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Abstract

We study the diameters of sections of convex bodies in RN determined by a random
N × n matrix �, either as kernels of �∗ or as images of �. Entries of � are independent
random variables satisfying some boundedness conditions, and typical examples are matrices
with Gaussian or Bernoulli random variables. We show that if a symmetric convex body K in
RN has one well bounded k-codimensional section, then for any m > ck random sections of K
of codimension m are also well bounded, where c�1 is an absolute constant. It is noteworthy
that in the Gaussian case, when � determines randomness in sense of the Haar measure on
the Grassmann manifold, we can take c = 1.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

Geometric Functional Analysis and the theory of finite dimensional normed spaces,
traditionally study the structure of subspaces and quotient spaces of finite dimensional

∗ Corresponding author. Fax: +1 780 492 6826.
E-mail addresses: alexandr@math.ualberta.ca (A.E. Litvak), Alain.Pajor@univ-mlv.fr (A. Pajor),

nicole.tomczak@ualberta.ca (N. Tomczak-Jaegermann).
1 This author holds the Canada Research Chair in Geometric Analysis.

0022-1236/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2005.06.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82019163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jfa
mailto:alexandr@math.ualberta.ca
mailto:Alain.Pajor@univ-mlv.fr
mailto:nicole.tomczak@ualberta.ca


A.E. Litvak et al. / Journal of Functional Analysis 231 (2006) 438–457 439

normed spaces, and operators acting on them. A parallel study in the general setting
of convex bodies and in the language of Asymptotic Convex Geometry is concerned
with the asymptotic properties of sections and projections of N-dimensional convex
bodies, when N grows to infinity. Then n-dimensional subspaces (sections) or quotients
(projections) are often constructed using various random methods. Randomness may
be understood in sense of the rotation invariant probability measure on the Grassmann
manifold of n-dimensional subspaces of RN or, for different purposes, it may carry
some specific structure, such as in the case of subspaces generated by n vectors with
random ±1 coordinates in RN . These examples can be seen as particular cases of a
general setting when randomness is determined by rectangular matrices with random
variable entries.

Consider a “random” N × n matrix � acting as a mapping � : Rn → RN (with
N �n). We can adopt two points of view. Subspaces of RN may be defined by n
linear forms, with say, ±1 coefficients, in which case we look for ker �∗ of a random
±1 matrix �. Alternatively, they may be generated by n vectors in RN , with say, ±1
coordinates, and then we look for the image of Rn under a ±1 matrix �. When the
matrix � is Gaussian, it is rotation invariant from both sides, and then the induced
measures on the linear subspaces, either ker �∗ or �(Rn), are both the Haar measures
on the Grassmann manifolds, but in general these measures may be different. Studies
of random subspaces defined by linear forms have been quite extensive in the Gaussian
case; and were developed in [MiP2] in the case of ±1 coefficients and in a more
general setting. The second approach, which is a dual point of view, is technically
very different and appeared recently in [LPRT]. (One important difference between the
present paper and the work in [LPRT], though, is that here we are more interested in
properties of the subspaces �(Rn) than in properties of � itself.)

Let us recall a well known example. In the studies of Euclidean subspaces of �N
1 ,

Kashin [Ka] proved that for every proportion 0 < � < 1, there exist subspaces of
RN of dimension n = [�N ] on which the �N

1 norm, defined for x = (xi) ∈ RN by
‖x‖1 = ∑N

1 |xi |, and the Euclidean norm are equivalent (with constants independent
on the dimension). In fact, “random” n-dimensional subspaces of RN (in sense of the
Haar measure on the Grassman manifold GN,n) are “nearly” Euclidean in that sense.
Kashin’s theorem was reproved by Szarek [Sz] by a different argument, which also
worked in a more general case of spaces with so-called bounded volume ratio [SzT]
(cf. also [P]). If one asks for an additional structure on the subspace, for instance for
subspaces defined by linear forms with random ±1 coefficients, an analogous fact was
proved in [MiP2]. For spaces generated by vectors with ±1 coordinates, the problem
was left open for some time. For �N

1 , it was proved in [JS] (see [S]) that one such a
subspace exists, and in [LPRTV1,LPRTV2] that subspaces generated by random vectors
with ±1 coordinates satisfy the conclusion of Kashin’s result.

This example raises several questions. If a convex body K contains one
k-codimensional section with a well bounded (Euclidean) diameter, does a random
section of a slightly larger codimension �k also has a well bounded diameter? Ran-
domness may be determined by the Haar measure on the Grassmann manifold, or by
vectors with random ±1 coordinates, or even by random matrices from a more general
class. Can one take � arbitrarily close to 1, in any of the above cases? Let us note that,
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since subspaces determined by random matrices from some class carry an additional
structure associated to the class, therefore, it is not even clear that the existence of
one section of K with good control of the diameter yields the existence of even just
one section of K determined by a matrix from the class and admitting a control of
the diameter. In this paper, we solve in positive the former series of questions, and we
answer the latter question in the rotation invariant case.

