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The S100A4 protein is reported as a pivotal player in the tumor microenvironment with a metastasis-promoting
function. Moreover, the upregulation of S100A4 is found in other non-malignant human disorders as cardiac
and pulmonary systems and rheumatoid arthritis. In this study, we investigated the expression and significance
of S100A4 in psoriasis. We found significant upregulation of S100A4 in the dermis of psoriatic skin compared
with normal skin. This pattern of S100A4 expression differs considerably from that of other S100 proteins,
S100A7 and S100A8/9, with predominant expression in the epidermis of psoriasis. Furthermore, we revealed a
massive release of the biologically active forms of S100A4 from psoriatic skin. Interestingly, we found
stabilization (increase) of p53 in the basal layer of epidermis in close proximity to cells expressing S100A4. To
examine the possible implication of S100A4 in the pathogenesis of psoriasis, we analyzed the effect of S100A4
blocking antibodies in a human psoriasis xenograft SCID mouse model and observed a significant reduction of
the epidermal thickness and impairment in cell proliferation and dermal vascularization. In conclusion, we
showed strong upregulation and release of S100A4 in the upper dermis of psoriatic skin and found evidence
indicating that S100A4 might actively contribute to the pathogenesis of psoriasis.
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INTRODUCTION
Psoriasis is a complex chronic skin disease with a histo-
pathological appearance of compromised inflammation,
epidermal hyperplasia, and vascular alterations. Several
observations point to T cells and inflammatory cytokines as
key players in psoriasis pathogenesis (Griffiths and Barker,
2007; Lowes et al., 2007). Subsets of dendritic cells were
shown to be fundamentally important in the orchestration of
psoriasis as well (Cumberbatch et al., 2006). A prominent
change in dermal microvascularity suggests that angiogenesis
may also be an essential component in the progression and
pathogenesis of the disease (Folkman, 1972; Barker, 1991;
Kuroda et al., 2001).

The S100 proteins comprise a family of calcium-binding
proteins, localized within the epidermal differentiation
complex on human chromosome 1 (1q21) (Engelkamp
et al., 1993). Several S100 proteins, S100A7, S100A8/9,
and S100A12, were found to be upregulated in psoriatic skin
(Mirmohammadsadegh et al., 2000; Broome et al., 2003). A
weak and sparse expression of S100A4 was shown earlier in

normal skin (Boni et al., 1997; Shrestha et al., 1998). In
addition, in mouse the expression of S100A4 has been
reported in regions of the epithelial sac of hair follicles
on hair damage and regeneration (Ito and Kizawa, 2001).
However, S100A4 has been extensively investigated in
cancer development. Metastasis-inducing ability of S100A4
was shown by several approaches in rodents and humans.
The tight association of S100A4 with metastases suggests it
as a reliable cancer prognostic marker (Helfman et al.,
2005). Recent findings have shown a remarkable increase of
S100A4 in the stroma compartment of different malignant
tumors (Schmidt-Hansen et al., 2004a, b; Grum-Schwensen
et al., 2005; Cabezon et al., 2007) and in non-malignant
diseases (reviewed in (Grigorian et al., 2008)), such as
rheumatoid arthritis (RA) (Klingelhofer et al., 2007), myo-
cardium infarction (Schneider et al., 2007), and pulmonary
artheropathy (Greenway et al., 2004). A common feature of
these diseases underlying their pathogenesis is the activation
of ‘‘host’’ cells (fibroblasts and immune cells) and factors
(cytokines, growth factors, matrix metalloproteinases, reac-
tive oxygen species, and others). Interestingly, we showed
earlier the basic expression of S100A4 under normal
conditions in monocytes, T-lymphocytes, and granulocytes
and its upregulation on their ‘‘inflammatory’’ challenge
(Grigorian et al., 1994).

S100A4 is categorized as an active extracellular factor
with powerful capacity to influence gene expression by
modulation of mitogen-activated protein kinases and trans-
cription factors p53 and NF-kB. S100A4 stimulates expres-
sion and proteolytic activation of MMPs, angiogenesis, and
cell invasion that could be abrogated by using S100A4-
neutralizing antibodies in mice (Schmidt-Hansen et al.,
2004a, b; Yammani et al., 2006; Schneider et al., 2007).
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S100A4 is externalized from macrophages, fibroblasts, and
activated lymphocytes into the tumor microenvironment
rather than from the tumor cells (Cabezon et al., 2007),
where the protein is known to stimulate motility and alter the
metastatic potential of cancer cells (Schmidt-Hansen et al.,
2004a; Grum-Schwensen et al., 2005), probably by the
modulation of key transcription factors, tumor suppressor
p53, and NF-kB (Grigorian et al., 2001).

An association of S100A4 and inflammation was first
observed by detecting S100A4 messenger RNA in the
synovial tissue of RA patients (Masuda et al., 2002). Later,
we showed in RA patients massive S100A4 protein expres-
sion in various cell types of the synovial tissue and its release
as a biologically active form into synovial fluid and plasma
(Klingelhofer et al., 2007).

