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Abstract

We develop a variational theory for critical points of integral functionals in a space of curves on
a manifold M, between a fixed point and a one-dimensional submanifoldfgfand satisfying a
nonholonomic constraint equatign= 0, whereg is aC? function defined o M x R.

We obtain existence, regularity and multiplicity results, writing the integro-differential equations
satisfied by critical points. Moreover, we present some results concerning a sapasfential map
relative to the integro-differential equations and some examples.
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Résumé

Nous développons une théorie variationnelle pour les points critiques des opérateurs inté-
graux dans un espace des courbes sur une vatiétéentre un point fixe et une sous-variété
1-dimensionnelle deM, satisfaisant une équation de liaison non-holonatne 0, ot ¢ est une
fonction C2 définie surT M x R.

Nous obtenons des résultats d’existence, de régularité et de multiplicité, écrivant les équations
integro-différentielle satisfaites par les points critiques. Nous présentons ainsi quelques résultats au
sujet d’'une sorte dapplication exponentielleelativement aux équations, et quelques exemples.
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1. Introduction

Many examples in applied mathematics lead to the study of variational problems with
nonholonomic constraints, that is where the constraints are not only imposed on the
configurations but also on the velocities, and arise as a submanifold eélibeity phase
space(also calledstate space(see [2]).

A first case is given by sub-Riemannian geodesics, where one searches for curves on a
manifold M locally minimizing distance and such that their velocity is in a given subspace
of the tangent space, for instance is orthogonal to a given vectotfidgkggularity of sub-
Riemannian geodesics between two given points is still an open problem. The situation
changes if we let the end point free to move on an integral cur¥e bfdeed, in this case a
variational theory, completely analogous to the classical Riemannian geodesics one, can be
developed (see [7], and Section 6.1). Another example, concerning Lorentzian geometry, is
shown in Section 6.2. We refer to [3] for the main definitions and properties in Riemannian
and Lorentzian geometry.

The aim of this work is to develop a variational theory for problems of this kind. We wiill
always deal with functionals defined on a space of curves with values in a differentiable
manifold, say M, of the form L(z) = fol L(z(t),z(¢),t)dr, (see (11)), where the
LagrangianfunctionL is defined on the tangent spa€a of the manifold, and is possibly
depending also on time. For sake of simplicity, we have focused our attention on one-co-
dimensional smooth constraints, that is when the constraint itself is described by a single
equationp = 0, whereg is a smooth function off M (possibly depending also on time).

The theory is described in Sections 2 to 4. We have tried to formulate hypotheses as gen-
eral as possible on the Lagrangian function and on the constraint equation, in order to cover
several situations, for instance the examples shown in Section 6. The result of existence
and regularity of minimizers for the constrained functional is stated in Theorem 3.1, along
with the Euler-Lagrange integro-differential equation solved by critical points. Since the
constraint is not closed with respect to the weak convergence, we needed the well known
Palais—Smale conditiofsee Definition 3.2), in order to pass from weak to strong conver-
gence of a minimizing sequence. The proof that Palais—Smale condition is verified in our
framework is quite delicate and is given in Proposition 3.5. Thanks to this condition, we
can also obtain multiplicity results using the classical theory of Ljusternik—Schnirelman
(see Theorem 3.14). Moreover, a local theory is developed, buildieg@onential maps
is usually done in classical theory of ordinary differential equations (see Section 4).

In Sections 2—4 the Lagrangian function is assumed to have a growth in the vedocity
given by|w|?, wherep > 1. In Section 5 a brief description of the case whega 1 is
given.

A short Appendix about a geometric description of the framework used ends the work.

There are some other examples strictly linked to our variational theory. First of all the
relativistic brachistochrones with respect to the travel time (to arriyeasg as possible —
see Ref. [10]). The problem is reduced to the search of sub-Riemannian geodesics between
a point and a curve, therefore it is straightly covered by our theory.

