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In [A.G. Smirnov, Fourier transformation of Sato’s hyperfunctions, Adv. Math. 196 (2005)
310–345] the author introduced a new generalized function space U (Rk) which can be
naturally interpreted as the Fourier transform of the space of Sato’s hyperfunctions on R

k .
It was shown that all Gelfand–Shilov spaces S ′ 0

α (Rk) (α > 1) of analytic functionals are
canonically embedded in U (Rk). While the usual definition of support of a generalized
function is inapplicable to elements of S ′ 0

α (Rk) and U (Rk), their localization properties
can be consistently described using the concept of carrier cone introduced by Soloviev
[M.A. Soloviev, Towards a generalized distribution formalism for gauge quantum fields, Lett.
Math. Phys. 33 (1995) 49–59; M.A. Soloviev, An extension of distribution theory and of the
Paley–Wiener–Schwartz theorem related to quantum gauge theory, Comm. Math. Phys. 184
(1997) 579–596]. In this paper, the relation between carrier cones of elements of S ′ 0

α (Rk)

and U (Rk) is studied. It is proved that an analytic functional u ∈ S ′ 0
α (Rk) is carried by a

cone K ⊂ R
k if and only if its canonical image in U (Rk) is carried by K .

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

It is well known from the theory of (Fourier) hyperfunctions that the description of the localization properties of gen-
eralized functions becomes a nontrivial problem in the case when all test functions are analytic (see, e.g., [2, Chapter 9]).
The standard definition of support is inapplicable to such generalized functions because of the lack of test functions with
compact support. In particular, this difficulty arises in the case of the Gelfand–Shilov spaces Sβ

α(Rk) with 0 � β < 1, which
consist of (restrictions to R

k of) entire analytic functions on C
k (we refer the reader to [1] for the definition and basic

properties of Gelfand–Shilov spaces). It was shown by Soloviev [8,9] that the localization properties of elements of S ′β
α (Rk)

(topological dual of Sβ
α(Rk)) can be consistently described using the concept of carrier cone instead of support. The definition

of carrier cones is based on introducing, for every closed cone K , a suitable test function space Sβ
α(K ) in which Sβ

α(Rk) is
densely embedded (the precise definition will be given later in this section); a functional u ∈ S ′β

α (Rk) is said to be carried
by a closed cone K if u has a continuous extension to Sβ

α(K ). Functionals carried by a closed cone K have much the same
properties as the ordinary generalized functions whose support is contained in K . In particular, every element of S ′β

α (Rk)

has a unique minimal carrier cone [8].
In [6], we introduced a new generalized function space U (Rk) which can be naturally interpreted as the Fourier trans-

form of the space of Sato’s hyperfunctions on R
k . The space of hyperfunctions on R

k can be thought of as the limiting case
as α ↓ 1 of the ultradistribution spaces S ′α

0 (Rk). Therefore, it is natural to try to define the Fourier transform U (Rk) of the
space of hyperfunctions by passing to the limit α ↓ 1 in the definition of the spaces S ′ 0

α (Rk), which are the Fourier trans-
forms of S ′α

0 (Rk) (recall that the Fourier transformation just interchanges the indices of Gelfand–Shilov spaces). However,
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we cannot just set U (Rk) = S ′ 0
1 (Rk) because the space S0

1(R
k) is trivial. In [6], we proposed a procedure for making S ′ 0

1 (Rk)

into a nontrivial space. The key observation is that the spaces S0
α(K ) over proper2 cones remain nontrivial after passing

to the limit α ↓ 1. This allows us to construct U (Rk) by suitably “gluing together” the generalized function spaces S ′ 0
1 (K )

associated with proper closed cones K ⊂ R
k (the precise meaning of such gluing is given by Definition 5).

The properties of the elements of U (Rk), which we called ultrafunctionals, are quite similar to those of analytic func-
tionals in S ′ 0

α (Rk). In particular, the definition of carrier cones is extended to the case of the space U (Rk) and it turns out
that every ultrafunctional has a uniquely defined minimal carrier cone. Moreover, for any α > 1, there is a natural mapping
S ′ 0
α (Rk) → U (Rk). The aim of this paper is to prove the following relation between carrier cones of elements of S ′ 0

α (Rk)

and U (Rk).

Theorem 1. Let α > 1. The canonical mapping εα: S ′ 0
α (Rk) → U (Rk) is injective. A nonempty closed cone K is a carrier cone of a

functional u ∈ S ′ 0
α (Rk) if and only if K is a carrier cone of εαu.

The injectivity of εα means that S ′ 0
α (Rk) can be considered as a subspace of U (Rk). In fact, it has already been estab-

lished in [6] using the injectivity of the canonical mappings of the spaces of ultradistributions to the space of hyperfunctions.
In this paper, however, we shall give a direct proof of the injectivity of εα that does not appeal to the properties of hyper-
functions.

Before we pass to the proof of this theorem, we first need to give precise definitions of carrier cones, ultrafunctionals,
and the mapping εα . As mentioned above, carrier cones can be consistently defined for all spaces Sβ

α with 0 � β < 1, but
we shall confine ourselves to the spaces S0

α entering the formulation of Theorem 1. Throughout the paper, all cones are
supposed to be nonempty. We say that a cone W is a conic neighborhood of a cone U if W contains U and W \ {0} is an
open set (note that the degenerate cone {0} is a conic neighborhood of itself ).

Definition 2. Let α � 1 and U be a cone in R
k . The Banach space S0,B

α,A(U ) consists of entire analytic functions on C
k with

the finite norm

‖ f ‖α
U ,A,B = sup

z∈Ck

∣∣ f (z)
∣∣e−σα

U ,A,B (z)
,

where

σα
U ,A,B(x + iy) = −|x/A|1/α + δU (Bx) + |B y|, (1)

δU (x) = infx′∈U |x − x′| is the distance from x to U , and | · | is a norm on R
k . The space S0

α(U ) is defined by the relation
S0
α(U ) = ⋃

A,B>0, W ⊃U S0,B
α,A(W ), where W runs over all conic neighborhoods of U and the union is endowed with the

inductive limit topology.

Clearly, the definition of S0
α(U ) does not depend on the choice of the norm on R

k . For definiteness, we assume the
norm | · | to be uniform, i.e., |x| = sup1� j�k |x j|. If U = R

k , then this definition is equivalent to the original definition
of S0

α(Rk) due to Gelfand and Shilov (see [1, Section IV.2.3]). If U ⊂ U ′ , then we obviously have the continuous inclusion
S0
α(U ′) → S0

α(U ). Let ρα
U ,U ′ denote the natural mapping from S ′ 0

α (U ) to S ′ 0
α (U ′) (if u ∈ S ′ 0

α (U ) then ρα
U ,U ′ u is the restriction

of u to S0
α(U ′)). For any α � 1 and any cone U ⊂ R

k , S0
α(U ) is a nuclear DFS3 space (see [7, Lemma 4]).

Let α > 1. A closed cone K is said to be a carrier cone of a functional u ∈ S ′ 0
α (Rk) if u has a continuous extension to the

space S0
α(K ). The following basic properties of carrier cones were established in [8,9].

Theorem 3. Let α > 1. Then we have

(1) The space S0
α(Rk) is dense in S0

α(U ) for any cone U ⊂ R
k.

(2) If both K1 and K2 are carrier cones of u ∈ S ′ 0
α (Rk), then so is K1 ∩ K2 .

(3) If K1 and K2 are closed cones in R
k, then for any u ∈ S ′ 0

α (Rk) carried by K1 ∪ K2 , there exist u1,2 ∈ S ′ 0
α (Rk) carried by K1,2 such

that u = u1 + u2 .

Statement (1) in Theorem 3 shows that the space of the functionals with the carrier cone K is naturally identified with
S ′ 0
α (K ) and that all mappings ρα

U ,U ′ are injective, while statement (2) in Theorem 3 implies that every functional in S ′ 0
α (Rk)

has a uniquely defined minimal carrier cone. The next result, which follows from Lemma 2.8 in [6], shows that S ′ 0
α (Rk) can

be expressed in terms of the spaces S ′ 0
α (K ) over proper cones K .

2 A cone U in R
k will be called proper if Ū \ {0} is contained in an open half-space of R

k (the bar denotes closure). For convex closed cones, this
definition is equivalent to the usual one, by which a cone is called proper if it contains no straight lines.