Here, we present data on the involvement of S100A4
in another chronic inflammatory disease, psoriasis, which
shares cellular and molecular similarities with other auto-
immune inflammations, including RA. We observed a
significant expression of S100A4 in various cell types in
the upper dermal compartment of psoriatic skin compared
with non-involved skin and especially with healthy skin. Our
results showed a significant release of S100A4 in psoriatic
skin apparently in its oligomeric (active) conformation.
Moreover, blocking of S100A4 by means of specific
antibodies results in diminishing the thickness of psoriatic
skin, vascularization, and keratinocyte proliferation. We
suggest that cumulatively our data implicate S100A4 in the
pathogenesis of psoriasis and allow us to consider it as to
our knowledge previously unreported potential thera-
peutic target.

RESULTS
Expression of S100A4 in psoriatic skin

To assess the expression of S100A4 in psoriasis, we analyzed
skin biopsies from lesional psoriatic skin (PP), non-lesional
psoriatic skin (PN), and healthy skin (normal non-involved
skin (NN)) by immunohistochemical techniques using human
monoclonal anti-S100A4. We observed a significant increase
of S100A4 expression in PP compared with PN (Po0.05) and
NN (Po0.005) (Figure 1a–c). The S100A4 expression in PP
was intense in the upper layers of the dermis (stratum
papillae) compared with PN (1.8 fold) and NN (4.2 fold)
(Figure 1d). In PN and NN, the expression was in a few cells
in minor clusters (Figure 1a and b).

To compare the expression pattern of S100A4 with other
S100 proteins previously reported as being upregulated in
psoriasis (Mirmohammadsadegh et al., 2000; Broome et al.,
2003), we examined the matched biopsy samples for the
expression of S100A7, S100A8/9. We observed a striking
difference in the topography of S100A4 compared with other
S100 proteins. S100A7 was expressed exclusively in the
epidermis, S100A8 and S100A9 were expressed predomi-
nantly in the epidermis but also to a low degree in the dermis
(Figure 2). Expression of S100A4 is undetectable in the
epidermis by this approach. The level of S100A4 is much
higher in the dermis of PP compared with PN, whereas
expression of S100A7 is detected in the epidermis of PP

but not in PN (Figure 2). The expression level of S100A8
and S100A9 (Figure 2) was not strikingly different in PP
and PN.

To identify cells expressing S100A4 in psoriatic skin,
we performed double immunofluorescence stainings with
antibodies against S100A4 and cell-specific markers
(Figure 3). The data obtained clearly colocalized S100A4
with markers specific for T-lymphocytes (CD3), macrophages
(CD68), dendritic cells (CD1a), non-epithelial cells of
mesenchymal origin, mostly fibroblasts (Vimentin), and
finally alpha-smooth muscle actin-positive cells (ASMA)
located mostly in myofibroblasts and vascular pericytes.
Single S100A4-positive cells in the epidermis were revealed
to be T-lymphocytes and Langerhans cells in accordance with
cell-specific markers. We did not find coexpression of
S100A4 with B-cells (CD20) or hematopoietic stem cells
(CD34). These observations are in good agreement with our
previous data on S100A4 distribution in tumor stroma and
synovial tissue from patients with rheumatoid arthritis
(Cabezon et al., 2007; Klingelhofer et al., 2007).

The S100A4 release in psoriatic skin

In previous studies on various models (cancer, cardiac, and
RA), we observed a notable release of S100A4 into extra-
cellular space and postulated its functional activity in the
corresponding microenvironments. Therefore, next we
studied the S100A4 release in PP and compared it with
NN. The S100A4 concentrations in psoriatic tissue interstitial
fluids (PIF) and normal tissue interstitial fluids (NIF)
were estimated by means of sandwich ELISA. The average
concentration for PP was 1.38±0.82 mg ml�1 with the
range 0.37–3.3 mg ml�1 (n¼9) compared with NN 0.51±
0.10 mg ml�1, with the range 0.36–0.58 mg ml�1 (n¼ 4) being
statistically significant (Po0.005) (Figure 4). However, we
did not find any significant difference in plasma levels of
S100A4 from psoriasis patients and healthy subjects (data not
shown). These data suggest that S100A4 released in psoriatic
skin is either confined locally or is not enough to be
detectable in the plasma.

Status of the S100A4 and p53 proteins in psoriasis plaques

Various conformational forms of S100A4, dimer, and a
mounting level of oligomers were shown earlier both in vitro
and in vivo (Ambartsumian et al., 2001; Schmidt-Hansen
et al., 2004a; Klingelhofer et al., 2007). Moreover, the bio-
logical activity of the protein was attributed mainly to high-
molecular multimers. To assess a conformational structure of
S100A4 in the psoriatic milieu, we examined S100A4 both in
PP and PN biopsies (Figure 5a) and in psoriatic and normal
tissue interstitial fluids (Figure 5d) by western blot analysis.
Samples of tissue lysates (Figure 5a) and tissue interstitial
fluids (Figure 5d) were subjected to PAAG electrophoresis in
reduced condition (protein was boiled in 1% b-mercap-
toethanol and SDS). After blotting onto a membrane,
S100A4-specific protein bands were developed using highly
specific S100A4 mAb. The data obtained revealed that the
level of the S100A4 protein at 11 kDa is evidently much
higher in PP than in PN (Figure 5a) and especially in the case
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of PP1 with abundant high-molecular S100A4. To confirm
whether the detected high-molecular S100A4-positive signals
were specific, we loaded the PN1 and PP1 samples along
with the recombinant S100A4 protein in its oligomeric form
isolated after size-excluded chromatography in non-reducing
buffer (without b-mercaptoethanol and boiling) (Figure 5c-1)
and high-reducing buffer (with 5% b-mercaptoethanol, 2%
SDS, and boiling) (Figure 5c-2). At non-reducing conditions
(Figure 5c-1) and at low-reducing conditions (Figure 5a), we
observed an intense signal in the high-molecular zone with a