This type of general phenomenon, of a deterministic information implying a random-
ized one, has been first observed in [MiS] in the context of what is called the “global”
form of Dvoretzky’s theorem. In a “local” context similar questions on the Grassmann
manifold were considered in [LT], [MT1], [MT2]. In particular, the affirmative answer
to the first question of the preceeding paragraph immediately follows from one of the
main results of [LT] (Theorem 3.2), and a version of this question for dimensions
rather than codimensions was proved in [MT2] (Proposition 2.3). Independently, these
questions, again for the Grassmann manifold, were introduced and answered in [GMT]
and [V], however these proofs could not give � close to 1. The approach in [GMT] and
[V] is based on a recent Gromov’s theorem on the sphere—the isoperimetric inequality
for waists. In contrast, our approach is completely different and allows for a natural
generalization to random structures determined by random matrices described above.

The paper is organized as follows. In Section 1, we give our main new technical
tool on covering numbers, Theorem 1.3 and its Corollary 1.6, which will be important
for the next sections. In Section 2, we study subspaces defined by linear forms, and we
begin by illustrating this approach by the rotation invariant case. We give an estimate
of the diameter of random sections, with respect to the Haar measure on the Grassmann
manifold, assuming an information on the diameter of one section of higher dimension.
Our main result, Theorem 2.4, states the following:

Let 1�k < m < N be integers and a > 0, and set � := m/k. Let K ⊂ RN

be an arbitrary symmetric convex body such that there exists a k-codimensional
subspace E0 with diam(E0 ∩K)�2a. Then the subset of the Grassmann manifold
of all m-codimensional subspaces E ⊂ RN satisfying

diam(E ∩ K)�a
(
C
√

N/m
)1+1/(�−1)

has Haar measure larger than 1 − 2 e−m/2 (here C > 1 is a universal constant).
The fact that there is almost no loss in the dimension, that is, � = m/k can be

chosen as close to 1 as we wish, resolves the question left open by all the previous
proofs � > 2 was obtained and in [V] where � > 32 was required.

At the end of Section 2 we observe that our proof also works for subspaces given as
the kernels of random m×N matrices from a class of matrices endowed with probability
satisfying two abstract conditions. In particular, it gives a version of Theorem 2.4 for
kernels of ±1 random matrices. This general approach is further elaborated in the
subsequent section.
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In Section 3, we study the problem for sections defined by images by a random
matrix �, when � carries some additional structure. We discuss general conditions on
the set of random matrices that imply a similar statement as above; it turns out that,
for example, the class of matrices with independent subgaussian entries satisfies these
conditions. In Theorem 3.4 we prove estimates of the diameter of random sections—
given as images under � and with respect to our new probability measure on the set
of matrices—starting from an information on the diameter of one section of a higher
dimension.

Let us finish by recalling basic notations used throughout the paper. If X is a normed
space, we denote its unit ball by BX. We denote the Euclidean norm on Rn by | · | and
the Euclidean unit ball by Bn

2 . By a convex body K ⊂ Rn we mean a convex compact
set with the non-empty interior. We call K symmetric if it is centrally symmetric.

1. Results on covering numbers

In this section, we prove a result on covering numbers valid for operators between
normed spaces. A setting from convex geometry is discussed at the end of the section.
We start by recalling a few classical notations for operators.

If X and Y are normed spaces, an operator u : X → Y always means a bounded linear
operator, with the operator norm denoted by ‖u‖. For k = 1, 2, . . . , we denote by ak(u),
ck(u) and dk(u) the approximation, Gelfand, and Kolmogorov numbers, respectively.
Namely,

ak(u) = inf ‖u − v‖,

where the infimum runs over all operators v : X → Y with rank v < k; then

ck(u) = inf ‖u|E‖,

where the infimum runs over all subspaces E ⊂ X of codim E < k; and

dk(u) = inf ‖QF u‖,

where the infimum runs over all subspaces F ⊂ Y of dim F < k and QF : Y → Y/F

denotes the quotient map.
Let X be a linear space and K, L be subsets of X. We recall that the covering number

N(K, L) is defined as the minimal number N such that there exist vectors x1, . . . , xN

in X satisfying

K ⊂
N⋃

i=1

(xi + L). (1.1)
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Let ε > 0, a set of points x1, . . . , xN in X satisfying K ⊂ ⋃N
i=1 (xi + εL) is called an

ε-net of K with respect to L.
It is sometimes useful to specify a membership condition on the net (xi): if K ⊂

E ⊂ X and in the definition (1.1) we additionally require that xi ∈ E, 1� i�N ,
then we shall use the notation NE(K, L) instead of N(K, L). We also let N̄(K, L) =
NK(K, L).

For a convex body L ⊂ Rm and � ∈ (0, 1), we shall often need an upper estimate for
the covering number N(L, �L). We could use a standard estimate by (1+2/�)m, which
follows by comparing volumes and which would be sufficient for the results in Section
2. However, we prefer to use here a more sophisticated estimate by Rogers–Zong [RZ],
which leads to better results in this section.

