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Abstract

A parting line for a polyhedron is a closed curve on its surface, which identifies the two halves of the polyhedron
for which mold-boxes must be made. A parting line is undercut-free if the two halves that it generates do not
contain facets that obstruct the de-molding of the polyhedron. Computing an undercut-free parting line that is as
“flat” as possible is an important problem in mold design. In this paper, algorithms are presented to compute such
a parting line for a convex polyhedron, based on different flatness criteria. 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We consider a geometric problem arising in the design of molds for casting and injection molding.
Consider the construction of a sand mold for casting a polyhedral solid. First a prototype,P , of the
polyhedron is made. Two halves ofP are then identified and a separate mold-box is made for each. This
involves placingP in a box and packing sand around the first half. After the sand has been compacted and
hardened,P is translated out of the mold-box, i.e.,de-molded, and a second mold-box is made similarly
for the other half ofP . The two mold-boxes are then fastened together by pins to form a cavity in the
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Fig. 1. Illustrating undercuts.

shape ofP and molten metal is poured into it. (More details can be found in [21].)
Among the many key issues surrounding the design of a good mold, two that are mentioned extensively

in the literature are (i) the shape of the parting line, and (ii) the number of undercuts.
Theparting line is a continuous closed curve on the surface ofP which defines the two halves; thus it

also defines the line of contact between the two mold-boxes. As noted in [2,21], the parting line should be
chosen to be as “flat” as possible since this results in a more cost-efficient and accurate mold.3 A highly
stepped parting line calls for very skilled mold makers, can cause instability of the mold, and can result
in seepage of molten material at the line of contact—all of which lead to higher production costs.

An undercutis a facet (or a portion thereof) ofP whose outward normal makes an angle less than 90◦
with the de-molding direction for the half ofP containing the facet. Undercuts cause obstructions when
the polyhedron is de-molded and are hence undesirable.

Example. Fig. 1 depicts a polyhedron,P , divided into two halves,P+ andP− by a plane (shown
dashed).P+ is de-molded in directiond andP− in direction−d. Note that the parting line here is a
rectangle and it lies in a plane. For this choice of de-molding direction and parting line, there are three
undercuts inP−, namelyf,g, andh (which is part of a larger facet), since their respective normals,
nf ,ng, andnh, make angles less than 90◦ with −d. Since the mold-box forP− will be filled with sand
up to the parting line, these facets will cause obstructions when de-moldingP−. There are no undercuts
in P+.

Notice that if we had picked the parting plane to coincide with the lower edge ofh, thenh would
belong to the upper half and would no longer be an undercut. Notice also that if we had partedP down
the middle with a vertical plane that is normal to the paper and de-molded the halves to the left and to
the right, then there would be no undercuts at all.

3 Intuitively, by a “flat” parting line, we mean one which lies as nearly as possible in a plane. We will formalize this notion
in Section 2.
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Fig. 2. (a) A convex polyhedron which admits no undercut-free parting line lying in a plane. (b) A nonplanar
undercut-free parting line, shown in heavy lines.

The adverse effects of undercuts can be alleviated by using so-called cores and inserts in the mold.
However, this is generally discouraged since it increases the cost of the mold and slows down part
production [7,21]. Thus it is important to minimize the number of undercuts.

A judicious choice of the de-molding direction and the parting line can often reduce or altogether
eliminate undercuts, as the simple example above illustrates. However, in general, the reduction in
undercuts is usually accompanied by an increase in the complexity of the parting line. In fact, this is
true even ifP is convex, as the following example shows.

Example. Fig. 2(a) shows an octahedronP . It is not difficult to see that any plane which divides it into
two creates undercuts. For instance, the plane determined by vertices 1, 2, and 3 creates undercuts for
the upper half when de-molding this half downwards; these undercuts are the portions of facets(1,4,6)
and(3,4,6) that belong to the upper half. As shown in Fig. 2(b), undercuts can be avoided altogether
by choosing the parting line to be the chain 1–2–3–4–1 (or 2–5–4–6–2); however, the parting line is no
longer flat.

Intuitively, it should be clear that a convex polyhedron always has an undercut-free parting line for any
choice of de-molding directionsd and−d . In particular, the boundary ofP when it is viewed along lines
of sight parallel tod is such a line. (We will make this more precise in Section 2.1.) However, different
directions can yield different parting lines. In this paper, we consider the problem of finding the flattest,
undercut-free parting line for a convex polyhedron,P , based on two types of flatness criteria that we
discuss in Section 2.2. The first type takes into account the length of the parting line in relation to the
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length of its projection, while the second considers the relative displacement of the vertices of the parting
line (i.e., the “width” of the parting line).

1.1. Related work

We are not aware of prior work on the specific problem that we consider; however, we mention briefly
some related work: Bose et al. [3] (see also [4]) give efficient algorithms to decide if a given polyhedron
admits an undercut-free parting line which lies in a plane. Chen et al. [7] consider the problem of finding
a de-molding direction for a polyhedron which minimizes the number of undercuts. In [1], Ahn et al.
give algorithms for deciding if the mold for a polyhedron can be decomposed into two parts such that the
polyhedron can be de-molded in a given direction without getting stuck. They also give algorithms for
computing all de-molding directions for which this is possible. Similar problems are addressed in 2D by
Rosenbloom and Rappaport [18]. However, the results in [1,7] do not consider the shape of the parting
line, which can be quite stepped. In [13], Hui and Tan give heuristics for finding parting directions with
few (but not necessarily minimum) undercuts. Ravi and Srinivasan [17] identify several criteria (different
from ours) for the design of good parting lines but do not give any algorithms for computing these lines.

We close by mentioning some other geometric work of interest in the area of mold design. In [4–
6], the general problem of “mold fillability” is addressed. The questions of interest here include deciding
whether a given mold can be filled from a given “pour” direction without creating air pockets, determining
all such pour directions, computing a direction that minimizes the number of air pockets (if air pockets are
unavoidable), and characterizing classes of polyhedra with respect to their fillability. Efficient algorithms
are given in [4,5] for 2-dimensional molds and in [4,6] for 3-dimensional molds. In [10], related questions
are also addressed for different mold-filling strategies and different filling materials.

1.2. Organization of the paper

In Section 2 we make precise the notions of parting line and flatness. In Section 3 we describe our
solution for the length-based flatness criterion and in Section 4 we discuss our implementation of this
solution. In Section 5, we discuss briefly a solution to a variant of the length-based criterion. In Section 6
we discuss our solution for the width-based criterion. We conclude in Section 7.

