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ABSTRACT

The mechanisms of activation of mast cells have been studied in

most detail in rat RBL-2H3 cells. These cells respond to antigen

via the IgE receptor(Fc∈RI) through sequential activation of the

tyrosine kinases, Lyn and Syk, and to adenosine analogs via the

adenosine A3 receptor(A3R)and a pertussis toxin-sensitive G

protein, most likely Gi-3. Other receptors,introduced through

gene transfection, include the muscarinic m1 receptor (m1R)

which acts via G
q/11. Stimulation of cells via Fc∈RI, A3R or m1R

leads to the activation of phospholipase (PL) C, PLD and mito-

gen-activated protein (MAP) kinase resulting in the generotion of

inositol phosphates and diglycerides, an increase of cytosolic

Ca2+, the activotion of protein kinose C (PKC) and the phospho-

rylation of various proteins by PKC and MAP kinase. The extent

and time course of these events vories for each receptar. These

variations, as well as the effects of pharmacologic probes, gene

transfection and reconstitution of responses in washed perme-

abilized cells, indicate how these events relate to functional

responses. A modest but sustained elevation of cytosolic Ca2+

through on influx of extracellular Ca2+ and activation of PKCβ

and PKCδ are sufficient for optimal release of preformed secre-

t ory granules. Phosphorylation of a cytosolic PLA2 by MAP kinase

(p42mapk) and a modest increase in cytosolic Ca2+ are necessary

for the activation of PLA2 and the binding of PLA2 to membranes,

respectively. Finally, both de novo generation and secretion via

Golgi-derived vesicles of certain cytokines are dependent on

Ca2+ and PKC as well as additional signals most probably phos-

phorylation of proteins by Syk and p42mapk.
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INTRODUCTION

The role of mast cells and basophils in allergic 

disorders

High affinity receptors for immunoglobulin (lg) E (FcεRI) are

expressed exclusively on tissue mast cells and blood basophils.

For this reason, these cells are primarily responsible for lgE-

mediated allergic reactions. These cells are activoted by multi-

volent binding of antigen to lgE that is bound to FcεRI, causing

the rapid release of an array of potent inflammatory mediators

by the discharge of the contents of secretory granules such as

histamine, serotonin, proteases, proteoglycans and chemotac-

tic peptides and bythe activation of phospholipase A2 with the

release of arachidonic acid and its lipid metobolites, the

prostavoids ondleukotrienes. These cells olso, ofter a deloy of

30-60min, generote and releose cytokines such ostumor

necrosis factor-α (TNF-α), the interleukins (lL) 1,3,4 and 6, and

granulocyte-macrophage CSF.1 Release of cytokines is sus-

tained for a period of several hours. 2 These three types of

response resultin symptomsthotore chorocteristis of immediate

hypersensitivity reactions. Release of secretory granules and the

arachidonic-acid-derived metobolites are thoughtto account

for the familiar symptoms of hay fever, antigen-sensitive

asthma, gastrointestinal hyper-sensitivity reactions and anaphy-

lactic reoctions to insect stings or injected proteins. There is now

a substontial body of evidence that the release of cytokines,

especially TNF-α, may be responsible, in part, for the delayed

inflammatory responses in some of these reactions. 2 The signal-

ing pothways for each of these three types of response and the

effects of pharmacologic agents on these pathways is reviewed.

Previously unpublished data, to assist our understanding of

these pathwoys, is also presented.

  In addition to Fc∈RI, mast cells also may express adenosine

A3 receptors, 3 lgG-binding receptors of the FcγRII and FcγRIII

categories 4 and receptors for the complement-derived anaphy-

lotoxins, C3a and C5a. These receptors may contribute further

to most-cell-mediated disorders. 5 Fc∈RI-mediated signals have

been studied almost exclusively in the rat RBL-2H3 cell line, and
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for this reason most of our discussion will focus on this cell line 

and its mutated forms.

RBL-2H3 cell as an experimental model for studying 

mast cell function

The RBL-2H3 cell has become a widely used surrogate for the 

study of antigen-induced responses in mast cells, partly because

antigen responsive elements, namely IgE bound to Fc∈RI, can be

experimentally manipulated in ways that are impossible with iso-

lated tissue mast cells. The cells express, as do normal mast cells,

several hundred thousand Fc∈RI and can be primed with mono-

clonal antigen-specific IgE or mixtures of IgE and myeloma IgE to 

vary the number of antigen-responsive elements.6 They also

express adenosine A3 receptors,3 and FcγRIII,4 and, for compar-

ative purposes, have been made to express various G-protein-
coupled receptors by gene transfection (see below). Of these
receptors, Fc∈RI, adenosine A3 and transfected muscarinic m1

receptors have been studied in most detail. In addition, this cell 

line exhibits the same functional responses to antigen as normal 

mast cells. As these responses are readily measured in either 24-

or 96-well culture plates, RBL-2H3 cells can be used for studying 

signal transduction mechanisms in general.

 The phenotype of the RBL-2H3 cell is still a matter of debate 

but on the basis of biochemical criteria7 they resemble rat 

mucosal mast cells more than the connective tissue mast cells. 

Also, like the mucosal mast cell, RBL-2H3 cells do not respond 

to polybasic compounds such as compound 48/80 and poly-

basic neuropeptides.8 Changes, reminiscent of a shift in pheno-

type, are induced by co-culture with 3T3 fibroblasts. During 

co-culture, RBL-2H3 cells become responsive to the polybasic 

secretagogs.9

Source of monoclonal IgE and experimental 

protocols for the activation of RBL-2H3 cells

 The discovery of rat immunocytomas that secreted IgE 10 per-

mitted the preparation of antigen-specific mouse IgE in high

yields. One of These (HI-DNP-∈-26.82) has been widely used 11

for sensitizing RBL cells to the antigens dinitrophenylated bovine 
serum albumin (DNP-BSA) and horse serum albumin (DNP-
HSA). Typically, RBL-2H3 cells are incubated with the mono-
clonal DNP-specific IgE overnight in complete growth medium. 
Radiolabeled inositol, serotonin, arachidonic acid or other 
radiolabeled metabolites may be included to label metabolic 

pools. The next day, the medium is replaced with a simple 
buffered salt-glucose medium. The cultures are then stimulated 
by the addition of DNP-BSA or any other stimulant for measur-
ing the release of granule constituents (e. g. histamine, 

[3H]serotonin or hexosaminidase)12,3 or radiolabeled metabo-
lites such as inositol phosphates, 14 arachidonic acid,l5 phos-

phatidic acid and various phospholipidsl6 or unlabeled 
products such as cytokines and diglycerides by ELISA or enzy-
matic assay procedures.13,6

SIGNALS GENERATED THROUGH FC∈RI AND OTHER

RECEPTORS

Initial signaling events via Fc∈RI

Fc∈RI is a member of the family of multimeric immunoglobulin-

binding receptors which, in common with the T-cell-and B-cell-

antigen receptors, recruit cytosolic tyrosine kinases for the initia-

tion of stimulatory signals.1,17 Fc∈RI consists of the IgE-binding α

subunit, a β subunit and a disulfide-linked homo-ogous dimerof

γchains.6 The binding of multivalent antigen to receptor-bound

IgE induces an aggregation of Fc∈RI and this aggregation is the

trigger for cell activation. Activation can be achieved by direct 

cross-linking of receptors with covalent oligomers of the Fc frag-

ments of myeloma-IgE protein.6 

 Recent studies with RBL-2H3 cells provide a scenario as to 

how the aggregation of receptors generate biochemical signals

within the cell. The cytosolic domains of the β and γ subunits of

Fc∈RI,Iike the ζ chain of the T cell antigen receptor, contain

sequence motifs (ITAM, immunoreceptor tyrosine-based activa-
tion motif)18 which, when phosphorylated, tag SH2-domains of 

cytosolic tyrosine kinases and other signal-transducing proteins 
such as Shc (see section on Activation of MAP kinase). In fact, the
cytosolic portions of the Fc∈RI γ chaln and the ζ chain of the T cell

receptor are interchangeable with little detriment to signal trans-

duction.17,19 Expression of TAC-chimeric constructs of theβ and γ

chains of FceRI19 and biochemical studies20,21 suggest the follow-
ing sequence of events. The tyrosine kinase, Lyn (p56lyn), is nor-
mally associated with the β chain in a constitutively active form.

