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ABSTRACT 

This paper contains extreme value results for concave and convex symmetric 
functions of the eigenvalues of B + P*AP as functions of the partial isometry P. The 
matrices A and B are Hermitian. 

1. INTRODUCTION AND RESULTS 

Let A and B be respectively n-square and k-square hermitian matrices. 
One of the central results in a recent paper [l] is the following extremal 
theorem: 

where a,> *.a >‘yn, pi> -*a > /3, are the eigenvalues of A and B respec- 
tively, 1 < m < k < n, and P is an n X k partial isometry satisfying P*P= Ik. 
The notation E,(X) designates the elementary symmetric function (e.s.f.) of 
degree m of the eigenvalues of the matrix X, while E,,,(xr,. . . ,xk) is the e.s.f. 
of the variables xi,. . . , xk. The proof of (1) in [l] requires that the matrices A 
and B be positive definite, and the argument depends on computing the 
gradient of E, (B + P*AP), in which the partial isometries P are 
parametrized in some way. 

In this note we show that a number of extremal results, including an 
extension of (l), can in fact be quite easily proved using results of Lid&ii and 
Wielandt [12], the Cauchy interlacing inequalities [5], the Birkhoff theorem 
for doubly stochastic (d.s.) matrices [2], certain convexity results for sym- 
metric functions [6,11], and some rearrangement theorems proved in the 
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sequel. Moreover, the hypotheses that A and B are positive definite can be 
weakened to 4 + & > 0. The extent to which non-negativity assumptions 
about the eigenvalues of A and B can be abandoned altogether is discussed 
in the second part of the paper. 

THEOREM 1. Assume that a,, + & > 0, and let f ( x1,. . . ,xk) be a symmetric 
function, concave and monotone rum-decreasing in each variable for xi > 0, 
j=l ,...,k. Define 

q(P) = f(B+ P*AP). 
Then 

min q(P) > mJnf( j?+ rxO), 
P=P= r, 

(2) 

Proof. For a fixed partial isometry P, denote the eigenvalues of P*AP by 
Y,>v2>*‘* >vk, v=(+..., vk). The Lid&ii-Wielandt result states that if 

Y = (yl, ’ *. , yk), Y1 ) ’ . ’ 2 yk, are the eigenvalues of B + P*AP, then 

y=p+ s,v 

where S, is k-square d.s. Then 

cp(P)=f(y) 

=f(P+ %v) 
and we can define a function 

JI(S)=f(P+ Sv) 

whose domain is the polyhedron 02, of k-square ds. matrices. The vertices of 
Q, are precisely the k-square permutation matrices [2]. The Cauchy in- 
equalities are 

% > v, > %a-k+s, s= ,..., 1 k, 

and hence the kth component of /3 + Sv satisfies 

(3) 

(p+ Sv)k=&+ 5 +jv, 
i-1 

> 0. 



HERMITIAN MATRICES 97 

It follows that 4(S), S ~a,., is weII defined, and for any S and T in fJ, and 

0 < B <; 1 we compute 

%@s+(1-B)T)=f( p+(es+(l-e)T)v) 

=f(e(P+sv)+(l-e)(p-tnt)) 

>ef(p+sv)+(i-e)f(p+Tv) 

=w(s)+(l-ebw). (4) 

The inequaltiy (4) is a consequence of the concavity of J Thus 4 : 3,+-R is 
concave, and hence from Birkhoffs theorem [2], 

= mpf( P + QY), 

where the minimum is over aII k-square permutation matrices Q. Thus from 

(3) and the monotonicity off, 

f(B+P*AP)=q,(P) 

= MJ 

As a first application take 

f(Xi )..., XJ=E;‘m(x; ,..., L$?), 

0 < B < 1. This function is concave [S] and non-decreasing in each r,, X~ > 0. 
We have 

COROLLARY 1. Zfan+&>OandO<tl<l,thfm 



98 MARVIN MARCUS 

Pmof. Let U be a k-square unitary matrix diagonalizing B. Then 

E,((B+P*AP)e)=E,((diag(&...r&)+ U*P*APU)‘). 

