Rearrangement and Extremal Results for Hermitian Matrices*[†]

Marvin Marcus Institute for Interdisciplinary Applications of Algebra and Combinatorics, University of California, Santa Barbara, California 93016

ABSTRACT

This paper contains extreme value results for concave and convex symmetric functions of the eigenvalues of $B + P^*AP$ as functions of the partial isometry P. The matrices A and B are Hermitian.

1. INTRODUCTION AND RESULTS

Let A and B be respectively n-square and k-square hermitian matrices. One of the central results in a recent paper [1] is the following extremal theorem:

$$\min_{P^*P=I_k} E_m(B+P^*AP) = E_m(\beta_1 + \alpha_{n-k+1}, \dots, \beta_k + \alpha_n)$$
(1)

where $\alpha_1 \ge \cdots \ge \alpha_n$, $\beta_1 \ge \cdots \ge \beta_k$ are the eigenvalues of A and B respectively, $1 \le m \le k \le n$, and P is an $n \times k$ partial isometry satisfying $P^*P = I_k$. The notation $E_m(X)$ designates the elementary symmetric function (e.s.f.) of degree m of the eigenvalues of the matrix X, while $E_m(x_1, \ldots, x_k)$ is the e.s.f. of the variables x_1, \ldots, x_k . The proof of (1) in [1] requires that the matrices A and B be positive definite, and the argument depends on computing the gradient of $E_m(B + P^*AP)$, in which the partial isometries P are parametrized in some way.

In this note we show that a number of extremal results, including an extension of (1), can in fact be quite easily proved using results of Lidskii and Wielandt [12], the Cauchy interlacing inequalities [5], the Birkhoff theorem for doubly stochastic (d.s.) matrices [2], certain convexity results for symmetric functions [6, 11], and some rearrangement theorems proved in the

LINEAR ALGEBRA AND ITS APPLICATIONS 11, 95-104 (1975)

© American Elsevier Publishing Company, Inc., 1975

^{*}This research was supported by the Air Force Office of Scientific Research under grant AFOSR 72-2167.

[†]AMS (MOS) classification: 15A42.

sequel. Moreover, the hypotheses that A and B are positive definite can be weakened to $\alpha_n + \beta_k \ge 0$. The extent to which non-negativity assumptions about the eigenvalues of A and B can be abandoned altogether is discussed in the second part of the paper.

THEOREM 1. Assume that $\alpha_n + \beta_k \ge 0$, and let $f(x_1, \ldots, x_k)$ be a symmetric function, concave and monotone non-decreasing in each variable for $x_j \ge 0$, $j = 1, \ldots, k$. Define

 $\varphi(P) = f(B + P^*AP).$

Then

$$\min_{\boldsymbol{P}^{\bullet}\boldsymbol{P}=I_{k}}\varphi(\boldsymbol{P}) \geq \min_{\sigma}f(\beta + \alpha^{\sigma}), \tag{2}$$

where $\beta = (\beta_1, \dots, \beta_k)$ and $\alpha^{\sigma} = (\alpha_{n-k+\sigma(1)}, \dots, \alpha_{n-k+\sigma(k)}), \sigma \in S_k$.

Proof. For a fixed partial isometry *P*, denote the eigenvalues of P^*AP by $\nu_1 \ge \nu_2 \ge \cdots \ge \nu_k$, $\nu = (\nu_1, \dots, \nu_k)$. The Lidskii-Wielandt result states that if $\gamma = (\gamma_1, \dots, \gamma_k)$, $\gamma_1 \ge \cdots \ge \gamma_k$, are the eigenvalues of $B + P^*AP$, then

$$\gamma = \beta + S_0 \nu$$

where S_0 is k-square d.s. Then

$$\varphi(P) = f(\gamma)$$
$$= f(\beta + S_0 \nu)$$

(

and we can define a function

$$\psi(\mathbf{S}) = f(\boldsymbol{\beta} + \mathbf{S}\boldsymbol{\nu})$$

whose domain is the polyhedron Ω_k of k-square d.s. matrices. The vertices of Ω_k are precisely the k-square permutation matrices [2]. The Cauchy inequalities are

$$\alpha_s \ge \nu_s \ge \alpha_{n-k+s}, \qquad s = 1, \dots, k, \tag{3}$$

and hence the kth component of $\beta + S\nu$ satisfies

$$(\beta + S\nu)_k = \beta_k + \sum_{j=1}^k s_{kj} \nu_j$$

 $> \beta_k + \nu_k$
 $> \beta_k + \alpha_n$
 $> 0.$

It follows that $\psi(S)$, $S \in \Omega_k$, is well defined, and for any S and T in Ω_k and $0 \le \theta \le 1$ we compute

$$\psi(\theta S + (1 - \theta) T) = f(\beta + (\theta S + (1 - \theta) T)\nu)$$

= $f(\theta(\beta + S\nu) + (1 - \theta)(\beta + T\nu))$
 $\geq \theta f(\beta + S\nu) + (1 - \theta)f(\beta + T\nu)$
= $\theta \psi(S) + (1 - \theta)\psi(T).$ (4)