3 Recall [4] that DFS spaces are, by definition, inductive limits of countable sequences of locally convex spaces with compact linking mappings.
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Lemma 4. Let α > 1, K be a closed cone in R
k, and P (K ) be the set of all nonempty closed proper subcones of K ordered by inclusion.

Then the embeddings ρα
M,K : S ′ 0

α (M) → S ′ 0
α (K ), M ∈ P (K ), induce a topological isomorphism

lim−→
M∈P (K )

S ′ 0
α (M) � S ′ 0

α (K ), (2)

where the inductive limit is taken with respect to the linking mappings ρα
M,M′ , where M, M ′ ∈ P (K ) are such that M ⊂ M ′ .

If K is a proper closed cone, then the space S0
1(K ) is nontrivial because it contains all exponentials x + iy → el(x)+il(y) ,

where l is a linear functional on R
k such that l(x) < 0 for any x ∈ K \ {0}. Lemma 4 suggests that we can try to define the

“nontrivialization” U (Rk) of the space S ′ 0
1 (Rk) (and, more generally, of the space S ′ 0

1 (K ) over an arbitrary closed cone K )
as the left-hand side of (2) with α = 1. We then arrive at the following definition.

Definition 5. Let K be a closed cone in R
k . The space U (K ) is defined as the inductive limit lim−→M∈P (K )

S ′ 0
1 (M), where P (K )

is the set of all nonempty proper closed cones contained in K and the inductive limit is taken with respect to the linking
mappings ρ1

M, M′ , M, M ′ ∈ P (K ). The elements of U (Rk) are called ultrafunctionals. A closed cone K is said to be a carrier

cone of an ultrafunctional u if the latter belongs to the image of the canonical mapping from U (K ) to U (Rk).

The canonical mapping U (K ) → U (Rk) used in Definition 5 is induced by the mappings ρ1
M, M′ , where M ∈ P (K ) and

M ′ ∈ P (Rk) are such that M ⊂ M ′ . More generally, for any closed cones K ⊂ K ′ , the natural mappings ρ1
M, M′ , where

M ∈ P (K ) and M ′ ∈ P (K ′) are such that M ⊂ M ′ , induce a canonical mapping ρU
K , K ′ : U (K ) → U (K ′). In [6], the follow-

ing analogue of Theorem 3 for ultrafunctionals was proved.

Theorem 6.

(1) The natural mapping ρU
K , K ′ : U (K ) → U (K ′) is injective for any closed cones K and K ′ such that K ⊂ K ′ .

(2) Let {Kω}ω∈Ω be an arbitrary family of carrier cones of an ultrafunctional u. Then
⋂

ω∈Ω Kω is also a carrier cone of u.
(3) Let K1 and K2 be closed cones in R

k and an ultrafunctional u be carried by K1 ∪ K2 . Then there are u1,2 ∈ U (Rk) carried by K1,2
such that u = u1 + u2 .

It follows from statement (2) of Theorem 6 that every ultrafunctional has a uniquely determined minimal carrier cone.
For any proper closed cone K , the space U (K ) is naturally isomorphic to S ′ 0

1 (K ) and, therefore is nontrivial. In view of
statement (1) of Theorem 6, this implies the nontriviality of U (K ) for any closed cone K . If α > 1, then we have con-
tinuous inclusions S0

1(K ) ⊂ S0
α(K ) for all closed cones K . The natural mappings jαK : S ′ 0

α (K ) → S ′ 0
1 (K ) taking an element

of S ′ 0
α (K ) to its restriction to S0

1(K ) are compatible with the linking mappings ρ1
K ,K ′ and ρα

K ,K ′ , i.e., jαK ′ρα
K ,K ′ = ρ1

K ,K ′ jαK for

any K ⊂ K ′ . They therefore uniquely determine a natural mapping from lim−→M∈P (K )
S ′ 0
α (M) to lim−→M∈P (K )

S ′ 0
1 (M) = U (K )

for any closed cone K . Let eα
K : S ′ 0

α (K ) → U (K ) be the composition of this mapping with the canonical isomorphism
S ′ 0
α (K ) → lim−→M∈P (K )

S ′ 0
α (M), which exists by Lemma 4. The mapping εα : S ′ 0

α (Rk) → U (Rk) entering the formulation of

Theorem 1 is defined by setting εα = eα
Rk .

The mappings eα
K are compatible with the linking mappings ρU

K ,K ′ and ρα
K ,K ′ :

eα
K ′ρα

K ,K ′ = ρU
K ,K ′ eα

K , K ⊂ K ′. (3)

If u ∈ S ′ 0
α (Rk) is carried by K , then we have u = ρα

K ,Rk v for some v ∈ S ′ 0
α (K ). By (3), this implies that εαu = ρU

K ,Rk eα
K v , i.e.,

εαu is carried by K . Thus, it is only the “if” part of Theorem 1 that needs proof.
Theorem 1 is a generalization of Theorem 4 in [10] which states that, given 1 < α′ < α, a closed cone K is a carrier

cone of u ∈ S ′ 0
α (Rk) if and only if it is a carrier cone of the restriction of u to S0

α′ (Rk). Indeed, let v be the restriction of u

to S0
α′ (Rk). Then we have εαu = εα′

v and the above statement follows immediately from Theorem 1. It should be noted,
however, that despite the similarity of formulations, the proof of Theorem 1 turns out to be considerably more complicated
than that of Theorem 4 in [10].

We shall prove Theorem 1 in two stages. In the next section, we prove the statement under the additional assumption
that u is carried by some proper closed cone containing K (see Theorem 7 below). While the treatment in Section 2 is
mostly analytic, passing to the general case turns out to be a purely algebraic problem, which is solved in Section 3 using
the corresponding technique developed in [6].

2. The case of proper cones

The aim of this section is to prove the next statement.
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Theorem 7. Let α � 1 and K ⊂ K ′ be proper closed cones in R
k. If u1 ∈ S ′ 0

1 (K ) and u2 ∈ S ′ 0
α (K ′) coincide on S0

1(K ′), then there is
u ∈ S ′ 0

α (K ) such that u1 and u2 are the restrictions of u to S0
1(K ) and S0

α(K ′) respectively.

Theorem 7 implies Theorem 1 under the assumption that u is carried by some proper cone K ′ ⊃ K . Indeed, suppose
εαu is carried by K . Let u1 ∈ U (K ) and u2 ∈ S ′ 0

α (K ′) be such that εαu = ρU
K ,Rk u1 and u = ρα

K ′,Rk u2. Using (3), we obtain

ρU
K ′,Rk eα

K ′ u2 = ρU
K ,Rk u1 = ρU

K ′,Rkρ
U
K ,K ′ u1. By statement (1) of Theorem 6, this implies that ρU

K ,K ′ u1 = eα
K ′ u2. Hence, ρ1

K ,K ′qu1 =
jαK ′ u2, where q : U (K ) → S ′ 0

1 (K ) is the canonical isomorphism existing because K is proper, i.e., qu1 and u2 have the same
restrictions to S0

1(K ′). By Theorem 7, there is a û ∈ S ′ 0
α (K ) such that u2 is the restriction of û to S0

α(K ′). Hence û is an
extension of u and, therefore, u is carried by K . To prove Theorem 7, we need the next lemma.

Lemma 8. Let α � 1 and K ⊂ K ′ be proper closed cones in R
k. The space S0

1(K ′) is dense in the space S0
1(K ) ∩ S0

α(K ′) endowed with
its natural intersection topology.

