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We show that, in the weak field limit, at large separations, in sharp contrast to General Relativity
(GR), all massive gravity theories predict distance-dependent spin alignments for spinning objects. For
all separations GR requires anti-parallel spin orientations with spins pointing along the line joining
the sources. Hence total spin is minimized in GR. On the other hand, while massive gravity at small
separations (mgr � 1.62) gives the same result as GR, for large separations (mgr > 1.62) the spins become
parallel to each other and perpendicular to the line joining the objects. Namely, the potential energy is
minimized when the total spin is maximized in massive gravity for large separations. We also compute
the spin–spin interactions in quadratic gravity theories and find that while at large separations GR result
is intact, at small separations, spins become perpendicular to the line joining sources and anti-parallel to
each other.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Consider two widely separated spinning massive objects (for
example two galaxies or galaxy clusters) that interact via gravity:
What is the minimum energy configuration for their spin orien-
tations, and how does the result depend on whether the graviton
is massive or not? In this work we will compute the spin–spin
interactions of point-like objects in massive gravity. We will show
that introducing a small graviton mass gives the highly unexpected
result of changing the spin orientations of sources from the one
predicted in GR. Arguably, massive gravity is the most natural
modification of GR that has implications in the overall dynamics
– accelerated expansion – of the universe and hence a detailed
study of gravitomagnetic effects such as the one done in this work
is needed.

Before we give a detailed derivation of the results in the next
section in D-dimensional spacetimes and higher curvature the-
ories, let us summarize our findings here for the case of D =
3 + 1 for GR and massive gravity. Consider two localized spinning
point-like sources described with the components of the energy-
momentum tensor
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T00 = maδ
(3)(�x − �xa),

T i
0 = −1

2
J k
a ε ikj∂ jδ

(3)(�x − �xa), (1)

where a = 1,2. Here ma is the mass and �Ja is the spin of the
particle. Then, working in a flat background, from the tree-level
diagram of one graviton exchange, we can calculate the potential
energy as

U = −4πG

t

∫
d4x d4x′ T μν(x)Gμναβ

(
x, x′)T αβ

(
x′), (2)

where Gμναβ(x, x′) is the Green’s function of the theory at hand
and t is a large time that will drop at the end. In GR this compu-
tation gives

UGR = − Gm1m2

r
− G

r3

[�J 1 · �J 2 − 3�J 1 · r̂ �J 2 · r̂
]
, (3)

where �r = rr̂ is the distance between the two sources. Spin–spin
part can be attractive or repulsive depending on the spin orienta-
tions. Maximum value of �J 1 · �J 2 −3�J 1 · r̂ �J 2 · r̂, that is the minimum
of the potential energy is achieved when �J 1 and �J 2 are anti-
parallel and point along r̂ as depicted in Fig. 1. That means in GR,
for any given r, potential energy is minimized for anti-parallel spin
orientations, if we neglect the tidal and orbital angular momentum
effects. (The computation here is of course not a good approxima-
tion for close binary systems, such as two neutron stars etc., but
it is a valid approximation for two widely separated galaxies or
galaxy clusters.) Let us give the results of the same computation
.
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Fig. 1. Minimum energy configuration in GR, as long as weak field limit is applicable.

Fig. 2. Minimum energy configuration in massive gravity for mgr � 1.62.

Fig. 3. In massive gravity, at large separations, the potential energy is minimized
when the spins are perpendicular to the line joining the sources.

in massive gravity. At this point one might worry about which
massive gravity to use. The crucial point is that in the weak field
limit around flat space, any viable (non-linear, ghost-free) massive
gravity theory reduces to the Fierz–Pauli (FP) theory that describes
5 degrees of freedom. Hence the following computation is a uni-
versal, weak field, large distance, prediction of all massive gravity
theories built to describe 5 degrees of freedom around flat space.
The Lagrangian density of the linear massive gravity is