2. Parting line and flatness criteria

2.1. Parting line

Let P be our convex polyhedron and letd be any direction. Suppose that we viewP from infinity
along lines of sight that are parallel tod. A point p onP is d-visible if the ray fromp in direction−d
misses the interior ofP . A facetf of P is d-visible if every point off is d-visible. SinceP is convex,
this is equivalent to saying that the angle between−d and the outward normal,nf , to f is at most 90◦,
i.e.,(−d) ·nf > 0. Note that ad-visible facetf will not create an undercut when the half ofP containing
it is de-molded along directiond (since the angle betweennf andd is at least 90◦).

Let F(d) be the set ofd-visible facets and letB(d) be the boundary of their union.B(d) is a closed
chain consisting of the edges ofP . We takeB(d) to be theparting linefor P , with respect to de-molding
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P along directionsd and−d, and we denote it byL(d). Since the facets on one side ofL(d) are all
d-visible and the facets on the other side are all(−d)-visible, it follows thatL(d) is free of undercuts
with respect to de-molding these two halves in directionsd and−d, respectively.

Example. Consider the polyhedron in Fig. 2. Letd be vertically downwards. ThenF(d) consists of
the facets(1,2,5), (2,3,5), (3,4,5), and (1,4,5), andB(d) = L(d) consists of the line segments
(1,2), (2,3), (3,4), and(4,1).

2.2. Flatness criteria

Criterion ρ. Let L(d) = e1, e2, . . . , ek , where theei ’s are line segments. Let̂L(d) = ê1, ê2, . . . , êk be
the parallel projection ofL(d) onto a plane normal tod . Note that whileL̂(d) lies in a plane,L(d) can
be highly stepped since theei ’s can zigzag considerably in 3-space. We measure the flatness ofL(d) in
directiond by

ρ(d)=
k∑
i=1

length(êi)
2
/ k∑

i=1

length(ei)
2, (1)

where length(l) is the Euclidean length of segmentl. Note thatρ(d)6 1, with equality holding iffL(d)
lies in a plane. In general, the larger the value ofρ(d), the flatter isL(d). Our goal is to find ad which
maximizesρ(d).

Criterion ω. Define thewidth of L(d) in direction d—denoted byω(d)—as the smallest distance
between two parallel planes that are normal tod and encloseL(d). We measure the flatness ofL(d)
in directiond by ω(d). Clearly,L(d) lies in a plane iffω(d) = 0. In general, the smaller the value of
ω(d), the flatter isL(d). Our goal is to find ad which minimizesω(d).

Remark 2.1. We remark that our width problem is a constrained version of the conventional width
problem [12], in the following sense. In the conventional problem, the structure whose width we wish to
compute remains fixed as we search over the space of all directions for the best pair of enclosing planes.
As we will see, in our case the parting lineL, whose width we wish to compute, remains fixed only over
a certain “region” of the space of directions. Therefore, for eachL, we need to restrict our search for the
best pair of enclosing planes to the corresponding region.

Discussion. Criteriaρ andω are representative of two classes of flatness measures—one based on the
lengths of the segments comprising the parting line and the other on the relative positions of its vertices.
Both give an indication of how close a parting line is to lying in a plane. Our algorithm is sufficiently
general in that it allows us to “plug in” other flatness measures quite easily. For instance, one variant on
Criterionρ is Criterion ρ ′, defined as

ρ ′(d)=
k∑
i=1

length(êi)
/ k∑

i=1

length(ei). (2)

That is, we use the sum of edge lengths rather than the sum of their squares. Indeed, we have implemented
a version of our algorithm for bothρ andρ ′ and switching from one to the other required very little change
in the code.
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Computationally, however, Criterionρ ′ is much more difficult to work with because it gives rise
to highly nonlinear optimization problems (owing to the use of square roots in computing len(·)) and
because it does not facilitate easy updating of the parting line as we search over the space of directions.
(We will elaborate on this in Section 5.) On the other hand, the corresponding problems for Criterionρ

exhibit nice structure that allow us to bring into play interesting algorithmic techniques that solve the
problem efficiently (Sections 3.2, 3.3 and 3.6). Therefore, we have chosen to describe in detail our
algorithm for the length-based criterion in the context ofρ rather thanρ ′.

We close this section with a formal statement of the problem that we wish to solve.

Problem 1. Given a convex polyhedronP with n vertices, find a directiond such that
(i) ρ(d) is maximized, or
(ii) ω(d) is minimized.

2.3. Parting lines revisited

There are situations where several undercut-free parting lines exist, in addition to the one given by the
definition in Section 2.1. In such cases, it is advantageous to choose among these lines, the one which
most favors the flatness criterion being used.

Let d be any direction and call a facetf ∈ P d-parallel if it is parallel tod. SupposeP has one or more
d-parallel facets,f . By definition,f ∈ F(d). NowB(d) is of the formc1F1c2F2 . . . cmFm, for somem.
Here eachci is a chain of edges ofP , with endpointsui andvi and eachFi is a group of contiguous
d-parallel facets, attached toci at vi and toci+1 atui+1—indices are taken modulom.

Fig. 3 illustrates the situation. Notice that there are several ways of choosing an undercut-free parting
line, depending on how we join thevi ’s and theui+1’s. Our goal is to find a path of line segments from
vi to ui+1, one segment per facet ofFi , such thatρ(d) is maximized.

Observe that̂L(d) is the same regardless of how we joinvi andui+1, because it is a projection in
directiond. Therefore, we must chooseL(d) such that we minimize the denominator in Eq. (1). This
can be accomplished by picking the path fromvi to ui+1 such that the sum of the squares the segment

Fig. 3. The parting line in the presence ofd-parallel facets.
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lengths on this path is minimum. However, it is not clear how such a path can be computed efficiently
using standard geometric shortest path algorithms, since the “sum-of-squares” is not a metric (it violates
the triangle inequality). Instead, we pick the path fromvi to ui+1 to be an Euclidean shortest path, which
we denote bypi . Thus,L(d) = e1, e2, . . . , ek , where eachej is either an edge of aci or a line segment
of pi . We will see in Section 3.4 how to computepi efficiently. It should be borne in mind that when we
speak subsequently of maximizing Criterionρ (Theorems 3.1 and 3.2), it is in the context of this choice
of L(d). (We opted to use the shortest path since this is needed anyway for the analogous situation which
arises with Criterionρ ′. In that case, of course, the shortest path does indeed minimize the denominator
in Eq. (2).)

For Criterionω, we join eachvi to ui+1 in such a way that the width of the resulting closed chain is
minimum. We will show later, in Section 6.3, how such a path can be computed efficiently.

2.4. Overview of the result

We give an algorithm for Problem 1(i) which runs in O(n2) time. The algorithm employs a combination
of continuous and discrete optimization. Briefly, our approach is as follows. We first subdivide 3-space
into O(n2) unbounded, interior-disjoint polyhedral regions (calledcones), each apexed at the origin.
Each cone has the property thatL(d) is the same for all directionsd in the interior of the cone. Thus,
maximizingρ(d) inside a cone is equivalent to maximizing the numerator in Eq. (1), which gives rise to
a continuous optimization problem for each cone, as discussed in Section 3.2.