Proof. Let g ∈ S0
1(K )∩ S0

α(K ′). Then there are A, B > 0 and proper conic neighborhoods W and W ′ of K and K ′ respectively

such that g ∈ S0,B
1,A(W ) and g ∈ S0,B

α,A(W ′). We can assume that W ⊂ W ′ (otherwise we can replace W with W ∩ W ′). Let f

be a function on C
k such that f (0) = 1 and f ∈ S0,b

1,a(W ′) for some a,b > 0 (for example, let l be a linear functional on

R
k such that l(x) > 0 for any x ∈ W̄ ′ \ {0}; then f (x + iy) = e−l(x)−il(y) belongs to S0,b

1,a(W ′) for a and b large enough). For
n = 1,2, . . . , we set gn(z) = g(z) f (z/n). It follows immediately from Definition 2 that

max
(‖gn‖1

W ,A,B̃
,‖gn‖1

W ′,na,B̃
,‖gn‖α

W ′,A,B̃

)
� ‖ f ‖1

W ′,a,b

(‖g‖1
W ,A,B + ‖g‖α

W ′,A,B

)
(4)

for all n, where B̃ = B + b. Hence, gn ∈ S0
1(K ′) and gn ∈ S0,B̃

1,A(W ) ∩ S0,B̃
α,A(W ′) for all n. Choose A′ > A and B ′ > B̃ . To prove

the statement, it suffices to show that gn → g in both S0,B ′
1,A′ (W ) and S0,B ′

α,A′ (W ′). By Definition 2, we have

∣∣gn(z) − g(z)
∣∣e−σ 1

W ,A′,B′ (z) � ‖gn − g‖1
W ,A,B̃

e−η|x|−(B ′−B̃)|y|, (5)

∣∣gn(z) − g(z)
∣∣e−σα

W ′,A′,B′ (z) � ‖gn − g‖α
W ′,A,B̃

e−η|x|1/α−(B ′−B̃)|y|, (6)

where z = x + iy and η is the minimum of A−1/α − A′−1/α and A−1 − A′−1. For R > 0, let Q R be the compact set
{x + iy ∈ C

k: |x| � R, |y| � R}. Fix ε > 0. By (4)–(6), there exists R such that the left-hand sides of (5) and (6) do not
exceed ε for all n and any z /∈ Q R . Since gn converge to g uniformly on compact sets in C

k , there is n0 such that the left-
hand sides of (5) and (6) do not exceed ε for any n � n0 and z ∈ Q R . Hence ‖gn − g‖1

W ,A′,B ′ � ε and ‖gn − g‖α
W ′,A′,B ′ � ε

for any n � n0. The lemma is proved. �
Proof of Theorem 7. Let l : S0

1(K ) ∩ S0
α(K ′) → S0

1(K ) ⊕ S0
α(K ′) and m : S0

1(K ) ⊕ S0
α(K ′) → S0

α(K ) be the continuous linear
mappings defined by the relations l( f ) = ( f ,− f ) and m( f1, f2) = f1 + f2 (the space S0

1(K ) ∩ S0
α(K ′) is endowed with

the intersection topology). Clearly, Im l = Kerm. Let v be the continuous linear functional on S0
1(K ) ⊕ S0

α(K ′) defined by
the relation v( f1, f2) = u1( f1) + u2( f2). By the assumption, we have v(l( f )) = 0 for any f ∈ S0

1(K ′). In view of Lemma 8,
this implies that vl = 0 and hence Kerm ⊂ Ker v . If the mapping m is surjective, then the open mapping theorem (see
Theorem IV.8.3 in [5]; it is applicable because DFS spaces are strong duals of reflexive Fréchet spaces [4] and, therefore, are
B-complete) implies that S0

α(K ) is topologically isomorphic to the quotient space (S0
1(K ) ⊕ S0

α(K ′))/Ker m. It hence follows
that there exists a continuous linear functional u on S0

α(K ) such that v = u ◦m. If f1 ∈ S0
1(K ) and f2 ∈ S0

α(K ′), then we have
u( f1) = um( f1,0) = v( f1,0) = u1( f1) and u( f2) = um(0, f2) = v(0, f2) = u2( f2), i.e., u1 and u2 are the restrictions of u to
S0

1(K ) and S0
α(K ′) respectively. Proving the statement thus reduces to proving the surjectivity of m. The latter is implied by

the following result on the decomposition of test functions.

Theorem 9. Let α � 1 and K ⊂ K ′ be proper closed cones in R
k. For any f ∈ S0

α(K ), there exist f1 ∈ S0
1(K ) and f2 ∈ S0

α(K ′) such
that f = f1 + f2 .

The case α = 1 is obvious, so we assume α > 1. The proof of Theorem 9 essentially relies on the following Hörmander’s
L2-estimate for the solutions of the inhomogeneous Cauchy–Riemann equations (see Theorem 4.2.6 in [3]).

Lemma 10. Let ρ be a plurisubharmonic function on C
k and η j , j = 1, . . . ,k, be locally square-integrable functions on C

k. If
∫ ∣∣η j(z)

∣∣2
e−ρ(z) dλ(z) < ∞, j = 1, . . . ,k,
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where dλ be the Lebesgue measure on C
k, and η j (as generalized functions) satisfy the compatibility conditions4 ∂̄ jηl = ∂̄lη j , then the

inhomogeneous Cauchy–Riemann equations ∂̄ jψ = η j have a locally square-integrable solution satisfying the estimate5

2
∫ ∣∣ψ(z)

∣∣2
e−ρ(z)(1 + |z|2)−2

dλ(z) � k2
k∑

j=1

∫ ∣∣η j(z)
∣∣2

e−ρ(z) dλ(z).

The idea of the proof of Theorem 9 is as follows. We first construct a smooth decomposition f = f̃1 + f̃2, where f̃1
and f̃2 have the same growth properties as elements of S0

1(K ) and S0
α(K ′) respectively, and look for f1 and f2 in the form

f1 = f̃1 − ψ and f2 = f̃2 + ψ . Then the requirement that f1,2 be analytic implies the equations ∂̄ jψ = ∂̄ j f̃1 = −∂̄ j f̃2. We
can therefore use Lemma 10 to find their solution that is small enough to ensure that f1,2 have the same growth properties
as f̃1,2 and, hence, satisfy the conditions of Theorem 9.

However, this strategy implies using L2-type norms, while the spaces S0
α(U ) are defined by supremum norms. To pass

to L2-norms, we make use of results of [7], where this problem was considered for a broad class of spaces containing all
spaces S0

α(U ) with α � 1. Given α � 1, A, B > 0, and a cone U in R
k , let H0,B

α,A(U ) be the Hilbert space of entire functions

on C
k with the finite norm

| f |αU ,A,B =
[∫ ∣∣ f (z)

∣∣2
e−2σα

U ,A,B (z) dλ(z)

]1/2

, (7)

where σα
U ,A,B is given by (1). It follows from Lemma 4 in [7] that

S0
α(U ) =

⋃
A,B>0, W ⊃U

H0,B
α,A(W ), (8)

where W ranges all conic neighborhoods of U and the union is endowed with the inductive limit topology. The next
elementary lemma, which follows from Lemma 9 in [7], summarizes some simple facts about cones in R

k needed for the
proof of Theorem 9.

Lemma 11. Let K1 and K2 be closed cones in R
k such that K1 ∩ K2 = {0}.

(A) There exist conic neighborhoods V 1,2 of K1,2 such that V̄ 1 ∩ V̄ 2 = {0}.
(B) There exists θ > 0 such that δK1 (x) � θ |x| for any x ∈ K2 .

Given a closed cone K in R
k and its conic neighborhood U , there is a conic neighborhood V of K such that V̄ ⊂ U

(apply Lemma 11(A) to K1 = K and K2 = (Rk \ U ) ∪ {0}). We shall derive Theorem 9 from the next lemma.

Lemma 12. Let α > 1 and A, B > 0. Let V ⊂ R
k be a proper cone, W be a proper conic neighborhood of V̄ , and U be a proper cone

containing W . For any ε > 0, A′ > A, and f ∈ H0,B
α,A(W ), there exist B ′ > 0, f1 ∈ H0,B ′

1,ε (V ), and f2 ∈ H0,B ′
α,A′ (U ) such that f = f1 + f2 .

Let f satisfy the conditions of Theorem 9 and U be a proper conic neighborhood of K ′ . By (8), there are A, B > 0 and a
conic neighborhood W of K such that f ∈ H0,B

α,A(W ). We can assume that W ⊂ U (otherwise we replace W with U ∩ W ).