Aggregation of Fc∈RI, by bringing Lyn into close proximity to

LTAM of the β and γ chains of adjacent receptors, allows tyrosine

phosphorylation of these sites. This transphosphorylation pro-

motes the additional recruitment of Lyn by the β chain, the

recruitment of anothertyrosine kinase, Syk (p72syk), by the γ chain

and the resultant tyrosine phosphorylation of other proteins by

Syk.19 The tyrosine phosphoryfation of the phospholipase Cγ1 22

and γ2 (OH Choi et al., 1944, unpubl. data), and the apparent

activation of these isozymes22 in RBL-2H3 cells is most probably 
mediated by Syk although this has not been unequivocally 

proven. It has been established, however, that Syk is responsible 
for the tyrosine phosphorylation of various proteins, secretion of 

granules19 and activation of the MAP kinase/phospholipase A2 
cascade of signals23 as these events are blocked in RBL-2H3 cells 
by the introduction of a gene for truncated Syk which lacks the 
kinase domain (see later sections).

Adenosine receptors: Finding a novel receptor 

coupled to phospholipases C and D

The adenosine receptors on RBL-2H3 cells, like those on rat 

peritoneal cells, are capable of synergizing antigen-induced 
signals for secretion but by themselves promote little secretion 

when stimulated with adenosine analogs. These receptors differ 

from classic adenosine A, and A2 receptors in their inability to
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alter levels of cyclic AMP24 and their resistance to xanthine 

antagonists of the A1 and A2 receptors.25 RBL-2H3 cells and 

other mast cell lines express high levels of mRNA transcripts of 

the A3 receptor3 and low levels of mRNA transcripts for the A20 
and A2b receptors.26 The evidence to date suggests that adeno-

sine-induced responses in RBL-2H3 cells are mediated predom-

inantly, if not exclusively, through the A3 receptor.27

 Stimulation via the A3 receptors causes transient activation of 

phospholipase C24 and sustained activation of phospholipase D 

and protein kinase C27 by a process that is inhibited by both 

cholera and pertussis toxins24 and markedly enhanced by treat-

ment with dexamethasone such that cells now secrete in 

response to adenosine analogs.28,29 As dexamethasone

increases the expression of the A3 receptor as well as the α and

β subunits of severaltrimeric G proteins,30 it has been suggested

that both the a and β ysubunits of G proteins contribute to the

activation of these two phospholipases.27 The sustained activa-
tion of phospholipase D and protein kinase C probably 
accounts for the ability of adenosine analogs to synergize secre-
tory responses to antigen and other secretagogs.27 Activation of 

phospholipase D results in the formation of phosphatidic acid 
and, via phosphatidate hydrolase, diglycerides which, in turn, 
activate protein kinase C (see below).

Expression of other types of receptors by gene 

transfection

Because the repertoire of receptors is limited, the utility of the RBL-

2H3 cell line has been enhanced by the expression of other 

receptors by gene transfection. The cell line has been stably trans-

fected with genes for the muscarinic m131 and m332 receptors . 

Both sublines respond to carbachol by the activation of phospho-

lipase C-mediated signals and secretion indicating that RBL-2H3 

cells contain appropriate coupling-proteins for these receptors.

The muscarinic ml receptors are coupled to phospholipase C β 3

through Gαq/11, as indicated by the selective downregulation of

these proteins after prolonged exposure of the cells to the ml 

agonist, carbachol, but not after exposure to antigen. Carbachol

does not induce tyrosine phosphorylation of phospholipase C γ1

and γ 2 as does antigen (Choi OH, Yamada K & Beaven MA,

1994, unpubl. obs.), but bath stimulants elicit a similar array of 
respanses.31,33 As will be elaborated upon later, the notable differ-
ences are that carbachal is a much weaker stimulant of TNF syn-
thesis than antigen34 and that the two stimulants activate the MAP 
kinase pathway by different mechanisms.23 
 The anaphylataxins, C3a and C5a, are potent stimulants of 

mast cells and basaphils, respectively.5 RBL-2H3 cells possess 
na detectable receptors for C5a ar other chemotactic pep-
tides.35 Sublines expressing epitape-tagged receptors far the 
chemotactic peptide, fMLP,35 C5a35,36 as well as platelet activat-
ing factar,37 IL-838 ar thrambin39 have been produced far studies 
of receptor desensitization. The studies indicate that heterala-

gous desensitization is associated with phasphorylation of some

of these receptors by protein kinase C whereas homologous 
desensitization is attributable to phaspharylatian of all of these 
receptors through phasphorylation by G-protein-coupled 
receptor kinases (GRK).38,40 All of these sublines can be stimu-
lated via these expressed receptors to elicit the full phasphali-

pase C-mediated cascade of signals including the release of 
secretary granules to further indicate that RBL-2H3 cells possess 
the mechanisms for coupling and regulating bath G protein and 
tyrosine kinase dependent receptors.

Chemical stimulants of RBL-2H3 cells

Stimulants that bypass early receptor-mediated stimulatory events 
include the Cat+ -ianaphares, ianamycin and A23187, and acti-
vators of protein kinase C such as pharbal 12-myristate 13-
acetate. Low concentrations of these reagents (<100 nmol/L) 
elicit respectively, substantial elevation of [Ca2+]1 and activation of 

protein kinase C but they da not induce the release of secretary 
granules. In combination, however, they stimulate secretian.41-43 
Thapsigargin, which elevates [Ca2+]1 by blocking the uptake of 
Ca2+ into IP3-sensitive stores, also stimulates secretion but only at 
concentrations (>100 nmol/L) far in excess of those (10 nmao/L) 
required far the elevation of [Ca2+]1.44 While these studies suggest 
that an increase in [Ca2+]1 and in protein kinase C provide signals 
for secretion, it should be noted that high concentrations of Ca2+-
ianaphare stimulate phasphalipase C43 and phospholipase D.45

INTERMEDIATE SIGNALING EVENTS IN RBL-2H3 CELLS 
AND MUTATED SUBLINES 

Recruitment of phospholipases C and D

RBL-2H3 cells possess the β2, β3, γ1 and γ2 forms of phospholi-

pase C (Hirasawa N & Beaven MA, unpubl. data) as well as phos-

pholipase D activity.46 The activation of the β isoforms through

G-protein-coupled receptors and the tyrosine phosphorylation of

the γ-isoforms22 of phospholipase C through activation of Lyn/Syk

tyrosine kinases via Fc∈RI1,19,47 has been noted earlier. The mech-

anisms of activation of phospholipase D are still undetermined, 

but the recent cloning of a gene that encodes one form of phos-

pholipase D should facilitate studies of these mechanisms.48

Mobilization of intracellular and extracellular 
calcium ions

Early studies established that degranulation of rat peritoneal 
mast cells is dependent on external Ca2+ and is associated with 
influx of Ca2+ (45Ca2+) and other divalent cations.49,50 This influx 
is associated with the generation of second messengers and 
is reminiscent of what has been observed in other types of 
electrically non-excitable cells33 in which there is rapid release of 
Ca2+ from inositol 1,4,5-trisphosphate-sensitive Cat-stores fol-
lowed by an influx of Ca2+ 5',52 This influx is closely associated 
with the emptying of inositol 1,4,5-trisphosphate-sensitive Cat-
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stores51,52 and the generation of a diffusible messenger mole-

cule53,54 from intracellular organelles. Influx is thought to occur 

through a low conductance current, designated I
crac for 'calcium 

release-activated calcium current', which has been characterized 

in mast cells55 and RBL-2H3 cells.56 This current appears to be 

highly selective for Ca2+ ions.55

In the RBL-2H3 cell, antigen stimulation causes, after a short 
delay, a transient increase in [Ca2+]1 in the absence of external 
Ca2+31,57,58 which has been attributed to the release of Ca2+ from 
intracellular stores by inositol 1,4,5-trisphosphate.31,33 Stimu-
lation in the presence of external calcium results in a sustained 
increase in [Ca2+]1. The sustained elevation in [Ca2+]1, as deter-
mined by Ca2+-sensitive fluorescent probes, is totally dependent
on the influx of external Ca2+.59 The increase in [Ca2+]1 is associ-
ated with an increase in total intracellular Ca2+ possibly due to 
the uptake of cytosolic Ca2+ into mitochondrial stores when 

[Ca2+]1 is elevated above basal levels.44,60 Other cations impede 
Ca2+ -uptake, either by blocking the entry of Ca2+ at the cell sur-
face or by competing for Ca2+ -entry into the cell.50 Entry of Ca2+
is suppressed also when cells are depolarized by high concentra-
tions of external K+ 61,62 and a repolarizing current may be 
required to maintain influx.62-67 In addition to Icrac, novel sphin-
golipid-gated Ca2+ -gated efflux channel (from Ca2+ -storage 
organelles) has recently been described in RBL-2H3 cells68 but its 

physiological relevance remains undetermined.