Similarly, L(d) is the same for all directionsd that lie on a bounding plane of a cone. However, now
P will have d-parallel facets, so that we also need to perform certain shortest path computations on the
surface ofP to computeL(d). It turns out that this problem can be formulated as a shortest path problem
on a special planar polygon and hence can be solved quickly.

Thus, the idea is to compute theρ-value for each cone and cone boundary and pick the best one.
However, a direct implementation of this method is not efficient because formulating an optimization
problem for a cone or cone boundary requires knowledge of the parting line, and computing the latter
from scratch each time takes O(n) time per parting line and results in an O(n3) algorithm. We circumvent
this problem by visiting the cones in a certain order and updating the parting line incrementally, so that
the total time reduces to O(n2).

For Problem 1(ii), we give an O(n4)-time algorithm. Once again, we divide 3-space into cones such
that the parting line is the same for all directions in the interior of a cone or in the interior of a cone
boundary. Within each such region we show how to solve a constrained version of the conventional
width problem [12], in O(n2) time, and pick the direction which yields the smallest overall value forω.

3. Flattest undercut-free parting line under Criterion ρ

3.1. Subdividing 3-space into cones

We follow the approach in [15]: For each facetf of P , we construct a plane,hf , which is parallel
to f and passes through the origin. The planeshf subdivide 3-space into the afore-mentioned collection
of cones. Fig. 4 illustrates a cone. The following lemma establishes an upper bound on the number of
cones.
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Fig. 4. A cone in the decomposition of 3-space for an octahedron.

Lemma 3.1. There areO(n2) cones.

Proof. From Euler’s relation for convex polyhedra [8], it follows thatP has O(n) facets. Hence there
are O(n) planeshf .

Consider the unit-sphere,S2, centered at the origin. Letgf be the great circlehf ∩S2, for each facetf
of P . Since two distinct great circles intersect exactly twice, the arrangement of thegf ’s yields a planar
subdivision,A, of S2, with O(n2) vertices, and, hence, O(n2) faces and edges.

Let C be any cone. SinceC is unbounded, it intersectsS2 and hence corresponds to the unique face
C ∩ S2 of A. Let r be any face ofA. Thenr corresponds to at most one cone, since the interiors of
cones are pairwise disjoint. Moreover, ifr is bounded by great circlesgf1, gf2, . . . , then it corresponds
to at least one cone, namely the cone bounded by the planeshf1, hf2, . . . . Hence, there is a unique cone
corresponding tor .

The above argument establishes a bijection between the cones and the faces ofA and the lemma
follows. 2

In view of the above bijection, we can work with the arrangementA onS2, rather than with unbounded
cones. For convenience, we will hereafter use the termconeto mean a face ofA and the termsedge/vertex
of a coneto mean an edge/vertex of the face. Note that a directiond is now a point onS2 and is hence a
unit-vector.

The following lemmas establish two crucial properties of the cones.

Lemma 3.2. LetC be any cone.L(d) is the same for all pointsd in the interior ofC.

Proof. Let d andd ′ be distinct points in the interior ofC and letf be any facet ofP . Thend andd ′ are
both on the same side ofhf . Thus,(−d) · nf and(−d ′) · nf are both positive or both negative, and sof
is d-visible iff f is d ′-visible. Therefore,F(d)= F(d ′) and henceB(d)= B(d ′). SinceP does not have
anyd-parallel ord ′-parallel facets,B(d) andB(d ′) consist of edges ofP . Therefore, by the discussion
in Section 2, we haveL(d)= B(d) andL(d ′)= B(d ′). ThusL(d)= L(d ′) and the lemma follows. 2
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Fig. 5. Structure ofB(d) whend lies in the interior of an edge.

Lemma 3.3. Let e be any edge of a coneC. L(d) is the same for all pointsd in the interior ofe.

Proof. Sinced andd ′ are in the interior of an edge, they belong to exactly one great circleg. P can have
at most two facetsf1 andf2 such thathf1 ∩ S2= hf2 ∩ S2= g. Thus,f1 andf2 are the onlyd-parallel
and the onlyd ′-parallel facets ofP . Moreover, becausef1 andf2 are mutually parallel, they must be
disjoint.

Proceeding along the lines of Lemma 3.2, we can show thatF(d)= F(d ′) andB(d)= B(d ′). Let us
now examine the structure ofB(d) andB(d ′).

Assume that bothf1 andf2 exist (the case where only one exists is similar). By the discussion in
Section 2,B(d) consists of: (i) a chainc1 of edges ofP starting at a vertexu1 of f2 and ending at a
vertexv1 of f1, (ii) a chainc2 of edges ofP starting at a vertexu2 of f1 and ending at a vertexv2 of f2,
and (iii) the facetsf1 andf2. (See Fig. 5.) Thus,L(d) consists ofc1, c2, and the straight-line segments
v1u2 ∈ f1 andv2u1 ∈ f2, which constitute minimum-length paths between their respective endpoints.

SinceB(d ′) = B(d), it follows that L(d ′) also consists ofc1, c2, v1u2, and v2u1. The lemma
follows. 2

We denote the unique parting line associated with the interior ofC (respectively interior ofe) byL(C)
(respectivelyL(e)). Trivially, if v is a vertex ofC, then the associated parting line is unique; we denote
this byL(v). It is clear now that to maximizeρ(d) in the interior ofC, we need only find ad in C ’s
interior such that̂L(d) is maximized. We formulate this optimization problem below. A similar approach
is taken to maximizeρ(d) in the interior ofe.

3.2. The optimization problem

Let d ∈ S2 and letC be any cone. LetL(C) = e1, e2, . . . , ek , where eache` is an edge ofP (with
orientation assigned arbitrarily). Assume thatd = xi + yj + zk ande` = a`i + b`j + c`k, wherei,j ,
andk are unit-vectors along thex-, y-, andz-axes. Letθ` be the angle betweene` andd .

We have

length(ê`)
2= (length(e`) · sinθ`

)2= (length(e` × d))2.
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Since

e` × d = (b`z− c`y)i + (c`x − a`z)j + (a`y − b`x)k,
we have

length(ê`)
2=A`x2+B`y2+C`z2+D`xy +E`yz+F`xz,

where

A` = c2
` + b2

`, B` = a2
` + c2

`, C` = a2
` + b2

`,

D` =−2a`b`, E` =−2b`c`, F` =−2a`c`.

Thus,

k∑
`=1

length(ê`)
2=Ax2+By2+Cz2+Dxy +Eyz+Fzx,

whereA=∑k
`=1A`, and similarly forB throughF .