Let V be a conic neighborhood of K such that V̄ ⊂ W . By Lemma 12, we have f = f1 + f2, where f1 ∈ H0,B ′
1,ε (V ) and

f2 ∈ H0,B ′
α,A′ (U ) for some A′, B ′, ε > 0. It now follows from (8) that f1 ∈ S0

1(K ) and f2 ∈ S0
α(K ′) and, therefore, Lemma 12

implies Theorem 9.
As explained above, the proof of Lemma 12 is based on the L2-estimate given by Lemma 10. However, Lemma 10

involves plurisubharmonic functions, while the weight functions σα
U ,A,B used in the definition of the spaces H0,B

α,A(U ) are
not plurisubharmonic. This problem is resolved by the next lemma.

Lemma 13. Let α > 1, U be a proper cone in R
k, and K1 and K2 be closed cones such that K1 ∩ K2 = {0} and K1 ∪ K2 ⊂ U . For any

κ,d � 0, there exist constants b > 0 and H and a plurisubharmonic function � on C
k such that

�(x + iy) � −|x|1/α + b δU (x) + b|y|, x, y ∈ R
k, (9)

�(x + iy) � −κ |x| + bδK1 (x) + b|y|, x, y ∈ R
k, (10)

�(x + iy) � −|x|1/α − H, x ∈ K d
2, y ∈ R

k, (11)

where K d
2 = {x ∈ R

k: δK2 (x) � d} is the closed d-neighborhood of K2 .

4 Here and hereafter, we use the short notation ∂̄ j for ∂/∂ z̄ j .
5 The estimate in Lemma 10 differs from the estimate in [3] by the factor k2 in the right-hand side, which appears because we use the uniform norm

instead of the Euclidean norm used in [3].
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Before proving Lemma 13, we derive Lemma 12 from Lemma 13.

Proof of Lemma 12. Without loss of generality, we can assume that W̄ ⊂ U (otherwise we can replace U with Ū ). Fix δ > 0
and choose a nonnegative smooth function g0 on R

k such that g0(x) = 0 for |x| � δ and
∫

Rk g0(x)dx = 1. We define the
smooth functions g1 and g2 on R

k by the relations

g1(x) =
∫

Rk\W

g0(x − ξ)dξ, g2(x) =
∫
W

g0(x − ξ)dξ, x ∈ R
k.

For any x ∈ supp g2, we have δW (x) � δ. Hence,

σα
W ,A,B(z) � σα

Rk,A,B
(z) + Bδ, z ∈ supp g2 + iRk. (12)

By Lemma 11(A), there exists a conic neighborhood W ′ of (Rk \ W ) ∪ {0} such that W̄ ′ ∩ V̄ = {0}. By Lemma 11(B), there
is θ > 0 such that δ

Rk\W (x) � θ |x| for any x /∈ W ′ . For x ∈ supp g1, we have δ
Rk\W (x) � δ and, therefore, supp g1 \ W ′ is a

bounded set. It follows from Lemma 11(B) that δV (x) � θ ′|x| for some 0 < θ ′ � 1 and any x ∈ W ′ . Since δW (x) � |x|, we have

σα
W ,A,B(z) � σ 1

V ,ε,B̃
(z) + R, z ∈ supp g1 + iRk, (13)

where R is a constant and B̃ = B/θ ′ +1/(θ ′ε). We define the smooth functions f̃1 and f̃2 on C
k by the relation f̃1,2(x+ iy) =

g1,2(x) f (x + iy). Since f is analytic and g1 + g2 = 1, we have

∂̄ j f̃1(z) = −∂̄ j f̃2(z) = −1

2
f (z)

∂ g2(x)

∂x j
, j = 1, . . . ,k, z = x + iy ∈ C

k. (14)

It follows from the definition of g2 that all its partial derivatives are bounded on R
k , and in view of (12)–(14), we obtain

| f̃1|1V ,ε,B̃
< ∞, | f̃2|αRk,A,B

< ∞, |∂̄ j f̃1|αRk,A,B
< ∞ (15)

for any j = 1, . . . ,k. We now choose κ > A/ε and set d = δ/A, K1 = V̄ and K2 = ∂W (the boundary of W ). By Lemma 13,
there is a plurisubharmonic function � on C

k satisfying (9)–(11). Let

σ(z) = �(z/A) + B|y| + H, z = x + iy ∈ C
k, (16)

where H is the constant entering (11). Clearly, σ is a plurisubharmonic function on C
k , and it follows from (11) and (16)

that σ(x+ iy) � σα
Rk,A,B

(x+ iy) for any x ∈ K δ
2 and y ∈ R

k . Because g1 + g2 = 1, we have supp ∂ j g2 ⊂ supp g1 ∩ supp g2 ⊂ K δ
2,

and in view of (14) and (15), we obtain∫ ∣∣∂̄ j f̃1(z)
∣∣2

e−2σ(z) dλ(z) �
(|∂̄ j f̃1|α

Rk,A,B

)2
< ∞, j = 1, . . . ,k. (17)

Let σ̃ (z) = σ(z) + log(1 + |z|2). By Lemma 10, the equations ∂̄ jψ = ∂̄ j f̃1 have a locally square-integrable solution such that∫ ∣∣ψ(z)
∣∣2

e−2σ̃ (z) dλ(z) < ∞. (18)

Let b̃ > B + b/A. It follows from (9), (10), and (16) that

σ̃ (z) � σ 1
V ,ε,b̃

(z) + C, σ̃ (z) � σα

U ,A′,b̃(z) + C, z ∈ C
k, (19)

where C is a constant. In view of (14), we have ∂̄ j( f̃1 −ψ) = ∂̄ j( f̃2 +ψ) = 0; hence, there are entire functions f1 and f2 that
coincide almost everywhere with f̃1 −ψ and f̃2 +ψ respectively. By (18) and (19), we have |ψ |1

V ,ε,b̃
< ∞ and |ψ |α

U ,A′,b̃
< ∞.

In view of (15), this implies that f1 ∈ H0,B ′
1,ε (V ) and f2 ∈ H0,B ′

α,A′ (U ) for any B ′ � max(B̃, b̃). Moreover, f = f1 + f2 because
continuous functions coinciding almost everywhere are equal. The lemma is proved. �

The rest of this section is devoted to the proof of Lemma 13. Let Θ be the subharmonic function defined by the relation

Θ(z) = log

∣∣∣∣ sin z

z

∣∣∣∣, z ∈ C. (20)

Lemma 14. The function Θ is strictly decreasing on the segment [0,π ] of the real axis and satisfies the inequalities

Θ(x + iy) � Θ(x), x, y ∈ R, (21)

Θ(x + iy) � Θ(x) + |y|, x, y ∈ R, |x| � 3π/4. (22)
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Proof. We have (sin x/x)′ = x−2(x cos x − sin x). The function x cos x − sin x vanishes at x = 0 and strictly decreases on [0,π ]
because its derivative −x sin x is strictly negative for 0 < x < π . This implies that

x cos x < sin x, 0 < x � π, (23)

and, therefore, sin x/x strictly decreases on [0,π ]. Hence, Θ strictly decreases on [0,π ]. It is straightforward to check that∣∣∣∣ sin z

z

∣∣∣∣
2

= sin2 x + sinh2 y

x2 + y2
, z = x + iy ∈ C. (24)

Let 0 � s < t . Since the function (u + s)(u + t)−1 is increasing in u on [0,∞), we have (u + s)(u + t)−1 � s/t for any u � 0.
Setting s = sin2 x, t = x2, and u = sinh2 y and applying this inequality, we derive from (24) that∣∣∣∣ sin z

z

∣∣∣∣
2

� sin2 x + sinh2 y

x2 + sinh2 y
� sin2 x

x2
, z = x + iy ∈ C, x �= 0.

By continuity, this inequality remains valid for x = 0, and passing to the logarithms, we obtain (21). Further, it easily follows
from (24) that

Θ(x + iy) − Θ(x) = |y| + 1

2
log

sin2 x + cos 2x 1−e−2|y|
2 − 1−e−4|y|

4

sin2 x + sin2 x
x2 y2

.

Hence, to prove (22), it suffices to show that

cos 2x
1 − e−2|y|

2
− 1 − e−4|y|

4
� sin2 x

x2
y2, x, y ∈ R, |x| � 3π/4. (25)

If π/4 � |x| � 3π/4, then cos 2x � 0 and (25) is obvious. For any x, y ∈ R, we have 1 − e−4|y| � cos 2x(1 − e−4|y|) and,
therefore,

cos 2x
1 − e−2|y|

2
− 1 − e−4|y|

4
� cos 2x

(
1 − e−2|y|

2

)2

, x, y ∈ R.