Recruitment of protein kinase C: Actions of 

individual isozyme agonists and inhibitors

Protein kinase C is a family of serine/threonine kinases that are 
rapidly activated in response to elevated [Ca2+]1 and the generation 

of diglycerides via phospholipases C and D. The isoforms differ in 
their requirements for calcium and lipid co-factors which allows 
activation of the enzyme in various microenvironments. Phorbol 
esters can substitute for diacylglycerol in activating protein kinase
C and have been widely used in unmasking protein-kinase-C-

mediated phosphorylations and actions in vivo. The isoforms have

been categorized as conventional or calcium-dependent (α, the

alternatively spliced variants βl and βll, andγ), novel or caicium-

independent (δ,∈,π,φ, and μ), and atypical(ζ and λ,) on the basis

of their diverse properties and their historical sequence of discovery. 

The atypical are the least understood category of isoforms but they 

fail to respond to phorbol esters.69 Distinct structural/topographical 

differences among these categories account for the diverse proper-

ties and, it is believed, permit the individual isoforms to subserve dif-

ferent functions within the cell.70,71 Indeed, this is strongly supported 

by studies in RBL-2H3 cells.

  RBL-2H3 cells contain the Ca2+ -dependent α, βl andβll iso-

forms and the Ca2+ -independent δ, ∈ and ζ isoforms of protein

kinase C.72-74 When cells are stimulated with antigen, these iso-

forms rapidly associate to variable extents (i. e. δ the most and ζ

the least) with the membrane fraction but without external Cat+,

only the Cat+ -independent isoforms do so.72 Washed perme-

abilized cells lose all isozymes of protein kinase C, and do not 

secrete in response to antigen and carbachol,72 but stimulatory 

signals such as hydrolysis of inositol phospholipids are 

enhanced by as much as two- to three-fold.75

 Reconstitution of antigen-induced responses by provision of 
recombinant isozymes of protein kinase C to washed permeabilized 

cells have suggested that antigen-induced secretion of granules is
mediated primarily by protein kinase Cβ and δ'2 and feedback inhi-

bition of phospholipase C is mediated primarily by protein kinase

Cα and ∈.75 Similar studies have indicated that in antigen-stimu-

lated cells, protein kinase Cβ and ε tronsduce signals for the expres-

sion of the c-fos and c-jun76 and that protein kinase Cδ, by

phosphorylating the γ subunit of Fc∈RI specifically, may promote

endocytosis of the receptor.73 The isoforms also exhibit different 

rates of degradation when RBL-2H3 cells are continuously exposed

to phorbol 12-myristate 13-acetate. Protein kinase Cβ and α are

degraded within minutes and hours respectively, whereas the Cat+ -

independent isozymes(δ,∈ and ζ) resist degradation.72,77,78

 In addition to reconstitution studies with permeabilized cells, 

the role of protein kinase C in cell function has been studied typ-

ically by using phorbol esters to activate or selectively degrade 

isoforms of protein kinase C and of inhibitors of protein kinase 

C. It has been our experience that kinase inhibitors, in general, 

rarely have the selectivity intended when used in vivo.79-81 Of the 

many drugs that we have tested, only the Ro series of protein 

kinase C inhibitors exhibit such selectivity.82 One of them, Ro31-

7549, suppresses the release of secretory granules and TNF 

without affecting activation of tyrosine kinases, myosin light 

chain kinase, and the MAP kinase/PLA2 pathway.34,80,81,83

The activation of MAP kinase

Tyrosine kinase-dependent receptors, such as the EGF receptor 
and the multimeric immune receptors, utilize the SH2-contain-
ing protein Shc, the adaptor protein Grb2, and the guanine 
nucleotide exchange factor Sos, to convert Ras (p21 ras) to its 
active GTP-bound state84-86 which, in turn activates the MAP 
kinase pathway via Raf 1.87 Activation is accomplished through 
Ras-mediated translocation of the kinase Raft, which when 

phosphorylated by an unidentified kinase, phosphorylates and 
activates a unique tyrosine/threonine kinase, MEK, which then 

phosphorylates and activates MAP kinase.88
 The cascade of events has been demonstrated in antigen-

stimulated RBL-2H3 cells as indicated by the interactions 
of Shc and Sos with Grb2, the activation of Ras, and the phos-

phorylation of Shc,89 Raf1, MEK and p42mapk 83,90 The tyrosine 
phosphorylation of p42mapk is associated with a shift in 
electrophoretic migration of p42mapk90 and an increase in MAP 
kinase activity.23,83,91 Expression of porcine Syk, or a dominant-
negative truncated Syk (Syk-T) that lacks the kinase domain,23,92 
in a vaccinia expression system, has indicated that Syk is essen-
tial for activation of the Shc/Grb2/Sos89 and MAP kinase23 path-
ways when cells are stimulated by antigen. 

 The MAP kinase pathway may be activated in RBL-2H3 cells
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through alternate pathways.83 Activation of the Raf/Mek/MAP 
kinase cascade via the muscarinic m1 receptors, for example, is 
not dependent on Syk.23 Current studies suggest that elevated 

[Ca2+]1 and protein kinase C may provide alternate signals for 
activation (C Zhang, N Hirasawa & MA Beaven, unpubl. data). 
Also, it is unclear whether Syk-dependent tyrosine phosphoryla-
tion of Vav in antigen-stimulated RBL-2H3 cells provides yet 
another mechanism of activation.23

Late signaling events

The targets for signals transduced via calcium and protein 

kinase C that ensure activation of the secretory machinery in 

RBL-2H3 cells have not been identified, but potential targets are 

the light and heavy chains of myosin. In stimulated RBL-2H3 

cells, myosin light and heavy chains are phosphorylated by pro-

tein kinase C93 and the light chains by both protein kinase C and 

myosin light chain kinase.81,94 These phosphorylations show

close correlation with the rate and the extent of degranulation 
when cells are stimulated with antigen and chemical secreta-

gogs.81,93 Although these studies and those with inhibitors of 
protein kinase C and calcium, demonstrate a close correlation 
between phosphorylation and degranulation, they do not estab-
lish a causal relationship. RBL-2H3 cells express only one 

(myosin-A) of the two (myosin-A and B) isoforms of myosin,95 
and studies with antibodies against myosin-A in permeabilized 
cells should be instructive.
 Another area of current interest is the role of G proteins regu-

lating granule trafficking and fusion. This interest stemmed from 
the observation of Gomperts and co-workers that Ca2+ and 
non-hydrolyzable GTP analogs together were sufficient to 
induce maximal secretory response in permeabilized96 and 

patch-clamped mast cells.97 Because elevation in [Ca2+]1 elimi-
nated the requirement for the GTP analog, and vice versa, it 
was hypothesized that a Ca2+-receptor (called Ce, where e 
stands for exocytosis) required a G protein (called Ge) for further 
transduction of signals. There is evidence that a pertussis toxin-
sensitive, trimeric G protein,98 most likely Gi13, mediates a late 
step in exocytosis and is directly activated by compound 48/80 
in rat peritoneal mast cells.99 Other studies in which exocytosis 
was induced in rat mast cells by microinlection of the constitu-
tively activated product of the H-ras oncogene100 or peptide 
analogs of Rab3a101 suggst that low molecular weight 
monomeric G proteins may also serve the function of Ge.

SIGNALING EVENTS FOR RELEASE OF SECRETORY 
GRANULES, ARACHIDONIC ACID, AND CYTOKINES

Activation of protein kinase C and elevation of 

[Ca2+]1 are necessary and sufficient signals for 
secretion

The studies with pharmacologic stimulants (see section on 

Chemical stimulants of RBL-2H3 cells) suggest that elevation of

[Ca2+]1 and activation of protein kinase C provide signals for 
secretion in RBL-2H3 cells, and the pattern of phosphorylation 
of myosin chains implies that these two signals are active in anti-

gen-stimulated cells. Also, blockade of secretion by either 
Ro31-7549 or the calcium chelator, EGTA, establishes that 
these are two necessary signals for secretion.72 However, these 
findings do not prove that these are the only physiologic signals 
for secretion.42,102
 The most definitive information on the role of calcium and 

protein kinase C in secretion has come from reconstitution stud-
ies in permeabilized RBL-2H3 cells. As previously noted, washed 

permeabilized cells lose all isozymes of protein kinase C and fail 
to secrete in response to antigen. A full secretory response to 

antigen could be reconstituted by the subsequent addition of 

nmol/L concentrations of either the Ca2+-dependent protein
kinase Cβ or the Ca2+-independent protein kinase Cδ (other

isozymes were much less effective), but only in the presence of 1

μmol/Lfree Ca2+ to indicate separate roles for Ca2+ and protein

kinase C in exocytosis.72

 To demonstrate that signals generated via calcium and pro-

tein kinase C provide sufficient signals for secretion, secretion 

was induced in washed, permeabilized cells by the addition of 

the protein kinase C agonist, 1-oleoyl 2-acetyl-sn-glycerol

(OAG), and protein kinase Cδ, which does not require calcium

for activation in the presence of various [Ca2+]1. Control experi-
ments indicated that the elevation of [Ca2+]1 only did not stimu-
late secretion even when [Ca2+]1 was raised to 10umol/L, 
although these high, non-physiologic concentrations did stimu-
late a slight release of inositol phosphates and arachidonic acid