LFP = 1

16πG

[
R − m2

g

4

(
h2
μν − h2)] +Lmatter, (4)

where mg is the mass of the graviton, we found that at the lowest
order the potential energy is

UFP = −4

3
Gm1m2

e−mgr

r
− Ge−mgr(1 + mgr + m2

gr2)

r3

×
[

�J 1 · �J 2 − 3�J 1 · r̂ �J 2 · r̂
(1 + mgr + 1

3 m2
gr2)

(1 + mgr + m2
gr2)

]
. (5)

It is clear that, in contrast to the GR result, in massive gravity de-
pending on the distance between the sources, spin–spin part of the
potential energy is minimized for different spin orientations deter-
mined by the maximization of the function (see Appendix A for
details)

f (θ,ϕ1,ϕ2) = cos(θ) − 3
(1 + x + 1

3 x2)

(1 + x + x2)
cos(ϕ1) cos(ϕ2), (6)

where x = mgr and θ is the angle between the spins and ϕi is the
angle between �J i and �r. Maximization of (6) yields: anti-parallel

spins for x � 1+√
5

2 ≈ 1.62 as in the case of GR depicted in Fig. 2.

On the other hand, for x > 1+√
5

2 ≈ 1.62, one gets parallel spins
which are perpendicular to the line joining the sources as in Fig. 3.

The important conclusion one learns is that while in GR min-
imal potential energy is realized for minimum total spin at all
separations, in massive gravity potential energy is minimized for
maximum total spin for mgr > 1.62.1

1 We would like to thank A. Dane whose simulation of the spin–spin interaction
led us to realize this point where spins suddenly change orientations. Note that the
same point that is the “Golden Number” arises when one considers stable circular
orbits in the Newtonian theory with a Yukawa potential. Namely, stable circular

orbits exist for x � 1+√
5

2 . We thank F. Öktem for this point.
2. Derivation of the results

To derive the above results and their D-dimensional generaliza-
tions in GR, massive gravity and quadratic gravity, it is somewhat
more convenient to use the propagator found in [1] to repre-
sent (2). In order to avoid repeating the computations of all three
theories let us consider the most general theory which includes
these theories:

S =
∫

dD x
√−g

{
1

κ
R − 2Λ0

κ
+ αR2 + βR2

μν

+ γ
(

R2
μνσρ − 4R2

μν + R2)}

+
∫

dD x
√−g

{
−m2

g

4κ

(
h2
μν − h2) +Lmatter

}
. (7)

In [1], we computed the scattering amplitude (A = Ut) correspond-
ing to a graviton exchange in this theory and presented it with
sufficient detail, hence we quote here the result:

4A = 2T ′
μν

{
(β�̄ + a)

(
�

(2)
L − 4Λ

D − 2

)
+ m2

g

κ

}−1

T μν

+ 2

D − 1
T ′

{
(β�̄ + a)

(
�̄ + 4Λ

D − 2

)
− m2

g

κ

}−1

T

− 4Λ

(D − 2)(D − 1)2
T ′

{
(β�̄ + a)

(
�̄ + 4Λ

D − 2

)
− m2

g

κ

}−1

×
{
�̄ + 2ΛD

(D − 2)(D − 1)

}−1

T

+ 2

(D − 2)(D − 1)
T ′

{
1

κ
+ 4Λ f − c�̄ − m2

g

2κΛ
(D − 1)

}−1

×
{
�̄ + 2ΛD

(D − 2)(D − 1)

}−1

T , (8)

where we have dropped the integral signs not to clutter the no-
tation and also to properly account all those theories in the cor-
responding limits, we have provisionally introduced an effective
cosmological constant which is determined via the quadratic equa-
tion Λ−Λ0

2κ + f Λ2 = 0. The other parameters that appear above are
defined as

f ≡ (Dα + β)
(D − 4)

(D − 2)2
+ γ

(D − 3)(D − 4)