Since (1 − e−2|y|)/2 � |y| for any y ∈ R and cos 2x � cos x for |x| � π/2, inequality (25) will be proved if we demonstrate
that cos x � x−2 sin2 x for |x| � π/4. This latter inequality holds because the function x2 cos x − sin2 x vanishes at x = 0 and
decreases on [0,π ] (in view of (23), its derivative does not exceed −4 sin x((x/2)2 − sin2(x/2)) and, hence, is nonpositive
for 0 � x � π ). The lemma is proved. �

We define the function μ on [0,∞) by the relation

μ(x) =
{

Θ(x), 0 � x � π/2,

− log |x|, x > π/2.

Thus, μ is a continuous function on [0,∞) such that μ(0) = 0 and μ(x) < 0 for x �= 0. It follows from Lemma 14 that μ
strictly decreases on [0,∞) and

Θ(x + iy) � μ
(|x|), x, y ∈ R, |x| � π/2. (26)

For any x, y ∈ R, we have | sin(x + iy)| � e|y|. Hence, Θ(x + iy) � − log |x| + |y| and in view of Lemma 14, we obtain

Θ(x + iy) � μ
(|x|) + |y|, x, y ∈ R. (27)

Lemma 15. Let 0 < a < b and let χ be the characteristic function of the segment [a,b] (i.e., χ(x) = 1 for x ∈ [a,b] and χ(x) = 0 for
x /∈ [a,b]). For any � > 0, there exist R > 0, x0 ∈ [a,b], and a subharmonic function Ψ on C such that

Ψ (x + iy) � xχ(x) + R|y|,
Ψ (x0 + iy) � x0,

x, y ∈ R, (28)

and Ψ is bounded below on the strip {x + iy ∈ C: |x| � �}.

Proof. For z ∈ C, let

t(z) = π

2(b + �)

(
z − b + a

2

)
.

We define the function μ̃ on R by the relation μ̃(x) = μ(|t(x)|)−μ(h), where h = t(b) = −t(a), and set λ = supx∈[a,b] μ̃(x)/x.
The function μ̃ is continuous, and μ̃(x) > 0 for a < x < b. Hence λ > 0 and there exists x0 ∈ [a,b] such that

λ = μ̃(x0)/x0. (29)
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Since μ̃(x) � 0 for x /∈ (a,b), we have

μ̃(x) � λxχ(x), x ∈ R. (30)

We now set Ψ (z) = λ−1[Θ(t(z)) − μ(h)]. Substituting t(x + iy) for x + iy in (27), we obtain Ψ (z) � λ−1μ̃(x) + R|y| for
any x, y ∈ R, where R = π/[2λ(b + �)]. In view of (30), this implies the upper inequality in (28). Since |t(x0)| � h � π/2,
substituting t(x0 + iy) for x + iy in (26) yields Ψ (x0 + iy) � λ−1μ̃(x0) for any y ∈ R. Together with (29), this gives the
lower inequality in (28). If |x| � � , then |t(x)| � π/2. By (26) and the monotonicity of μ, it hence follows that Ψ (x + iy) �
λ−1(μ(π/2) − μ(h)) for any x, y such that |x| � � . The lemma is proved. �
Lemma 16. Let K ⊂ R

k be a proper closed cone, V be its conic neighborhood, and l be a linear functional on R
k such that K \ {0} is

contained in the open halfspace {x ∈ R
k: l(x) > 0}. Then there exist constants r, r′ � 0 and a plurisubharmonic function Φ on C

k such
that

−r′|x| � Φ(x + iy) � max
(
l(x),0

) + r|y|, x, y ∈ R
k, (31)

Φ(x + iy) � r|y|, x /∈ V̄ , y ∈ R
k, (32)

Φ(x + iy) � l(x), x ∈ K , y ∈ R
k. (33)

Proof. Without loss of generality, we can assume K �= {0} (otherwise we can set Φ = 0). If k = 1, then we have either
K = R̄+ or K = R̄− , and Φ(x + iy) = max(l(x),0) satisfies (31)–(33) with r = r′ = 0. From now on, we assume k > 1. Let
λ = infx∈K , |x|=1 l(x). Since the infimum is taken over a compact set, where l is strictly positive, we have λ > 0. We thus
obtain

|x| � l(x)/λ, x ∈ K . (34)

Let Q = K ∩ {ξ ∈ R
k: l(ξ) = 1}. By (34), Q is bounded and, therefore, compact. Choose a basis e1, . . . , ek−1 in Ker l. For

ξ /∈ Ker l, let l1ξ , . . . , lk−1
ξ be linear functionals on R

k such that li
ξ (ξ) = 0 and li

ξ (e j) = δi
j (in other words, l, l1ξ , . . . , lk−1

ξ is the

dual basis of ξ/l(ξ), e1, . . . , ek−1). For any ξ /∈ Ker l, we define the norm | · |ξ on R
k by the relation

|x|ξ = ∣∣l(x)
∣∣ + ∣∣l1ξ (x)

∣∣ + · · · + ∣∣lk−1
ξ (x)

∣∣, x ∈ R
k.

Let M and m be, respectively, the supremum and infimum of |x|ξ on the compact set {(x, ξ) ∈ R
2k: |x| = 1, ξ ∈ Q }. Since

|x|ξ is strictly positive and continuous6 on this set, we conclude that 0 < m � M < ∞. We therefore have

m|x| � |x|ξ � M|x|, ξ ∈ Q , x ∈ R
k. (35)

Let 0 < a < b and χ be the characteristic function of [a,b]. By Lemma 15, there are R > 0, x0 ∈ [a,b], and a subharmonic
function Ψ on C such that inequalities (28) hold and Ψ is bounded below on the strip |x| � 1. Given a linear functional L
on R

k , we denote by L̂ its unique complex-linear extension to C
k: L̂(x + iy) = L(x) + iL(y). For ξ ∈ Q and τ > 0, we set

Φξ,τ (z) = Ψ
(
l̂(z)

) + τ

k−1∑
j=1

Θ
(

l̂ j
ξ (z)

)
, z ∈ C

k, (36)

where Θ is given by (20). Further, we set

Φ̃τ (z) = sup
ξ∈Q , s>0

sΦξ,τ (z/s), Φτ (z) = lim
z′→z

Φ̃τ (z′). (37)

Clearly, Φξ,τ is a plurisubharmonic function on C
k for any ξ ∈ Q and τ > 0. Hence Φτ is also a plurisubharmonic function

(see Section II.10.3 in [11]). We shall show that Φ = Φτ satisfies (31)–(33) for some r, r′ � 0 if τ is large enough. In view
of (27) and (28), it follows from (36) that

Φξ,τ (x + iy) � l(x)χ
(
l(x)

) + R
∣∣l(y)

∣∣ + τ

k−1∑
j=1

(∣∣l j
ξ (y)

∣∣ + μ
(∣∣l j

ξ (x)
∣∣))

� l(x)χ
(
l(x)

) + (R + τ )|y|ξ + τμ

( |l1ξ (x)| + · · · + |lk−1
ξ (x)|

k − 1

)
, x, y ∈ R

k,

6 The continuity follows from the fact that the mapping ξ → li
ξ from R

k \ Ker l to the space of linear functionals on R
k is continuous for any i =

1, . . . ,k − 1.
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where we have used the monotonicity and nonpositivity of μ. Note that l(x − l(x)ξ) = 0 and li
ξ (x − l(x)ξ) = li

ξ (x) for any

x ∈ R
k . This implies that |l1ξ (x)| + · · · + |lk−1

ξ (x)| = |x − l(x)ξ |ξ , and using (35), we obtain

Φξ,τ (x + iy) � l(x)χ
(
l(x)