significant difference between PN1 and PP1. Oligomeric
S100A4 was detected only as a high-molecular weight
protein (Figure 5c-1). In contrast, in high-reducing conditions
the high-molecular signals were not present and strong bands
corresponding to the monomeric S100A4 emerged (Figure
5c-2) with the estimated ratio between the monomeric
S100A4 signals in low/high-reducing conditions 1:2.7 in
PP1 and 1:2 in PN1. This may indicate that the proportion of
high-molecular S100A4 in psoriatic skin is higher than in non-
involved psoriatic skin. In both cases, the pre-incubation of
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Figure 1. S100A4 is upregulated in the upper layers of dermis in psoriatic skin. The protein expression of S100A4 was studied by immunohistochemical

staining in biopsies from nine PP (a), nine PN (b), and four NN (c). The biopsies were scored with percentage positive cells in the epidermis (ED), upper layers of

the dermis including the superficial vascular plexus and papillary dermis (UD), and lower layers of the dermis including the deep vascular plexus and reticular

dermis (LD) (a–c). (d) Illustrated are the mean scored for each layer with SEM. Scale bars¼ 100mm.
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antibodies before the immunoprobing completely abolished
the appearance of S100A4-positivity in non-reducing and
high-reducing conditions (Figure 5c-3 and -4), confirming
the high specificity of the antibodies used. More striking
was the evidence of strong enrichment of high-molecular
forms of S100A4 in PIFs compared with NIFs in low-reduced
conditions. In NIFs, mainly an 11 kDa S100A4-specific
band corresponding to the S100A4 monomer was revealed,
whereas in PIFs a heterogonous pattern of the S100A4
protein, ranging up to more than 250 kDa, was easily
detected.

To investigate whether the high level of S100A4 in PP
and low level in PN reflected its transcriptional activation
and/or various aspects of the protein turnover (for example,
stabilization owing to modifications or enhanced secretion),

PP PN

S100A7

S100A8

S100A9

S100A4

Anti-rabbit IgG

Figure 2. S100 expression is upregulated in psoriatic skin.

Immunohistochemical stainings of patient-matched PP and PN biopsies for

S100A7 mAb, S100A8 mAb, S100A9 mAb, and S100A4 mAb. Furthermore,

control of the secondary antibody by replacing the primary antibody

with rabbit IgG is displayed. Scale bars¼ 100mm.

CD3 CD1a

CD68 CD34

CD20Vim

ASMA

Figure 3. Cell-specific localization of S100A4 in psoriatic skin. Confocal

microscopy images of S100A4 (red) colocalization with cell-specific markers

(green) in psoriatic skin biopsies assessed by double immunofluorescence

staining with antibodies against: anti-CD3 (T-lymphocytes), anti-CD1a

(dendritic cells), anti-CD68 (macrophages), anti-CD34 (stem cells),

Vim (cells of mesenchymal origin), anti-CD20 (B-lymphocytes), ASMA

(mostly pericytes). Cell nuclei were visualized with DNA-specific dye

To-Pro (blue). Scale bars¼ 10 mm.
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we studied the same biopsy samples for S100A4-specific
q-RT-PCR (Figure 5b). The data obtained showed a significant
transcriptional upregulation of S100A4 in PP compared with
PN (P¼0.03).

Previous studies on the models of cancer progression and
RA reveal that S100A4 has a potential in modulating the
activity of the tumor suppressor p53 protein (Grigorian et al.,
2001). Here, we also tested the expression of p53 in PP and
PN using p53 mAb in immunohistochemical stainings. A
clear, strong p53-specific positive pattern was observed in the
basal layer of the epidermis (Figure 6a and c) adjoining to
the dermal compartment enriched with active S100A4 in PP
biopsies (Figure 1c-1 and c-2), whereas in PN, with a lower
S100A4 expression (Figure 1b-1 and b-2), scattered p53-
positive cells were observed all through the epidermal layer
(Figure 6b and d). These data may associate upregulation
and/or stabilization of p53 with upregulation of S100A4
in PP.
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Figure 4. S100A4 is released from psoriatic skin to the interstitial fluid.

Biopsies from involved psoriatic skin (n¼11) and healthy skin (n¼ 4) were

transferred to DMEM and cut into small pieces and incubated for 24 hours.