(D − 1)(D − 2)
, (9)

a ≡ 1

κ
+ 4ΛD

D − 2
α + 4Λ

D − 1
β + 4Λ(D − 3)(D − 4)

(D − 1)(D − 2)
γ , (10)

c = 4(D − 1)α + Dβ

D − 2
. (11)

With all these parameters at hand, one covers all the three theo-
ries that we are interested in. For example the result for General
Relativity follows from m2

g = α = β = γ = 0 which yield a = 1
κ and

f = c = 0. For flat backgrounds one has

4A = −2κT ′
μν

(
∂2)−1

T μν + 2κ

D − 2
T ′(∂2)−1

T . (12)

More explicitly the last equation is

4A = −2κ

∫
dD x

∫
dD x′ Tμν

(
x′)G

(
x, x′)T μν(x)

+ 2κ
∫

dD x

∫
dD x′ T

(
x′)G

(
x, x′)T (x), (13)
(D − 2)
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where the scalar Green’s function reads

∂2
x G

(
x, x′) = −δD(

x, x′),
and ∂2

x = −∂2
t + �∇2. Of course one must keep in mind that to reach

the explicit final result for the potential energies one uses

(
∂2)−1 ≡ G R

(
x, x′) = Γ ( D−3

2 )

4π
D−1

2 rD−3
δ
[
r − (

t − t′)], (14)

in the massless case and similarly for the massive case

G R
(
x, x′) = (

mg
r )

D−3
2

(2π)
D−1

2

K D−3
2

(r mg)δ
[
r − (

t − t′)], (15)

for the retarded Green’s functions.
We are now ready to compute the potential energy for the

desired theory. We will give two explicit examples below: GR (Ein-
stein’s theory) and Fierz–Pauli massive gravity. The analogous com-
putations in the quadratic theory, without an explicit mass term
follow similarly.

For massive spinning sources the energy–momentum tensor is
given as the D-dimensional generalization of (1)

T00 = maδ
(D−1)(�x − �xa), Tij = 0,

T i
0 = −1

2
J klm... ε iklm... j∂ jδ

(D−1)(�x − �xa), (16)

where J has D − 3 and ε has D − 1 indices and a = 1,2. Gener-
ators of rotations will be given as Mij = ∫

dD−1x (xi T j
0 − x j T i

0),
which yields Mij = ε i jk J k in D = 3 + 1. It is important to note
that taking the background to be the Minkowski space, with ημν =
diag(−,+, · · ·+), one has T = ημν Tμν = −T00 and hence the trace
part does not play a role in the spin–spin interactions.

3. Spin–spin interaction in General Relativity

For massless gravity in D dimensions, we have

4A = −2κT ′
00

{
1

∂2

}
T 00 + 2κ

(D − 2)
T ′

{
1

∂2

}
T

− 4κT ′
0i

{
1

∂2

}
T 0i. (17)

The first two terms give 4t times the usual Newtonian potential
energy which we need not depict here. The last term, which is the
relevant part for spin–spin interactions, reads

−4κT ′
0i

{
1

∂2

}
T 0i

= 2κ J
a1a2...aD−3
1 ε ia1a2...aD−3n∂ ′

nδ
(D−1)

(�x′ − �x1
)

×
{

1

∂2

}(
1

2

)
J

b1b2...bD−3
2 ε ib1b2...bD−3m∂mδ(D−1)(�x − �x2)

= κ J
a1a2...aD−3
1 J

b1b2...bD−3
2 ε ia1a2...aD−3nε ib1b2...bD−3m

× ∂ ′
nδ

(D−1)
(�x′ − �x1

){ 1

∂2

}
∂mδ(D−1)(�x − �x2). (18)

This expression looks somewhat cumbersome, to understand the
crux of the computation, let us carry it out more explicitly in D =
3 + 1 dimensions.