About the relativistic brachistochrones curves with respect to the arrival time (to arrive
asearly as possible — see Ref. [12]) the situation is different because the functional to
study is a length functional plus another functional (the arrival time) which is invariant
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under reparameterizations, but does not have a Lagrangian density (in particular it is not
an integral functional).

In [9] we have a similar situation, with an arrival time functional without Lagrangian
density. Here we have not discussed this kind of situation, such as the problem in [11],
where the constraint is describedpyw, z, 1) = ¢; € R (and not byg (w, z, 1) = 0).

All these cases will be considered in the future. Our hope is to give a general theory,
including all the examples here briefly sketched.

2. Framework setup and assumptions

Throughout the papett will be ann-dimensional manifoldy > 1, that we suppose
C*°, Hausdorff, and second-countable. We will denotefbyt — M the tangent bundle
of M, and byT, M the tangent space at a poig M.

Coordinate systems aivt and7 M will be considered, whose notation will be:

z=(z1,...,z")
for M,
(w,z)=(w1,...,w",z o)

for T M, andr for R.
Let us consider a2 real Lagrangianfunction L defined onT M x R, and aC?
constraintfunction¢,

L:TMxR—R, ¢ TMxR—R.

We assume that

L(w,z,1) >0, 1)
#©0,2,1)=0, V(z,1)e M xR, 2)

and
g—i(oyz,t)=0, Y(z,t) e M x R. (3)

It will be as well convenient to introduce the space:
ad d
Sw,z,n = ker—¢(w, 1) =1§eTM —¢(w, z,0)[E]1=0
ow ow

for everyz e M, w € T, M, andr € R. We will require thatp is anadmissibleconstraint
(see [16]). This amounts to say that

dmSw n=n-1, VY(w,z,t) e TM xR. 4)
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In order to define the space of curves we will search for critical points in, we must fix a
point 0 € M and a curver : R — M transversal ta, i.e.,

¢ .

@(w, y@),1)[y®]#0, YweT,nM.
For this aim we will suppose the existence of a smooth vectorfieldt — T M, not null
everywhere, such that

%(w,z, DY@]=1 Vwz1ep L. (5)

Hereafter we will actually suppose thatis an integral curve of .
The Lagrangian functiof. does not need to regular—in the sense of a mechanical
system—anyway we will suppose thstw, z, ) € $71(0) C TM x R,

3%L
G(w,z,1)= W(w’ 1) TMxT,M—R

is a bilinear application oft, M such that

G(w,z,n[5,6]1>0 and G(w,z,0[§,Y()]=0, V&€Sw.n\{0}. (6)
Remark 2.1. The assumptions made so far, and Eq. (7) that we will state in a while, are
actually thought in terms of local coordinates, because of the derivatives with respect to
It can be shown that they can be stated in terms of intrinsic objects. See Appendix A for

further detalils.

We will make a similar assumption on the second derivatives of the constraint
equationp, as specified in the following:

Assumption 2.2.We will require that¥(w, z, 1) € ¢~ 1(0) c TM x R,

32¢

(dL(wv Zst)[Y(Z)]) ‘ m(ws th)[gv‘i:] <O, Vé e‘S‘(w,z,l‘)v (7)
where
dL n[y ]—a—L[YHa—L[Y’]
w2 OHY @] =5 dw

is intrinsically defined in Appendix A.

Example 2.3.Let us consider the case of sub-Riemannian geodesics (see Section 6.1). Let
us take the energy functional (87) of Section 6.1, so that the Lagrafgggiven by:

L(w,z) = (w,w).
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Take into account the vector field defined in (84) of Section 6.1. Then we have:
dL(w,z,D)[Y ()] = (Vo Y, w),

whereV is the covariant derivative with respect(o-).

We also remark that, in this case, the right-hand side in last equation above have not
a specific sign, but Assumption 2.2 is satisfied, since the constraint equation is linear.
Observe that the other assumptions made before also hold in this particular case, as it
can be easily seen.