(Fig. 1). In the presence of protein kinase Cδ, physiologic con-

centrations of calcium (0.1μmol/L and 1μmol/L) induced no or

little (>3%) secretion, but high [Ca2+]1 induced moderate secre-
tion possibly as a consequence of the stimulation of lipid metab-
olism (Fig. 2a).In the presence of 10μmol/L OAG and protein

kinase Cδ, a small elevation of [Ca2+]1 elicited a secretory

response similar to that in antigen-stimulated cells (approxi-
mately 40%). The data indicated a half maximal response (EC50) 
at about 200nmol/L [Ca2+]1, and near maximal response at 
700-1000nmol/L [Ca2+]1 (Fig. 2b), responses that were com-

parable to those observed in intact antigenlstimulated cells.59"03

Further definition of the roles of calcium and 

protein kinase C in secretion in antigen-stimulated 
RBL-2H3 cells

Protein kinase Cδ is known to translocate to the membrone in

response to antigen stimulation in the absence of external cal-

cium,72 but as noted earlier, the calcium-dependent protein

kinase Cβ also transduces a signal for secretion in permeabi-

lized cells and its translocation to the membrane is dependent

on calcium.72 As protein kinase Cβ is the most potent of the two

isoforms in promoting secretion,72 there are at leasttwo requare-

ments for calcium in intact cells; one, as an activator of protein
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kinase Cβ,　the other as a signol for secretion. These require-

ments were examined in two additional experiments with

washed permeabilized cells as described below.

  In the first experiment, [Ca2+]1 was varied from 10nmol/L to

1000nmol/L in the presence of 100nmol/L protein kinase Cδ,

or 10nmol/L protein kinase Cβ. These concentrations were

known to sustain maximal responses to antigen.72 The ability of

these cells to secrete in response to antigen indicated that the

requirement for [Ca2+]1 was the same for either isoform (Fig.

Fig. 1 Stimulation of release of arachidonic acid(▲), inositol phos-

phates(●), but not of hexosaminidase (□), a gronule morker, in

washed permeabilized RBL-2H3 cells at various concentrations of

buffered calcium. Values indicate percent release at 15 min72,75,83 and

are expressed as mean ± SEM of three cultures.

3a). Fifty percent of the maximal secretory response to antigen 

(EC50) was observed with 190-210 nmol/L [Ca2+]1, and near 
maximal response, with 400-600 nmol/L [Ca2+]1 (Fig. 3a). 
These values corresponded closely to those obtained in the 
studies with OAG (Fig. 2).

The second experiment was designed to assess the require-

ment for [Ca2+]1 for the activation of protein kinase Cβ (Fig. 3b).

The experiment was performed as described above except that 
the cells were washed shortly after the addition of antigen to 
remove excess protein kinase C that had not translocated to the 
membrane. The medium was then replaced with medium that 
contained 1000 nmol/L [Ca2+] to ensure complete release of 
secretory granules. The extent of secretion was assumed to be 
dependent on the amount of isozyme retained and activated
within the cell. The activation of protein kinase Cβ, but not of

protein kinase Cδ, appeared to be highly dependent on the ini-

tial concentration of calcium (Fig. 3b). The leftward shift in the

curve for protein kinase Cβ indicated that the requirement for

[Ca2+]1 for activation of protein kinase Cβ was less than that for

secretion (Fig. 3a, b). Half-maximal (EC50) and near maximal 
responses were achieved with 110 nmol/L and 250 nmol/L 

[Ca2+]1, respectively. Thus, relatively small increases [Ca2+]1
were required for activation of the β isoform.

 Further studies revealed that permeabilized RBL-2H3 cells 
exhibited quantal release of granules when the concentration of 

protein kinase C was limited (Fig. 4a, b). In this series of experi-
ments, washed permeabilized cells were exposed to 10 nmol/L

[Ca2+]1 and to different concentrations of protein kinase Cβ or δ

before the addition of antigen. Secretion was then initiated by

raising [Ca2+]1 to 1μmol/L Secretion was essentially complete

within 10min in the presence of 10nmol/L protein kinase Cβ

Fig. 2 Stimulation of release of hexosaminidase in washed permeabilized cells with (□) or Without (〇) 100nmol/L protein Kinase Cδ (a) in the

absence or (b) inthe presence of 10μmol/L 1-oleoyl 2-acetyl-sn-glycerol (OAG) at various concentrations of buffered calcium.Values indicate per-

cent release at 15min and are expressed as mean ± SEM of three cultures.
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Fig. 3 (a) Calcium requirement for antigen-stimulated release of hex-

osaminidase by washed permeabilized cells incubated (15 min) with

100nmol/L protein kinase  Cδ (□), 10nmol/L protein kinase Cβ (△),

or no protein kinase (●). (b) Calcium requirement for activation of pro-

tein kinase C in permeabilized cells incubated With protein kinase Cβ

(△), protein kinase Cδ (□) and Withou tprotein kinase (●). Calcium was

then increased to 1μmol/L to ensure complete release. Values are

expressed as mean ± SEM of three cultures.

(Fig. 4a) and within 1 or 2 min in the presence of 100nmol/L

protein kinase Cδ (Fig. 4b). With less than optimal concentra-

tions of either isozyme, the extent but not the time course of

secretion was altered(Fig 4a, b). These kinetics implied that the

cells responded quantally to protein kinase C and that each

molecule of membrane-associated protein kinase C had access

to limiting amounts of substrate that was critical for secretion.

  The studies mentioned previously also demonstrated that the

secretory machinery in RBL-2H3 cells responded relatively rapidly 
to stimulatory signals. Equally rapid responses could be invoked 
in intact cells when the addition of calcium was delayed until after 
the addition of antigen (Fig. 4c). As in other studies,59,93 the time 
course of secretion when intact cells were stimulated in the pres-
ence of calcium was relatively slow (Fig. 4d). The difference in 
time course suggested that the rate-limiting step in secretion in the 
intact cell was the initiation of stimulatory signals that preceded 
calcium mobilization in response to antigen-stimulation.

  In summary, these studies have indicated that an increase in

[Ca2+]1 and activation of protein kinase Cβ or δ provide suffi-

cient signals for secretion. Relatively modest increases in [Ca2+]1

are necessary for mediating secretion and even smaller

increases are required for translocation and activation of pro-

tein kinase Cβ but not the δ isoform. The quantal response of

cells to both isoforms of protein kinase C is intriguing and wor-

rants further investigation.

Synthesis and release of arachidonic acid

The effector enzyme for receptor-mediated release of arachi-
donic acid in various cells104,105 is now thought to be the high 
molecular weight PLA2, usually referred to as cytosolic PLA2 

(cPLA2), that has cDNA that has been cloned from human 
monoblast105-107 and murine macrophage106 cell lines. The 
deduced amino-acid sequence (85 kDa) indicates exceptional 
similarity between the human and murine forms of the enzyme, 
a shared Cattdependent phospholipid binding domain and a 
single serine-containing consensus site for phosphorylation by 
MAP kinase.106 These and other findings suggest that cPLA2 
activity is regulated primarily by calcium and by serine phospho-
rylation of cPLA2 by MAP kinase.104,105 As noted earlier, activa-
tion of this pathway is achieved by sequential activation of Ras, 
Raft, MEK1, and MAP kinases.88,108 Activation of this cascade of 
reactions is thought to result in the activation of cPLA2 and there 
is evidence that this might be the case in RBL-2H3 cells.