Let dC ∈ S2 be a given point inC ’s interior. (dC is computed at the timeA is constructed.) Letnf be
the outward-directed normal to facetf . Note thatd is in the interior ofC iff d · nf anddC · nf are both
positive or both negative for each great circlegf boundingC.

Thus our optimization problem for the interior ofC is:

maximize f (x, y, z)=Ax2+By2+Cz2+Dxy +Eyz+ Fxz
subject to x2+ y2+ z2= 1 (sphere constraint),

d · nf > 0 (respectivelyd · nf < 0) if dC · nf > 0 (respectivelydC · nf < 0)

for each great circlegf boundingC (plane constraints).

The optimization problem for the interior of an edgee is formulated similarly. However, there are just
three plane constraints now—one requiring that the solution point lie one’s great circle and the other two
requiring that it lie in the interior ofe. For a vertexv, there is no need to solve any optimization problem,
since it is a single point.

3.3. Solving the optimization problem

We use the method of Lagrange Multipliers [14]. In more detail, consider the optimization problem for
coneC. The Lagrangian isL(x, y, z, λ)= f (x, y, z)+ λ(1− x2− y2− z2), for some parameterλ. The
partial derivatives ofL, with respect to each ofx, y, andz, must be zero at an extreme (i.e., minimum or
maximum) point. This yields three linear equations inx, y, andz. The values ofλ for which these three
equations have non-trivial solutions can be found by solving a cubic equation inλ, given by∣∣∣∣∣∣∣∣

2A− 2λ D F

D 2B − 2λ E

F E 2C − 2λ

∣∣∣∣∣∣∣∣= 0.
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For each such real-valuedλ (there are at most three of them) we solve forx, y, andz, using any two of
the three linear equations (the remaining one will depend on the two chosen) and the sphere constraint.
This will yield

(i) two antipodal points onS2, or
(ii) a great circle (if the three equations are the same but not identically zero), or
(iii) all of S2 (if the three equations are identically zero).
We can ignore cases (ii) and (iii) since, anyway, we will later be computing the parting line at edge
interiors and at vertices. If case (i) holds then we check if either of the two points lies inC (by checking
the plane constraints) and, if so, then we compute the corresponding value ofρ in the interior ofC.

For the interior of an edge,e, which lies on a great circle defined by the planeax + by + cz = 0,
the Lagrangian isL(x, y, z, λ1, λ2) = f (x, y, z)+ λ1(1− x2− y2 − z2)+ λ2(ax + by + cz), for some
parametersλ1 andλ2. Setting partial derivatives to zero gives three linear equations inx, y, z, andλ2.
Using these equations and the equationax + by + cz = 0 we can compute the values ofλ1 that yield
non-trivial solutions, this time by solving a quadratic equation inλ1, as given by∣∣∣∣∣∣∣∣∣∣∣

2A− 2λ1 D F a

D 2B − 2λ1 E b

F E 2C − 2λ1 c

a b c 0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

We can now eliminateλ2 using one of the linear equations. Using the sphere constraints, the constraint
ax + by + cz = 0, and any one of the remaining linear equations, we proceed to compute the extreme
points and find the corresponding values ofρ.

Analysis. It is reasonable to assume that the cubic and quadratic equations that arise can be solved in
O(1) time. Thus, the optimization problem forC (respectivelye) takes time O(|C|) (respectively O(1)).
Summed over all cones and edges, this is O(n2).

Remark 3.1. If some other optimization algorithm is to be used, it would be advantageous to first convert
our optimization problem to one of constant size, i.e., one where all of the following are constant:

(i) the number of variables,
(ii) the description size of the objective function and of each constraint, and
(iii) the number of constraints. It might then be reasonable to assume that each such problem can be

solved in constant time, for a time bound of O(n2) for all problems.
Conditions (i) and (ii) already hold in our case. To enforce condition (iii), we can triangulate the cones
into a total of O(n2) subcones, which is easy to do since the cones are convex. The number of optimization
problems is still O(n2), but now each has just four constraints.

3.4. Handlingd-parallel facets

As discussed in Section 2.3, in the presence ofd-parallel facets, portions of the parting line need to
be computed as shortest paths.P hasd-parallel facets ifd is in the interior of an edgee ∈A or if d is a
vertex ofA. In the former case, there are at most two groups,F1 andF2, of d-parallel facets, and each
Fi consists of just one facetfi, i = 1,2. Thus,pi is just the line segmentviui+1. (See Fig. 5.)
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Fig. 6. Formulating the 2-dimensional shortest path problem.

In the latter case, there can be many groupsFi , each made up of several contiguousd-parallel
facets (see Fig. 3). The computation ofpi can now be formulated as a 2-dimensional shortest path
problem inside a simple polygon, as follows: Leta1b1, . . . , atbt (t > 1) be the edges ofP shared by
successive facets ofFi , wherea1b1 is closest tovi andatbt is closest toui+1. Note that these edges are
necessarily vertical (with respect tod). Consider the portionHi of Fi which is enclosed between the
chainsvia1 . . . atui+1 and vib1 . . . btui+1 (see Fig. 6). From the triangle inequality, it is clear that any
shortest(vi, ui+1)-path lying inFi must also lie inHi . We can flattenHi on the plane without changing
edge lengths to get a simple polygon, which we continue to callHi . (In fact,Hi is monotone in the
directiond.) Our problem now becomes one of finding a shortest(vi, ui+1)-path inHi , which we can
do in O(|Hi|) time using the algorithm in [11]. (This algorithm requires thatHi be triangulated in linear
time. This can be done by simply adding the segmentsaibi (16 i 6 t) andaibi+1 (16 i 6 t − 1).)

3.4.1. Computing a shortest loop
An important special case arises ifB(d) consists entirely ofd-parallel facets. LetQ denote the circular

sequence of these facets. Now,L(d) is a shortest closed chain of line segments (i.e.,a loop) lying in Q
(see Fig. 7). However, it is not clear how to compute it since we do not have, at this point, a start vertex
and an end vertex between which to run the shortest path algorithm—in general the shortest loop could
potentially cross each of the shared vertical edges anywhere.

Fortunately, Lemma 3.4 below establishes that there is always a shortest loop which passes through
a certain vertex ofQ. Let a1b1, . . . , atbt (t > 1) be the vertical edges shared by successive facets of
Q, wherebi is belowai for all i. Let A (respectivelyB) be the closed chain of edgesa1a2, . . . , ata1

(respectivelyb1b2, . . . , btb1). Let Q′ be the portion ofQ lying betweenA and B. By the triangle
inequality, it follows that any shortest loop lying inQ must also lie inQ′.

Lemma 3.4. There is a shortest loop aroundQ which passes through the lowest vertex,a`, ofA.

