we work with the natural sample space. Secondly, the 
equations for the optimal filter and the conditional densities turn out to be partial 
differential equations rather than stochastic partial differential equations. Thus, we 
are able to derive these equations and characterize the optimum filter (or conditional 
densities) as the unique solution to these equations. See [6] for complete formulation 
and various definitions. In [S], X, was Rd-valued and it was assumed that the function 
!r (in the model (1 .l)) is bounded. In [7], we considered the case when the state 
space of the signal process (X,) is infinite dimensional and characterized the optimum 
filter as the unique solution of certain measure valued equations. We now return 
to the [Wd-valued signal process and solve the problem of existence of the unnorm4- 
ized conditional density and its characterization as the unique solution to a ‘Zakai’ 
type equation wifhout imposing any growth restrictions on h. 

The preparatory results are derived in Section 2. A principal tool, besides the 
rinitely additive version of the Bayes formula, is Theorem 2.1 in which we obtain 
a ‘dual’ Feynman-Kac type formula. The work of this paper is based on recent 
papers of Aronson and Besala, Besala, and Bodanko [l, 3,5] on the existence and 

uniqueness of solutions of parabolic equations with unbounded coefficients. These 

Rescarrh supported by AFOSR Contract No. F496ZO X2 C 0009. 

03044149/84/$3.00 @ 1984, Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82019392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


58 G. Kallianpur, R.C. Karandikar / Nonlinear filtering 

results are prlesented in a form suitable for our purpose in Theorem 2.2. An 
application of Theorem 2.1 and the Bayes formula yields our main result (Theorem 
3.1) on the solution of the nonlinear filtering problem in which the function h,(X,) 
in ( 1.1) is unbounded and has nlo growth conditions imposed on it. The conditions 
of linear growth imposed in Theorem 3.1 on the coefficients of the diffusion equation 
for the signal process (X,) can be improved upon using [5] as is indicated in the 
Remark at the end of Section 3. However, in our view, this is a matter of secondary 
importance, our main concern being to achieve the maximum generality for the 
function bt and hence for the filtering model. 

There have been many recent papers devoted to the case of unbounded tZ in the 
nonlinear filtering model using the Ito stochastic calculus (Paradoux [$I; Baras, 
Blankenship and Hopkins [2]; Baras, Blankenship and Mitter [3]). A detailed 
discussion of the relationship of this work with the approach of the present paper 
is given in Section 4. 

In the remainder of this section, we briefly describe the model and state the Bayes 
formula. 

Let H = L’([O. T], &!“I j with the inner product I cf, > f,> = J (f, (G,f,W) ds. II 
Let 6, he the fie!d of cylinder sets in H and let p be the canonical Gauss measure 
on ‘f. Let P = (e, :I be the identity map from H into itself. Then the finite dimensional 
distributions of the process I:, e, ds on (H, VT;, p) are the same as that of nz- 
dimensional standard Brownian motion. In this sense (e,) is the derivative of a 
‘Rrownian Motion’ on a finitely additive probability space and thus can be called 
(iau~ian white noise. In [6], we had studied nonlinear filtering theory with (e,) as 
the noise. The model we considered was 

y, =h,(X,)+e, (1.1) 

ichcrc the signal (X,) is a IW”-valued process on a countably additive probability 
kpacc i f1. .d, if ), (X,) and (e,) are indepcndcnt and h: LO, T] X R” -+ iw”’ is a measur- 
able function such that 

The follouing Baycs formula-\vhich is an an&gut‘ of the Kallianpur-Striebel 
formula-is the starting point of WI’ study of nonlinear filtering theory with Gaussian 
ivhite noise. The formula is given in terms of conditional expectation in the finitely 
addi!ive set up. See f6] for the definitions and proof. 
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Then 

where 

E(f(X,)ly,:O~ S5 t) = m¶ Y) 

41, y) 

59 

(1.3) 

dh y) = rf(X,)exp(~~(h,(X,),y,)ds-:~~Ih,~(X,)’ds)drr. (1.4) 
J 

2. Auxiliary results 

Let (X,), Oa 2s 7 be an &-valued diffusion process on (0, &, JZ) with initial 
probability density 4 and infinitesimal generator Z’, given by 