The inequality (4) is a consequence of the concavity of f. Thus $\psi: \Omega_k \to \mathbf{R}$ is concave, and hence from Birkhoff's theorem [2],

$$\begin{split} \psi(\mathbf{S}_{\mathbf{0}}) &\geq \min_{Q} \psi(Q) \\ &= \min_{Q} f(\beta + Q\nu), \end{split}$$

where the minimum is over all k-square permutation matrices Q. Thus from (3) and the monotonicity of f,

$$\begin{aligned} f(B + P^*AP) &= \varphi(P) \\ &= \psi(S_0) \\ &> \min_{\sigma \in S_k} f(\beta_1 + \nu_{\sigma(1)}, \dots, \beta_k + \nu_{\sigma(k)}) \\ &> \min_{\sigma \in S_k} f(\beta_1 + \alpha_{n-k+\sigma(1)}, \dots, \beta_k + \alpha_{n-k+\sigma(k)}) \\ &= \min_{\sigma \in S_k} f(\beta + \alpha^{\sigma}). \end{aligned}$$

As a first application take

$$f(x_1,\ldots,x_k)=E_m^{1/m}(x_1^\theta,\ldots,x_k^\theta),$$

 $0 \le \theta \le 1$. This function is concave [6] and non-decreasing in each x_i , $x_j \ge 0$. We have

COROLLARY 1. If $\alpha_n + \beta_k \ge 0$ and $0 \le \theta \le 1$, then

$$\min_{P^*P=I_k} E_m \left(\left(B + P^*AP \right)^{\theta} \right) = E_m \left(\left(\beta_1 + \alpha_{n+k+1} \right)^{\theta}, \dots, \left(\beta_k + \alpha_n \right)^{\theta} \right).$$

Proof. Let U be a k-square unitary matrix diagonalizing B. Then

$$E_m((B+P^*AP)^{\theta}) = E_m((\operatorname{diag}(\beta_1,\ldots,\beta_k) + U^*P^*APU)^{\theta}).$$

Clearly PU runs over the set of partial isometries as P does, so that by Theorem 1

$$\min_{P^*P=I_k} E_m^{1/m} \left(\left(B + P^*AP \right)^{\theta} \right) = \min_{P^*P=I_k} E_m^{1/m} \left(\left(\operatorname{diag}(\beta_1, \dots, \beta_k) + P^*AP \right)^{\theta} \right)$$
$$\geq \min_{\sigma \in S_k} E_m^{1/m} \left(\left(\beta_1 + \alpha_{n-k+\sigma(1)} \right)^{\theta}, \dots, \left(\beta_k + \alpha_{n-k+\sigma(k)} \right)^{\theta} \right).$$
(5)

The right side of (5) is achievable by simply choosing the columns of P to be a suitable selection of k orthonormal eigenvectors of A. It is easy to confirm that the minimum in (5) is taken on for σ the identity permutation [1,3].

Consider next the symmetric rational function

$$f(x_1, \dots, x_k) = \frac{E_m(x_1, \dots, x_k)}{E_{m-1}(x_1, \dots, x_k)}$$
(6)

in which $1 \le m-1 < k$. A somewhat more difficult rearrangement theorem is required to deal with this function.

THEOREM 2. The function (6) is concave and monotone non-decreasing for non-negative variables $(E_{m-1}\neq 0)$. If $c_1 \geq \cdots \geq c_k$, $d_1 \geq \cdots \geq d_k$, and at least m-1 of the numbers $c_j + d_j$ are positive $(c_k + d_k \geq 0)$, then for the function (6),

$$\min_{\sigma \in S_k} f(c_1 + d_{\sigma(1)}, \dots, c_k + d_{\sigma(k)}) = f(c_1 + d_1, \dots, c_k + d_k).$$
(7)

Proof. The proof that f is concave is found in [6]. Differentiating (6) with respect to x_i , we have

$$\frac{\partial f}{\partial x_{j}} = \frac{E_{m-1}(x)E_{m-1}(\hat{x}_{j}) - E_{m}(x)E_{m-2}(\hat{x}_{j})}{E_{m-1}^{2}(x)}$$
(8)

where $E_{m-1}(\hat{x}_j)$, etc., means that x_j is omitted. The numerator in (8) simplifies to

$$E_{m-1}^{2}(\hat{x}_{j})-E_{m}(\hat{x}_{j})E_{m-2}(\hat{x}_{j}),$$

which is always non-negative for non-negative variables.