Proof. Let J be any shortest loop aroundQ—henceJ lies inQ′. We first claim that ifJ bends upwards
(respectively downwards), then it can do so only at a vertex ofA (respectivelyB). Why? Assume that
J bends upwards at a pointp. (The discussion is similar ifJ bends downwards.) For somei, p lies in
the trapezoid ofQ′ defined by the verticesai, ai+1, bi , andbi+1. If p is any point of this trapezoid other
thanai andai+1, then we can shortenJ by picking two points on it that are sufficiently close top and
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Fig. 7. A shortest loop around a circular sequence ofd-parallel facets.

on opposite sides of the vertical line throughp and joining them directly while still staying withinQ′
(hence withinQ). This contradicts the optimality ofJ and establishes the claim.

For the rest of this proof we takeJ to be a highest possible shortest loop lying inQ′, i.e., we take a
shortest loop aroundQ′ and push it upwards as far as possible without leavingQ′. By the above claim,
it follows thatJ passes through at least one vertex ofA. Let a` be the lowest vertex ofA and assume,
for a contradiction, thatJ does not pass throughal . Let c 6= al be the point whereJ crossesalbl . At c,
J has three possible orientations: it is (i) horizontal, (ii) sloping downwards to the right, or (iii) sloping
upwards to the right.

Case (i). SinceJ must pass through a vertex ofA and this vertex cannot be lower thanal , it follows
that as we walk alongJ to the right ofc, J must bend upwards. Consider the first bend. By
the claim above, this bend (or any other upward bend for that matter) can occur only at some
vertex ofA. But then this vertex is lower thana` sinceJ is horizontal atc andc is belowal—a
contradiction.

Case (ii). As we walk alongJ to the right ofc, we move downwards. SinceJ is a loop it must bend
upwards at some point in order to return toc. Consider the first such bend. By the above claim,
this bend must be at a vertex ofA. But then this vertex is lower thana`—again a contradiction.

Case (iii). Similar to case (ii), except that we walk alongJ to the left ofc. 2
Lemma 3.4 gives us the desired start and end vertex for the shortest path algorithm. Specifically, we

cutQ′ alongalbl and flatten it out into a polygon in the plane; thusalbl appears at the two ends of the
polygon. We then run the algorithm of [11] between the two copies ofa` to find the shortest loop. This
takes O(|Q′|) time.

3.5. Putting it all together: the overall algorithm and its analysis

In Sections 3.2 and 3.3, we showed how to set up and solve the optimization problem for the interior
of each coneC (respectively edgee), assuming that the parting lineL(C) (respectivelyL(e)) was given.
Similarly, in Section 3.4, we showed how to compute for each vertex,d , the shortest path within each
group,Fi , of d-parallel facets, assuming thatB(d)= c1F1 . . . cmFm was given. In this section, we show
how to computeL(C), L(e), andB(d) in O(n) time. This immediately implies an O(n3)-time algorithm
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for finding the flattest parting line. In Section 3.6, we will describe an incremental approach which brings
the time down to O(n2).

We assume thatP is represented by doubly-connected edge lists [16], so that common operations such
as walking around a facet, determining adjacent facets, etc. can be done efficiently. We first show how to
computeA.

3.5.1. ComputingA
Let S2+ be the upper hemisphere ofS2. Using a mapping calledcentral projection [16], which

establishes a bijection between points onS2+ and points in the plane, we map the portions of the great
circles lying inS2+ to straight lines in the plane. Using the algorithm of [9], we compute the arrangement
of these lines in O(n2) time. The faces, edges, and vertices of this arrangement are in 1–1-correspondence
with the cones, edges, and vertices of the portionA+ of A lying in S2+. Thus, by inverting the mapping
we can computeA+. We repeat the above for the lower hemisphere ofS2 also.

3.5.2. ComputingL(C)
Let d be an interior point ofC. We computeF(d) in O(n) time by testing each facet ofP for d-

visibility in O(1) time. A facetf ∈ F(d) is aboundary facet(i.e., it contributes toB(d)) iff at least one
facetf ′ adjacent tof is not inF(d). If f is a boundary facet, then its contribution toB(d) is the sequence
of edges inf ∩ f ′, for all f ′ as above. We can determine whetherf is a boundary facet and, if so, its
contribution toB(d) by walking aroundf and testing each adjacent facet. This takes O(|f |) time perf ,
hence O(n) time in total. We then concatenate the sequences contributed by the different boundary facets
into a circular doubly-linked list representingL(C). To do this, we observe that an endpoint (vertex) of a
sequence is also the endpoint of exactly one other sequence. We can thus use an array indexed by vertices
to determine the order in which to connect the sequences together. This takes O(n) time.

Having thus constructedL(C) in O(n) time, we proceed to set up and solve the optimization problem
for C ’s interior in O(n) additional time, as discussed in Sections 3.2 and 3.3. Thus, all cones can be
processed in O(n3) time.

3.5.3. ComputingL(e)
We pick a pointd in e’s interior and computeL(e) in much the same way we computedL(C). The

only difference is that now there can be up to twod-parallel facets,f1 andf2, in B(d) in addition to the
computed sequencesc1 andc2 (see Fig. 3). To getL(e), we include the segmentsv1u2 ∈ f1 andv2u1 ∈ f2.
Thereafter, we formulate and solve the optimization problem as before. The total time for processing all
the edges is also O(n3).

3.5.4. ComputingB(d) andL(d) for a vertexd
We computeL(d) as follows. Using our earlier notation (Section 3.4),L(d)= c1p1 . . . cmpm, where

ci andci+1 are chains of edges ofP separated by a group,Fi , of contiguousd-parallel facets andpi is a
shortest path inFi connecting these two chains. We first show how to computeB(d)= c1F1 . . . cmFm.

As in the case for cones,c1, . . . , cm can be computed in O(n) time. Also thed-parallel facets can be
found in O(n) time. What remains is to group these facets intoF1, . . . , Fm and then form the circular
list c1F1 . . . cmFm. For eachd-parallel facetf , we scanf and determine its vertical edges (with respect
to d ; these are edges of the typeab in Section 3.4). This takes O(|f |) time perf , hence O(n) time in
all. There can be zero, one, or two such edges inf . If there are zero such edges, thenf forms anFi
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by itself. Otherwise,f is contiguous with ad-parallel facet along each of its vertical edges. Since any
two d-parallel facets share at most one vertical edge, we can use an array indexed by edges to determine
the order in which to connect the facets to form the groupsF1, . . . , Fm. This takes O(n) time. The list
c1F1 . . . cmFm can be formed in O(n) additional time by storing the vertices of all theFi ’s in an array and
indexing into this array using the endpoints of eachcj .

Having foundB(d), we can compute the shortest pathpi in Fi by constructing the polygonHi ⊆ Fi
and running the shortest path algorithm of [11] within eachHi (see Section 3.4). This givesL(d). (The
discussion whenL(d) is a shortest loop aroundP is similar and hence omitted.)