In addition we will suppose that there exists a numper 1, and some functions, §;
of classC?, defined onM x R and strictly positive such that

Y(w,z,1) € 10) C TM x R,

it is:
oL
_(w7 Zat)[w] >dl(Z,t)|'LU|p _81(Zat)a (8a)
Jw
L(w,z,1) > a2(z, )|w]? — 82(z, 1), (8b)

where| - | is a (given) norm orf; M depending continuously one M. Note that (8b)
comes from (8a) in some particular cases (see Remark 2.5 below). We finally require the
following asymptotical estimates on the derivatived.cdnd¢:

oL
‘%(U},Z,l) <al(th)|w|pil+bl(th)v (ga)
JdL
‘a—z(w,z,t) <az(z, |w|? + ba(z, 1), (9b)
and
d
‘—¢(w,z,t) < bs(z, 1), (10a)
Jw
¢
‘3—Z(w,z,t) < aa(z, t)|w| + ba(z, 1), (10b)

Y(w, z,1) € TM x R, for someC? functionsa;, b; defined onM x R.

Remark 2.4.1t can be proved that assumptions (8a)—(10b) are independent from the norm
used. Moreover, these hypotheses, as the previous ones, are satisfied by the examples given
in Section 6.
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Remark 2.5.In casep is a homogeneous function of degree 1 in the variahleonditions
(8a) and (8b) can be straightly derived from the following condition ®tw, z, ),
Y(w,z,1) € ¢1(0):

G(w,z,Hw, w] > a(z, |w|?,

for some strictly positive functioa(z, ¢). Indeed, we observe that, in this particular case,
if ¢(w,z,1) =0,

¢o-w,z,t) =0 -p(w,z,t) =0,

and

%(wv <, t)[a . w] =0 - %(ws <, t)[w] =0 - ¢(wv <, t) :07
ow ow

whereo € R. Therefore, if(w, z, 1) € $1(0) then{ow: o € R} C Sw,z,1)-
From this we have, also using (3),

oL 92L
L w2 0w = f—(ow,z,t)[w,w]do
ow dw?2

0

1

1 9°L
= /;W(aw,z,t)[ow,aw]da
0

1
Jt
> (x(z,t)|w|pfap_lda - wa
p—1
0

and analogously (8b) can be derived. Note that this method cannot be used in general
because we requir€ (w, z, r)[w, w] > a(z, t)|w|” only on the constraint, and not in the
wholeT M x R.

As pointed out in the Introduction, we will deal with functionals defined on a space of
curves with values oM. The Sobolev spacH 17 ([0, 1], M) naturally arises as the main
workspace. It can be defined as the set of all absolutely continuous cufded] - M
such that, for every local chait’, ¢) on M and for every closed sub-intenjal, ] C [0, 1]
such thatz([a,b]) C V, ¢ o z € HYP([a, b],R"). The spaceH?([0, 1], M) has an
infinite dimensional manifold structure (see [15]), modeled®h ([0, 1], R"). We stress
the point that, although this definition is given in terms of local chaits? ([0, 1], M) is
independent from the chosen coordinate system.
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In view of this, a functional is then induced by. on H17([0, 1], M) in a natural
way:

1
L(z)= f L(2(1),z(r), 1) dr. (11)
0

We can now define the space of cury@g ,,
20,y =1z H(10,1], M) | 2000 = Q, z(D) e y(R)}, (12)
and its subspacgg , (¢),
20, @) ={z€ R0, |p(2(t),2(t),1) =0 a.e.in[0, 1]}, (13)

that it is supposed to be non empty.
We require gseudo-coercivitgondition of £ with respect tap in the following way:

Assumption 2.6.Y¢ € R there exists a compact s€tc) C M such thatyz € 2o, (¢),
Lz)<c = z([0,1]) C K(0). (14)