To prove the final assertion of the theorem, we observe that unless σ is the identity permutation, the arrangement of the arguments in $f(c_I + d_{\sigma(1)}, \ldots, c_k + d_{\sigma(k)})$ has the following form:

$$f(c_1 + d_1, c_2 + d_2, \dots, c_{r-1} + d_{r-1}, c_r + d_s, \dots, c_t + d_r, \dots, c_k + d_{\sigma(k)}), \qquad (9)$$

in which $s > r \ge 1$ and $t > r \ge 1$. That is, there is a first d which does not appear as a summand with the same subscripted c. We will show that if d_s and d_r are interchanged in (9) and the positions of the remaining d's are left unaltered, then the value of (9) is not increased. Write (9) as

$$f(\ldots,c_r+d_s,\ldots,c_t+d_r,\ldots) \tag{10}$$

and compute that (10) is equal to

$$\frac{E_{m}(\dots,c_{r}+d_{s},\dots,c_{t}+d_{r},\dots)}{E_{m-1}(\dots,c_{r}+d_{s},\dots,c_{t}+d_{r},\dots)} = \frac{(c_{r}+d_{s})(c_{t}+d_{r})E_{m-2}(\cdot)+(c_{r}+d_{s}+c_{t}+d_{r})E_{m-1}(\cdot)+E_{m}(\cdot)}{(c_{r}+d_{s})(c_{t}+d_{r})E_{m-3}(\cdot)+(c_{r}+d_{s}+c_{t}+d_{r})E_{m-2}(\cdot)+E_{m-1}(\cdot)}, \quad (11)$$

where $E_{m-2}(\cdot)$, etc., is the e.s.f. of those arguments other than the ones occurring in positions r and t The same computation shows that

$$f(\dots, c_r + d_r, \dots, c_t + d_s, \dots) = \frac{(c_r + d_r)(c_t + d_s)E_{m-2}(\cdot) + (c_r + d_r + c_t + d_s)E_{m-1}(\cdot) + E_m(\cdot)}{(c_r + d_r)(c_t + d_s)E_{m-3}(\cdot) + (c_r + d_r + c_t + d_s)E_{m-2}(\cdot) + E_{m-1}(\cdot)}.$$
 (12)

Let $p = (c_r + d_s)(c_t + d_r)$, $q = (c_r + d_r)(c_t + d_s)$, $\gamma = c_r + d_r + c_t + d_s$ so that (11) and (12) can be respectively rewritten as

$$\frac{pE_{m-2}(\cdot) + \gamma E_{m-1}(\cdot) + E_{m}(\cdot)}{pE_{m-3}(\cdot) + \gamma E_{m-2}(\cdot) + E_{m-1}(\cdot)}$$
(13)

and

$$\frac{qE_{m-2}(\cdot) + \gamma E_{m-1}(\cdot) + E_{m}(\cdot)}{qE_{m-3}(\cdot) + \gamma E_{m-2}(\cdot) + E_{m-1}(\cdot)}.$$
(14)

Now regard (13) as a function h(p) of p above, and observe that to within a

positive multiple the derivative of h(p) is

$$(pE_{m-3}(\cdot) + \gamma E_{m-2}(\cdot) + E_{m-1}(\cdot))E_{m-2}(\cdot) - (pE_{m-2}(\cdot) + \gamma E_{m-1}(\cdot) + E_{m}(\cdot))E_{m-3}(\cdot) = \gamma [E_{m-2}^{2}(\cdot) - E_{m-1}(\cdot)E_{m-3}(\cdot)] + [E_{m-1}(\cdot)E_{m-2}(\cdot) - E_{m}(\cdot)E_{m-3}(\cdot)].$$
(15)

Both of the square bracketed quantities in (15) are non-negative [4], so that $h'(p) \ge 0$. But

$$p - q = c_r c_t + c_r d_r + c_t d_s + d_r d_s - c_r c_t - c_r d_s - c_t d_r - d_r d_s$$
$$= (c_r - c_t)(d_r - d_s)$$
$$\ge 0.$$

Hence $h(p) \ge h(q)$. The preceding argument requires that $m \ge 3$. However, if m=2, then m-1=1 and the denominator in $f(c+d^{\sigma})$ is independent of σ . The proof then depends on the result for $E_2(c+d^{\sigma})$ found in [3].