Let m�1, we set �m = sup �(K), where the supremum is taken over all convex
bodies K ⊂ Rm and �(K) is the covering density of K (see [R2] for the definition
and more details). It is known (see [R1,R2]) that �1 = 1, �2 �1.5, and, by a result of
Rogers,

�m � inf
0<x<1/m

(1 + x)m(1 − m ln x) < m(ln m + ln(ln m) + 5)

for m�3. The following lemma has been proved in [RZ].

Lemma 1.1. Let K and L be two convex bodies in Rm. Then

N(K, L)��m

|K − L|
|L| .

Our result on covering numbers is based on the following key proposition.

Proposition 1.2. Let X, Y be normed spaces and let u : X → Y be an operator. Let
k�1 and a > 0, and let w, v : X → Y be such that u = w+v, rank v�k and ‖w‖�a.
Let E = vX. Then for every r > a, we have

N(uBX, rBY )�NE(uBX, rBY )��k

(‖u‖ + r

r − a

)k

.

Proof. Clearly, ‖v‖�‖u‖ + a. Therefore, we have

u(BX) ⊂ w(BX) + v(BX) ⊂ aBY + (‖u‖ + a)BY ∩ E. (1.2)

Set ε = r − a > 0. Since dim E�k, by Lemma 1.1 we can cover (‖u‖ + a)BY ∩ E by
N ��k (1 + (‖u‖ + a)/ε)k shifts (by vectors from E) of the balls εBY ∩ E, i.e.

(‖u‖ + a)BY ∩ E ⊂
N⋃

i=1

(xi + εBY ∩ E),
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where xi ∈ E, 1� i�N . Then the latter set in (1.2) is contained in

aBY +
N⋃

i=1

(xi + εBY ) ⊂
N⋃

i=1

(xi + (a + ε)BY ).

Since r = a + ε, we get NE(u(BX), rBY )�N ��k (1 + (‖u‖ + a)/(r − a))k , which
implies the desired result. �

As a consequence we obtain the following theorem.

Theorem 1.3. Let X, Y be normed spaces and let u : X → Y . Let k�1 and a > 0
satisfy ak+1(u)�a. Then for every r > a, one has

N(uBX, rBY )��k

(‖u‖ + r

r − a

)k

.

Proof. This theorem immediately follows from Proposition 1.2 and the definition of
ak(u). �

The next proposition is standard (see e.g. [Pi], also [P], Proposition 5.1, for definitions
and details).

Proposition 1.4. Let X, Y be normed spaces and let u : X → Y . Assume that j : Y →
�∞(I ) is an isometric embedding and that Q : �1(J ) → X is a quotient map, where I
and J are some sets of indexes. Then for every ε > 0 and every k�1 we have

(i) N̄(uBX, 2εBY )�N(juBX, εB�∞)�N(uBX, εBY ) and ck(u) = ak(ju);
(ii) N(uBX, εBY ) = N(uQB�1 , εBY ) and dk(u) = ak(uQ).

Theorem 1.3 together with Proposition 1.4 immediately imply the following corollary.

Corollary 1.5. Let X, Y be normed spaces and let u : X → Y . Let k�1 and a > 0,
and assume that either ck+1(u)�a or dk+1(u)�a. Then for every r > a one has

N̄(uBX, 2rBY )��k

(‖u‖ + r

r − a

)k

.

In geometric setting we typically consider convex bodies in RN and the identity
operators. Let us state a particular case of Corollary 1.5 that we will use later. Let
K, L ⊂ RN be symmetric convex bodies. Let X be RN equipped with the norm for
which the unit ball is BX = K and let Y be RN equipped with the norm for which
BY = L. Applying Corollary 1.5 to the identity operator we get the following:
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Corollary 1.6. Let K, L ⊂ RN be symmetric convex bodies. Let k�1 and A > a > 0
such that K ⊂ AL and K ∩ E ⊂ aL for some k-codimensional subspace E of RN .
Then for every r > a one has

N(K, 2rL)��k

(
A + r

r − a

)k

.

An analogous statement using now Kolmogorov information is also valid.

Corollary 1.7. Let K, L ⊂ RN be symmetric convex bodies. Let k�1 and let A >

a > 0 such that K ⊂ AL and PK ⊂ aPL for some projection P of corank k. Then for
every r > a one has

N̄(K, rL)��k

(
A + r

r − a

)k

.

A slightly weaker form of Corollary 1.7 was proved by Rudelson and Vershynin [V]
in the case when K is the Euclidean ball.

2. Diameters of random sections

We study the diameters of random sections of a convex body, where the sections are
given by kernels of a random Gaussian matrix, with the induced natural measure. On
the one hand, the results can be reformulated for sections viewed as elements of the
Grassman manifold. On the other hand, this approach may be developed for a larger
class of random matrices, as will be observed at the end of this section.

Let 1�m�N , and let

G : RN → Rm

be a random m × N matrix with independent N(0, 1/N) distributed Gaussian entries.
For future reference, we recall a well-known estimate [DS, Theorem 2.13]. Let � =

m/N , then for every t > 0, we have

P
(
‖G : �N

2 → �m
2 ‖ > 1 +√

� + t
)

�e−Nt2/2.