Excluding the time for computing the differentHi ’s andpi ’s, the time taken to computeL(d) is O(n).
(We will show below that the time to construct theHi ’s andpi ’s that arise during the processing ofall
the vertices ofG is just O(n).) GivenL(d) we can computêL(d) and thenρ(d) in O(n) time. It follows
that all the vertices can be processed in O(n3) time.

Let us now obtain an upper bound on the time to compute all theHi ’s andpi ’s. Recall that for eachFi ,
we have already computed the vertical edges of the facets comprisingFi . Therefore, we can computeHi
in O(|Fi|) time, where|Fi | is the number of facets inFi . The shortest path algorithm onHi takes O(|Hi|)
time. We charge this time equally to the2(|Hi|) vertical edges ofHi, which results in a charge of O(1)
to each vertical edgeab. How many times isab charged in this way over the whole phase?ab is charged
whenever it is vertical with respect to a direction. For any edge, there are exactly two directions in which
it is vertical. Thusab is charged only O(1) over the whole phase. SinceP has O(n) edges, it follows that
the time to build all theHi ’s andpi ’s is O(n).

Thus we have the following theorem.

Theorem 3.1. A flattest, undercut-free parting line for ann-vertex convex polyhedron, based on
Criterion ρ, can be computed inO(n3) time.

3.6. Speeding up the algorithm: incremental computation of parting lines

The bottleneck in the above approach is the computation of each parting line from scratch, at a cost
of O(n) apiece. We now show how to sequence these computations so that each parting line can be
computed incrementally from the previous one, at a total cost of O(n2). As seen already, the rest of the
algorithm—formulating and solving the optimization and shortest path problems—also takes O(n2) time.
Thus, the entire algorithm runs in O(n2) time.

The computation proceeds in two phases. In the first phase, the parting lines for the interiors of the
cones and edges are computed. In the second phase, the parting lines for the vertices are computed.

3.6.1. The first phase
Let A be the dual graph ofA, obtained by placing a vertexC inside each coneC and joining two

vertices ofA by an edgee if the corresponding cones share an edgee. We will process cones and edges
in the order in which their duals are encountered in a depth-first search (dfs) ofA.

We pick a coneC and computeL(C) in O(n) time, as in Section 3.5.2. We then perform a dfs ofA
starting atC. Assume that the search next visits vertexC

′
via edgee. That is, inA we go fromC to C ′

by crossing edgee. We computeL(e) from L(C) as follows.
Let d be a point ine’s interior. Recall that there are at most twod-parallel facets,f1 andf2, associated

with e (Fig. 5). Assume that both exist. One of them (say,f1) is not visible from the interior ofC while
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the other one(f2) is visible. As we move tod from the interior ofC, f1 will start coming into view while
f2 will begin to disappear. Each facetf which is adjacent tof1 and is a boundary facet inC will cease
to be a boundary facet now, whilef1 will become one. Therefore, we deletef ’s contribution, namely
f ∩f1, fromL(C). Also, we deletef2’s contribution fromL(C) since it is nowd-parallel. The net result
is thatL(C) is split into the two chainsc1 andc2. To getL(e), we add in the segmentsv1u2 andv2u1.

The time taken to processf1 andf2 in this way is O(|f1| + |f2|). Let us upper-bound the total time it
takes to processf1 andf2 over the entire phase. Letg be the great circle containinge. Note thatf1 and
f2 will appear asd-parallel facets wheneverd lies in the interior of an edge ofg. Since there are O(n)
edges contained ing, the total time for processingf1 andf2 is O(n(|f1|+ |f2|)). Now let us upper-bound
the total time to handle all pairs of suchd-parallel facets as we visit edges on other great circles—this is
the time it takes to incrementally compute the parting lines for all edges. By summing the above bound
over all great circles and noting that each facet ofP corresponds to exactly one great circle, we see that
the total time is

O
(
n
(|f1| + |f2| + |f3| + · · · ))=O

(
n
∑
f∈P
|f |
)
=O

(
n2).

We can now constructL(C ′) from L(e) by essentially reversing the above process. The time to
computeL(C ′) will be O(|f1| + |f2|). Arguing as above, the time to compute the parting lines for all
cones is O(n2).

3.6.2. The second phase
Here we process vertices ofA in the order that they are encountered in a dfs ofA (notA). The phase

is initialized by selecting a vertexd of A, computingL(d) in O(n) time as discussed in Section 3.5.4,
and then doing a dfs ofA from d.

Suppose that the dfs visits vertexd ′ from vertexd , along edgedd
′
. How doesL(d) change toL(d ′)?

As we move fromd to d ′, some of thed-parallel facets will start to come into view while others start
disappearing from view; this will cause some of theFi ’s to be replaced by chains of edges. Also, some
facets will becomed ′-parallel, causing some of thecj ’s to be replaced by groups of contiguousd ′-parallel
facets. Thus,c1F1 . . . cmFm changes toc′1F ′1 . . . c′sF ′s (for some integers). We then run the shortest path
algorithm within theH ′i corresponding to eachF ′i and computep′i . This givesL(d ′)= c′1p′1 . . . c′sp′s .

We discuss the computation ofc′1F ′1 . . . c′sF ′s from c1F1 . . . cmFm in more detail now. Leth be the great
circle containingd andd ′. Let g be a great circle intersectingh atd and letf1 andf2 be the (up to two)
d-parallel facets corresponding tog. Defineg′, f ′1 andf ′2 similarly with respect tod ′.

For eachg intersectingh at d , we do the following: Assume without loss of generality thatf1 is
d ′-visible andf2 is not. We deletef1 from its Fi and add its lower boundary (with respect tod ′) in its
place, sincef1 is a boundary facet with respect tod ′. Also, we deletef2 from itsFj and replace it with
the sequencef ∩ f2 for each facetf that is adjacent tof2 and is not a boundary facet with respect tod,
since each suchf now becomes a boundary facet with respect tod ′.

For eachg′ intersectingh at d ′ we do the following: Bothf ′1 andf ′2 ared ′-parallel. Assume without
loss of generality thatf ′1 is d-visible andf ′2 is not;f ′1 will contribute to some chaincj of L(d), while
f ′2 does not contribute to any chain. We deletef ′1’s contribution fromL(d) and insertf ′1 in its place. We
also deletef ∩ f ′2 for each facetf which is adjacent tof ′2 and is a boundary facet with respect tod and
we insertf ′2 in its place. (In this way,f ′1 andf ′2 become a part of someF ′i and someF ′j , respectively.)
Also we scanf ′1 andf ′2 and compute their vertical sides (with respect tod ′).
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At this point we have obtainedc′1F ′1 . . . c′sF ′s . We then constructH ′i ⊆ F ′i and run the shortest path
algorithm within it to getp′i . This givesL(d ′).