S100A4 levels in the interstitial fluid from PP biopsies (PIF) and NN biopsies

(NIF) were determined by sandwich ELISA assay. Dots are individual

measurements and bars are median. The data were calibrated by the most

abundant protein band common from all samples found by SDS-PAGE.
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Figure 5. Oligomeric S100A4 was detected in biopsies and in supernatant from psoriatic skin. (a) Proteins (20 mg) were subjected to SDS –PAGE and analyzed

by western blotting using S100A4 mAb. Protein lysates loaded in a low-reducing buffer (1% b-mercaptoethanol and boiling) from PP (n¼3) and corresponding

PN biopsies (n¼3) were analyzed. (b) Transcriptional expression of the same samples was analyzed using q-RT-PCR. Displayed are the 2�DDct and

SEM, representing the ratio in involved psoriatic skin S100A4 gene expression normalized to the GAPDH endogenous reference gene and relative to the

patient-matched non-involved psoriatic skin (n¼ 3). A paired t-test was carried out on each duplicate S100A4 Ct normalized to GAPDH Ct between involved

and non-involved psoriatic skin (P¼ 0.03). (c-1–c-4) Oligomeric recombinant S100A4 in two concentrations (100 and 10 ng) and protein lysates from PN1 and

PP1 (20 mg) were subjected to PAAG electrophoresis in non-reducing buffer (without b-mercaptoethanol and boiling) (c-1 and c-3) and high-reducing buffer

(5% b-mercaptoethanol and boiling) (c-2 and c-4). After blotting, the membranes were probed with S100A4 mAb per se (c-1 and c-2) and S100A4 mAb

pre-incubated with recombinant S100A4 protein in the molar ratio of mAb/protein 1:5 (c-3 and c-4) for specific neutralization of S100A4. (d) Biopsies from

involved psoriatic skin (n¼ 8) and healthy skin (n¼3) were transferred to DMEM and cut into small pieces and incubated for 24 hours. S100A4 levels in

the released interstitial fluid from PP biopsies (PIF) and NN biopsies (NIF) were analyzed in a low-reducing buffer. Arrows designate S100A4 at 11 kDa.
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Effect of S100A4 pAb on psoriasis features in a human psoriasis
xenograft SCID mouse model

To investigate whether the expression of S100A4 in psoriatic
skin is significant for the pathogenesis of the disease, we
tested the effect of S100A4 pAb in a human psoriasis
xenograft SCID mouse model. First, we determined human
or murine S100A4 protein expression in the human psoriasis
skin xenograft in biopsies obtained 14 days after transplanta-
tion. Staining the biopsies with human monoclonal anti-
S100A4 recognizing only human S100A4, and S100A4 rabbit
pAb recognizing both human and mouse S100A4 revealed
among an ample quantity of pAb-positive cells a pool of cells
also positive for human monoclonal anti-S100A4 (Figure 7).
These data show that cells and S100A4 from both species,
respectively, contribute to the shaping of the psoriatic milieu
in this model. Therefore, to target the entire pool of the
S100A4 protein in the human psoriasis xenograft mouse
model, we used affinity-purified polyclonal antibodies.
Antibodies were injected intraperitoneally in two different
dose regimes in two mice in each group. Three control mice
were injected with rabbit IgG (see the protocol in Materials
and Methods). Two weeks after the last treatment, the mice
were killed and various parameters of the psoriatic lesions
were examined. We observed an apparent dose-dependent
effect of S100A4 pAb on the hallmark features of psoriasis in
mice. Thus, the epidermal thickness was significantly
reduced (1.5-fold) when comparing the low dose with
controls (Po0.05) and highly significant (3-fold) when
comparing the high dose with controls (Po0.005) (Figures
8a and 9). Moreover, the amount of proliferating cells
(Ki-67þ ) were significantly reduced at both S100A4 pAb
dose regimes compared with controls (Po0.05) (Figures 8b
and 9). Staining for T cells (CD3þ ) was not altered in the
S100A4 pAb-treated mice compared with control mice (data
not shown).

Importantly, we found signs of impaired vascularization
in psoriatic skin after administration of antibodies. Thus,
staining of skin biopsies with antibodies to alpha-smooth
muscle actin revealed both a reduced number of blood
vessels and defective capillary walls (thinner layer of alpha-
smooth muscle actin-positive pericytes), which can possibly
lead to vascular leakage (Figure 9).

DISCUSSION
Psoriasis is a disorder of the immune system characterized by
the uncontrolled proliferation of keratinocytes. Existing evi-
dence supports the concept of psoriasis as a chronic skin
inflammation mediated by T cells, DCs, and inflammatory
cytokines. A massive upregulation of several small calcium-
binding S100 proteins has been reported as well. Many
members of the S100 family are encoded in the epidermal
differentiation complex located on chromosome 1q21 (En-
gelkamp et al., 1993). This region is of particular interest, as it
encodes several other genes expressed in epidermal keratino-
cytes (Mischke et al., 1996; South et al., 1999). Thus, the
expression of S100A7 and S100A8/9, studied by means of real-
time PCR, was shown to be strongly (around 100 folds)
elevated in psoriatic plaques (Wolk et al., 2006). In addition,
hyperproliferation and abnormal differentiation of psoriatic
keratinocytes are associated with a massive upregulation and
secretion of S100A8/9 (Benoit et al., 2006). However, the role
of the proteins and pathways implicated remains unclear so far.