−4κT ′
0i

{
1

∂2

}
T 0i

= 4κ

∫
d4x′

∫
d4x

1
J k

1ε
ikj∂ jδ

(3)(�x − �x1)

4

× 1

4π |�x − �x′|δ
(∣∣�x − �x′∣∣ − (

t − t′))

× J l
2ε

ilm∂ ′
mδ(3)

(�x′ − �x2
)
. (19)

Carrying out the time integrals and performing integration by
parts, one gets

−4κT ′
0i

{
1

∂2

}
T 0i

= tκ

4π

(
δi j �J 1 · �J 2 − J i

1 J j
2

) ∂

∂xi
1

∂

∂x j
2

1

|�x1 − �x2| . (20)

Since the sources do not coincide, �x1 	= �x2, one has

∂

∂xi
1

∂

∂x j
2

1

|�x1 − �x2| = 1

r3

(
δi j − 3r̂i r̂ j), (21)

and therefore spin–spin interaction potential energy of GR is
found (3).

In D-dimensions contractions of the ε tensor only change the
relative coefficients of the two terms in the spin–spin part. To ob-
tain the generic result, one way is to do the computation in several
other dimensions and find the formula or one can use the contrac-
tions of the ε tensor. We have done both ways, the result is

−4κT ′
0i

{
1

∂2

}
T 0i

= (D − 3)!κ{
J

a1a2...aD−3
1 J

a1a2...aD−3
2 ∂m∂ ′

m

− (D − 3) J
a1a2...aD−4m
1 J

a1a2...aD−4n
2 ∂m∂ ′

n

}

×
{

1

∂2

}
δ(D−1)

(�x′ − �x1
)
δ(D−1)(�x − �x2). (22)

Finally the spin–spin interaction in D-dimensional massless gravity
reads

UGR = − G D(D − 2)!(D − 3)2

2rD−1

× (
J1 · J2 − (D − 1)( J1 · r̂)( J2 · r̂)

)
, (23)

where the D-dimensional Newton’s constant is

G D = κΓ ( D−3
2 )

8(D − 2)π
D−1

2

,

which gives κ = 16πG in D = 3 + 1. Here we defined the scalar
products between the anti-symmetric objects as

J1 · J2 ≡ J a1a2...aD−3 J a1a2...aD−3 ,

( J1 · r̂)( J2 · r̂) ≡ J a1a2...aD−3 r̂D−3 J a1a2...aD−3 r̂D−3. (24)

4. Scattering in massive D-dimensional gravity

Let us now do the same computation in the linearized massive
gravity. The relevant scattering amplitude is

4A = −2κT ′
00

{
∂2 − m2

g

}−1
T 00

+ 2κ

(D − 1)
T ′{∂2 − m2

g

}−1
T − 4κT ′

0i

{
∂2 − m2

g

}−1
T 0i

= −2κ

(
D − 2

D − 1

)
m1m2

1

(2π)
D−1

2

1

r
D−3

2

×
[(

1

m2

) 3−D
4

K D−3
2

(r mg)

]

g



İ. Güllü, B. Tekin / Physics Letters B 728 (2014) 268–273 271
+ κ(D − 3)![ J
a1a2...aD−3
1 J

a1a2...aD−3
2 ∂m∂ ′

m

− (D − 3) J a1a2...aD−4m Ja1a2...aD−4n∂m∂ ′
n

]

× 1

(2π)
D−1

2

1

r
D−3

2

[(
1

m2
g

) 3−D
4

K D−3
2

(r mg)

]
. (25)

Just like the massless case that we studied in detail in the previ-
ous section, one performs partial integrations and carries out the
integrals to get

UFP = − κ(D − 2)m1m2 m
D−3

2
g

2(D − 1)(2π)
D−1

2 r
D−3

2

K D−3
2

(r mg)

+ κ(D − 3)!m
D+1

2
g

4(2π)
D−1

2 r
D−3

2

K D+1
2

(r mg)

×
[

J1 · J2

( 2K D−1
2

(r mg)

r mg K D+1
2

(r mg)
− 1

)

+ (D − 3)( J1 · r̂)( J2 · r̂)

]
. (26)

For D = 3 + 1 (26) gives (5).