 Stimulation of intact or permeabilized RBL-2H3(ml) cells with 
antigen, carbachol, A23187 or thapsigargin results in the 
apparent activation of Rafl, MEKI, MAP kinase, cPLA2 as well as 
the release of arachidonic acid.S3 The entire pathway is inhibited 
by low concentrations of quercetin, but not by Ro31-7549, and 
thus appears to be dependent on a quercetin-sensitive protein 
kinase that is not protein kinase C.83 These and other findings 
indicate that release of arachidonic acid is attributable exclu-
sively to the regulation of cPLA2 by MAP kinase (for activation of 
cPLA2) and Ca2+ (for association of cPLA2 with the membrane).23

  The over-expression of Syk or truncated SykT in RBL-2H3 (ml)

cells (see section on The activation of MAP kinase) indicated that

antigen-induced activation of cPLA2 and the release ofarachidonic

acid, as well as the activation of MAP kinase, were dependent on

Syk. The role of Syk in mediating signals vis FcεRI was also evident

in RBIL-2H3 cells tha texpressed the TAC chimeras of the β and γ

chains of FcεR. These cells respond to cross-inking of TAC γ with
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Fig. 4 Time course of antigen (Ag; 10ng/mL DNP-BSA) stimulated secretion in (a, b) washed, permeabilized and (c, d) intact RBL-2H3 cells. The addi-

tions (indicated by arrows) in: (a) 5nmol/L(△) or 10nmol/L (□
,■) protein kinase Cβ, 10nmol/L(■) or 1μmol/L (□, △)free calcium; (b) 30nmol/L

(△) or 100 nmol/L (□,■) protein kinase Cδ, 10nmol/L (■) or 1μmol/L(□,△) free calcium; (c) 0.1 mmol/L EGTA followed by no(■)or 1.1mmol/L

calcium and;(d)no(■)or l mmol/L(□)calcium. Methods are as described eisewhere.72 Values indicae percentage release of hexosominidase and

are the mean ± SEM of three cultures

the activation of MAP kinase and cPLA2 along with release of 

arachidonic acid. Again these responses are blocked by over-

expression of SykT. As these same events could be induced by car-

bachol when Syk was inactivated by SykT, alternate pathways must 

exist for the activation of cPLA2 via Ras and MAP kinase.23

Synthesis and release of cytokines

TNF-α is associated with discharged granules in human109 and

rodent1 10-112 mast cells, and is presumably released by exocy-

totic discharge of these granules. In most cultured mast cell 

lines, however, cytokines are not constitutively expressed and in 

all types of mast cells there is increased expression of the 

cytokine protein or its mRNA, which is detectable from 30 min

to several hours afterthe addition of a stimulant. Stimulation of

cytokine production via FcεRI is probably dependent on the

mobilization of Ca2+ and activation of protein kinase C,

because such production can be induced by calcium ionophore

or the protein kinase C-activator, phorbol 12-myristate 13-

acetate.110,113,114 lt has been postulated, however, that FcERI-

activated kinases may have a more direct role in stimulating 
cytokine production through the tyrosine phosphorylation of 
other substrates.17 It has been argued that these early events 
result in either increased expression of cytokine mRNA by acti-
vation of gene transcription17,115 or stabilization of short-lived 
mRNA transcripts116 by Ca2+-dependent kinases.117 
 Studies in RBL-2H3 cells34 indicate that TNF is not constitu-

tively expressed nor incorporated into secretory granules but is
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generated de novo upon cell stimulation. Production of TNF is 
dependent on elevation of [Ca2+]1 and protein kinase C. Optimal 

production of TNF, however, may be dependent on additional 
synergistic signals as carbachol, which does not operate through 
Syk, is a weak stimulant of TNF production. Therefore, a Syk-
dependent pathway may provide such synergistic signals. TNF is 
released from cells by a process analogous to constitutive secre-
tion in that brefeldin A, an agent known to disrupt Golgi mem-
branes in these cells, inhibits this release without inhibiting the 
release of secretory granules. Unlike constitutive secretion, the 
secretion of TNF is highly regulated by Ca2+ and protein kinase 
C. Studies with various stimulants and inhibitors have indicated 
that simultaneous mobilization of Ca2+ and activation of protein 
kinase C are sufficient signals for secretion and are potential tar-

gets for therapeutic intervention. 
 The role of MAP kinase is currently under investigation in our 

laboratory because over-expression of genes for Raf1118 or MAP 
kinase119 enhance the expression of a variety of cytokine genes 
in T cells and macrophages, the inactivation of IKB120 and 
enhanced binding activity of cytokine transcription factors, 
including NF-KB and AP1.119

Future directions

We have presented evidence, based mostly on studies in RBL-
2H3 cells, that the secretion of granules is regulated by protein 
kinase C and that the release of arachidonic acid, via PLA2, is 
regulated by MAP kinase and that both processes are depen-
dent on modest increases in [Ca2+]1. The communicating links 
between FC£Ri and these two kinases have been established, at 
least in broad detail. The remaining challenges are the identifi-
cation of the events after the activation of protein kinase C and 
increased [Ca2+]1 for secretion and the the events related to the 
regulation of transcription factors for the cytokine genes, in par-
ticular the role of protein kinase C, MAP kinase and calcium. 
We suspect that the regulation of cytokine secretion via Golgi 
might also be a rewarding area of research.

ACKNOWLEDGMENTS

The authors wish to thank Dr Henry Metzger for his advice and 

assistance over the past decade. They also wish to thank Drs 

Jean-Pierre Kinet and Peter Blumberg and their colleagues for 

their collaboration on studies with Syk and protein kinase C. 

Without this collaboration, many of the studies cited here would 

not have been possible.

REFERENCES

1 Beaven MA, Metzger H. Signal transduction by Fc receptors: The 

  FcE case. Immunol. Today 1993; 14: 222-6. 
2 Galli SJ. New concepts about the mast cell. N. Engl. J. Med. 

 1993; 328: 257-65. 

3 Ramkumar V, Stiles GL, Beaven MA, Ali H. The A3R is the unique

adenosine receptor which facilitates release of allergic mediators 

in mast cells. J. Biol. Chem. 1993; 268: 16 887-90. 

4 Daeron M, Bonnerot C, Latour S, Fridman WH. Murine recombi-

nant Fc gamma RIII, but not Fc gamma RII, trigger serotonin 

 release in rat basophilic leukemia cells. J. Immunol. 1992; 149: 

 1365-73.

5 Hook WA, Siraganian RP, Wahl SM. Complement-induced hista-
 mine release from human basophils. i. generation of activity in 
 human serum. J. Immunol. 1975; 114: 1185-90. 

6 Metzger H, Alcaraz G, Hohman R, Kinet J-P, Pribluda V, Quarto R. 
 The receptor with high affinity for immunoglobulin E. Annu. Rev. 
Immunol. 1986; 4: 419-70. 

7 Seldin DC, Adelman S, Austen KF et al. Homology of the rat 
  basophilic leukemia cell and the rat mucosal mast cell. Proc. Nat! 
 Acad. Sci. USA 1985; 82: 3871-5. 

8 Woldemussie E, Ali H, Takaishi T, Siraganian RP, Beaven MA.  
Identification of variants of the basophilic leukemia (RBL-2H3) 

  cells that have defective phosphoinositide responses to antigen 
  and stimulants of guanosine 5'-triphosphate-regulatory proteins. 
 J. Immunol. 1987; 139: 2431-8.

9 Sweiter M, Midura RJ, Nishikata H et al. Mouse 3T3 fibroblasts 
  induce rat basophilic leukemia (RBL-2H3) cells to acquire respon-
 siveness to compound 48/80. J. Immunol. 1993; 150: 617-24. 

10 Bazin H, Querinlean P, Beckers A, Heremans JF, Dessy F. 
  Transplantable immunoglobulin-secreting tumours in rats. IV. 
  Sixty-three IgE-secreting immunocytoma tumours. Immunology 

 1974;26:713 -23. 
11 Liu FT, Bohn JW, Ferry EL et al. Monoclonal dinitrophenyl-specific 
  murine IgE antibody: preparation, isolation, and characterization. 

 J. Immunol. 1980;124: 2728-37.
12 Beaven MA, Ludowyke RI. Stimulatory signals for secretion in mast 

  cells and basophils. In: Advances in Regulation of Cell Growth, 
  Volume 1: Regulation of Cell Growth and Activation (eds JJ Mond, 

  JC Cambier, A Weiss), pp. 245-85, Raven Press Ltd, New York, 
  1989. 

13 Baumgartner RA, Beaven MA. Mediator release by mast cells and 
  basophils. In: Handbook of Experimental Immunology, 5th Edn 
  (eds LA Herzenberg, L Herzenberg) Blackwell Science Pty Ltd, 

   Boston, 1996, in press.
14 Dean NM, Beaven MA. Review: Methods for the analysis of inosi-

  tol phosphates. Anal. Biochem. 1989;183: 199-209. 

15 Garcia-Gil M, Siraganian RP. Phospholipase A2 stimulation during 

  cell secretion in rat basophilic leukemia cells. J. Immunol. 1986; 

  136: 259-63. 

16 Kennerly DA. Quantitative analysis of water-soluble products of 

   cell-associated phospholipase C-and phospholipase D-catalyzed 

  hydrolysis of phosphatidylcholine. Methods Enzymol. 1991; 197: 

   191-7.

17 Keegan AD, Paul WE. Multichain immune recognition receptors: 
   similarities in structure and signaling pathways. Immunol. Today 

  1992;13:63 -8. 
18 Cambier JC. Antigen and Fc receptor signaling: the awesome 

   power of the immunoreceptor tyrosine-based activation motif 
  (ITAM). J. Immunol. 1995;155: 3281-5. 