Remark 2.7.The pseudo-coercivity assumption — satisfied by the examples of Section 6 —
is an intrinsic way for requiring completeness. It is satisfied, for instance; ifh (8b)

is bounded away from zer@; is bounded andM, | - |) is complete. Indeed, if there
exists a constanit > 0 with a2(z,7) > @ andé, < &, it is, in local coordinates, for each

z€ 82¢,,(¢) such thatC(z) <c,

t 1
d(2(0). 0) </|z<s)|ds </|z<s)|ds,
0 0

whered(P, Q) is the distance io\{ defined by the inf |z| calculated among all the paths
defined in[0, 1] with values inM linking two pointsP, Q of M.
Using (8b) we have:

1 1 1

P .
(A1), Q) < (/Iz(s)lds) </|z<s)|”ds</L(Z(”’Z(”’”HZ(Z(”’” ds
0

a2(z(s), )
0 0

and if (M, | - |) is complete the closed balls are compact.
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Itis well known thats2, , is a Banach manifold (see [15]); its tangent sp@cRy ., ,
Vz € £2¢,,, can be defined as follows:

T.2¢,, = {&€ e H*?([0, 1], TM) | £ vector field along,
£0)=0, £ 71}, (15)

wheret, € R is the real value mapped by into the end point of;, that isz(1) = y (z,).
MoreoverT 2, is endowed with the Finslerian structure induced by&he” norm

1 1/p
HE (/lé(t)l"dt) : (16)
0

Under the above hypothesis, we will prove results on existence, regularity and multiplicity
of critical points for the functionaf in the set2¢ , (¢).
The set2¢ , (¢) is a Banach submanifold @ ,,, as shown in the following:

Proposition 2.8.£2¢ , (¢) is a ¢! Banach submanifold af2¢.,, and its tangent space,
Vz e 29, (¢),is given by

T.R20., () ={6 €T:2¢,, | dp(2)[E]=0a.e). (17)

Remark 2.9.Here dv(z)[£] denotes the Gateaux derivatived@hlong the directiorg; in
local coordinates it reads:

0 d .
dé (2)[€] = a—f(z(n, 20, ) ED]+ %(za), 2. )[ED].

ITet us observe thatgz)[£] makes sense, and is ItP ([0, 1], R), since&, z are continue,
&, zareinL?, and (10a), (10b) holds.

Proof. Letus consider the application:

F:2¢,— L?([0,1], M),

(18)
F(2)(1) = ¢(2(0), 2(1), 7).

Sinces2¢ ., (¢) = F~1(0), we must show [13] that
(1) FeCl, Vzeq,,
(2) dF(z) is surjective,

(3) its kernel splits.

(1) We first actually show that is Gateaux differentiable: considering a local
coordinate system, let us fixe £2¢ ,, and¢ € T, 82 ,,, and prove that
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jim |28 208D Z0C D 30 e 0P | =0
o—0 o 9z Jw Lr
(19)
Indeed there exist¥ € [0, 1], two valuess, k € [0, 1] such that
GG+ ok, z+0E, 1) — P2, 2,1)
=¢pGz+oE, z+0E )+ +0E, 2.0 —dp(E+oE, 2,1) — (2, 2,1)
=022t ok 2+ kot OIE] + 02 + hok. 2 DIE],
9z ow
and then the argument of the limit in (19) becomes:
H [%(z‘ +hok,z,1) — %(z', Z t):|[é]
ow ow
+ [3—¢(z+aé,z+kas,r) - a—d’(z,z,t)}[s] (20)
9z 0z LP

Sincez and £ are fixed and inL”?, and ¢ is C1, (19) holds by Lebesgue dominate
convergence theorem. Moreover, we must now show that the application

0 0
> dF(Q)[-1= e 20,20, 1)[()] + %(z‘(r),za), H[O)] (21)

Pl

is a continuous map. For this aim it is sufficient to consider a strongly converging sequence
{zn}In 20, tOoacurvez € 2o ,.
Arguing in a similar way as before, using (10a) and (10b), one obtain that

lim  sup [(dF(za) —dF(2))£]],, =0. (22)

7O E N 1, <L

(2) Let us consider € F~1(0), and leth € LP ([0, 1], M); to prove surjectivity we look
for ¥, € HYP([0, 1], R) such thath = dF (z)[y;, Y (z)], andy,(0) = 0. Since, in local
coordinates,