) + rτ |y| + τμ

(
m

k − 1

∣∣x − l(x)ξ
∣∣), x, y ∈ R

k, (38)

where rτ = M(R + τ ). Since xχ(x) � max(x,0) for any x ∈ R and μ is nonpositive, it follows from (38) that Φξ,τ (x + iy) �
max(l(x),0) + rτ |y| for any ξ ∈ Q . This implies that Φτ satisfies the right inequality in (31) for r = rτ . Let H be such that
Ψ (x + iy) � −H for |x| � 1. By (26) and (36), we have Φξ,τ (x + iy) � −hτ , where hτ = H − τ (k − 1)μ(1), for any ξ ∈ Q and
x, y ∈ R

k such that |x|ξ � 1. Let x �= 0 and s = |x|ξ for some ξ ∈ Q . By (35), we obtain sΦξ,τ ((x + iy)/s) � −Mhτ |x| for any
y ∈ R

k . In view of (37), this ensures the left inequality in (31) for Φ = Φτ and r′ = Mhτ . Further, it follows immediately
from (38) that

Φξ,τ (x + iy) � rτ |y|, x, y ∈ R
k, l(x) /∈ [a,b], (39)

for any ξ ∈ Q . Let S = K ∩ {x ∈ R
k: a � l(x) � b}. By (34), S is a compact set and, therefore, the distance d between S and

the closed set (Rk \ V ) ∪ {0} is strictly positive. If a � l(x) � b, then l(x)ξ ∈ S for any ξ ∈ Q , and (38) yields

Φξ,τ (x + iy) � rτ |y| + b + τμ

(
md

k − 1

)
, y ∈ R

k, x /∈ V , a � l(x) � b. (40)

Together with (39), this implies that Φξ,τ (x + iy) � rτ |y| for any ξ ∈ Q , x /∈ V , and y ∈ R
k if τ � −bμ(md/(k − 1))−1. Since

R
k \ V̄ is an open set, it now follows from (37) that Φτ satisfies (32) for τ large enough and r = rτ . It remains to prove (33).

For x ∈ K \ {0}, we set ξx = x/l(x) and sx = l(x)/x0. Then we have li
ξx

(x) = 0 for i = 1, . . . ,k − 1. By (26), Θ(iy) � 0 for any
y ∈ R, and it follows from (28) and (36) that

sxΦξx,τ

(
(x + iy)/sx

)
� sxΨ

(
x0 + il(y)/sx

)
� sxx0 = l(x), x ∈ K \ {0}, y ∈ R

k.

In view of (37), this implies that Φτ satisfies (33). The lemma is proved. �
Proof of Lemma 13. Since every proper cone has a proper conic neighborhood, we can assume that U \ {0} is an open
set. By Lemma 11(A), there exist conic neighborhoods V 1 and V 2 of K1 and K2 respectively such that V 1 ∪ V 2 ⊂ U and
V̄ 1 ∩ V̄ 2 = {0}. Let l be a linear functional on R

k such that l(x) > 0 for any x ∈ Ū \ {0} and

inf
x∈V̄ 1, |x|=1

l(x) � κ. (41)

By Lemma 16, there exist r, r′ � 0 and a plurisubharmonic function Φ such that (31)–(33) hold for K = V̄ 2 and V =
(Rk \ V̄ 1) ∪ {0}. Since the space S0

α(R) is nontrivial, Lemma 5 in [7] ensures that there are constants B > 0 and H and a
plurisubharmonic function σ on C

k such that

−|x|1/α − H � σ(x + iy) � −|x|1/α + B|y|, x, y ∈ R
k. (42)

We now define the plurisubharmonic function � by the relation

�(z) = Φ(z) + σ(z) − l(x), z = x + iy ∈ C
k. (43)

By (33) and (42), � satisfies (11) for x ∈ V̄ 2. By Lemma 11(B), we have δK2 (x) � θ |x| for some θ > 0 and any x /∈ V 2

and, hence, K d
2 \ V̄ 2 is a bounded set. In view of (31), (42), and (43), it follows that � is bounded below on the set

{x + iy ∈ C
k: x ∈ K d

2 \ V̄ 2}. We can hence ensure (11) for all x ∈ K d
2 increasing, if necessary, the constant H . By (32), (41),

and (42), we have

�(x + iy) � −κ |x| + (r + B)|y|, x ∈ V 1, y ∈ R
k. (44)

By Lemma 11(B), there is θ ′ > 0 such that θ ′|x| � δK1 (x) for any x /∈ V 1. It follows from (31), (42), and (43) that

�(x + iy) � −κ |x| + θ ′−1(κ + |l|)δK1 (x) + (r + B)|y|, x /∈ V 1, y ∈ R
k,

where |l| = sup|x|=1 |l(x)|. Together with (44), this estimate implies (10) for any b � r + B + (κ + |l|)/θ ′ . Further, it follows
from (31), (42), and (43) that

�(x + iy) � max
(−l(x),0

) − |x|1/α + (r + B)|y|, x, y ∈ R
k. (45)

Using Lemma 11(B), it is easy to show that max(−l(x),0) � bδU (x) for any x ∈ R
k and some b > 0. Hence (45) implies (9)

for b large enough. The lemma is proved. �
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3. Proof of Theorem 1

In [6], the proof of Theorem 6 fell into two largely independent parts: the analytic part concerning proper cones and
the algebraic part concerning passing from proper cones to the general case. Here, the situation is much the same, and the
problem of deriving Theorem 1 from Theorem 7 can be reformulated in a purely algebraic way in terms of abstract inductive
systems indexed by partially ordered sets of certain type.

We first recall some notation and definitions introduced in [6]. By an inductive system X of vector spaces indexed
by a partially ordered set Γ , we mean a family {X (γ )}γ ∈Γ of vector spaces together with a family of linear mappings
ρX

γ γ ′ : X (γ ) → X (γ ′) defined for γ � γ ′ and such that ρX
γ γ is the identity mapping for any γ ∈ Γ and ρX

γ γ ′′ = ρX
γ ′γ ′′ρX

γ γ ′

for γ � γ ′ � γ ′′ . Let ιX
γ denote the canonical embedding of X (γ ) in

⊕
γ ′∈Γ X (γ ′). The inductive limit lim−→ X is by definition

the quotient space [⊕γ ∈Γ X (γ )]/N X , where N X is the subspace of
⊕

γ ∈Γ X (γ ) spanned by all elements of the form

ιX
γ x − ιX

γ ′ρX
γ γ ′ x, x ∈ X (γ ). The canonical mapping ρX

γ : X (γ ) → lim−→ X is defined by the relation ρX
γ = jX ιX

γ , where jX

is the canonical surjection of
⊕

γ ∈Γ X (γ ) onto lim−→ X . As in [6], we do not assume that the index set Γ is directed. It is
important that the standard universal property of inductive limits remains valid for such generalized inductive systems.

Recall that a partially ordered set Γ is called a lattice if each two-element subset {γ1, γ2} of Γ has a supremum γ1 ∨ γ2
and an infimum γ1 ∧ γ2. A lattice Γ is called distributive if γ1 ∧ (γ2 ∨ γ3) = (γ1 ∧ γ2) ∨ (γ1 ∧ γ3) for any γ1, γ2, γ3 ∈ Γ .

Definition 17. A partially ordered set Γ is called a quasi-lattice if every two-element subset of Γ has an infimum and
every bounded above two-element subset of Γ has a supremum. A quasi-lattice Γ is called distributive if γ1 ∧ (γ2 ∨ γ3) =
(γ1 ∧ γ2) ∨ (γ1 ∧ γ3) for every bounded above pair γ2, γ3 ∈ Γ and every γ1 ∈ Γ .

Clearly, every (distributive) lattice is a (distributive) quasi-lattice.

Definition 18. An inductive system X of vector spaces indexed by a quasi-lattice Γ is called prelocalizable if the following
conditions are satisfied:

(I) The mappings ρX
γ γ ′ are injective for any γ ,γ ′ ∈ Γ , γ � γ ′ .

(II) If a pair γ1, γ2 ∈ Γ is bounded above and x ∈ X (γ1 ∨ γ2), then there are x1,2 ∈ X (γ1, 2) such that x = ρX
γ1,γ1∨γ2

(x1) +
ρX

γ2, γ1∨γ2
(x2).

(III) If a pair γ1, γ2 ∈ Γ is bounded above by an element γ ∈ Γ , x1, 2 ∈ X (γ1,2), and ρX
γ1,γ (x1) = ρX

γ2, γ (x2), then there is an

x ∈ X (γ1 ∧ γ2) such that x1 = ρX
γ1∧γ2,γ1

(x) and x2 = ρX
γ1∧γ2,γ2

(x).