Figure 6. p53 expression in psoriatic skin. The p53 expression was assessed

by immunohistochemical staining using p53 antibodies on PP biopsies

(n¼2) (a and c) and compared with corresponding PN biopsies (n¼ 2)

(b and d). Scale bars¼100 mm.

Figure 7. Both human and murine S100A4 are expressed in the human

psoriasis xenograft model. One SCID mouse was xenografted with psoriatic

skin and a biopsy was obtained 14 days after transplantation. Double

immunofluorescence staining of the biopsy was carried out. A section was

labeled with: (a) 40, 6-diamidino-2-phenylindole (DAPI) to identify cell nuclei,

(b) S100A4 mAb (mouse anti-human monoclonal S100A4) and (c) S100A4

pAb (rabbit anti-human and mouse polyclonal S100A4). In (d), images

were merged. Scale bars¼10 mm.
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Our interest in studying the expression and functional
significance of S100A4 in psoriasis was based on a large body
of evidence on its implication in the inflammatory constituent
in various pathological milieu, such as tumor stroma and RA
(Schmidt-Hansen et al., 2004a, b; Grum-Schwensen et al.,
2005; Cabezon et al., 2007; Klingelhofer et al., 2007).

First, we studied the expression of S100A4 in psoriatic skin
and compared it with an adjacent, non-involved skin from
the same patients and skin biopsies from healthy subjects,
and found massive upregulation of S100A4 in the upper
dermal part in psoriatic skin compared with its much lower
levels in non-involved psoriatic skin and especially in healthy
skin. Furthermore, q-RT-PCR analysis data indicated that
the upregulation of S100A4 occurs on the transcriptional
level. After ex vivo incubation of biopsies, we observed a
significant release of S100A4 into the extracellular space.
More interestingly, S100A4 released from psoriatic skin is
folded in the high-molecular oligomeric structure compared
with S100A4 released from healthy skin. Earlier, we showed
in various models (stimulation of tumor cell, differentiation of
primary neurons and cardiomyocytes) that the biologically
active function of S100A4 is attributed to its oligomeric, but
not dimeric forms as it is postulated for several members
of the S100 family (Novitskaya et al., 2000; Ambartsumian
et al., 2001; Schmidt-Hansen et al., 2004a; Klingelhofer

et al., 2007). Later on, the association of S100 protein
oligomerization and biological function was attributed to
other members of the S100 family, such as S100A8/A9
(Leukert et al., 2006) and S100B (Ostendorp et al., 2007)
as well.

In our experiments, we were curious to compare the
expression pattern of S100A4 with that of other psoriasis-
associated S100 proteins, S100A7 and S100A8/9. Upregula-
tion of these proteins was shown earlier in the epidermal
compartment of the skin. We detected highly specific
expression of S100A7 exclusively in the epidermis of
psoriasis, but it was undetectable in non-involved psoriatic
skin, although a moderate expression of S100A7 was
observed by others in the stratum basale and spinosum of
normal epidermis (Broome et al., 2003). S100A8/9 revealed a
rather high expression pattern in the epidermis, whereas it
showed a clustered and scattered pattern in the dermis in
both involved and non-involved psoriatic skin. The data
obtained definitely show a distinctive pattern of S100A4
expression in inflamed skin compared with other S100A
proteins.

The main difference is that unlike other S100 proteins,
the expression of S100A4 colocalized with cell-specific
markers on various cell types of non-epithelial origin, such
as fibroblasts, pericytes, T-lymphocytes, macrophages, and
dendritic cells but not B cells and hematopoietic stem cells
(CD34þ ). These data are in concordance with our previous
observations on the cell-specific expression of S100A4 in
tumor stroma and synovial tissue in patients with rheumatoid
arthritis (Schmidt-Hansen et al., 2004a, b; Grum-Schwensen
et al., 2005; Cabezon et al., 2007; Klingelhofer et al., 2007).
Furthermore, we have shown earlier that the upregulation of
S100A4 in tumor stroma has a functional significance in
tumor metastases (Grum-Schwensen et al., 2005; Cabezon
et al., 2007). These data along with data obtained in other
groups, which have an important role of S100A4 in the
activation of stem cells at the onset of hair follicle
regeneration and proliferation (Ito and Kizawa, 2001), allow
us to consider the implication of S100A4 in the pathogenesis
of psoriasis.