5. Quadratic gravity

With the tools at our hand we can extend the above results to
D-dimensional quadratic gravity without a Fierz–Pauli mass term
with the Lagrangian density

L = 1

κ
R + αR2 + βR2

μν + γ
(

R2
μνσρ − 4R2

μν + R2).
The amplitude can be written as

Uquad × t = −κ

2
T ′

μν

(
∂2)−1

T μν + κT ′(∂2)−1T

2(D − 2)

+ κ

2
T ′

μν

(
∂2 − m2

β

)−1
T μν − κT ′(∂2 − m2

β)−1T

2(D − 1)

− κT ′(∂2 − m2
c )

−1T

2(D − 2)(D − 1)
, (27)

where m2
β = − 1

κβ
and m2

c = 1
κ(4α(D−1)+Dβ)

. All the terms in the
above expression have been computed above: The first line is pure
GR, the second and third lines come from the quadratic terms in
the Lagrangian. The fourth and the fifth terms do not contribute
to the spin–spin interactions, the third term gives a negative con-
tribution to the spin–spin interaction in comparison with the GR
result. The full expression is somewhat cumbersome to depict,
D = 2 + 1 case was given in [2], here let us write down the
D = 3 + 1 result.

Let Uquad ≡ UGR + U2, then the contribution coming from the
quadratic part reads

U2 = Gm1m2

r

(
4

3
e−mβ r − 1

3
e−mcr

)
+ Ge−mβ r(1 + mβr + m2

βr2)

r3

×
[

�J 1 · �J 2 − 3�J 1 · r̂ �J 2 · r̂
(1 + mβr + 1

3 m2
βr2)

(1 + mβr + m2
βr2)

]
. (28)

At long distances, GR part dominates and hence spins are anti-
parallel to each other and point along r̂. In short distances
quadratic part dominates and spin–spin interaction part is just like
the one in massive gravity but with an overall negative sign. There-
fore, for quadratic gravity, at short distances spins are anti-parallel
to each other but they are perpendicular to r̂ (Fig. 4).
Fig. 4. Minimum energy configuration in quadratic gravity for small separations.

6. Conclusions and discussions

In this work, we have initiated a study of (linear) gravitomag-
netic effects in the Fierz–Pauli massive gravity which is the unique
linearized massive spin-2 theory describing 5 degrees of freedom
in (3 + 1)-dimensional flat backgrounds. (Non-linear extensions of
the FP theory such as the dGRT theory [3] or its extensions which
are free of the Boulware–Deser ghost [4], though they still could
be acausal [5], yield exactly the same prediction as the FP theory
at large distances in the weak field limit.)

For two point-like spinning sources that interact gravitationally,
potential energy is minimized for anti-parallel spin orientations
pointing in the direction of the vector between the sources in Gen-
eral Relativity at any distance where the linear approximation is
valid. On the other hand for massive gravity, potential energy is
minimized when the spins point away from the line joining the
sources at large separations. Hence the total spin of the system is
non-zero even for equal magnitude spins and point perpendicular
to the axis joining the sources.

A word about the mass–mass term in (5) is needed: At large
distances it is in the desired Yukawa like form which is one of
the main motivations of studying massive gravity theories, since
it can replace all or part of the dark energy needed to explain
the accelerated expansion of the Universe. As is clear that term
also has the undesired vDVZ discontinuity [7,8] in the vanishing
graviton mass limit. Therefore (5) cannot be applied to the scales
where Newtonian (or Einsteinian) gravity is well-tested. For such
scales non-linear effects, such as the Vainshtein mechanism [9] or
non-linear extensions of massive gravity, such as [3], should come
into play to correctly reproduce the observations within massive
gravity. The relevant scales that appear depend on the specific
non-linear extension of massive gravity. See [6] for an extensive
review of massive gravity theories and how Vainshtein radius, be-
low which non-linear theories must be used, can be set to the size
of the solar system or the size of the galaxy. The point of view
in this current work is that at sufficiently large separations where
massive gravity is expected to deviate from GR, (5) describes the
lowest order potential energy for all viable massive gravity theories
that reduce to the Fierz–Pauli theory at the linear level. [Of course,
there may not exist a viable non-linear massive gravity theory free
of the ghost, acausality, strong coupling and vDVZ problems, but at
this stage, there is still hope.]