How much time does all this take? (Again, let us exclude the time for constructing theH ′i and thep′i ;
we saw in Section 3.5.4 that all such computations take only O(n) time.) The time to processf1 andf2

as above is O(|f1| + |f2|). Now, f1 andf2 will be processed in this way at each of the O(n) vertices
created by the intersection of the great circleg with another great circle. Similarly forf ′1 andf ′2. Thus,
the total time to process all the vertices ofA is O(n

∑
f∈P |f |)=O(n2).

We may now conclude the following.

Theorem 3.2. Using the incremental approach to update parting lines, a flattest, undercut-free parting
line for ann-vertex convex polyhedron, based on Criterionρ, can be computed inO(n2) time.

4. Implementation and discussion

We have implemented a version of the algorithm just described, excluding the incremental compu-
tation. Our goal was to compare the best and worst parting lines for a “typical” convex polyhedron.
Figs. 8 and 9 show these (in heavy lines) for an example 40-vertex convex polyhedron, where the best
line hasρ = 0.9452 and the worst line hasρ = 0.2980. The polyhedron was generated usingqhull
(http://www.geom.umn.edu/software/download/qhull.html ) to compute the convex
hull of forty co-spherical points generated randomly. Our implementation is written in C++, runs on an
SGI Irix 5 machine and uses LEDA (http://www.mpi-sb.mpg.de/LEDA ) to computeA and the
shortest paths.

Fig. 8. Best parting line produced under Criterionρ.
Hereρ = 0.9452.

Fig. 9. Worst parting line produced under Criterionρ.
Hereρ = 0.2980.
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Fig. 10. A frame from the animation of the algorithm.

Even without the incremental computation, the implementation runs very fast—for the 40-vertex
polyhedron, it takes only 0.16 seconds to compute the optimal parting line (excluding the time needed
for graphical output).

We have also animated our algorithm using the GASP system [19] (available via anonymous FTP
from ftp.cs.princeton.edu, path people/ayt/gasp.tar.Z ). Fig. 10 is a frame from
the animation. It depicts a sample polyhedronP (a dodecahedron), the arrangementA (shown in the
plane), and exploded views of the best and worst parting lines forP . Note that the best parting line lies
completely in a plane, as one would expect in this case, while the worst parting line is highly stepped.
The darkly-shaded regions inA indicate, respectively, the face, edge, and vertex where the best parting
line for a cone-interior, an edge-interior, and a vertex were found. (For clarity, the region for a vertex is
shown enhanced as a wedge.) The lightly-shaded triangle shows where the worst parting line was found.
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5. Flattest undercut-free parting line under Criterion ρ ′

Recall from Section 2.2 that Criterionρ ′ is given by

ρ ′(d)=
k∑
i=1

length(êi)
/ k∑

i=1

length(ei). (3)

The only change that needs to be made to the algorithm of Section 3 is in the optimization problem. For
the interior of a coneC, the optimization problem is

maximize f (x, y, z)=
k∑
`=1

√
A`x

2+B`y2+C`z2+D`xy +E`yz+ F`xz

subject to x2+ y2+ z2= 1 (sphere constraint),

d · nf > 0 (respectivelyd · nf < 0) if dC · nf > 0 (respectivelydC · nf < 0)

for each great circlegf boundingC (plane constraints).

This optimization problem is cumbersome to solve with the Lagrangian Multipliers method because
of the square roots. Instead, in our implementation, we used the optimization functionconstraint
provided in the MATLAB package.

Let T (n) denote the time it takes to solve an instance of such a problem. (T (n) will, of course, depend
on the algorithm used by the optimization function, e.g.,constraint . In the worst case,T (n)=�(n),
since the size,k, of the objective function can be2(n).) Then the total time, taken over all cones, is
O(n2T (n)). Additionally, we need to update the objective function as we move from one cone to the next.
The size of the objective function here is proportional to that of the parting line. As the example below
shows, it is possible for the sum of the sizes of the parting lines, taken over all cones, to be2(n3). Thus,
it does not help to use the incremental approach here. Instead, we simply compute the objective function
afresh at each cone, for a total cost of O(n3). Thus, the running time of the algorithm is O(n3+ n2T (n)).
We handle edge interiors and vertices analogously.

Example. Let P be a vertical pyramid, formed by joining the vertices of a regularn-gon (n even) to a
vertex,v, that is located directly above the center of the polygon. Consider the facetsf of P , excluding
the base. Clearly, the arrangement of the planes,hf , on the upper hemisphere ofS2 has2(n2) cones. For
any directiond within one of these cones, at leastn/2 facets ofP are visible. (To see this, consider facets
f andf ′ determined by two parallel edges of the regularn-gon. Then, from any directiond in the upper
hemisphere ofS2, at least one off andf ′ is visible.) Since the base ofP is not visible fromd , the edges
shared by the visible facets and the base will form a portion of the parting line. Therefore, the parting
line has size2(n) and it follows that the total size of the parting lines taken over all cones is2(n3).

Figs. 11 and 12 depict the best and the worst undercut-free parting lines, under Criterionρ ′, for the
40-vertex convex polyhedron used earlier. For the best (respectively worst) parting line,ρ ′ = 0.9562
(respectivelyρ ′ = 0.5229).



248 J. Majhi et al. / Computational Geometry 13 (1999) 229–252

Fig. 11. Best parting line produced under Criterionρ′.
Hereρ′ = 0.9562.

Fig. 12. Worst parting line produced under Criterionρ′.
Hereρ′ = 0.5229.

6. Flattest undercut-free parting line under Criterion ω

Recall that the width,ω(d), of L(d) in direction d is the smallest distance between two parallel
planes that are perpendicular tod and encloseL(d). To find ad which minimizesω(d), we partition
3-space into cones as before and compute separately the width-minimizing direction for the parting line
corresponding to each region (i.e., cone interior, edge interior, and vertex). The main difficulty is that the
parting line changes as we move from region to region. Therefore, we need to restrict our search for the
width-minimizing direction to the appropriate region. Additionally, at vertices we need to handle parallel
facets appropriately, by finding a minimum-width parting line which passes through the parallel facets
(Section 2.3).

Our approach to computing the width is based on [12]. Towards this end, we review some useful ideas
from [12]. LetS be a point-set in 3-space and let CH(S) be its convex hull. Verticesu andv of CH(S) are
called anantipodal vertex–vertex pair(or VV pair) if there exist parallel planes, one containingu and the
other containingv, that enclose CH(S). Similarly, one can defineantipodal vertex–edge(VE), vertex–
faceandedge–edge(EE) pairs. (Edge–face and face–face pairs are subsumed by vertex–face pairs, and
hence not considered.)