Earlier, we reported a strong functional and physical
association between the tumor suppressor p53 protein and
S100A4, namely the binding of S100A4 with the C-terminal
domain of p53 (Chen et al., 2001; Grigorian et al., 2001;
Schmidt-Hansen et al., 2004a). Moreover, we showed that
the extracellular oligomeric S100A4 is able to enhance the
level of p53 and modulate a gene expression profile in
synovial fibroblasts from RA patients (Klingelhofer et al.,
2007). That could be explained by the finding that the
interaction between S100A4 and p53 affects the oligomer-
ization and, as a result, functional activity of p53 by binding
of S100A4 to the p53 tetramerization domain (Fernandez-
Fernandez et al., 2005). In agreement with earlier studies
(Tadini et al., 1989), we also found a strong p53-positivity in
the basal layer of epidermis in psoriatic lesions in close
proximity to the dermal zone enriched with S100A4-
expression, suggesting that S100A4 could modulate p53
function resulting in a cell-hyperproliferative condition in
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(n¼2), and in control mice 10 mg kg�1 rabbit IgG �3 (n¼ 3) in week 1

followed by three times half dose administration in week 2. One week after

the last treatment, the mice were killed and biopsies were obtained. The effect

of the treatment was assessed by the epidermal thickness (a), and number of

proliferating cells, Ki-67þ nuclear antigen (b). Data were analyzed by

imaging digital pixel-quantifying software ImageJ. Illustrated are the mean

and SEM of analyzed arbitrary units (AU) per mm for low and high dose, total

treated (mean of low and high), and controls (IgG).
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psoriasis. We propose that the modulation of p53 could be
associated with the S100A4-induced alteration of its oligo-
merization status, which may profoundly affect p53 function
(Joerger and Fersht, 2008).

We found solid evidence on the essential role of S100A4
in the pathogenesis of psoriasis by successful blocking of
S100A4 in the human psoriasis xenograft SCID mouse model.
This humanized model is suitable for studying psoriasis
pathogenesis and therapeutic interventions (Boehncke and
Schon, 2007). It was shown that in the xenografted human
skin, direct anastomoses between murine and human blood
vessels are formed with the participation of both murine and
human endothelial cells (Boehncke, 1997). Here, we show
that the dermal compartment of the xenograft is populated

with both mouse and human cells producing S100A4 specific
for both species. Therefore, we chose S100A4 pAb for
targeting of the protein in this ‘‘mixed’’ mouse/human model.
We carried out the antibody treatment in two-dose regimens,
a high and a low, during 3 weeks. Control mice received high
doses of rabbit IgG. In both the tested regimes, we did see a
statistically significant and rather strong reduction of epider-
mal thickness. Furthermore, the blocking of S100A4 protein
resulted in decreased proliferative activity of cells in the basal
layer assessed by Ki-67 immunopositivity. In addition, we
observed evident impairment in the vascular system of the
xenografted psoriatic skin that is marked by fewer and smaller
vessels with weaker staining for alpha-smooth muscle actin
pointing to a less developed vessel wall. We have observed

Epidermal thickness Ki-67+ ASMA+ ASMA+

Anti-S100A4 pAb

Control (IgG)

Treated human psoriasis xenograft SCID mice

Control (IgG)

Anti-S100A4 pAb
low dose

Anti-S100A4 pAb
high dose

Figure 9. Treatment with S100A4 pAb in psoriasis results in changed epidermal thickness, number of proliferating cells and endothelial cell morphology.

Human psoriasis xenograft SCID mice were treated with S100A4 pAb in two-dose regimens. (a) Biopsies were obtained from treated mice and subjected to

hematoxylin–eosin staining, immunohistochemistry staining for ki-67, and ASMA stainings. Illustrated is the averaged epidermal thickness. (b) The epidermal

thickness of all treated mice is illustrated. Scale bars¼ 100mm.
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these phenomena earlier in the microenvironment of
tumors raised in S100A4-deficient mice, which are not able
to support sufficiently tumor development and metastases
(Grum-Schwensen et al., 2005). Moreover, we reported
earlier a pro-angiogenic function of S100A4 (Ambartsumian
et al., 2001), which could give additional explanations of the
damaged vascularization on diminishing S100A4. In conclu-
sion, we suggest that S100A4 is an essential contributor to the
pathogenesis of psoriasis. We assume that cells activated (for
example, T-cells) at the initial stages of the disease produce
factors (cytokines, growth factors, etc) stimulating high-level
production and release of the S100A4 protein in the dermis of
psoriatic skin. Further, the biologically active S100A4 could
trigger and fuel pathways implicated in the modulation of gene
expression (for example, tumor suppressor p53) and thereby
have an effect on the cell proliferation, angiogenesis, and
additional attraction of immune cells. This circuit likely shapes
the pathogenesis and progression of psoriasis. We suggest that
the inhibition of S100A4 has a potential in quenching the
excited molecular events in psoriasis and propose that further
exploration of the role of S100A4 and anti-S100A4 tools will be
profitable in the therapy of psoriasis.

MATERIALS AND METHODS
Patients

Thirteen Caucasian patients with moderate to severe psoriasis

vulgaris were randomly selected from the Department of Dermato-

Allergology, Copenhagen University Hospital Gentofte. None of the

patients have used any systemically immunosuppressive medica-

tions 4 weeks before the study and no local treatment 2 weeks before

participating in the study. Eight healthy subjects were recruited in

the control group. The study was carried out in agreement with

the Declaration of Helsinki Principles and approved by the Danish

National Committee on Biomedical Research Ethics. All subjects

gave informed consent.

Punch biopsies (4 mm) were taken from involved psoriasis skin

lesions (PP) and non-involved psoriasis skin (PN). One skin biopsy

was obtained from each of the healthy subjects (NN).