0
dFQ[Yn Y ()] = a—f (00 20, 0) [ Y (2)]

0 .
+ 22 0,20, )[n Y@ + 9 Y @)

Jw

using (5) we obtain the following ODE fafy,:

h = ym +yn dF (2)[Y (2],
{ ¥ (0) =0, (23)
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where dF(z) is given by (21). The explicit solution of the ODE is:

t
Un(t) = f h(n) el dFEONY NI g (24)
0

It is easily seen thapy, is HL7, andn (1) = ¥, (1) Y (z(1)) € T:2¢,y.
(3) We argue in a similar way as point (2) to prove that ketg splitsVz € F~1(0):
fixedV € T.02¢.,, we look foryy € HY7([0, 1], R) such that

{0=dF(z)[V— YyY1=dFIV]—yvdF[Y )] v, (25)
Yy (0 =0,

and thenV can be written as the sum of two components
V=W —-yvY)+ivY,

such thaV — vy Y) € kerdF (z). Here

1
Yy (1) = f dF (z())[V ()] el SFeIeoNdgy g (26)
0

Thanks to the above proposition, we can give the following:
Definition 2.10.z € £2¢ , (¢) is acritical point for the functionall on 2 , (¢) if
dL(z)[£]1=0 (27)
for everyadmissible variatiorg, thatis& € 7,20 , (¢).

Remark 2.11.When studying a dynamical system described by a Lagrangian function and
a set of constraints, two different approaches can be followed, depending on the choice
made of the admissible variation.

Without getting into details—that can anyway be found, for instance, in [2]—the
classical approach takes into account the Principle of Virtual Work, to write a system of
equation in which the reaction force of the constraints does not occur. In this setup the
virtual displacementsnamely the admissible variations, are given by the sgadefined
at the beginning of this section.

The second way to handle the problem, that is the one we use, as we can understand
from Definition 2.10, is a Lagrangian counterpart of Hamilton’s principle. In short, it takes
the tangent vectors of the constraint manifold as virtual displacements. In mechanics this
approach is referred to as dynamicwafiational axiomatic kindvakonomic dynamics).

This two methods leads to different Euler—Lagrange equation in case of nonholonomic
systems.
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M

Fig. 1. The tangent spadé M at a pointz € M (Lemma 2.13).

Remark 2.12.In this framework a crucial role is played by the vector fidd that
someway links the Lagrangian function and the constraint equation, in the sense described
by Egs. (5)—(7), and by the following result, that we will prove in Proposition 2.15:

%(w, Z0[Y(@]=0, Yw,z,1)edp (0 CTMxR.

In order to prove the above relation, the following Lemma is needed:

Lemma 2.13.For each(v, z, r) in T M x R there is a unique real number(v, z, t) such
that(see Fig.1)

$(+u(,z,0Y(2),z,1) =0.
Proof. Fixed (v, z, 1), it suffices to consider the function &%

H(t,p) =¢(tv+uY(2),z1).
SinceH(0,0) =0 by (2), andd H/91.(0, 0) = d¢p/0w(0, z, 1)[Y (z)] = 1 by (5), from the
Implicit Function Theorem there exisig > 0 such thatu = u(t) (for T € (—6p, 6p)) is

the unique solution of (z, ) = 0. But

du 3¢
P —ﬁ(rv +,uY(Z))[v]

and%(w, z,t) is bounded, fixed andr, by (10b). Then there exists

o= lim wu(r) < +o0,
T—>6p

and by continuity of, H (6o, o) = 0. Thenu can be extended to the whole interi@l1],
and (1) is the required valug (v, z, t). Let us now show that it is unique. Lat # u2
such thatp (v — u;Y,z,1) =0,i =1, 2. Then we can considé{ (z, 1) as before, and in
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this case we havé/ (1, u;(1)) =0, i = 1, 2. This means that there exists two functions
i (t) solutions of the ODE:

{u; (1) = =22 (v + wi (DY (2), 2. 1) [v],
wi (D) = ;.