Let X be an inductive system indexed by Γ . For I ⊂ Γ , we define the inductive system X I over I setting X I (γ ) = X (γ )

and ρX I

γ γ ′ = ρX
γ γ ′ for γ ,γ ′ ∈ I , γ � γ ′ (i.e., X I is the “restriction” of X to I). Let I ⊂ J ⊂ Γ . By the universal property of

inductive limits, ρX J

γ uniquely determine a map τ X
I, J : lim−→ X I → lim−→ X J such that τ X

I, J ρ
X I

γ = ρX J

γ for any γ ∈ I . Let λ be a
nondecreasing map from Γ to a partially ordered set Δ. With every δ ∈ Δ, we associate the set Γδ = {γ ∈ Γ | λ(γ ) � δ} and
define the inductive system λ(X ) over Δ setting λ(X )(δ) = lim−→ X Γδ and ρ

λ(X )

δδ′ = τ X
Γδ,Γδ′ for δ, δ′ ∈ Δ, δ � δ′ .

Let K(Rk) denote the set of all nonempty closed cones in R
k ordered by inclusion. Clearly, K(Rk) is a distributive lattice,

while the set P (Rk) of closed proper cones in R
k is a distributive quasi-lattice. For any α � 1, the spaces S ′ 0

α (K ), K ∈ K(Rk),
together with the canonical mappings ρα

K ,K ′ : S ′ 0
α (K ) → S ′ 0

α (K ′) (see the paragraph after Definition 2), constitute an inductive

system which will be denoted by Sα . Let S pr
α be the restriction of Sα to P (Rk), i.e., S pr

α = S P (Rk)
α . Let θ : P (Rk) → K(Rk) be

the inclusion mapping. It follows from Lemma 4 that θ(S pr
α ) is canonically isomorphic to Sα for α > 1, while Definition 5

implies that θ(S pr
1 ) coincides with the inductive system U indexed by K(Rk) constituted by the spaces U (K ) and the linking

mappings ρU
K ′, K .

Let α > 1. It easily follows from Theorems 3 and 6 that Sα and U are prelocalizable inductive systems. Since Sα is
prelocalizable, its restriction S pr

α to P (Rk) is also prelocalizable. The same is true for S pr
1 , which is naturally isomorphic to

the restriction of U to P (Rk).
Let X and Y be inductive systems indexed by the same set Γ . A map l from X to Y is, by definition, a family of

linear maps lγ : X (γ ) → Y(γ ) such that lγ ′ρX
γ γ ′ = ρY

γ γ ′ lγ for any γ � γ ′ . If λ :Γ → Δ is a nondecreasing mapping, then

every l : X → Y uniquely determines a map λ(l) :λ(X ) → λ(Y) such that λ(l)δρX Γδ

γ = ρY Γδ

γ lγ for any δ ∈ Δ and γ ∈ Γδ . To

reformulate Theorem 7 in terms of abstract inductive systems, we introduce the next definition.

Definition 19. Let X and Y be inductive systems over a partially ordered set Γ . A mapping l : X → Y is called regular if
the following conditions hold:

(a) lγ are injective for all γ ∈ Γ ,

(b) if γ � γ ′ and ρY
γ γ ′ y = lγ ′ x′ for some y ∈ Y(γ ) and x′ ∈ X (γ ′), then there exists x ∈ X (γ ) such that y = lγ x (which

implies, in view of the injectivity of lγ ′ , that x′ = ρX ′ x).
γ γ
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For any α � 1, we have S0
α({0}) = S0

1({0}), and applying Lemma 8 to K = {0}, we conclude that S0
1(K ′) is dense in S0

α(K ′)
for any closed proper cone K ′ . Hence, the mappings jαK : S ′ 0

α (K ) → S ′ 0
1 (K ) defined in the end of Section 1 are injective for

proper K . By Theorem 7, if K ⊂ K ′ and ρ1
K ,K ′ u1 = jαK ′ u2 for some u1 ∈ S ′ 0

1 (K ) and u2 ∈ S ′ 0
α (K ′), then there is a u ∈ S ′ 0

α (K )

such that u1 = jαK u and u2 = ρα
K ,K ′ u. Hence the mapping jα : S pr

α → S pr
1 determined by jαK is regular. We shall derive

Theorem 1 from the next algebraic statement.

Theorem 20. Let Γ be a distributive quasi-lattice, Δ be a partially ordered set, λ :Γ → Δ be a nondecreasing mapping, and X and Y
be prelocalizable inductive systems indexed by Γ . Then λ(l) is regular for any regular l : X → Y .

Proof of Theorem 1. As above, let θ : P (Rk) → K(Rk) be the inclusion mapping. Clearly, Γ = P (Rk), Δ = K(Rk), λ = θ ,
X = S pr

α , and Y = S pr
1 satisfy the conditions of Theorem 20 and, therefore, the mapping θ( jα) is regular. For K ∈ K(Rk), let

sαK : S ′ 0
α (K ) → lim−→M∈P (K )

S ′ 0
α (M) be the canonical isomorphism provided by Lemma 4 and sα : Sα → θ(S pr

α ) be the mapping

determined by sαK . Then eα = sαθ( jα), where eα : Sα → U is induced by the mappings eα
K defined in the end of Section 1.

Hence eα is regular, which implies, in particular, that εα = eα
Rk is injective. Let K be a carrier cone of εαu. Then we have

eα
Rk u = ρU

K ,Rk ũ for some ũ ∈ U (K ). Since eα is regular, there is û ∈ S ′ 0
α (K ) such that u = ρα

K ,Rk û and, therefore, u is carried

by K . Theorem 1 is proved. �
To prove Theorem 20, we shall need to introduce some additional notation. Given an inductive system X indexed by a

partially ordered set Γ and a subset I of Γ , we denote by T X
I the set of triples (x, γ ,γ ′) such that γ ,γ ′ ∈ I , γ � γ ′ , and

x ∈ X (γ ). If (x, γ ,γ ′) ∈ T X
Γ , then we set σ X (x, γ ,γ ′) = ιX

γ x − ιX
γ ′ρX

γ γ ′ x (recall that ιX
γ is the canonical embedding of X (γ )

into
⊕

γ ′∈Γ X (γ ′)). We denote by N X
I the subspace of

⊕
γ ′∈Γ X (γ ′) spanned by all σ X (x, γ ,γ ′) with (x, γ ,γ ′) ∈ T X

I . For

I ⊂ Γ , we denote by M X
I the subspace

⊕
γ ∈I X (γ ) of the space

⊕
γ ∈Γ X (γ ). Obviously, the space lim−→ X I is isomorphic to

M X
I /N X

I . Let jX
I be the canonical surjection from M X

I onto lim−→ X I . If I ⊂ J ⊂ Γ , then

τ X
I, J jX

I x = jX
J x, x ∈ M X

I . (46)

A subset J of a quasi-lattice Γ will be called ∧-closed if γ1 ∧ γ2 ∈ J for any γ1, γ2 ∈ J . If J ⊂ Γ is a ∧-closed set and J ′
is finite subset of J , then one can find a finite ∧-closed set J ′′ ⊂ J containing J ′ (for instance, the set consisting of infima
of all subsets of J ′ can be taken as J ′′). We say that a subset I of a partially ordered set Γ is hereditary if the relations
γ ∈ I and γ ′ � γ imply that γ ′ ∈ I . Clearly, every hereditary subset of a quasi-lattice is ∧-closed. The proof of Theorem 20
is based on the next lemma.

Lemma 21. Let Γ be a distributive quasi-lattice, X and Y be prelocalizable inductive systems indexed by Γ , and l : X → Y be a
regular mapping. Let I be a hereditary subset of Γ , J be a ∧-closed subset of Γ , and L : M X

Γ → M Y
Γ be the mapping induced by lγ .