In particular,

P
(
‖G : �N

2 → �m
2 ‖ > 1 + 2

√
m/N

)
�e−m/2. (2.1)
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For � ∈ [0, 1], let

p(�) := P {|Gx0|��|x0|} ,

where x0 ∈ RN is an arbitrary vector (note that this probability does not depend on
x0).

We estimate the probability p(�) by a direct calculation, which may be of independent
interest. (In fact, a weaker estimate p(�)� |�√

NBm
2 | = (�

√
N)mvm, where vm is

defined and estimated in (2.2) below, would be sufficient for Theorem 2.4.)

Lemma 2.1. Let A > 1 and 1�m�N . Let G : RN → Rm be a Gaussian matrix
normalized as above. Then for every 0 < � <

√
(A − 1)m/(AN) we have

p(�)� A√
�m

(
e�2 N

m

)m/2

exp
(
−�2N/2

)
.

Proof. Let (gi) be independent N(0, 1)-distributed Gaussian random variables. We have

p(�) = P {|Gx0|��|x0|} = P

{
m∑

i=1

g2
i ��2N

}

= (2�)−m/2
∫
�
√

NBm
2

exp(−|x|2/2) dx.

Thus to get the desired estimate it is sufficient to estimate the latter integral.
Let

vm := |Bm
2 | = �m/2

�(1 + m/2)
� 1√

�m

(
2e�

m

)m/2

. (2.2)

Then for every a�
√

(A − 1)m/A, we have∫
aBm

2

exp(−|x|2/2) dx

= vm

∫ a

0
mtm−1 exp(−t2/2) dt

�Avm

∫ a

0

(
mtm−1 exp(−t2/2) − tm+1 exp(−t2/2)

)
dt

= Avmtm exp(−t2/2)

∣∣∣a
0

�A exp(−a2/2)
1√
�m

(
2e�a2

m

)m/2

.

This concludes the proof. �
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Now we pass to the main subject of this section and we start by introducing some
convenient additional notation. A set K is called star-shaped if tK ⊂ K for all 0� t �1.
For a set K ⊂ RN we denote by diam K the diameter of the Euclidean ball centered
at 0 and circumscribed on K.

For any � > 0 we set

K� = K ∩ �BN
2 . (2.3)

Recall a well-known and elementary fact

Fact 2.2. Let K ⊂ RN be star-shaped. If E ⊂ RN is a subspace such that diam(E ∩
K�) < 2�, then diam(E ∩ K) = diam(E ∩ K�) < 2�.

We also set, for � > 0 and any ε > 0,

N�(ε) := N(K�, εBN
2 ). (2.4)

The following probabilistic estimate is a starting point for our result.

Proposition 2.3. Let 1�m < N be positive integers, ε > 0 and � ∈ [0, 1]. Let K ⊂ RN

be star-shaped. Then

P{diam (ker G ∩ K) < 2�}�1 − N�(ε)p(�) − e−m/2, (2.5)

where � = 4ε/�.

Proof. Let � be an ε-net of K� with respect to the Euclidean norm, satisfying
|�|�N�(ε). Let x ∈ K� and let x0 ∈ � such that |x − x0|�ε. Suppose that x ∈ ker G

and |Gx0| > �|x0|.
Using (2.1) we get that, with probability �1 − e−m/2, we have

|x| � |x − x0| + |x0| < ε + |Gx0|
�

= ε + |G(x0 − x)|
�

� ε (1 + ‖G‖/�) �ε
(

1 + (1 + 2
√

m/N)/�
)

� (4ε/�) = �,

for any 0 < ��1. Since the probability that |Gx0| > �|x0| for all x0 ∈ � is larger than
or equal to 1 − N�(ε)p(�), then

P
{
diam

(
ker G ∩ K�

)
< 2�

}
�1 − N�(ε)p(�) − e−m/2.

Now, by Fact 2.2, the latter estimate immediately implies (2.5). �
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The main result of this section gives an estimate of the diameter of random sections
of symmetric convex bodies with respect to the rotation invariant probability measure
on the Grassmann manifold, assuming an information on the minimal diameter of
sections of a slightly smaller codimension. By allowing the ratio of the codimensions
of minimal sections and of random sections to be arbitrarily close to 1, it resolves the
case left open by all the previous proofs; in particular the result in [GMT] is valid for
� > 2 and in [V] for � > 32. It is worthwhile to note that in the work [GMT] the only
obstruction for letting � close to 1, is due to the use of an isoperimetric inequality of
Gromov, which is still open in an arbitrary dimension. Our work also provides a more
elementary proof of results from these papers in the full range of dimensions (hence
also codimensions).

Theorem 2.4. Let 1�k < m < N be integers and a > 0, and set � := m/k. Let K ⊂
RN be a symmetric convex body such that there exists a k-codimensional subspace E0
with diam(E0 ∩ K)�2a. Then the subset of the Grassmann manifold GN,N−m of all
m-codimensional subspaces E ⊂ RN satisfying

diam(E ∩ K)�a
(
C
√

N/m
)1+1/(�−1)

,

has Haar measure larger than 1 − 2e−m/2 (here 1 < C < 100 is a universal constant).

