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Abstract

The quark mixing matrix is parameterised such that its “Cabibbo substructure” is emphasised. One can choose one of the
parameters to be an arbitrarily chosen angle of the unitarity triangle, for example, thegatde called®q).
0 2005 Elsevier B.V. Open access under CC BY license.

1. Introduction

The question of fermion masses and mixings has been among the most central issues in theoretical particle
physics since a long time. Within the three family version of the Standard Mafiehany specific forms for
the quark mass matrices have been proposed in the past with the hope that some insight may be gained into the
flavour problem. For example, already in 1978 Fritz§hproposed a structure which became quite popular as
it could be realised in some grand unified theories (see, for example[3RefSince then possible zeros in the
quark mass matrices (usually called texture zeros) have enjoyed special popularity as these make the computation:
more transparent and generally lead to specific predictions. Again one has hoped that clues to the solution of the
flavour problem may emerge. Another approach has been to “derive” quark mass matrices from experiments, see,
for example, Ref[4] where it was found that the two quark mass matrices are highly “aligned”.

A troubling factor in all such studies is that the mass matrices are not uniquely defined but are “frame” de-
pendent. In other words, given any set of three-by-three quark mass malifjcasd M, for the up-type and
down-type quarks respectively, one can obtain other sets by unitary rotations without affecting the physics. The
measurables are, of course, frame-independent and therefore they must be invariant functions under such unitary
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rotations. These functions were introduced%h and studied in detail ifi6]. Furthermore, it has been shown
recently[7] that this formalism can be extended to the case of neutrino oscillations.
For the quarks what enters, in the Standard Model, is the pair

Su=MM!,  Sg=MgM). 1)

The original motivation for the work presented here was to look for “the golden mean” mass matrices, to be
defined shortly. First we note that there are two “extreme frames”, one in which the up-type quark mass matrix is
diagonal, i.e.,

m2 0 0 mi 0 0
Se=| 0 m2 o), Sa=v[o m2 o]V @)
0 0 m? 0 0 m?

where then's refer to the quark masses awds the quark mixing matrix. The other extreme frame is one in which
the down-type quark mass matrix is diagonal, i.e.,

mf, 0 0 mg 0 0
Sa=| 0o m2 o, s.=vilo m? o]v. (3)
0 0 mf 0 0 m?

One may then wonder how the mass matrices would look like in the “golden mean frame”, i.e., the frame right in
the middle of the two extremes, where

m2 0 0 m% 0 0
Se=w'l o m2 o|w, Sq=w|[ o0 m2 o |W' (4)
0 0 m? 0 0 m?

W is the square root of the quark mixing matrix,
vV =Ww> (5)

In order to go to this frame one needs to compute the square root of the quark mixing matrix. The specific pa-
rameterisation oV turns out to be of paramount importance for achieving this goal. In spite of the fact that all
valid parameterisations are physically equivalent, most of them are “nasty” and do not allow their roots to be taken
so easily. After several attempts and having got stopped by heavy calculations, we have found a particularly con-
venient parameterisation, presented here below. It turns out that this parameterisation by itself is more interesting
than the answer to our original question, which will be dealt with in a future publication.

2. A parameterisation with manifest Cabibbo substructure

The quark mixing matrix is usually parameterised as a function of three rotation angles and one phase, generally
denoted by the sék, 62, 63 ands. However there are many ways in which these parameters can be introduced (for
areview see, for examplf8]) and the meaning of these quantities depends on how they are introduced. A specific
parameterisation may have some beautiful features as well as short-comings. For example, a special feature of the
seminal Kobayashi—-Maskawa parameterisaffijris that in the limitd; — O the first family decouples from the
other two. The parameterisation preferred by the Particle Data Gi@Jibas as its special feature that its phése
is locked to the smallest anglg but none of the families decouples if only one of the angles goes to zero. A most
important and easy to remember empirical parameterisation has been given by Wolfd®teumere the matrix
is expanded in powers of a parameter denoted,bwherex ~ 0.22.

In this Letter, we introduce an (exact) parameterisation of the quark mixing matrix in terms of four parameters
denoted by, 03, 8, anddg. The reason for calling one of the anglgswhen we have no othét's is to stay as
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close as possible to the usual nomenclature. Our ardghee often somewhat different from what is commonly
used and thus, in order not to confuse the reader, we do not denote theéh with

We write the quark mixing matrix (exactly) in a form such that its Cabibbo substructure is emphasised from the
very beginning,

V=Vo+s3Vi+ (1—c3)Va, (6)
wheress = sinfs, c3 = cosdz and the matrice¥;, j = 0— 2, are given by
i 0
co;@ sing 0 Ra(®) 0
Vo=|-sin® cosd 0]= , (7
0 0 1 00 1
0 0 ap
v1:<o 0 a2)5<<2| VS))’ (8)
by b} (())
A)(B
Vy = |[A){(B| o ©)
00 -1

|A>=(“l>, |B>=<”1) (10)
a» bo

and(|A)(B|);; = aib;. We will impose the following conditions oA andB:

(A|A)=(B|B) =1 (11)
and

|A)=—Ra(®)|B),  |B)=—Ra(—®)|A). (12)

By these conditions, the vectdrrepresents two real parameters, for example, the magnitudesofd the relative
phase ofz; anday. These will provide the two remaining parameteis, ¢4) that together withd andds add up
to the four parameters needed to get the most general quark mixing matrix. Becaus¢1df)Bjintroduces no
further parameters. Note that