One could argue that compared to the Newtonian potential en-
ergy between the sources, the spin–spin potential energy is rather
small and does not contribute much to the overall force. While this
is correct, the overall force is not the relevant issue here: spin–
spin force is quite distinct from the mass–mass force. The former
is the sole force that determines the spin orientations.The situa-
tion is similar to the magnetic force in electrodynamics: While the
magnetic force between two slowly moving charges with magnetic
dipole moments (spins) is much smaller compared to the Coulomb
force, it has a distinct effect on the charges. In fact interacting
magnetic-dipole moments of charged particles give rise to ferro-
magnetic effects. In the context of massive gravity, a similar situa-
tion arises: spin–spin interaction of galaxies give rise to an overall
spin of the system. Of course to derive observable consequences
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from our calculations above, one must carry out an N-body sim-
ulation of galaxies. The situation is actually quite similar to the
Heisenberg model of three-dimensional spins. It is an open ques-
tion to see if massive gravity could explain the observations of
[10,11] who found that galaxies in a region have a non-zero to-
tal spin which cannot be easily explained by GR.
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would like to thank T.Ç. Şişman, A. Karasu, S. Deser, A. Dane and
F. Öktem for useful discussions.

Appendix A. Finding the spin-orientations in GR and in massive
gravity

Here let us derive the minimum energy configuration for the
spins in both GR and massive gravity. The relevant part to be max-
imized in the potential energy is

h ≡ �J 1 · �J 2 − f (x) �J 1 · r̂ �J 2 · r̂, (29)

where x = mgr and f (x) = 3 for GR and the general form of it is

f (x) = 3(1 + x + 1
3 x2)

(1 + x + x2)
. (30)

Note that for massive gravity f (x) ∈ [3,1).
In spherical coordinates let us choose the plane of �J 1 and r̂ as

the xy-plane, and choose the direction of r̂ as the x-axis. There-
fore, �J 1 and �J 2 have the following components in this coordinate
system

�J 1 = J1(cosϕ1 î + sinϕ1 ĵ), (31)

and

�J 2 = J2(cosϕ2 sin θ2 î + sinϕ2 sin θ2 ĵ + cos θ2 k̂). (32)

Then, the relevant scalar products read

�J 1 · r̂ = J1 cosϕ1, �J 2 · r̂ = J2 cosϕ2 sin θ2, (33)

�J 1 · �J 2 = J1 J2(cosϕ1 cosϕ2 sin θ2 + sinϕ1 sinϕ2 sin θ2). (34)

Then (29) becomes

h = J1 J2
[
cosϕ1 cosϕ2 sin θ2(1 − f ) + sinϕ1 sinϕ2 sin θ2

]
, (35)

where we wrote f (x) = f . From (35) we see that �J 1 and �J 2 must
be on the same plane, which follows from ∂h

∂θ2
= 0, θ2 = ±π

2 .
When these are put into (35) we see that h becomes a maxi-
mum for θ2 = π

2 and a minimum for θ2 = −π
2 . Since we want

it to be a maximum (to get the minimum of the potential energy)
we choose π

2 . Then

h = J1 J2
[
cosϕ1 cosϕ2(1 − f ) + sinϕ1 sinϕ2

]
, (36)

and extremization with respect to two angles yield

∂h

∂ϕ1
= − sinϕ1 cosϕ2(1 − f ) + cosϕ1 sinϕ2 = 0, (37)