Proof. Instead of estimating the measure of the subset of GN,N−m considered in the
theorem we shall prove an analogous estimate for the probability

P

{
diam(ker G ∩ K)�a

(
C
√

N/m
)1+1/(�−1)

}
, (2.6)

where G : RN → Rm is a Gaussian random matrix.
Let ε := 4a. Fix � <

√
m/N/e to be determined later, and set � := 4ε/� = 16a/�.

By Corollary 1.6, we have

N�(ε)��k

(
2� + ε

ε − 2a

)k

= �k (2(1 + 8/�))k ��k (18/�)k .

Therefore applying Lemma 2.1 with A = 5
4 we obtain

N�(ε) p(�)��k (18/�)k (5/4)
(
�
√

eN/m
)m

.
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An elementary calculation shows that the latter expression is less than or equal to e−m/2

whenever

���0 :=
(
e
√

N/m
)−m/(m−k)

18−k/(m−k) (4/(5�k))
1/(m−k) .

Letting � = �0 we get

� = 16a/� � 16a
(
e
√

N/m
)�/(�−1) (

18(5�k/4)1/k
)1/(�−1)

� a
(
C
√

N/m
)1+1/(�−1)

,

for a certain absolute constant C. Combining this estimate with Proposition 2.3 and the
probability estimate above, we conclude the proof. �

The previous result gives an estimate of the diameter of random sections of a sym-
metric convex body K, when randomness is on the Grassmann manifold, or equivalently,
when random sections are generated by kernels of a Gaussian matrix. The method of
proof extends to a large class of matrices. More precisely, we can consider random
sections generated by kernels of a random matrix, satisfying certain natural conditions
required for the proof to work. We shall outline the new framework but we omit the
details of the proofs which are very similar to those discussed above.

Let 1�m < N , we consider a set M̄m,N of m × N matrices T (treated as operators
T : RN → Rm), endowed with a probability measure P. We say that M̄m,N satisfies
conditions (M̄1) and (M̄2) whenever

(M̄1) there exist 0 < t̄0 < 1 and 0 < 	̄0 < 1 such that for every x0 ∈ RN we have

P
{|T x0|� t̄0|x0|

}
� 	̄0;

(M̄2) there exist ā1 > 0 and 0 < 	̄1 < 1 such that

P
{
‖T : �N

2 → �m
2 ‖ > ā1

}
� 	̄1.

Of course the set of Gaussian random m × N matrices with independent N(0, 1/N)

distributed entries satisfies conditions (M̄1) (for an arbitrary 0 < t̄0 �1, and a suitable
	̄0) and (M̄2); this follows from (2.1) and Lemma 2.1. In fact, these conditions are
satisfied for a large class of matrices T, whose transposed, � = T ∗, belong to the
class M′(N, m, b, a1, a2) (for some b�1 and a1, a2 > 0), defined by (3.10) and (3.11)
below. Condition (M̄1) which is the one non-trivial to check, follows from Proposition
3.4 in [LPRT]. Namely, the inspection of the proof in [LPRT] shows that the argument
works for any rectangular random matrix satisfying the moment conditions, but without
any relation between the number of rows and the number of columns. More precisely,
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taking into account our normalization, a matrix T = (�ji)1� j �m,1� i �N satisfying
(3.10) admits an estimate, for every x0 ∈ RN ,

P
{
|T x0|�c′b−3

√
m/N |x0|

}
�e−c′′m/b6

, (2.7)

where 0 < c′, c′′ < 1 are universal constants. In particular, all examples of matrices
which work in Section 3, such as matrices with independent ±1/

√
N entries and, more

generally, subgaussian matrices, work as well here (after transposition).
Just repeating the proof of Proposition 2.3 we get the following:

Proposition 2.3′. Let 1�m < N and ε > 0. Let M̄m,N with a probability measure P

satisfy conditions (M̄1) and (M̄2). Let K ⊂ RN . Then

P {diam (ker T ∩ K) < 2�} �1 − N�(ε)	̄0 − 	̄1,

where � = ε(1 + ā1/t̄0).

Using this and the proof of Theorem 2.4, we get the general statement:

Theorem 2.4′. Let 1�k < m < N be integers and a > 0. Let M̄m,N with a probability
measure P satisfy conditions (M̄1) and (M̄2). Let

M̄ := �k

(
6 + 4ā1/t̄0

)k ��k

(
10 max(ā1/t̄0, 1)

)k
.

Let K ⊂ RN be a symmetric convex body such that there exists a k-codimensional
subspace E0 with diam(E0 ∩ K)�2a. Then

P
{
diam (ker T ∩ K) < 8a(1 + ā1/t̄0)

}
�1 − M̄ 	̄0 − 	̄1. (2.8)

As an example of an application we have the following result for sections determined
by kernels of matrices with independent ±1 entries.