19 Jouvin M-HE, Adamczewski M, Numerof R, Letourneur 0, Valle A, 
   Kinet J-P. Differential control of the tyrosine kinases lyn and syk by 
  the two signaling chains of the high affinity immunoglobulin E 
   receptor. J. Biol. Chem. 1994; 269: 5918-25. 

20 Pribluda VS, Pribluda C, Metzger H. Transphosphorylation as the 
  mechanism by which the high-affinity receptor for IgE is phospho-

   rylated upon aggregation. Proc. Nat! Acad. Sci. USA 1994; 91: 
  11 246-50. 

21 Yamashita T, Mao S-Y, Metzger H. Aggregation of the high-



82 MA BEAVEN and K OZAWA

  affinity IgE receptor and enhanced activity of pSS/56lyn protein-

   tyrosine kinase. Proc. Nat/Acad. Sci. USA 1994; 91: 11 251-5. 

22 Park DJ, Min HK, Rhee SG. IgE-induced tyrosine phosphorylation

of phospholipase C-γ1 in rat basophilic leukemia cells. J. Biol.

  Chem. 1991; 266: 24 237-40. 
23 Hirasawa N, Scharenberg A, Yamamura H, Beaven MA, Kinet J-P. 

  A requirement for Syk in the activation of the MAP kinase/phos-

   pholipase A2 pathway by FcERI is not shared by a G protein-
   coupled receptor. J. Biol. Chem. 1995; 270: 10 960-7. 

24 Ali H, Cunha-Melo JR, Saul WF, Beaven MA. The activation of 

   phospholipase C via adenosine receptors provides synergistic sig-
   nals for secretion in antigen stimulated RBL-2H3 cells: Evidence 

   for a novel adenosine receptor. J. Biol. Chem. 1990; 265: 

   745-53.

25 Ali H, Muller CE, Daly JW, Beaven MA. Methylxanthines block 

   antigen-induced responses in RBL-2H3 cells independently of 

   adenosine receptors or cyclic AMP: evidence for inhibition of anti-

   gen binding to IgE. J. Pharm. Exp. Ther. 1991; 258: 954-62. 
26 Marquardt DL, Walker LL, Heinemann S. Cloning of two adeno-

   sine receptor subtypes from mouse bone marrow-derived mast 

   cells. J. Immunol. 1994; 152: 4508-15. 

27 Ali H, Choi OH, Fraundorfer PF, Yamada K, Gonzager HMS, 

   Beaven MA. Sustained activation of phospholipase D via adeno-

   sine A3 receptors is associated with enhancement of antigen- and 

   Ca2+-ionophore-induced secretion in a rat mast cell line cell. J. 

   Pharm. Exp. Ther. 1996; 276: 837-45.

28 Collado-Escobar D, Cunha-Melo JR, Beaven MA. Treatment with 
   dexamethasone down-regulates IgE-receptor mediated signals 
   and up-regulates adenosine-receptor mediated signals in a rat 

   mast cell (RBL-2H3) line. J. Immunol. 1990;144: 244-50. 
29 Linden J. Cloned adenosine A3 receptors: pharmacological prop-

   erties, species differences and receptor functions. Trends 
  Pharmacol. Sci. 1994;15: 298-306. 

30 Ramkumar V, Wilson M, Dhanraj DN, Gettys TW, Ali H. 
   Dexamethasone upregulates A3 adenosine receptors in rat 
   basophilic leukemia (RBL-2H3) cells. J. Immunol. 1995; 154: 
  5436-43. 

31 Jones SVP, Choi OH, Beaven MA. Carbachol induces secretion in 
  a mast cell line (RBL-2H3) transfected with the m1 muscarinic 

   receptor gene. FEBS Lett. 1991; 289: 47-50.
32 Stephan V, Benhamou M, Gutkind JS, Robbins KC, Siraganian RP. 
   FcERI-induced protein tyrosine phosphorylation of pp72 in rat 
  basophilic leukemia cells (RBL-2H3). Evidence for a novel signal 
   transduction pathway unrelated to G protein activation and phos-

  phatidylinositol hydrolysis. J. Biol. Chem. 1992; 267: 5434-41. 
33 Choi OH, Lee JH, Kassessinoff T, Cunha-Melo JR, Jones SVP, 
   Beaven MA. Carbachol and antigen mobilize calcium by similar 
   mechanisms in a transfected mast cell line (RBL-2H3 cells) that 

   expresses m1 muscarinic receptors. J. Immunol. 1993; 151: 
  5586-95.

34 Baumgartner RA, Yamada K, Deramo VA, Beaven MA. Secretion 
   of tumor necrosis factor (TNF) from a rat mast cell line is a 
   brefeldin A-sensitive and a calcium/protein kinase C-regulated 
   process. J. Immunol. 1994; 153: 2609-17. 

35 Ali H, Richardson RM, Tomhave ED, Didsbury JR, Snyderman R. 
  Differences in phosphorylation of formylpeptide and C5a 
   chemoattractant receptors correlate with differences in desensiti-
   zation. J. Biol. Chem. 1993; 268: 24 247-54. 

36 Tomhave ED, Richardson RM, Didsbury JR, Menard L, Snyderman 
   R, Ali H. Cross-desensitization of receptors for peptide chemo-
   attractants. Characterization of a new form of leukocyte regu-

   lation. J. Immunol. 1994;153: 3267-75. 
37 Ali H, Richardson RM, Tomhave ED, DuBose RA, Haribabu B,

  Snyderman R. Regulation of stably transfected platelet activating 

   factor receptor in RBL-2H3 cells. Role of multiple G proteins and 

   receptor phosphorylation. J. Biol. Chem. 1994; 259: 24 557-83. 

38 Richardson RM, DuBose RA, Ali H, Tomhave ED, Haribabu B, 

   Snyderman R. Regulation of human interleukin-8 receptor A: 

   Identification of a phosphorylation site involved in modulating 

   receptor functions. Biochemistry 1995; 14 193-201. 

39 Ali H, Tomhave ED, Richardson RM, Haribabu B, Snyderman R. 

   Thrombin primes responsiveness of selective chemoattractant 

   receptors at a site distal to G protein activation. J. Biol. Chem. 

  1996;3 200-6.

40 Richardson RM, Ali H, Tomhave ED, Haribabu B, Snyderman R. 
   Cross-desensitization of chemoattractant receptors occurs at mul-

  tiple levels: Evidence for a role for inhibition of phospholipase C 
  activity. J. Biol. Chem. 1995; 270: 27 829-33. 

41 Sagi-Eisenberg R, Lieman H, Pecht I. Protein kinase C regulation 
   of the receptor-coupled calcium signal in histamine-secreting rat 
   basophilic leukaemia cells. Nature 1985; 313: 59-60. 
42 Beaven MA, Guthrie DF, Moore JP, Smith GA, Hesketh TR, 

   Metcalfe JC. Synergistic signals in the mechanism of antigen-   
induced exocytosis in 2H3 cells: Evidence for an unidentified signal 

   required for histamine release. J. Cell Biol. 1987; 105: 1129-36. 
43 Lo TN, Saul W, Beaven MA. The actions of Cat+-ionophores on 

   rat basophilic (2H3) cells are dependent on cellular ATP and 
   hydrolysis of inositol phospholipids. A comparison with antigen 
   stimulation. J. Biol. Chem. 1987; 262: 4141-5.

44 Ali H, Maeyama K, Sagi-Eisenberg R, Beaven MA. Antigen and 
  thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 
  cells by ostensibly similar mechanisms that allow filling of inositol 
   1,4,5-trisphosphate-sensitive and mitochondria) Ca2+ stores. 
  Biochem. J. 1994; 304: 431-40. 

45 Lin P, Wiggan GA, Welton AF, Gilfillan AM. Differential effects 
   of propranolol on the IgE-dependent, or calcium ionophore-

  stimulated, phosphoinositide hydrolysis and calcium mobilization 
   in a mast (RBL 2H3) cell line. Biochem. Pharmacol. 1991; 41: 

   1941-8. 
46 Lin P, Fung SJ, Li S et al. Temporal regulation of the IgE-dependent 

   1,2-diacylglycerol production by tyrosine kinase activation in a rat 

   (RBL 2H3) mast-cell line. Biochem. J. 1994; 299: 109-14. 
47 Eiseman E, Bolen JB. Engagement of the high-affinity IgE receptor 

   activates src protein-related tyrosine kinases. Nature 1992; 355: 
   78-80. 
48 Hammond SM, Altshuller YM, Sung T et al. Human ADP-ribosyla-

   tion factor-activated phosphatidylcholine-specific phospholipase 
   D defines a new and highly conserved gene family. J. Biol. Chem. 