Clearly PU runs over the set of partial isometries as P does, so that by 
Theorem 1 

min E,,f,~“((B+P*AP)‘)= .@~lkE$“‘((diag(fi,,...,&)+P*AP)e) 
P*P= 4 

>~~E~‘“((P,+q_,+,(l,)B,...,(P*+4-lr+a(t))e). (5) 

The right side of (5) is achievable by simply choosing the columns of P to be 
a suitable selection of k orthonormal eigenvectors of A. It is easy to confirm 
that the minimum in (5) is taken on for u the identity permutation [1,3]. n 

Consider next the symmetric rational function 

f(x p...,q)= 
E&,...,xk) 

J&&,,...J,) 

in which 1 < m - 1 < k. A somewhat more difficult rearrangement theorem is 
required to deal with this function. 

THEOREM 2. The function (6) is concave and monotone non-decreasing 
fix non-negative variables (E,,,_,#O). If cl > * * * > 4, d, > . * * > dk, and at 
least m- 1 of the numbers ci+ di are positive (ck+ dk > 0), then for the 
function (6), 

min f ( cl + d,(l,, . . . , 
a=& 

Ck+do(k))=f(C1+dl..‘..Ck+dk). (7) 

Proof. The proof that f is concave is found in [6]. Differentiating (6) 
with respect to 4, we have 

af E,-~(~)E,-~(~~)-E,(x)E,-~(~~) -= (8) 
% Jc- l(X) 

where E,_ 1 (Z,), etc., 
simplifies to 

means that xj is omitted. 

EZ- 1(ZJ - E&)E,&)~ 

The numerator in (8) 
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which is always non-negative for non-negative variables. 
To prove the final assertion of the theorem, we observe that unless u is 

the identity permutation, the arrangement of the arguments in feel + 
d oClj,. . . , ck + d,,,) has the fohowing form: 

f(c1+d,,c,+d,,...,c,_,+d,_,,c,+d,,...,c,+d,,...,c,+da(k)), (9) 

in which s > r > 1 and t > r Z 1. That is, there is a first d which does not 
appear as a summand with the same subscripted c. We will show that if d, 
and d, are interchanged in (9) and the positions of the remaining d’s are left 
unaltered, then the value of (9) is not increased. Write (9) as 

f( . ..t c,+d, ,..., c,+d ,,...) 

and compute that (10) is equal to 

E,( . . . . c,+d, ,..., c,+d, I...) 

E,_,( . . . . c,+d, ,..., ct+d, ,...) 

(10) 

(c,+d,)(ct+dt)Em_s(.)+(c,+d,+ct+d,)E,-l(.)+Em(.) 

= (c,+d,)(c,+d,)E,_,(.)+(c,+d,+c,+d,)E,-,(.)+E,-,(.) ’ (‘I) 

where E,,,_2(.), etc., is the e.s.f. of those arguments other than the ones 
occurring in positions r and t The same computation shows that 

f( . . . . c,+d ,,..., c,+d, ,...) 

(c~+d,)(ct+d,)E,-z(.)+(c,+d,+c,+d,)E,-,(.)+E,(.) 
= (c,+d,)(ct+d,)E,_,(.)+(c,+d,+c,+d,)E,_,(.)+E,_,(.) * (12) 

Let p=(c,+d,)(c,+d,), q=(c,+d,)(c,+d,), y=c,+d,+c,+d, so that (11) 

and (12) can be respectively rewritten as 

~&n-k)+ Y%-,(-)+U-) 

PE,-,(-)+yE,-,(.)+E,-,(.) 
and 

(13) 

Now regard (13) as a function h(p) of p above, and observe that to within a 
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positive multiple the derivative of h( p) is 

( P%-s(s) + Y%-A.) +Ld)k-,(a) 

-(pE,-,(.)+vE,-,(.)+E,(.))E,-,(.) 

= Y IE~-,(.)-E,-,(.)E,-,(.)I+ hd)L-2(~) --Em(-)%-,(~)]. (15) 

Both of the square bracketed quantities in (15) are non-negative [4], so that 
h’(p) > 0. But 

> 0. 