For immunohistochemistry analysis, biopsies were fixed in 4%

buffered formalin and embedded in paraffin. For the analysis of

S100A4 in PIFs and NIFs, biopsies were transferred to 0.5 ml of

DMEM with 50 IU ml�1 penicillin, 50 IU ml�1 streptomycin (all from

Cambrex, Verviers, Belgium), cut into small pieces, and incubated at

37 1C, 5% CO2, in 24-well incubation plates for 24 hours, followed

by centrifugation to remove the cells and debris.

For western blot analysis and q-RT-PCR, the biopsy samples were

snap-frozen, ground in a mortar with a pestle in liquid nitrogen, and

immediately transferred to either a lysis buffer containing proteinase

mix inhibitors (Sigma-Aldrich, Brøndby, Denmark) or a lysis/binding

buffer for RNA purification (Applied Biosystems, Warrington, UK).

After incubation in lysis buffer, the samples were homogenized with

a rotor stator (IKA, Staufen, Germany).

Immunohistochemical and immunofluorescence studies
For immunohistochemical and immunofluorescence analyses, 4 mm

paraffin sections were used. To unmask the antigens, sections were

boiled in 0.01 M Tris–EDTA buffer (pH 9.0) in a microwave oven for

2.5 minutes at 600 W followed by 6 minutes at 220 W, rinsed in TBS

supplemented with 1% FCS, and incubated with primary antibodies

overnight in a cold room. We used the following dilutions of

the antibodies: polyclonal and monoclonal anti-S100A4; 1:2,000

(produced in the Department of Molecular Cancer Biology, Danish

Cancer Society); polyclonal anti-S100A9; 1:4,000, anti-S100A7;

1:2,000 and anti-S100A8; 1:4,000 (all provided by Dr J Celis, Danish

Cancer Society, Copenhagen, Denmark); anti-alpha smooth muscle

actin (ASMA), 1:4,000; (Sigma-Aldrich, Brøndby, Denmark); anti-

p53 DO1, 1:500 (provided by Dr J Bartek, Danish Cancer Society);

and monoclonal mouse anti-human anti-Ki-67 (MIB-1); diluted 1:50

(Dako, Glostrup, Denmark).

The detection procedures were conducted according to the

manufacturer’s protocol for the EnVision detection system/alkaline

phosphatase (Dako).

All stained sections were counterstained with hematoxylin

(Merck, Darmstadt, Germany).

Negative controls were performed with omission of the primary

antibody. For the double-labeling experiments, the following

antibodies were used: polyclonal and monoclonal anti-S100A4

(diluted 1:2,000; produced by M. Grigorian); monoclonal anti-CD68

(diluted 1:100; Dako); anti-CD1a (diluted 1:200; Dako); anti-CD3

(diluted 1:300; Abcam, Cambridge, UK); anti-vimentin (diluted

1:500; Dako); anti-CD20cy (diluted 1:100; Dako); anti-CD34

(diluted 1:200, Dako). Secondary antibodies coupled to Alexa 488

or Alexa 568 were used in dilution 1:1,500 (Molecular Probes,

Leiden, The Netherlands). Samples were analyzed by confocal

microscopy using an LSM 510 microscope (Carl Zeiss MicroImaging,

Oberkochen, Germany).

Sandwich ELISA

PIFs and NIFs from biopsies were analyzed for S100A4 concen-

trations by sandwich ELISA, using the modifications mentioned

in Klingelhofer et al. (2007). Briefly, the ELISA system was calibrated

with the purified recombinant His-tagged S100A4 protein in a

concentration range of 0.31–200 ng ml�1. Microtiter plates (Greiner

Bio-One, Frickenhausen, Germany) were coated with 100ml of a

1.25mg ml�1 volume of S100A4 pAb in a 0.025 M sodium carbonate

buffer, pH 9.5, and were incubated overnight in a cold room. Plates

were then washed with 1� PBS–0.1% Tween 20 (washing buffer)

and 2� SuperBlock PBS (Pierce, Rockford, IL). PIFs and NIFs from

the biopsies, at various dilutions, were added to SuperBlock PBS and

incubated for 1 hour at 30 1C, with agitation. Plates were washed and

incubated with 1.25 mg ml�1 of S100A4 mAb for 1 hour at 30 1C.

After washing, HRP-labeled rabbit anti-mouse antibodies (1:2,000

dilution; Dako) in SuperBlock PBS diluted 1:5 with PBS were added

and incubated for 1 hour at 30 1C. Plates were washed and

developed TMB Plus (3, 30,50-tetramethylbenzidine plus hydrogen

peroxide; Kem-En-Tec, Taastrup, Denmark). Absorbance at 450 nm

was measured using a VersaMax microplate reader (Molecular

Devices, Sunnyvale, CA).

Western blot analysis

Total protein (20 mg) in low-reducing protein loading buffer (50 mM

Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% b-mercaptoethanol,

12.5 mM EDTA, 0.02% bromophenol blue) were boiled and loaded

on either 4–20 or 15% gradient SDS-PAGE. For high-reducing

conditions, 5% b-mercaptoethanol, and for non-reducing conditions

0% b-mercaptoethanol was used. To test for specificity of antibodies,
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polyclonal anti-S100A4 antibodies were pre-incubated with the

oligomeric recombinant, S100A4 protein, in the molar ratio 1:5.