∂h

∂ϕ2
= − cosϕ1 sinϕ2(1 − f ) + sinϕ1 cosϕ2 = 0. (38)

From now on the discussion bifurcates whether f is 1 or not.
Let us first take f = 1 then (37) and (38) become

cosϕ1 sinϕ2 = 0, (39)

sinϕ1 cosϕ2 = 0. (40)

From (39) ϕ1 = π
2 or ϕ2 = 0 and from (40) ϕ1 = 0 or ϕ2 = π

2 .
Therefore we have two solutions that are

ϕ1 = ϕ2 = 0,

ϕ1 = ϕ2 = π

2
. (41)

Putting (41) into (35) we get

h(ϕ1 = 0, ϕ2 = 0) = 0, (42)

h

(
ϕ1 = π

2
, ϕ2 = π

2

)
= J1 J2, (43)

where (43) gives the minimum potential energy. Both spins point
in the same direction and they are perpendicular to �r joining the
sources.

Let us continue our discussion with f 	= 1: We plug (37) into
(38) to get
[
(1 − f )2 − 1

]
sinϕ1 cosϕ2 = 0. (44)

There are again two cases which must be analyzed separately. One
is

(1 − f )2 − 1 = 0 ⇒ f ( f − 2) = 0. (45)

For this case f can be either 0 or 2. We know that f is in between
[3,1). Then f cannot be 0. Therefore, it must be 2. If f 	= 2 then
sinϕ1 cosϕ2 = 0 which is the second case. Before going into the
details of the second option, let us exhaust the first one:

f = 2 ⇒ 3(1 + x + 1
3 x2)

(1 + x + x2)
= 2,

x2 − x − 1 = 0, (46)

whose physical relation is

x = 1 + √
5

2
∼= 1.62.

Note that at this point,

h = − J1 J2 cos(ϕ1 + ϕ2), (47)

which is maximized for ϕ1 + ϕ2 = π , that is the same as the GR
case. Lets look at the f 	= 2 case. For this case

sinϕ1 cosϕ2 = 0.

Then we have two possibilities that are ϕ1 = 0 or π and ϕ2 is ar-
bitrary or ϕ2 = π

2 or 3π
2 and ϕ1 is arbitrary. Put ϕ1 = 0 or ϕ1 = π

(both will give the same result) into (36)

h = J1 J2(1 − f ) cosϕ2, (48)

taking the derivative of (48) with respect to ϕ2 to find the maxi-
mum value of h. Then,

∂h

∂ϕ2
= − J1 J2(1 − f ) sinϕ2 = 0,

which is solved for ϕ2 = 0,π . If we put these results separately
into (36) we get

h(ϕ1 = 0,ϕ2 = 0) = J1 J2(1 − f ) < 0, (49)

h(ϕ1 = 0,ϕ2 = π) = − J1 J2(1 − f ) > 0. (50)
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Therefore, h is maximum for (50). The second possibility is ϕ2 = π
2 .

Again (36) becomes for this choice as follows:

h = J1 J2 sinϕ1, (51)

note that there is no f dependence. The maximization condition
of (51) are

∂h

∂ϕ1
= J1 J2 cosϕ1 = 0,

ϕ1 = π
2 , 3π

2 . Putting these into (36) we get

h

(
ϕ1 = π

2
,ϕ2 = π

2

)
= J1 J2, (52)

h

(
ϕ1 = 3π

2
,ϕ2 = π

2

)
= − J1 J2. (53)

For this case, h is always a maximum for (52). Here note that when
f < 2 (50) becomes smaller than (52). Then for f < 2 the spins
point in the same direction and are perpendicular to the line join-
ing them. On the other hand, for f > 2 (50) is larger than (52) so
the spins are anti-parallel and point along the line joining them.
Namely for massive gravity the spins flip at mgr ≈ 1.62.
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