These two functions can be extended unti 0, where they coincide since
puY, z,t) =0 < u=0;

therefore they coincide also far= 1, that impliesuy = uo.
By smoothness ap it also follows thatu is smooth. O

Remark 2.14.In particular the argument in the proof the above lemma implies that
{weT,M]|¢(w,z,t)=0}is contractible for eaclx, 7).

Proposition 2.15.For each(w, z, 1) € $71(0) C TM x R, itis
%(u}, z.0)[Y(@@)]=0. (28)

Proof. Letus fix(w, z, 1) € ¢—1(0); then we can write, using (3),

T a2

JdL d°L
Sz n[Y @)= / (0w w©@)Y Q). 2.1)[w + 10)Y (). Y ()] do (29)
0

whereo € [0, 1], andu (o) is chosen such that(c w + u(o)Y (z), z,t) =0, by the above
lemma. Then, if we denote

K(0)=¢(0 w+pn(0)Y(2),21),
it is
/ d¢ .
0=K'(0) = —(0w+ @)Y @, 21)[w+ @)Y @]
that is, w + (1(0)Y (2) € Ssw+uo)¥(2),z,0)- USINg (6) we see that the function into the
integral of (29) in null, proving (28). O
3. Existence, regularity and multiplicity of critical points

We are now ready to start the proof of one of the main result of the section, that is the
following:
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Theorem 3.1.Under the hypotheses made in Sect®risee (1)—(10b) and pseudo-
coercivity Assumptior2.6), there exists a minimizer for the functionalZ in the set

20,y(9).
Moreover, ifz is a critical point of £ in £2¢ ,,(¢), thenz € C2([0, 1], M), and satisfies
the following Euler—Lagrange equation

d/ oL 9s\ (0L 96\ B
6 (e a0) (5 50 Jew- 0.0 =0 =

wherei(r) € C1([0, 1], R) is the followingLagrange multiplier:

1
M) = / <%[Y 1+ 2Ly ’l)eﬁ(?’_f[m%[ylbdr ds. (31)
9z Jw
t
We remind that
L L
dL[Y]= (8—[Y] + 8—[Y’]) and d[Y]= <8—¢[Y] + 8—d)[)/’])
0z ow 0z ow

are intrinsically defined (see Appendix A).
Let us start proving the existence of a minimizer for the system. For this aim we will
show that the functional satisfy a good compactness propertPaiais—Smale condition

Definition 3.2. Given aC! functional F : X — R on a Banach manifoldX, /), then F
satisfies théPalais—Smale conditioat levelc € R if every sequencéz, },cn C X such
that

lim F(z) =c. |dF(za)| =0, (32)

lim
n—0o0

(where|| - || denotes the norm in the dual spacelpfX), has a subsequence converging
in X. The sequencg,} is called aPalais—Smale sequence in X for E at lewel

Lemma 3.3.Let{z,} be a sequence if2p , (¢) such that there existse R with L(z,,) < ¢
for eachn € N. Then{z,,} is uniformly bounded itd -7, and included in a compact subset
of M.

Proof. From pseudo-coercivity it follows that there exists a compactkset M such
thatz, ([0, 1]) C K, Vn. The result immediately follows from (8b), recalling thatin this
equation is strictly positive. O

Lemma 3.4.Let{z,} be a Cauchy sequence, with respect to the Finslerian stru¢i@ein

LC={z€R0,@) | L) <c}.

Thenz, converges inH1? to a curvez € 20,y (9).
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Proof. Let z, be a Cauchy sequence with respect to (16) and suchdt@at< c. By
Lemma 3.3 there exists a subsequengeuniformly converging ta € 29, .