Hence h(p) > h(q). The preceding argument requires that m > 3. However, if 
m = 2, then m - 1 = 1 and the denominator in f(c + d “) is independent of u. 
The proof then depends on the result for E,(c + d”) found in [3]. n 

By exactly the same argument used to prove Corollary 1 we use Theorems 
1 and 2 to obtain 

COROLLARY 2. If at least m-l of the sums fit+an_k+,, j=l,...,k, are 
positive ( & f a,, > 0), then 

E,,,(B+P*AP) E,(pl+q-k+lr...,Pk+a~) 
621~ E,JB+P*AP) = E,_,(P,+a~_,+,,...,Pk+a~) * 

It is obvious that the result in Theorem 1 remains intact if “convex” 
replaces “concave” and “max” replaces “min”. Thus we have 

THEOREM 3. Zf %,+P,>O, andf is symmetic, convex, and numotone 
non-decreasing in each x,, x, > 0, then 

where a u = ( avClj, . . . , a+,). 

Some interesting choices off are 

f(+..,rJ= f: xp, P> 1, 
j=l 

(16) 
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and 

f(Xi ,..., XJ=h;‘m(xi ,..*, Xk) (17) 

where h,,, is the mth completely symmetric function of the indicated 

variables, i.e., the sum of all m+k-1 

( i 
homogeneous products of degree m 

m 
in x i,“‘,xk WI. 

From Theorem 3 applied to (16) we have 

COROLLARY 3. Zf cu,+&>Oandp>l, then 

max 
z-P= Zk 

tr( (B + P*AP)P) = ( pi + or)‘+ * * . + ( & + ok)‘, 

In order to prove a corresponding extremal result for (17), we must 
determine 

THEOREM 4. Zf cl > - - - > ck, d, > * * * > dk, and ck + dk > 0, then 

pgh,(c+d”)=h,(c+d). (18) 

Proof. The argument begins precisely as the proof of Theorem 2 by 
considering 

h,,,(...,c,+d, ,..., c,+d ,,,., ). (19) 

We expand (19) to obtain 

(20) 

Thus from (20) the question comes down to proving (18) for arbitrary m and 
k = 2. We do this by induction on m, with nothing to prove for m = 1. Now 

h,(x,,x,)=x,h,-,(x,,x,)+x,“, 
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and hence 

h,(c,+d,,c,+d,)-h,(c,+d,,c,+d,) 

=(C1+dl)h,_l(cl+dl,cz+dz)-(c,+d,)h,-,(c,+dz,cz+d,) 

>O. (21) 
The first inequality in (21) is the induction step; the second is due to the 
monotonicity of h, for non-negative variables. 

If we return to (20) and apply the k = 2 case to each of the summands, 
we have 

h,( . ..) c,+d, ,..., c,+d ,,... )< s h,(c,+d,,c,+d,)h,-,(.f 
v==O 

=h,( . . . . c,+d, ,..., c,+d *,a.. ). 

In other words, if s > r (so that d, < d,), then 

h,&+dl,..., c,_ 1 + d,_ 1, c, + d,, . . . , ct + d,, . . . ) 

< hm(cl+dl,..., c,-l+d,_,,c,+d,,...,ct+d, ,... ), 

and (18) follows. 

Combining Theorems 3 and 4, we have 

COROLLARY 4. Zf an+pk>o, thf?n 

~~~~~h,(B+P*AP)=f(P,+cy,,...,P,+IY,). 

2. REMARKS 

n 

For B = 0 the extreme values of 

p)(P>=f(P*AP), P*P= Zk 
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have been determined for a wide variety of symmetric functions f and 
matrices A. Perhaps the most general result of this kind appears in [7], in 
which A is assumed to be normal, f is a Schur function, and it is proved that 
91 (P) is in the convex hull of the values that f takes on certain k-samples of 
eigenvalues of A. In particular it is proved that 

Em(P*AP)EX{E,(cy,(l),...,ar,(k)),wEQk,n} (22) 

where 3c denotes convex hull and Qk,= is the totality of sequences w, 
1 <w(l) < * . . < o(k) < n. Of course, the techniques of the present paper are 
all inapplicable even for A indefinite Hermitian, much less normal, in 
proving a result like (22). The proof of (22) in fact depends on the 
representation of E,,,(P*AP) as the trace of the mth exterior power of P*AP 

PI. 
In an elegant paper [3], M Fiedler proves that if A and B are indefinite 

hermitian n-square, then 

The essential idea of the expansion lemmas appearing in [I], as well as the 
rearrangement theorems for 

also are found in [3]. In a paper presented at Gatlinburg V [lo], the present 
author showed that for a class of symmetric polynomials including E,,,, h,,,, 
and Em + h,,, a precise extension of (23) is available. These results will also 
appear elsewhere. 
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