Corollary 2.5. Let m < N and a > 0. Let T be an m × N matrix with independent
±1 entries. Let 1�k < cm/ log(N/m). Let K ⊂ RN be a symmetric convex body such
that there exists a k-codimensional subspace E0 with diam(E0 ∩ K)�2a. Then

P
{

diam (ker T ∩ K) < Ca
√

N/m
}

�1 − e−c′′′m. (2.9)

Here 0 < c < 1 and C, c′′′ > 0 are universal constants.

Proof (Sketch). Note that the matrix T/
√

N satisfies conditions (M̄1) and (M̄2) with
t̄0 = c′√m/N , ā1 an absolute constant, and 	̄0 = 	̄1 = e−c′′m, where c′, c′′ > 0 are
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absolute constants. Therefore (2.9) follows from (2.8) provided that M̄ 	̄0 �e−c′′m/2.
Similarly as in the proof of Theorem 3.4 below, this inequality is satisfied once we
have

(
C′√N/m

)k/m

e−c′′ �e−c′′/2

which can be ensured by the assumption k < cm/ log(N/m), for an appropriately
chosen constant c > 0. �

3. Diameters via random embeddings

In this section, we shall consider rectangular N ×n matrices (with 1�n < N ) acting
as embeddings from Rn into RN . Accordingly, for 1�n < N , we shall consider a set
MN,n of N × n matrices �, endowed with a probability measure P. We say that MN,n

satisfies conditions (M1) and (M2) whenever

(M1) for some 0 < t0 < 1 and 0 < 	0 < 1 we have

P
{
∃x ∈ Sn−1 s.t. �x ∈ z + t0B

N
2

}
�	0,

for every z ∈ RN ;
(M2) for some a1 > 0 and 0 < 	1 < 1 we have

P
{
‖� : �n

2 → �N
2 ‖ > a1

}
�	1.

It turns out that the above conditions are already sufficient to estimate the diameters
of sections determined by �(Rn) ⊂ RN , given by a “random” embedding �. This is
shown in the following theorem, similar in character to Proposition 2.3 and Theorem
2.4.

Theorem 3.1. Let 1�n < N . Let MN,n with a probability measure P satisfy conditions
(M1) and (M2) (with t0 < 6a1). Let k�1 satisfy

M := �k(6a1/t0)
k < (1 − 	1)/	0. (3.1)

If K ⊂ RN is a symmetric convex body, and for some a > 0 there exists a k-
codimensional subspace F ⊂ RN such that

diam(K ∩ F)�2a, (3.2)
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then

P
{
diam

(
K ∩ �(Rn)

)
< 8aa1/t0

}
�1 − M	0 − 	1. (3.3)

Recall that for a set K ⊂ RN and � > 0, the set K� was defined in (2.3).

Proof. We first show that for an arbitrary � > 0, letting ε := (t0/a1)�, we have

P
{
diam

(
K ∩ �(Rn)

)
< 2�

}
�1 − N�(ε)	0 − 	1, (3.4)

where the notation of N�(ε) = N(K�, εBN
2 ) was introduced in (2.4).

We start by considering the probability

P
{‖�x‖K� > (a1/�)|x| for all x ∈ Rn

}
. (3.5)

Observe that

N((a1/�)K�, t0B
N
2 ) = N�(ε).

Let � be an t0-net in (a1/�)K� with respect to the Euclidean norm and such that
|�|�N�(ε). Then the complement of the set considered in (3.5) has probability

P
{∃x ∈ Sn−1 s.t. �x ∈ (a1/�)K�

}
� P

⎛
⎝⋃

z∈�

{
∃x ∈ Sn−1�x ∈ z + t0B

N
2

}⎞⎠
� N�(ε)	0.

Thus, the probability in (3.5) is �1 − N�(ε)	0.
To conclude the proof of (3.4) we note that the set considered in (3.5) is contained

in the union

{‖�‖�a1 and ‖�x‖K� > (a1/�)|x| for all x ∈ Rn
} ∪ {‖�‖ > a1}

⊂ {‖�x‖K� > (1/�)|�x| for all x ∈ Rn
} ∪ {‖�‖ > a1} .

By property (M2) this implies that, with probability �1 − N�(ε)	0 − 	1, we have
diam(K� ∩ �(Rn)) < 2�. Thus (3.4) follows by Fact 2.2.

Now returning to the proof of (3.3), set ε = 4a and � = εa1/t0 = 4aa1/t0. By
Corollary 1.6, we immediately get

N�(ε)��k

(
2� + ε

ε − 2a

)k

= �k (2(2a1/t0 + 1))k ��k(6a1/t0)
k = M.

Therefore the proof of the theorem is concluded by applying (3.4). �
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Theorem 3.1 can be used to obtain a still different proof of estimates on the Grass-
mann manifold of the same type (and the same asymptotic order with respect to all
parameters) as Theorem 2.4. In this case the proof is based on an estimate on the
Grassmann manifold (or, equivalently, on the orthogonal group) which is considerably
deeper than its counterpart in Section 2. The following proposition is of independent
interest (and plays a similar role in the further argument as the estimate from Lemma
2.1).