(2.1) 

where g E C’(Rd 1 and a, b satisfy the following conditions: 

d d 

2 a,(?, x)A;hj=s, c hf 
i,j= I i=l 

for some K, > 0, and all (A,, . . . , A,) E Rd; 

(2.2) 

i) a2 
a ‘I’ - aij, 

l4.X; 
- ai,, 
6.X; JXj 

bi, &b, 
I 

(2.3) 

are locally Holder continuous functions satisfying the growth condition 

Ig( t, x)1 6 K,( 1+ (x(‘)Y (,2.4) 

It may be observed that given a, b satisfying (2.2), (2.3) and a density 4,. such a 
process (X,) exists and can be constructed as a solution to a martingale problem 
or as a solution to a stochastic differential equation (see [9]). 

Let YT be the adjoint of -sP, given by 

(2.5) 

(w)+c*(t.x)g(xj 

b:(t,X)=-bi(t,X)+2 f *(l,x) 
,‘l ax, 

and 

c*(t, x) = - L 

i: b, ( I, x ) 

+i! 

il’U,j 

- (t, xj. 

1=1 8X( i,,? 1 ilX, (3x1 

(2.6) 

(2.7) 
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It can be easily checked that (a, b*) satisfy (2.3) and c* is also locally Holder 
continuous satisfying (2.4). 

The marn result of this section is 

Theorem 2.1. Let the initial density satisfy 

/4(x)] S exp(K3(l + lx/2)(“21-f) (2.8) 

for some K3<~ and E ~0. Let c:[O, T]xW’ +R be a locally Holder continuous 
function, bounded above. Then 

(i) the PDE 

$=u:u(t, *)+c(t, +4(t, .), u(Q, x) = 4(x) (2.9) 

has a unique classical solution in the class 3, where ?I is the class of C’32([0, T] X Rd) 
functions g satisfying 

]g(t, x)] d exp(K,( 1 + Ixl’)“‘) (2.10) 

filr sonte constant KG. 
(ii) For all bounded Bore1 measurable functions f, and 0 G t,, s T, we have 

5 
f(x)u(r,,,x)dX=Llr[f(~~~~,~exp(5,:1C(s~Xs~ds~]. (2.11) 

We will prove a couple of auxiliary results before proving Theorem 2.1. First 
observe that it suffices to prove (2.11) for f~ Cz(Rd). Thus, fix f E CF(R”) and 
057 f,,S T. 

Let f.g, L”g for g E C’1*2([0, T] X R”) be defined by 

and 

(2.12) 

L*g= Y[+; g+c(tAg. ( > (2.13) 

Then we have 

Theorem 2.2. (i) The equation 

Lu =0 on (0, T) XR”, u(0, x) = +(_I-) (2.9)’ 

has a unique solution in the class $I. 
(ii) The equation 

L”v=O on (0, t,Jx@, v(t,,, x) =f(.d (2.14) 

lzus a unique solution in the class of C’*‘([O, t,,] x[Wd) functions satisfying (2.10). 
Furthermore, the solution iv is bounded. 
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(iii) Denoting by u, v the solutions to (2.9)’ and (2.14) respectively, we have 

f(x)u(&,, x) dx = 
I 

+(z)v(O, z) dz. (2.15) 

Proof of Theorem 2.2. Let 

H(t,x)=exp(K~(l+~x~2)1’2e~‘) 

where K5 and p are positive constants chosen such that 

L(H) d 0, I&*( I-P) d 0. 

(2.16) 

(2.17) 

Such a choice is possible in view of our assumptions on a, b, c. For explicit calculations 
for the first inequality, see Bodanko [5] and the second inequality can be handled 
similarly. Thus the conditions (i), (ii), (iii) in Besala [4] are satisfied for L. Let 
f’(t, x, T, z) be the fundamental solution for L given in Theorem 1 in [4]. Then by 
Theorem 2 in [4], r* defined by 

f*(T,z,t,x)=f(t,x,T,z), C>T, (2.18) 

is a fundamental solution for L*. Observe that (2.8) implies that for some choice 
of K,< OC, we have 