Then we have

N Y
J ∩ (

M Y
I + L

(
M X

Γ

)) ⊂ N Y
I + L

(
N X

J

)
. (47)

Proof. For any y ∈ N Y
J , there is a finite ∧-closed set J ′ ⊂ J such that y ∈ N Y

J ′ . Hence it suffices to prove (47) for finite J .
For γ ∈ J , let k(γ ) be the cardinality | Jγ | of the set Jγ = {γ ′ ∈ J | γ ′ � γ }. Obviously, γ = inf Jγ . Therefore, if γ ,γ ′ ∈ J ,
γ �= γ ′ , and k(γ ′) � k(γ ), then Jγ �= Jγ ′ and, hence, k(γ ∧ γ ′) = | Jγ ∧γ ′ | � | Jγ ∪ Jγ ′ | > | Jγ | = k(γ ). For n ∈ N, set Cn =
{γ ∈ J | k(γ ) � n}. We have J = C1 ⊃ C2 ⊃ · · · ⊃ C| J | = {γ̃ }, where γ̃ = inf J , and Cn = ∅ for n > | J |. We say that y ∈ N Y

J
admits a decomposition of order n if there are a family of vectors yγ γ ′ ∈ Y(γ ) indexed by the set {(γ ,γ ′): γ ∈ Cn,

γ ′ ∈ J \ I, γ < γ ′} and an element ỹ ∈ N Y
I + L(N X

J ) such that7

y = ỹ +
∑

γ ∈Cn, γ ′∈ J\I, γ <γ ′
σ Y (yγ γ ′ , γ ,γ ′). (48)

If y has a decomposition of order > | J |, then y ∈ N Y
I + L(N X

J ). Therefore, the lemma will be proved as soon as we show that

every y ∈ N Y
J ∩ (M Y

I + L(M X
Γ )) admits a decomposition of order n for any n ∈ N. Since I is hereditary, every y ∈ N Y

J has a
decomposition of order 1, and we have to show that y has a decomposition of order n +1 supposing it has a decomposition
of form (48) of order n. For this, it suffices to establish that σ Y (yγ γ ′ , γ ,γ ′) has a decomposition of order n + 1 for every
γ ∈ Cn , γ ′ ∈ J \ I such that γ < γ ′ and k(γ ) = n. Let Λ = {β ∈ Cn | β < γ ′, β �= γ }. Since γ ′ /∈ I , the γ ′-component of ỹ − y
is equal to lγ ′ x′ for some x′ ∈ X (γ ′) and by (48), we have

ρY
γ γ ′ yγ γ ′ +

∑
β∈Λ

ρY
βγ ′ yβγ ′ = lγ ′ x′. (49)

7 Here and below, we assume that the sum of a family of vectors indexed by the empty set is equal to zero.
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If Λ = ∅, then the regularity of l implies that yγ γ ′ = lγ x and x′ = ρX
γ γ ′ x for some x ∈ X (γ ) and, hence, σ Y (yγ γ ′ , γ ,γ ′) =

L(σ X (x, γ ,γ ′)). Therefore σ Y (yγ γ ′ , γ ,γ ′) admits decompositions of all orders. Let Λ �= ∅ and β̃ = sup Λ (β̃ is well defined

because Λ is a finite set bounded above by γ ′; note that β̃ does not necessarily belong to J ). Set z = ∑
β∈Λ ρY

ββ̃
yβγ ′ .

By (49), we have

ρY
γ γ ′ yγ γ ′ + ρY

β̃γ ′ z = lγ ′ x′. (50)

Rewriting (50) in the form ρY
γ ∨β̃,γ ′(ρ

Y
γ ,γ ∨β̃

yγ γ ′ + ρY
β̃,γ ∨β̃

z) = lγ ′ x′ and using the regularity of l, we conclude that

x′ = ρX
γ ∨β̃,γ ′ x for some x ∈ X (γ ∨ β̃). By condition (II) of Definition 18, there exist η ∈ X (γ ) and ζ ∈ X (β̃) such that

x = ρX
γ ,γ ∨β̃

η + ρX
β̃, γ ∨β̃

ζ . Hence x′ = ρX
γ γ ′η + ρX

β̃γ ′ζ and in view of (50), we obtain

ρY
γ γ ′(yγ γ ′ − lγ η) + ρY

β̃γ ′ (z − lβ̃ ζ ) = 0.

By (III), there is a w ∈ Y(β̃ ∧ γ ) such that yγ γ ′ = lγ η + ρY
β̃∧γ ,γ

w . Because the quasi-lattice Γ is distributive, we have

β̃ ∧ γ = supβ∈Λ β ∧ γ and by (II), there is a family {wβ}β∈Λ such that wβ ∈ Y(β ∧ γ ) and w = ∑
β∈Λ ρY

β∧γ , β̃∧γ
wβ . We

thus have yγ γ ′ = lγ η + ∑
β∈Λ ρY

β∧γ ,γ wβ and, consequently,

σ Y (yγ γ ′ , γ ,γ ′) = L
(
σ X (η,γ ,γ ′)

) +
∑
β∈Λ

[
σ Y (wβ,γ ∧ β,γ ′) − σ Y (wβ,γ ∧ β,γ )

]
. (51)

If γ /∈ I , then (51) gives a decomposition of order n + 1 for σ Y (yγ γ ′ , γ ,γ ′) because k(γ ∧ β) > k(γ ) = n for
any β ∈ Λ. If γ ∈ I , then the desired decomposition is obtained by rewriting (51) in the form σ Y (yγ γ ′ , γ ,γ ′) =
w̃ + ∑

β∈Λ σ Y (wβ,γ ∧ β,γ ′), where w̃ = L(σ X (η,γ ,γ ′)) − ∑
β∈Λ σ Y (wβ,γ ∧ β,γ ) belongs to N Y

I + L(N X
J ). The lemma

is proved. �
The above proof is similar to that of Lemma A.1 in [6], which states that

N Y
Γ ∩ M X

I = N X
I (52)

for any prelocalizable inductive system Y indexed by a quasi-lattice Γ and any hereditary set I ⊂ Γ . In fact, it is easy to
derive (52) from Lemma 21. Indeed, let X be the trivial inductive system defined by the relations X (γ ) = 0 and ρX

γ γ ′ = 0
and let l : X → Y be such that lγ = 0 for all γ ∈ Γ . In view of condition (I) of Definition 18, l is a regular mapping and
applying Lemma 21 to J = Γ , we obtain (52). We are now ready to prove Theorem 20.

Proof of Theorem 20. Let L be as in Lemma 21. For any δ ∈ Δ, we have

λ(l)δ jX
Γδ

x = jY
Γδ

Lx, x ∈ M X
Γδ

. (53)

Let ξ ∈ λ(X )(δ) be such that λ(l)δξ = 0. Choose x ∈ M X
Γδ

such that ξ = jX
Γδ

x. By (53), we have jY
Γδ

Lx = 0 and, therefore,

Lx ∈ N Y
Γδ

. Applying Lemma 21 to I = ∅ and J = Γδ , we obtain Lx ∈ L(N X
Γδ

). Since L is injective, it follows that x ∈ N X
Γδ

and,

hence, ξ = jX
Γδ

x = 0. Thus, λ(l)δ is injective for any δ ∈ Δ. Let δ � δ′ and η ∈ λ(Y)(δ) and ξ ′ ∈ λ(X )(δ′) be such that

ρ
λ(Y )

δδ′ η = λ(l)δ′ξ ′. (54)

Let y ∈ M Y
Γδ

and x′ ∈ M X
Γδ′ be such that η = jY

Γδ
y and ξ ′ = jX

Γδ′ x′ . It follows from (46), (53), and (54) that jY
Γδ′ Lx′ =

τ Y
Γδ,Γδ′ jY

Γδ
y = jY

Γδ′ y. This implies that Lx′ − y ∈ N Y
Γδ′ . Applying Lemma 21 to I = Γδ and J = Γδ′ , we conclude that

Lx′ − y = ỹ + Lx̃, where ỹ ∈ N Y
Γδ

and x̃ ∈ N X
Γδ′ . Let x = x′ − x̃. We have Lx = y + ỹ ∈ M Y

Γδ
and, therefore, x ∈ M X

Γδ
. Let

ξ = jX
Γδ

x. Then ξ ∈ λ(X )(δ) and in view of (53), we have λ(l)δξ = jY
Γδ

(y + ỹ) = η. The theorem is proved. �
Note that only a part of conditions of Definition 18 is used in the proofs of Lemma 21 and Theorem 20. In fact, it suffices

to assume that X satisfies (II) and Y satisfies (II) and (III). At the same time, (I) is essential for deriving formula (52) that
lies at the basis of the proof of Theorem 6 given in [6].
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