By exactly the same argument used to prove Corollary 1 we use Theorems 1 and 2 to obtain

COROLLARY 2. If at least m-1 of the sums $\beta_j + \alpha_{n-k+j}$, j = 1, ..., k, are positive $(\beta_k + \alpha_n \ge 0)$, then

$$\min_{P^*P=I_k} \frac{E_m(B+P^*AP)}{E_{m-1}(B+P^*AP)} = \frac{E_m(\beta_1 + \alpha_{n-k+1}, \dots, \beta_k + \alpha_n)}{E_{m-1}(\beta_1 + \alpha_{n-k+1}, \dots, \beta_k + \alpha_n)}.$$

It is obvious that the result in Theorem 1 remains intact if "convex" replaces "concave" and "max" replaces "min". Thus we have

THEOREM 3. If $\alpha_n + \beta_k > 0$, and f is symmetric, convex, and monotone non-decreasing in each $x_i, x_i > 0$, then

$$\max_{P^*P=I_k} f(B+P^*AP) \leq \max_{\sigma \in S_k} f(\beta + \alpha^{\sigma})$$

where $\alpha^{\sigma} = (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(k)}).$

Some interesting choices of f are

$$f(x_1,...,x_k) = \sum_{j=1}^k x_j^{\rho}, \qquad \rho \ge 1,$$
 (16)

and

$$f(x_1, \dots, x_k) = h_m^{1/m}(x_1, \dots, x_k)$$
(17)

where h_m is the *m*th completely symmetric function of the indicated variables, i.e., the sum of all $\binom{m+k-1}{m}$ homogeneous products of degree *m* in x_1, \ldots, x_k [11].

From Theorem 3 applied to (16) we have

COROLLARY 3. If $\alpha_n + \beta_k \ge 0$ and $\rho \ge 1$, then

$$\max_{P^*P=I_k} \operatorname{tr}((B+P^*AP)^{\rho}) = (\beta_1 + \alpha_1)^{\rho} + \cdots + (\beta_k + \alpha_k)^{\rho}.$$

In order to prove a corresponding extremal result for (17), we must determine

$$\max_{\sigma \in S_k} h_m(c_1 + d_{\sigma(1)}, \dots, c_k + d_{\sigma(k)}).$$

THEOREM 4. If
$$c_1 \ge \cdots \ge c_k$$
, $d_1 \ge \cdots \ge d_k$, and $c_k + d_k \ge 0$, then

$$\max_{\sigma \in S_k} h_m(c + d^{\sigma}) = h_m(c + d). \tag{18}$$

Proof. The argument begins precisely as the proof of Theorem 2 by considering

$$h_m(\ldots,c_r+d_s,\ldots,c_t+d_r,\ldots). \tag{19}$$

We expand (19) to obtain

$$\sum_{\nu=0}^{m} h_{\nu}(c_{r}+d_{s},c_{t}+d_{r})h_{m-\nu}(\cdot).$$
(20)

Thus from (20) the question comes down to proving (18) for arbitrary m and k=2. We do this by induction on m, with nothing to prove for m=1. Now

$$h_m(x_1, x_2) = x_1 h_{m-1}(x_1, x_2) + x_2^m,$$

and hence

$$h_{m}(c_{1}+d_{1},c_{2}+d_{2}) - h_{m}(c_{1}+d_{2},c_{2}+d_{1})$$

$$= (c_{1}+d_{1})h_{m-1}(c_{1}+d_{1},c_{2}+d_{2}) - (c_{1}+d_{2})h_{m-1}(c_{1}+d_{2},c_{2}+d_{1})$$

$$+ (c_{2}+d_{2})^{m} - (c_{2}+d_{1})^{m}$$

$$\geq (d_{1}-d_{2})[h_{m-1}(c_{1}+d_{1},c_{2}+d_{2}) - h_{m-1}(c_{2}+d_{2},c_{2}+d_{1})]$$

$$\geq 0. \qquad (21)$$

The first inequality in (21) is the induction step; the second is due to the monotonicity of h_m for non-negative variables.