M(x)1 d K,WO, x) (2.19) 

and hence by Theorem 3 in [4], u defined by 

u( t, x) = 

I 
W, x, 0, ZMZ) dz (2.20) 

is a solution to (2.9)’ and u E 3. 
By a theorem of Bodanko [5] (see Theorem B, Aronson and Besala [l]) u is the 

only solution of (2.9)’ in the class 3. Also, f E C7(Rd) implies that, for some K7 < 1x3, 

IfWl d J&H--%o, 4 

and hence it follows that ZI defined by 

(2.21) 

V(T, Z) = 

I 

f *(T, Z, to, X)f(X) dX = I-(?,, X, T, z)~(_x) d.x (to> T) (2.22) 

is the unique solution of (2.14) in the class % Further, (2.21), (2.22) and the estimate 
(3.7) in [4] on r* implies that 

Iu(T, Z)/S K,H-‘(7, z) (2.23) 

and hence v is bounded by K,. Finally, the estimate (3.2) in [4] on r implies that 

JLJ IW,, x, 0, z;t IdW dz I IfWl dx <cm (2.2’4) 
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and hence by Fubini’s theorem, we have 

I 
f(x)u(&l, x) dx = W,, ,K, 0, zM(z) dz 

I 
f(x) dx 

= f(t,, x, 0, z)f(x) dx 1 4(z) dz 

= 
I 

~(0, z)~(z) dz. 

This completes the proof of Theorem 2.2. 

Lemma 2.3. Let (M(t), 9,) be a continuous local martingale and let A(t) be a 
continuous SF,-adapted process such that A(0) is integrable and for all w, t + A( t, w) 
is of bounded variation on bounded intervals. Then 

I 

I 

N(t) = M(t)A(t)- M(s) ,lA(s) 
0 

is also a locai martkgale. 

Proof. Choose stopping times T,, increasing to 00 such that for all n, M(t A T,,,) - 
MiO), IAl(tn 7,) are bounded where IAl(t, w) is the total variation of the map 
s --f A( s, WI on [O, f]. Then by integration by parts formula for martingales (Theorem 
i.2.X in Stroock and Varadhan [97), it follows that N(t A T,,) is a martingale and 
hence the result follows. 

Lemma 2.4 

(2.25) 

Proof. Since (A’,) is a diffusion process with generator .Y’,, it follows that for all 
X’F P([l), r] WI%“) with compact support, 

i\ a martingale. Thus, by using an obvious stopping ii.Fe argument, it follows that 

i% ;I Iocai martingaic~. Let A(r) 1~ the process defined by 
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Then it can be checked that 

I 
I 

N(t) =M(t)A(t)- M(s) dA(s) 
0 

= u(?, X,)A(t)- -+6p,+c(~,X,) u(T,X,)A(T)~~ 

= u( t, X,) exp (I,&XJd+ 

since u is a solution of L*IJ = 0. Hence by Lemma 2.3, N(t) is a local martingale. 
Since u is bounded and c is bounded above, it follows that N(t) is bounded and 
hence N is a martingale. Equating its expectations at t = 0 and t = to, we get the 
required identity (2.25). Cl 

Proof of Theorem 2.1. Part .(i) follows from (i) of Theorem 2.2. IPart (ii) follows 
from (2.15) and (2.25). cl 

3. The solution of the nonlinear filtering problem 

We now return to the filtering model (1.1). Let the signal process (X,) be as in 
Section 2. Let 

h: [0, 7’1 x 58” + Iw”’ (3.1) 

bcl a locally Holder continuous function. Since the paths of (X,) are continuous, we 
h&e 

(h,(XS)j2 ds <co as. II (3.2) 

so that we can use the version of the Bayes formula given by equations (1.3) 2nd 
(1.4). The Bayes formula and Theorem 2.1 yield our main result given below. 

Theorem 3.1. Let (X,) be a W’-valued difiusionprocess with gernerator (2,) satisfying 
(2.1)-(2.4) and initial density 4 satisfying (2.8). Let 

Ho = {y E H: yI is Hiilder continuous}. 

Then, for all y E Ho, the PDE 

(3.4) 

has a unique solution in the class 59. 
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Furthermore, for y E Ho, the solution p, (x, y) of (3.4) is the unnormalized condi- 
tional density of (X,) given { yI: 0 s s - < t}, i.e. for all Bore1 measurable bounded f 

and y E Ho, 

o;(f, y) = 
I 

f(x)p&, y) dx. (3.5) 

Proof. Fix YE H,,. Let 

c(t, xl= (h,(x), y,)-:lW)12. 