Protein-containing samples were transferred onto an Immobilon TM

transfer membrane (Millipore, Bedford, MA). The membrane was

blocked for 20 minutes with 5% non-fat milk in Tris-buffered saline

buffer plus 5% FCS and then incubated with S100A4 pAb (1:1,000)

for 1 hour, followed by incubation with horseradish peroxidase-

labeled goat anti-rabbit IgG secondary antibody (Dako) at a dilution

of 1:2,000. Positive bands were visualized by enhanced chemi-

luminescence using an ECL SuperSignal reagent in a western blotting

detection system (Pierce).

Transcriptional level of S100A4

Quantitative real-time polymerase chain reaction (q-RT-PCR) was

performed to investigate the mRNA expression level of S100A4 in

psoriatic and non-involved psoriatic skin from the same patient

samples as analyzed for western blot analysis. Total RNA was

isolated using the mirVana miRNA Isolation Kit (Applied Biosystems)

following the manufacturer’s instructions. Quality measurements of

the RNA were assessed using an Agilent RNA 6000 Nano Assay on

an Agilent 2100 Bioanalyzer (Agilent Technologies, Naerum, Den-

mark) having an RNA integrity number of more than 7.0. For the

generation of cDNA, we reverse-transcribed 4.5 ng total RNA using

random hexamer primers and Transcriptor Reverse Transcriptase

(Exiqon, Vedbaek, Denmark). The S100A4 gene (TTGTGTCCACCT

TCCACA and GCTGTCCAAGTTGCTCATCA) (TAG, Copenhagen,

Denmark) and the household gene, GAPDH (AAGGGTCTACA

TGGC and CGACCACTTTGTCAA) (DNA Technology, Aarhus,

Denmark), were amplified using the Brilliant SYBR green

QPCR master mix (Stratagene, Aarhus, Denmark) and detected by

q-RT-PCR and analyzed by MxPro (Stratagene). The S100A4 mRNA

was normalized to GAPDH and the difference in expression by

comparing PP with PN was determined by 2–DDct.

The human psoriasis xenograft SCID mouse model
For the human psoriasis xenograft model, a patient with severe

plaque psoriasis was recruited. A keratome biopsy of psoriatic skin

with an area of 8� 3 cm, containing epidermis, was obtained after

informed consent from the patient. The study was approved by the

Danish National Committee on Biomedical Research Ethics and the

Danish Experimental Animal Inspectorate. Immunocompromised

SCID mice were kept under pathogen-free conditions throughout the

study. The keratome biopsy was divided into eight pieces of

1.5� 1.5 cm and transplanted using Histoacryl topical skin adhesive

(TissueSeal, MI, USA) onto the back of eight 2-month-old C.B-17

SCID mice (Taconic, Ry, Denmark). All transplantations were

successfully accepted. Two weeks after transplantation, mice were

randomized into three groups for the intraperitoneal injections of (i)

control (10 mg kg�1 rabbit IgG) (n¼ 3) (vehicle, Sandoz, Basel,

Switzerland); (ii) S100A4 pAb at a dose of 10 mg kg�1 on days 1, 3,

and 5 followed by 5 mg kg�1 on days 7, 11, and 14 (n¼ 2); (iii)

S100A4 pAb at a dose of 5 mg kg�1 on days 1, 3, and 5 and

2.5 mg kg�1 on days 7, 11, and 14 (n¼ 2) (pAb was raised in the

Department of Molecular Cancer Biology). On day 25, mice were

killed, and xenografts were harvested and fixed in formalin for

paraffin embedding. Sections were processed for histological

analyses by staining with H&E (Merck, Glostrup, Denmark), and

immunoprobed for Ki-67 and ASMA.

Histological evaluation
All sections were blinded before evaluation and investigated. To

assess the epidermal thickness, H&E-stained sections were evaluated

by importing a digital image of each section to a digital image

processing program (Adobe Photoshop Elements 3, Alleroed, Den-

mark) where the epidermis (without the stratum corneum) was

cropped out and exported to a digital pixel-quantifying software

(ImageJ, http://rsbweb.nih.gov/, Bethesda, MD), where each epider-

mal layer was converted to an 8-bit black and white format with the

highest possible threshold for color intensity. Finally, the pixels were

measured and related to the epidermal length in mm, and the data

were summarized as the mean±SEM.

To assess the number of proliferative cells, sections stained for

Ki-67 were evaluated by importing the picture to the digital

image processing program (Adobe Photoshop elements 3) where

all positive ki-67 cells were cropped out and exported to the

digital pixel-quantifying software (ImageJ), where the picture was

converted to an 8-bit black and white format with the highest

possible threshold for color intensity. Finally, the pixels were

measured and related to the epidermal length in mm, and the data

were summarized as the mean±SEM.

The sections stained for p53, ASMA, S100A7, S100A8, and

S100A9 were evaluated in the epidermis and upper layer of dermis

for the number of positively stained cells per micrometer length of

the section and for morphology changes.

Statistical analysis of data

All tests were two sided t-tests.
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