If we return to (20) and apply the k=2 case to each of the summands, we have

$$\begin{split} h_m(\ldots,c_r+d_s,\ldots,c_t+d_r,\ldots) &\leq \sum_{\nu=0}^m h_\nu(c_r+d_r,c_t+d_s)h_{m-\nu}(\cdot) \\ &= h_m(\ldots,c_r+d_r,\ldots,c_t+d_s,\ldots). \end{split}$$

In other words, if s > r (so that $d_s \leq d_r$), then

$$h_m(c_1 + d_1, \dots, c_{r-1} + d_{r-1}, c_r + d_s, \dots, c_t + d_r, \dots)$$

$$\leq h_m(c_1 + d_1, \dots, c_{r-1} + d_{r-1}, c_r + d_r, \dots, c_t + d_s, \dots),$$

and (18) follows.

Combining Theorems 3 and 4, we have

COROLLARY 4. If $\alpha_n + \beta_k \ge 0$, then

$$\max_{P^*P=I_k} h_m(B+P^*AP) = f(\beta_1+\alpha_1,\ldots,\beta_k+\alpha_k).$$

2. REMARKS

For B=0 the extreme values of

$$\varphi(P) = f(P^*AP), \qquad P^*P = I_k$$

HERMITIAN MATRICES

have been determined for a wide variety of symmetric functions f and matrices A. Perhaps the most general result of this kind appears in [7], in which A is assumed to be normal, f is a Schur function, and it is proved that $\varphi(P)$ is in the convex hull of the values that f takes on certain k-samples of eigenvalues of A. In particular it is proved that

$$E_{m}(P^{*}AP) \in \mathcal{H}\left\{E_{m}(\alpha_{\omega(1)}, \dots, \alpha_{\omega(k)}), \, \omega \in Q_{k,n}\right\}$$
(22)

where \mathcal{H} denotes convex hull and $Q_{k,n}$ is the totality of sequences ω , $1 \leq \omega(1) < \cdots < \omega(k) \leq n$. Of course, the techniques of the present paper are all inapplicable even for A indefinite Hermitian, much less normal, in proving a result like (22). The proof of (22) in fact depends on the representation of $E_m(P^*AP)$ as the trace of the *m*th exterior power of P^*AP [9].

In an elegant paper [3], M Fiedler proves that if A and B are indefinite hermitian n-square, then

$$\min_{\sigma \in S_n} \prod_{i=1}^n (\alpha_i + \beta_{\sigma(i)}) \leq \det(A + B) \leq \max_{\sigma \in S_n} \prod_{i=1}^n (\alpha_i + \beta_{\sigma(i)}).$$
(23)

The essential idea of the expansion lemmas appearing in [1], as well as the rearrangement theorems for

$$E_m(c+d^{\sigma}),$$

also are found in [3]. In a paper presented at Gatlinburg V [10], the present author showed that for a class of symmetric polynomials including E_m , h_m , and $E_m + h_m$ a precise extension of (23) is available. These results will also appear elsewhere.

REFERENCES

- 1 S. Berkowitz, Extrema of elementary symmetric polynomials of the matrix $P^*KP + L$, Linear Algebra Appl. 8 (1974), 273-280.
- 2 G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumán Rev., Ser A, 5 (1946), 147-150.
- 3 M. Fiedler, Bounds for the determinant of the sum of hermitian matrices, Proc. Am. Math. Soc. 30 (1971), 27-31.
- 4 G. Hardy, J. Littlewood, and G. Polya, *Inequalities*, Cambridge U. P., New York, 1934, p. 52.
- 5 M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964, p. 119.
- 6 M. Marcus and L. Lopes, Inequalities for symmetric functions and hermitian matrices, Can. J. Math. 9 (1957), 305-312.

- 7 M. Marcus, Spectral properties of higher derivations on symmetry classes of tensors, Bull. Am. Math. Soc. 75 (1969), 1303-1307.
- 8 M. Marcus and J. L. McGregor, Extremal properties of hermitian matrices, Can. J. Math. 8 (1956), 524-531.
- 9 M. Marcus, Finite Dimensional Multilinear Algebra, Part I, Marcel Dekker, New York, 1973, p. 278.
- 10 M. Marcus, Trace inequalities for tensor representations, in Proceeedings of Fifth Gatlinburg Symposium on Numerical Algebra, Los Alamos, New Mexico, June 5-10, 1972.
- 11 J. N. Whiteley, Some inequalities concerning symmetric functions, *Mathematika* 5 (1958), 49-57.
- 12 H. Wielandt, An extremum property of sums of eigenvalues, Proc. Am. Math. Soc. 6 (1955), 106-110.

Received 1 July 1974