In [12] it is shown that the width-minimizing direction forS is perpendicular to the parallel planes
associated with VF or an EE pair. (The other cases do not sufficiently constrain the parallel planes and
one can always find a direction in which to rotate so as to minimize the width.) We refer the reader to
[12] for more details.
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6.1. Minimum-width parting line for the interior of a cone

Let C be a cone and letL(C) be the parting line for the interior ofC. The following lemma
characterizes the width-minimizing directiond for L(C), where, for convenience in the proof, we let
d range over the interior ofC as well as its boundary.

Lemma 6.1. The width-minimizing directiond for L(C) satisfies one of the following:
(i) it is perpendicular to the parallel planes associated with an antipodal VF or EE pair ofCH(L(C))

that lies in the interior ofC;
(ii) it lies on the boundary ofC.

Proof. If d points in any other direction, then it is perpendicular to the planes associated with a VV or
VE pair lying in the interior ofC. But then, one can find a direction in which to rotate these planes so as
to reduce the width [12]. 2

However, we can exclude the directions specified by Lemma 6.1(ii) because we will later compute the
minimum-width parting lines for the edges and vertices on the boundary ofC and the width of these
will be no greater than that ofL(C) at the excluded directions. This is becauseL(C) can also be used
as an undercut-free parting line at the boundary ofC and so the best undercut-free parting line for the
boundary can be no worse thanL(C).

Let I be the number of directions given by Lemma 6.1(i) and leth denote the size of the parting line.
Then the width-minimizing direction for the interior ofC can be found in O(h logh+ I ) time [12]. Since
I can be2(h2) andh can be2(n), we spend O(n2) time per cone, hence O(n4) time for all cones.

6.2. Minimum-width parting line for the interior of an edge

Let e be an edge boundingC. Within the interior ofe, we can have up to twod-parallel facets as shown
in Fig. 5. It is clear that any two parallel planes that enclosec1 andc2, will also enclose the segments
u1v2 andu2v1. So, without loss of generality we can assume that the parting line,L(e), for the interior of
e consists ofc1, c2, u2v1, andu1v2. The following lemma characterizes the width-minimizing direction
d for L(e), where we letd range over the interior ofe as well as its bounding vertices.

Lemma 6.2. The width-minimizing directiond for L(e) satisfies one of the following:
(i) it is perpendicular to the parallel planes associated with an antipodal VF, EE, or VE pair of

CH(L(e)) that lies in the interior ofe;
(ii) it corresponds to one of the vertices boundinge.

Proof. If d points in any other direction, then it is perpendicular to the planes associated with a VV
pair of CH(L(e)). But in this case the width can be reduced by rotating the planes in the direction given
by e. 2

Again, we can exclude the two directions corresponding to the bounding vertices ofe as we will
later compute the minimum-width undercut-free parting lines for these directions. These lines will be
no worse thanL(e) at the excluded directions, sinceL(e) is also an undercut-free parting line at the
bounding vertices ofe.
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The VF and EE pairs specified in Lemma 6.2(i) give us a discrete set of points (directions) onS2.
However, each VE pair in Lemma 6.2(i) gives us a great circle of directions (since a pair of planes
through a vertex and an edge can be rotated a full 360◦). But, we are only interested in directions that
are also in the interior ofe. So, for each VE pair we find the great circle of directions, intersect it withe,
and consider only the intersection point as a candidate direction. It follows that the best direction among
these discrete points can be found in O(h logh + I ) = O(n2) time. Thus, the total time spent over the
edges is O(n4).

6.3. Minimum-width parting line for a vertex

Let v = d be a bounding vertex of a coneC. In this case, we could have severald-parallel facets, as
shown in Fig. 3. Let us now definepi to be any path lying inFi and joiningvi andui+1. Clearly, the
chainc1p1c2p2 . . . cmpm is an undercut-free parting line with respect to de-molding in directionsd and
−d. Among all such parting lines, we seek the one with the minimum width in directiond. LetV be the
following set of line segments:
(i) Edges that are shared by two adjacentd-parallel facets. These edges are vertical (with respect tod).
(ii) Vertices of all the chainsci . We think of these vertices as degenerate vertical segments. (These may

not exist if we have a loop, as in Fig. 7.)

Lemma 6.3. At a vertexd , there exists an undercut-free parting lineL(d) of widthw iff there are parallel
planesh1 andh2 that are distancew apart and perpendicular tod, such that the region enclosed between
h1 andh2 intersects all the vertical segments ofV .

Proof. We need only note that any undercut-free parting line for directiond must pass through at least
one point of each of the vertical edges that are shared by two adjacentd-parallel facets. 2

By the above lemma it is clear that all we need to find is two parallel planes with minimum separation
that are perpendicular tod and enclose at least one point of each of the vertical segments ofV . Without
loss of generality assumed points upwards along the positivez-axis. Each vertical segment has a lower
and an upper endpoint. Letlow be the highest lower endpoint and lethigh be the lowest upper endpoint.
If low > high, then the region in between two planes that are normal tod and are at heights high and
low will intersect all the vertical segments. Iflow < high then any plane normal tod and atheight
betweenlow andhigh will intersect all the vertical segments. Clearly, the minimum width is given by
max(0, low−high). Therefore, we can find a minimum width undercut-free parting line in O(n) time per
vertex. So the total time over all the vertices is O(n3).

From the preceding discussion we may now conclude.

Theorem 6.1. A flattest, undercut-free parting line for ann-vertex convex polyhedron, based on
Criterion ω, can be computed inO(n4) time.

7. Conclusion

We have given algorithms to compute, for a convex polyhedron, an undercut-free parting line which
is as flat as possible. We have proposed two classes of flatness criteria—one based on the length of the
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parting line and the other based on the positions of its vertices. Our methods include a combination of
continuous optimization on the unit-sphere and discrete techniques from computational geometry. Our
algorithms are general enough that other flatness criteria can be accommodated fairly easily. We have
implemented some of our algorithms.

The obvious open problem is to handle non-convex polyhedra. This problem is considerably more
complex, since there may not be a single direction which simultaneously minimizes the number of
undercuts and also yields the flattest parting line. Therefore, one needs to formulate the problem in a
way that reconciles these mutually conflicting requirements in a meaningful way. We are investigating
this problem. Two potential approaches are: (i) the designer specifies thresholds for number of undercuts
and flatness, and the goal is to find a direction for which both thresholds are met, or (ii) among all
directions minimizing the number of undercuts find the direction yielding the flattest line (or vice versa).

Furthermore, there is a connectivity requirement that also must be incorporated into the solution. It is
important that the parting line divides the polyhedron into a small number (ideally, two) of connected
pieces. Otherwise, the cost of aligning and assembling the molds becomes prohibitive.

We view our results for the convex case as a first towards solving the non-convex problem, and we
expect that the techniques and insights that we have gained will be useful in this regard.
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