Proposition 3.2. Let 
 > 0, let n�1 and N = (1+
)n. Let �N,n be the Haar measure
on the Grassmann manifold GN,n. For every 0 < t �1/2 and every z ∈ RN we have
the estimate

�N,n

{
E : ∃x ∈ SN−1 ∩ E s.t. x ∈ z + tBN

2

}
�
(

4et2 1 + 





)
n/2

. (3.6)

Proof. We may assume that z = re1 for some r > 0. Denote the subset of GN,n

discussed in the statement by Ft . If Ft is non-empty then we must have |1 − r|� t ,
equivalently,

1 − t �r �1 + t. (3.7)

A direct two-dimensional calculation shows that for x = (x1, . . . , xN) ∈ SN−1 the
condition |x − re1|� t is equivalent to

x1 � 1 + r2 − t2

2r
=: s.

Using this it is easy to see that Ft consists of all subspaces E for which there exists
x ∈ SN−1 ∩E such that x1 �s; in other words, such that the (Euclidean) distance from
x to the subspace spanned by e1 satisfies d (x, [e1])�

√
1 − s2. Since for such E we

have d(e1, E)�d(e1, [x]) = d(x, [e1])�
√

1 − s2 (where [x] is the subspace spanned
by x), then

Ft ⊂
{
E : E ∩

(
e1 +

√
1 − s2BN

2

)
�= ∅

}
.

The measure of this latter set can be estimated for example by the inequality from
[MiP1], Lemma 6, which can be reformulated that for every w ∈ RN and every
0 < � < 1, we have

�N,n

{
E : E ∩ (w + � |w|BN

2 ) �= ∅
}

�
(

�

√
Ne

N − n

)N−n

. (3.8)
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Therefore,

�N,n(Ft )�
(
(1 + 
)e(1 − s2)/


)
n/2
.

It is easy to check that 1 − s2 �2(1 − s)�4t2/(2r)�4t2 (the latter inequality follows
from the fact that t �1/2 implies r �1/2). Putting this into the last estimate we get

�N,n(Ft )�
(
4et2(1 + 
)/


)
n/2
, as required. �

Remark. Condition (3.6) can be equivalently expressed in terms of the orthogonal
group ON . Namely, if �N denotes the Haar measure on ON then, for every 0 < t �1/2
and z ∈ RN ,

�N

{
U : ∃x ∈ SN−1 ∩ Rn s.t. Ux ∈ z + tBN

2

}
�
(

4et2 1 + 





)
n/2

. (3.9)

Now, let again 
 > 0, n�1 and N = (1 + 
)n. Consider the set MN,n of N × n

matrices whose n columns are orthonormal in RN , with the natural probability measure
induced from the orthogonal group ON . Then (3.9) implies that MN,n satisfies condition

(M1) for every 0 < t0 �1/2, with the corresponding 	0 = (
4et2

0 (1 + 1/
)
)
n/2

. Since
(M2) is obviously satisfied with a1 = 1, for all U ∈ MN,n, we are in position to apply
Theorem 3.1 in a strong way.

Let 1�k < 
n and set � = 
n/k. Then it is easy to check that letting

�0 :=
⎛
⎝ 1

2e

√



1 + 


⎞
⎠

1+1/(�−1)

18−1/(�−1),

we get that for t0 = �0,

�k

(
6

t0

)k (
4et2

0
1 + 





)
n/2

�e−
n/2.

Thus, whenever for some F ⊂ RN of codimension k, (3.2) is satisfied, then (3.3) holds,
which translates into the same estimate on the Grassmann manifold as in Theorem 2.4.

As another application of Theorem 3.1 let us note that conditions (M1) and (M2)
are in fact satisfied by a wide class of matrices, namely, the class M(N, n, b, a1, a2)

considered in [LPRT,LPRTV1,LPRTV2] (for some parameters b, a1, a2). In our setting
it is more convenient to consider this class with a different normalization. For 1�n <

N , b�1 and a1, a2 > 0, we define the set of N × n matrices M′(N, n, b, a1, a2) to
consist of matrices � with real-valued independent symmetric random variable entries
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(�ij )1� i �N,1� j �n satisfying

1/
√

N � ‖�ij‖L2 �‖�ij‖L3 �b/
√

N for 1� i�N, 1�j �n (3.10)

and P
(
‖� : �n

2 → �N
2 ‖�a1

)
�e−a2N. (3.11)

Basic examples of matrices from M′(N, n, �, a1, a2) are random matrices whose entries
are centered Gaussian of variance 1/N or symmetric (±1/

√
N ) random variables, and

we will be mostly interested in the latter one. We refer the reader to [LPRT] for more
information.

The fact that the set M′(N, n, b, a1, a2) satisfies (M1) is one of the main technical
results in [LPRTV1,LPRTV2]. Due to a technical form of dependencies of constants
on the parameters, we state it as a separate lemma.

Lemma 3.3. Let 
 > 0, n > 1 and N = (1 + 
)n, and let b�1 and a1, a2 > 0. There
exist c1 > 0 of the form c1 = c

1+1/

3 , and c̃1, c2 > 0 such that whenever n� c̃

1+1/

1

then the set M′(N, n, b, a1, a2) satisfies (M1) with t0 = c1 and 	0 = exp(−c2N). Here
0 < c3 < 1 and c̃1 depend on b and a1, while c2 > 0 depends on b and a2 only.