Viz=aisa, V23 = apss, Va1 = bjss, Va2 = b3s3. (13)

We will also introduce the invariant defined by

|m(VajV/3k kagj)zjzeaﬂyejkb (14)
y,l

In the above parameterisation we find
J = s5c3sin® cos® Im(ajaz) = s3casin® cos® Im(b3bz), (15)

where the last equality follows from E{{L2).
We can check the unitarity of the matrik without specifying whatd (or equivalentlyB) looks like. We find

1 Ayl g
VoV, + iV =wviv) + v =0, wv)=wv/ = —E(vovzT + V) = 0
00 1

These identities are derived trivially by using the relation betwéemd B, Eq. (12).
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Given anyA or B we have the freedom to rephase it, for example,
|A) — €| A) (16)

whereby the vectoB is also rephased by the same amount (segE)). From the form of the matri¥’ we see
immediately that the elementdi, V12, V21, V22 and Va3 remain invariant under this rephasing.
In this parameterisation, the usual unitarity triangle, obtained fron{Z2y}, is a consequence of

a1cos® — arsin® + by =0. a7)

Thus the three angles of the triangle are given by the phasegi®fara; andaib]. We can choose out or B
such that one of these angles enters directly as a parameter in the vhafive simplest one to incorporate is the
angle usually denoted by, i.e., the phase af,a;. We could choose

_ sina,ge""ga
= (e ™) (18)
whereby
sind, = siny, J = s3¢3sin® cosd sindg cossg siny.

We would then comput® using Eq.(12).

To incorporate the anglg (also denoted by;) of the unitarity triangle we could take to be real and; to
have the phasés = 8. From Eq.(12), the reality condition om, implies that—sin®b; + cos®b, be real. This
fixes the vectoB and thereby also the vectdr. We find

1/ cos® sind,e'ss

BI=5 (—sin(b sina,ge"‘sa)’ (19)
where

0?2 =cod @ sirf 8, + sir? @ sir? §4. (20)
The vectorA thus obtained is given by

|A) = 1 (—[cos2bsin(S, + 8p) + Sindye®? — singge %] 21)

T 20 Sin2® sin(8, + 8g) '

Here

sinég = sing (BaBay = sin®; (Belle), (22)

where BaBaf11] and Belle[12] Collaborations have determined this angle in their study ofh8 system but
use different notations for it.
With this choice,J is given by

Sir(2®) siné, sindg sin(8, + 85)
402 '
Finally in order to utilise the third angle, also known ag», as a parameter we may take it to be the phase of
b1 and require that; be real. The procedure to be followed to achieve this goal is exactly as depicted above.

The above expressions may look somewhat complicated but they are generally quite easy to work with as we
often only need their closed forms and not their details.

J= s%cg (23)
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3. Special features and an estimation of the parameters

The above parameterisation, E@), is anexact form and not a perturbative expansion. It has several special
features as follows:

(2) In the limit 63 — O the third family decouples from the first two and the exact Cabibbo substructure, with
the mixing angle? between the first two families, emerges.

(2) Since the matriceg;, j = 0-2,do not depend o3, this parameterisation provides a convenient framework
for perturbative expansion in powers@fwhich is indeed small, of order?.

(3) We have seen that we can incorporate any one of the angles of the unitarity triangle as one of the four
parameters of the mixing matrix.

We now estimate the value of our parameté@rsds, é., 8g for the choice Eq(19) by comparing them with
Wolfenstein's parametefé 3]. Comparing the matrix element4» and Va3 yields that the angle® andos are or
orderi andx?, respectively,

D), O3~ AN (24)

Next, from the moduli of the matrix elemenigs, Vo3, V31, andVs, we find that the anglé, is much smaller than
the anglesg,

: U
SiNdg &~ ———, (25)
V(@ = p)2+n?
1-—
CoSsg = —’0, (26)
V(L= p)?+1n?
sindy >~ nA2. (27)
Finally, the invariant/ is given by
J ~02sins, = A%A*sing,. (28)

There is a somewhat subtle issue about this parameterisation that merits to be discussed even though it is
hypothetical. It concerns the case with CP conservation while we know that CP is violated and therefore the
parameters, anddg are both non-vanishing. Nonetheless, we are used to parameterisations with three rotation
angles and a phase such that when the phase approaches zero one immediately obtains a mixing matrix with thre
rotation angles. The converse is not necessarily true that when one of the angles vanishes so does the phase. T
remove the phase one often needs to expend some effort. The parameterisation here is more like having two rotatior
angles and two phases; both of the latter vanish when there is no CP violation. It would seem that we would end
up with only two angles@ and6s. How do we then recover the third angle, which should be there?

The answer is that even though in the CP conserving mindsg both approach zero their ratio needs to be
defined. We may introduce two anglés,andd,, by putting

D =01+067, (29)
Sinédy

—— =tanftan(f1 + 62). 30
sind; 1tan01 + 62) (30)

Taking the limits carefully as the twés approach zero, we find

_( sino1 _( sing
=) =) @)

and thus we end up with a mixing matrix with just three rotation angles. Furthermore, in this limit the invariant
contains three powers of sir(s beingé, or ég) in its numerator but only two in its denominator and thus vanishes
as it should.
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