  1995; 270: 29 640-3. 
49 Foreman J, Hallet M, Mongar J. The relationship between hista-

 mine secretion and [45-Ca] uptake by mast cells. J. Physiol. 1977; 
  271: 193-214. 

50 Hide M, Beaven MA. Calcium influx in a rat mast cell (RBL-2H3)    
line: Use of multivalent metal ions to define its characteristics and 

   role in exocytosis. J. Biol. Chem. 1991; 266: 15 221-9. 
51 Putney JW Jr. Capacitative calcium entry revisited. Cell Calcium 

   1990;11: 611-24. 
52 Putney JW. Excitement about calcium signalling in inexcitable 

   cells. Science 1993; 262: 676-8. 
53 Randriamampita C, Tsien RY. Emptying of intracellular Ca2+ stores 

   releases a novel small messenger that stimulates Ca2+ influx. 
   Nature 1993; 364: 809-14. 
54 Parekh AP, Terlau H, StumerW. Depletion of InsP3 stores activates 

   a Ca2+ and K+ current by means of a phosphatase and a diffusible 
   messenger. Nature 1993; 364: 814-18. 
55 Hoth M, Penner R. Depletion of intracellular calcium stores acti-



SIGNALING PATHWAYS IN MAST CELLS 83

   votes a calcium current in mast cells. Nature 1992; 355: 353-6. 

56 Fasolato C, Hoth M, Penner R. A GTP-dependent step in the acti-

   vation mechanism of capacitive calcium influx. J. Biol. Chem. 

  1993; 268: 20 737-40. 

57 Millard PJ, Ryan T, Webb WW, Fewtrell C. Immunoglobulin E 

   receptor cross-linking induces oscillations in intracellular free ion-

   ized calcium in individual tumor mast cells. J. Biol. Chem. 1989; 
  264:197309. 

58 Millard PJ, Gross D, Webb WW, Fewtrell C. Imaging asynchro-
   nous changes in intracellular Ca2+ in individual stimulated tumor 

   mast cells. Proc. Natl Acad. Sci. USA 1988; 85: 1854-8. 

59 Beaven MA, Rogers J, Moore JP, Hesketh TR, Smith GA, Metcalfe 

   JC. The mechanism of the calcium signal and correlation with his-

   tamine release in 2H3 cells. J. Biol. Chem. 1984; 259: 7129-36.

60 Mohr PC, Fewtrell C. The effect of mitochondrial inhibitors on cal-

   cium homeostasis in tumor mast cells. Am. J. Physiol. 1990; 258: 

  C217-26. 

61 Kanner BI, Metzger H. Initial characterization of the calcium chan-

   nel activated by the cross-linking of the receptors for immunoglob-

   ulin E. J. Biol. Chem. 1984; 259: 10188-93. 

62 Mohr FC, Fewtrell C. Depolarization of rat basophilic leukemia 
   cells inhibits calcium uptake and exocytosis. J. Cell Biol. 1987; 

  104: 783-92. 

63 Mohr PC, Fewtrell C. The relative contributions of extracellular 

   and intracellular calcium to secretion from tumor mast cells. 

   Multiple effects of the proton ionophore carbonyl cyanide m-

   chlorophenylhydrazone. J. Biol. Chem. 1987; 262: 10 638-43. 

64 McCloskey MA, Quain Y-X. Selective expression of potassium 

   channels during mast cell differentiation. J. Biol. Chem. 1994; 

  269: 14 813-9.

65 Labrecque GF, Holowka D, Baird B. Antigen-triggered membrane 

   potential changes in IgE-sensitized rat basophilic leukemia cells: 
   Evidence for a repolarizing response that is important in the stimu-   

lation of cellular degranulation. J. Immunol. 1989; 142: 236-43. 

66 Penner R, Matthews G, Neher E. Regulation of calcium influx by 

   second messengers in rat mast cells. Nature 1988; 334: 

  499-504. 

67 Romanin C, Reinsprecht M, Pecht I, Schindler H. Immunologically 

   activated chloride channels involved in degranulation of rat 

   mucosal mast cells. EMBO J. 1991; 10: 3603-8.

68 Kindman LA, Kim S, McDonald TV, Gardner P. Characterization of 
a novel intracellular sphingolipid-gated Cat-permeable channel 

  from rat basophilic leukemia cells. J. Biol. Chem. 1994; 269: 
  13088-91.

69 Nishizuka Y. Protein kinase C and lipid signaling for sustained cel-
   lular responses. FASEB. J. 1995; 9: 484-96.

70 Dekker LV, Parker PJ. Protein kinase C-a question of specificity. 

  Trends Biochem. Sci. 1994;19: 73-7.

71 Newton AC. Protein kinase C: Structure, function, and regulation. 

  J. Biol. Chem. 1995; 270: 28 495-8.
72 Ozawa K, Szallasi A, Kazanietz MG et al. Cat-Dependent 

and Cat-independent isozymes of protein kinase C mediate exo-
   cytosis in antigen-stimulated rat basophilic RBL-2H3 cells: 
   Reconstitution of secretory responses with Ca2+ and purified 

   isozymes in washed permeabilized cells. J. Biol. Chem. 1993; 
  268: 1749-56.

73 Germano P, Gomez J, Kazanietz MG, Blumberg PM, Rivera J.

Phosphorylation of the γ chain of the high affinity receptor for

immunoglobulin E by receptor-associafied protein kinase C-δ. J.

Biol. Chem. 1994; 269: 23 102-7.

74 Nakamura Y, Nakashima S, Ojio K, Banno Y, Miyata H, Nozawa 
  Y. Ceramide inhibits IgE-mediated activation of phospholipase D, 
  but not of phospholipase C, in rat basophilic leukemia (RBL-2H3) 
  cells. J. Immunol. 1996;156: 256-62.

75 Ozawa K, Yamada K, Kazanietz MG, Blumberg P, Beaven MA. 
   Different isozymes of protein kinase C mediate feed-back inhibi-

  tion of phospholipase C and stimulatory signals for exocytosis in 

  rat RBL-2H3 cells. J. Biol. Chem. 1993; 268: 2280-3.

76Razin E, Szallasi Z, Kazanietz MG, Blumberg PM, Rivera J. Protein

   kinase C-β and C-ε link the mast cell high-affinity receptor for IgE

   to the expression of c-fos and c-jun. Proc. Natl Acad. Scl.USA

   1994; 91: 7722-6.

77 Cunha-Melo JR, Gonzaga HMS, Aui H, Huang FL, Huang K-P, 
   Beaven MA. Studies of protein kinase C in the rat basophilic 

   leukemia (RBL-2H3) cell reveal that antigen-induced signals are 
   not mimicked by the actions of phorbol myristate acetate and Ca2+ 

   ionophore. J. Immunol. 1989;143: 2617-25. 
78 Huang FL, Yoshida Y, Cunha-Melo JR, Beaven MA, Huang K-P. 
   Differential down-regulation of protein kinase C isozymes. J. Biol. 

  Chem. 1989; 264: 4238-43. 
79 Santini F, Beaven MA. Nonselective actions of herbimycin A. 

  Immunol. Today 1993;14: 369-70.
80 Yamada K, Jelsema CL, Beaven MA. Certain inhibitors of protein 

   serine/threonine kinases also inhibit tyrosine-phosphorylation of

phospholipase Cγ1 and other proteins and reveal distinct roles for

   tyrosine kinase(s) and protein kinase C in stimulated, rat 
  basophilic RBL-2H3 cells. J. Immunol. 1992; 149: 1031-7. 

81 Choi OH, Adelstein RS, Beaven MA. Secretion from rat basophilic 
  RBL-2H3 cells is associated with phosphorylation of myosin light 
  chains by myosin light chain kinase as well as phosphorylation by 

   protein kinase C. J. Biol. Chem. 1994; 269: 536-41. 
82 Wilkinson SE, Parker PJ, Nixon JS. Isoenzyme specificity of bisin-

   dolylmaleimides, selective inhibitors of protein kinase C. Biochem. 
  J. 1993; 294: 335-7.

83 Hirasawa N, Santini F, Beaven MA. Activation of mitogen-

  activated protein kinase/cytosolic phospholipase Az pathway in a 

   rat mast cell line-Indications of different pathways for release of 

   arachidonic acid and secretory granules. J. Immunol. 1995; 154: 

  5391-5402.

84 Pelicci G, Lanfrancone L, Grignani F et al. A novel transforming 
  protein (SHC) with an SH2 domain is implicated in mitogenic sig-
  nal transduction. Cell 1992; 70: 93-104. 