Since M′(N, n, b, a1, a2) satisfies (M2) with 	1 = exp(−a2N), we get a result for
random sections of bodies generated by columns of matrices from M′(N, n, b, a1, a2).

For the convenience of the proof we shall assume, as we clearly may without loss
of generality, that a1 �1.

Theorem 3.4. Let 
 > 0, n > 1 and N = (1 + 
)n, and let a1, b�1 and a2 > 0.
There exist �0 > 1 such that for 1�k�
n/�0 the following holds. Let � be a random
matrix from M′(N, n, b, a1, a2). Let K ⊂ RN be a symmetric convex body and assume
that for some a > 0 there exists a k-codimensional subspace F ⊂ RN such that

diam(K ∩ F)�2a.

There exist c̃1, c
′
2 > 0 and 0 < c3 < 1 such that whenever n� c̃

1+1/

1 then, with

probability �1 − exp(−c′
2N), we have

diam(K ∩ �(Rn))�8aa1/c
1+1/

3 .

Here 0 < c3 < 1 and c̃1 depend on b and a1; c′
2 > 0 depends on b and a2; and �0

depends on b and a1, a2.

Proof. Let c̃1, c2 > 0 and 0 < c3 < 1 be from Lemma 3.3. We are looking for a bound
for k which ensures that

�k

(
6a1/c

1+1/

3

)k

e−c2N < e−c2N/2. (3.12)
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Combining this condition with Lemma 3.3 and Theorem 3.1, we would get the required
estimate on the diameter, with probability �1 − e−a2N − e−c2N/2 �1 − e−c′

2N , for an
appropriate c′

2.

Since �1/k
k �e then (3.12) is implied by

(
6ea1/c

1+1/

3

)k

< ec2N/2,

which, in turn, is yield by

6ea1 <
(
ec2�0/2c3

)1+1/

.

Since 6ea1 �1, it is clear that the latter inequality will be satisfied once we choose
�0 �1 so that, for example, exp(c2�0/2)c3 > 6ea1. This can be trivially done with �0
depending on a1, c2 and c3. �

Remark. Let us reiterate that the above theorem is valid for sections generated by n
vectors in RN with random ±1 coordinates. Here N = (1 + 
)n as above, and �0, c3,
c̃1 and c′

2 are absolute constants.

Let us finish with one more application of our results, which could be called a
“lower M∗-estimate” for subspaces generated by columns of random matrices satisfying
conditions (M1) and (M2). In fact the estimate below follows immediately from the
known results, by combining a “lower M∗-estimate”, in the form proved in [Mi] or
[PT], with Theorem 3.4; but the methods developed in this paper allow a direct and
relatively shorter proof. We shall prove the result for matrices from M′(N, n, b, a1, a2).
An analogous inequality for a general matrix satisfying (M1) and (M2) is quite obvious
and is left for the interested reader.

Recall that for a symmetric convex body K ⊂ RN we let

M∗(K) =
∫

SN−1

sup
y∈K

|(x, y)| dx.

Theorem 3.5. Let 
 > 0, n > 1 and N = (1 + 
)n, and let a1, b�1 and a2 > 0.
Let � ∈ M′(N, n, b, a1, a2) and let K ⊂ RN be a symmetric convex body. There

exist c̃1, c
′
2, C > 0 and c′

3 > 1 such that whenever n� c̃
1+1/

1 then, with probability

�1 − exp(−c′
2N), we have

diam(K ∩ �(Rn))�Ca1c
′
3

1+1/

M∗(K). (3.13)

Here c′
3 and c̃1 depend on b and a1, while C and c′

2 depend on b and a2.
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Proof. Recall that by Sudakov’s inequality (cf. e.g., [P]), for every symmetric convex
body K ⊂ RN and every ε > 0 we have

ε

√
log N(K, εBN

2 )�C′M∗(K)
√

N, (3.14)

where C′ > 0 is an absolute constant.
Now, let c̃1, c2 > 0 and 0 < c3 < 1 be from Lemma 3.3, and set c′

3 = 1/c3. Let

� = (2C′/
√

c2)a1c
′
3

1+1/

M∗(K),

and ε = (2C′/√c2)M
∗(K).

We shall now use (3.4) with t0 = 1/c′
3

1+1/
, 	0 = exp(−c2N) and 	1 = exp(−a2N).

Then, by Lemma 3.3, we get that whenever n� c̃
1+1/

1 , then

diam(K ∩ �(Rn))�(2C′/c2)a1c
′
3

1+1/

M∗(K),

with probability �1−N�(ε) exp(−c2N)−exp(−a2N). Thus it is enough to notice that,
by (3.14),

N�(ε)�N(K, εBN
2 )�eC′2M∗(K)2N/ε2 �ec2N/4,

to get the lower estimate for the probability �1 − exp(−3c2N/4) − exp(−a2N)�
1 − exp(−c′

2N), for a suitable choice of c′
2 > 0 depending on b and a2 only. �
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