Then c( t, x) is locally Hiilder continuous and 

c(t, x)S ;jy,+ K 

for some K < m. Now the required assertions follow from Theorem 2. I. 

(3.6) 

(3.7) 

Remark 1. It is easy to see that y + a, (f, y) is a continuous function of y for f, t 
tixed. Since H,, is dense in H, Theorem 3.1 gives a complete solution to the nonlinear 
filtering problem. 

Remark f. The growth conditions (2.4) on the diffusion and drift coefficients can 
hc weakened. All that is required is the existence of a function .H satisfying (2.17). 
One such set of conditions is given below (see 1.51). 

I hcrc exists 0 c (Y 5 1 such that, for all i, j, fchr some K > ( I. 

For 0 c u 5 1. for a suitable choice of K, , p, 

H(r,s)=exp(K,(l +/XI’)“ e@‘j 

\afi%fit’s (3.17). For (I = 0. the corresponding chloice is 

)fr1-.~)=e/“(l+;s!-‘). 

4. Concludhg remarks 
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where (X,) as before is the sign31 process, assumed to be an [Wd-valued diffusion 
process and the noise p, is m-dimensional standard Brownian motion. Ir this case 
it can be shown that formally, the unnormalized conditional density pr (x, Yj satisfies 
the Zakai equation 

dp,(*, Y)==%%(., Y)dt+p,(*, Y)M.)dY,. 

If we let 

elr(x, Yj =e -(“~‘x)7yJpt(x, Yj, 

then it follows that formally, for each Y E C([O, T], 02”‘) - t+h satisfies 

(4.2) 

(4.3) 

(4.4) 

Assuming that spatial derivatives of h of first and second orders exist, this redllces 
to a partial differential equation, also called the ‘robust’ form of the Zakai equation. 

In most of the treatments of nonlinear filtering theory, h has been assumed to 
be bounded. Recently under the assumption that h has at most linear growth and 
imposing other growth conditions on (ahj/(atj, (ahj/(axij, (d2hj/(dxi axi), Pardoux 
[8] showed that (4.4) has a unique solution (cr and further that if p is defined by 
(4.3), then p is the unnormalized conditional density. For this, Pardoux also assumes 
that the drift: coefficient b of (X,) has at most linear growth and the diffusion 
coefficient a of (X,) is bounded. 

Baras, Blankenship and Mitter [3] and Baras, Blankenship and Hopkins [2] have 
also considered this problem for the unbounded case. However, their results do not 
seem to be satisfactory from the point of view of filtering theory for the following 
reasons: 

(ij Under ce t r ain conditions, in both these papers, they show that the robust 
form of Zakai’s equation (4.4) has a unique solution. However, they do not address 
themselves to the problem of identifying this solution as the unnormalized condi- 
tional density. This part of the problem is by no means trivial and does need a lot 
of work even under more restrictive conditions. 

(ii) Baras, Blankenship and Mitter [33 do need the existence of derivatives of II 
and gr..)wth conditions on them even for proving existence and uniqueness for (4.4). 
Our sonditiolls are weaker than theirs. 

(iii) In [2], Baras, Blankenship and Hopkins have considered the one dimensional 
problem. Even in this case, their conditions are complicated and involve relative 
growth of u, b, h and their derivatives. Moreover, the examples discussed in [2] 
implicitly imply that their conditions allow them to consider the case of ‘polynomial’ 
drift and diffusion coefficients of arbitrarily large degree. But, if u, b grow too fast. 
it is well known that the martingale problem for (a, h) is not well posed and lhus 
the condition A5 in [2] is violated. (The authors seem to be aware of this difficulty 
as their comments on p. 205 of [2] show.) 
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It may not be out of place here to point out that the generality of our result (as 
far as h is concerned) is a consequence of the finitely additive white noise model 
adopted in this paper. Specifically, since we do not need to use the transformation 
(4.3) to get a PDE, it is not necessary for us to assume the existence of derivatives 
of h. Furthermore, the potential term in the white noise version of the Zakai equation 
which is !&o the exponent appearing in the Bayes formula is bounded above in our 
set up, regardless of any growth condition on h. 
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