85 Skolnik EY, Batzer A, Li N et al. The function of GRB2 in linking the 
   insulin receptor to Ras signaling pathways. Science 1993; 260: 
  1953-5.

86 Skolnik EY, Lee CH, Batzer A et al. The 5H2/5H3 domain-

   containing protein GRB2 interacts with tyrosine-phosphorylated    

IRS] and Shc: Implications for insulin control of ras signalling. 

  EMBO J. 1993; 12: 1929-6. 

87 Smit L, de Vries-Smits AMM, Bos JL, Borst J. B cell antigen receptor 

   stimulation induces formation of a Shc-Grb2 complex containing 
   multiple tyrosine-phosphorylated proteins. J. Biol. Chem. 1994; 

  269: 20 209-12.

88 Blumer KJ, Johnson GL. Diversity in function and regulation of 

   MAP kinase pathways. Trends Biochem. Sci. 1994; 19: 236-40.

89 Cuenod B, Zhang C, Scharenberg AM, Paolini R, Numerof R, 

   Beaven MA, Kinet J-P. Syk-dependent phosphorylation of Shc: A 

   potential link between FcERI and the Ras/MAP kinase signaling
  pathway through Sos and Grb2. J. Biol. Chem. 1996; (in press). 

90 Santini F, Beaven MA. Tyrosine phosphylation of a Mitogen 
  Activated Protein (MAP) kinase-like protein occurs at a late step in

exocytosis: Studies with tyrosine phosphatase inhibitors and vari-

ous secretagogues in RBL-2H3 cells. J. Biol. Chem. 1993; 268: 
22716-22.

91 Offermanns S, Bombein E, Schultz G. Stimulation of tyrosine phos-
   phorylation and mitogen-activated-protein (MAP) kinase activity in 
   human SH-SYSY neuroblastoma cells by carbachol. Biochem. J. 
  1 993;294: 545-50.



84 MA BEAVEN and K OZAWA

92 Scharenberg AM, Lin S, Cuenod B, Yamamura H, Kinet J-P. 

   Reconstitution of interactions between tyrosine kinases and the 

  high affinity IgE receptor which are controlled by receptor cluster-  

ina. EMBO J. 1995: 14: 3385-94.

93 Ludowyke RI, Peleg I, Beaven MA, Adelstein RS. Antigen-induced 

  secretion of histamine and the phosphorylation of myosin by pro-

  tein kinase C in rat basophilic leukemia cells. J. Biol. Chem. 1989; 

  264: 12492-501.

94 Teshima R, Suzuki K, Ikebuchi H, Terao T. Enhancement of the 

   phosphorylation of membrane bound myosin light chain by anti-

   gen stimulation in rat basophilic leukemia cells. Mol. Immunol. 
  1989;26:641-8.

95 Choi OH, Park C-S, Itoh K, Adelstein RS, Beaven MA. Cloning of 
   the cDNA encoding rat myosin heavy chain-A and evidence for the 

   absence of myosin heavy chain-B in cultured rat mast (RBL-2H3) 
  cells. J. Muscle Res. Cell Motility 1996; 17: (in press):

96 Howell TW, Cockcroft S, Gomperts BD. Essential synergy between 

   Ca2+ and guanine nucleotides in exocytotic secretion from perme-

   abilized rat mast cells. J. Cell. Biol. 1987;105: 191-7. 

97 Fernandez JM, Neher E, Gomperts BD. Capacitance measure-

   ments reveal stepwise fusion events in degranulating mast cells. 

  Nature 1984; 312: 453-5.

98 Aridor M, Traub LM, Sagi-Eisenberg R. Exocytosis in mast cells by 

   basic secretagogues: Evidence for direct activation of GTP-bind-

  ing proteins. J. Cell Biol. 1990;111: 909-17. 

99 Aridor M, Rajmilevich G, Beaven MA, Sagi-Eisenberg R. Activation 

   of exocytosis by the heterotrimeric 0-protein 03. Science 1993; 

  262: 1569-72.
100 Gomperts BD. G ,: A GTP-binding protein mediating exocytosis. 
   Annu. Rev. Physiol 1990; 52: 591-606. 

101 Oberhauser AF, Monck JR, Balch WE, Fernandez JM. Exocytotic 

   fusion is activated by Rab3a peptides. Nature 1992; 360: 270-3. 

102 Beaven MA, Cunha-Melo JR. Membrane phosphoinositide-acti-

   vated signals in mast cells and basophils. Progr. Allergy 1988; 42: 

   123-84.

103 Cunha-Melo JR, Dean NM, Moyer JD, Maeyama K, Beaven MA. 
   The kinetics of phosphoinositide hydrolysis in rat basophilic    

leukemia (RBL-2H3) cells varies with the type of IgE receptor cross-
   linking agent used. J. Biol. Chem. 1987; 262: 11 455-63. 

104 Lin LL, [in AY, Knopf JL. Cytosolic phospholipase A2 is coupled to 
    hormonally regulated release of arachidonic acid. Proc. Natl 

   Acad. Sci. USA 1992; 89: 6147-51. 
105 Kramer RM. Structure, function and regulation of mammalian 

    phospholipases A2. In: Brown BL, Dobson PRM eds. Advances in 
    Second Messenger and Phosphoprotein Research, Vol. 28. Raven 
    Press, New York, 1993; 81-9. 

106 Clark JD, Lin L, Kriz RW et al. A novel arachidonic acid-selective

 cytosolic PLA2 contains a Cat-dependent translocation domain 
   with homology to PKC and GAP. Cell 1991; 65: 1043-51. 
107 Sharp JD, White DL, Chiou XG et al. Molecular cloning and 

 expression of human Cat-sensitive cytosolic phospholipase A2. 
   J. Biol. Chem. 1991; 266: 14 850-3. 

108 Campbell JS, Seger R, Graves JD, Graves LM, Jensen AM, Krebs 
    EG. The MAP kinase cascade. Rec. Prog. Hormone Res. 1995; 
   50: 131-59.

109 Steffen M, Abboud M, Potter GK, Yung VP, Moore MAS. Presence 

    of tumor necrosis factor or a related factor in human 

   basophil/mast cells. Immunology 1989; 66: 445-50. 
110 Plaut M, Pierce JH, Watson CJ, Hanley-Hyde J, Nordon RP, Paul WE. 

    Mast cell lines produce lymphokines in response to cross-

   linkage of FcERI orto calcium ionophores. Nature 1989; 339: 64-7. 

111 Gordon JR, Galli SJ. Mast cells as a source of both preformed and 

   immunologically inducible TNF-a/cachectin. Nature 1990; 346: 

   2 74-6.

112 Young JD, Liu CC, Butler G, Cohn ZA, Galli SJ. Identification, 

    purification, and characterization of a mast cell-associated 
    cytolytic factor related to tumor necrosis factor. Proc. Natl Acad. 

   Sci. USA 1987; 84: 9175-9. 

113 Wodnar-Filipowicz A, Heusser CH, Moroni C. Production of the 
    haemopoietic growth factors GM-CSF and interleukin-3 by mast 

    cells in response to IgE receptor-mediated activation. Nature 

   1989;339: 150-2.
114 Burd PR, Rogers HW, Gordon JR et al. Interleukin 3-dependent 

   and -independent mast cells stimulated with IgE and antigen 

    express multiple cytokines. J. Exp. Med. 1989; 170: 245-57. 
115 Gordon JR, Burd PR, Galli SJ. Mast cells as a source of multifunc-

   tional cytokines. Immunol. Today 1990; 11: 458-64. 

116 Wodnar-Filipowicz A, Moroni C. Regulation of interleukin 3 

    mRNA expression in mast cells occurs at the posttranscriptional     

level and is mediated by calcium ions. Proc. Natl Acad. Sci. USA 

   1990; 87: 777-81.

117 Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and 

    disease. Annu. Rev. Cell. Biol. 1993; 9: 317-43. 

118 Reimann T, Buscher D, Hipskind RA, Krautwald S, Lohmann-

    Matthes ML, Baccarini M. Lipopolysaccharide induces activation 

   of the Raf-1 /MAP kinase pathway. A putative role for Raf-1 in the 

    induction of the lL-1 beta and the TNF-alpha genes. J. Immunol. 

   1994;153:5740 -9.
119 Park JH, Levitt L. Overexpression of mitogen-activated protein 

    kinase (ERK1) enhances T-cell cytokine gene expression: Role of 
   API, NF-AT, and NF-KB. Blood 1993; 82: 2470-7. 

120 Li S, Sedivy JM. Raf-1 protein kinase activates the NF-KB transcrip-
   tion factor by dissociating the cytoplasmic NF-KB-IKB complex. 

   Proc. Natl Acad. Sci. USA 1993; 90: 9247-51.