We can consider a finite number of local chagis, ;) that covers ([0, 1]). Fixedi,
let [, Bi] C [0, 1] such thatz,, | [«;, Bi]1 C U;, for eachn € N, so we can suppose that
{zn, | [, Bi1} is a Cauchy sequence in the complete sp‘a&é?([a,», Bi1,R"), and then it
converges ind 7 to a functiony. The curvey satisfies the constraints becaugghas a
pointwise converging subsequence. On every local chart the convergence is also uniform,
and theny = z. Thenz,, converges ta in H1? andz € 2¢ ,(¢). Sincez, is a Cauchy
sequence, it follows that, convergesta in H-7. O

Proposition 3.5.The functionalC: £2¢ ,, (¢) — R satisfies the Palais—Smale condition at
every levet € R.

Proof. Let {z} € 2¢,(¢) be a Palais-Smale sequence at levelfor some
c > ianQ‘y((p) L.

We observe that, from pseudo-coercivity, we can suppose, up to subsequencgs, that
is uniformly convergent ta € H17([0, 1], M). Moreoverz; is weakly convergent t@
in L?. We have just to prove, using thatis a Palais—Smale sequence, that> 7 strongly
in LP.

Let us considelV € T,, 2p,,,; we know from Proposition 2.8 that every admissible
variation can be expressed in the fo¢ — ¢y Y), whereyry is given by (26):

t

d d
Yy () = /(a—f(z'k,Zk,l)[V(S)]+£(Zk,2k,l)[V/(S)])
0

« el (B CraDIY (1455 Gr.ze DY (9)D dr g

Let us now work on the quantity@z;)[V — ¥y Y1

oL oL oL . oL oL
dLz)V —yvY] = fa—Z[V]+%[V’]—wa—Z[Y]—w@[Y]—Iﬁ@[Y’]dt
0
oL oL oL oL
= /a—[V]—l——[V/]—w(—[Y]—i-—[Y/]) dr. (33)
z Jw 0z ow
0

Note that here we have dropped the subsgriffom  to lighten the notation, such as the
argument(zx (¢), zx (t), t)
Substituting (26) in the last addendum of (33), and applying Fubini’s theorem, we get:

_/l <%[Y]+%[Y/]> dr
v 0z 9z
0
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1
f(—[ ]+—[Y’])f<2¢w]+ ad’[\/]) el (G g gy
0 0

1 1
=_/<3_¢[v1+3_¢[v’])/(3 [Y]+ [Y ])efr<3¢'Y'+aw'Y'>drdtds
0z ow 0z
0 s

?»k(t)< ¢[V]+%[V’]) dr, (34)

O\I—‘

where

1
JL oL ,
A () = / <B_Z[Y] + @[Y’])eﬂ(%[v”gw P ds. (35)

t

Using (34) and (28) into (33) we obtain:

1
oL 0 oL 0
LGOIV — Yy Y] =/(8—Z - Aka—¢)[VJ + (ﬁ _ xk8—¢)[v . (36)
0

The terms)L/dz andd¢/dz, such ad/’, are not intrinsically meaningful. Nevertheless,
z([0, 1]) can be covered with a finite number of local charts, where we can consider each
term in (36) separately. Then, singeuniformly converges ta, for sake of simplicity we
make our computations assuming we are in a single chart.

Recall now thaty is a Palais—Smale sequence, anghfetlenote the conjugate exponent
of p (1/p+1/p* = 1). Therefore there exists a sequefwg converging to 0 in.”" such
that, for anyV satisfyingV (0) =V (1) =0

1 1

aL 3 L 3

/(a_ - Ak—d))[V] + (— - Ak—d’)[v ldr = fak[(V —yyY)]d.  (37)
b4 0z 0

0 0

Integrating by parts the first term in the left-hand side of (36) we get:

1

(AL . 9
dL@zOlV — v Y] =/[<—— k—>—/<8—z—)\k£) ds:|[V’]dt. (38)
0

0

Note that there is not boundary contribute from the integration, i@ =V (1) =
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Let us now take into account the right-hand side of (37). Using again (26) we have, for
anyVv eT, 9.y,

1 1
fak[(V —yY)]d = / ar[V'] = yrar[Y] — ya[Y']dr. (39)
0 0
With some tedious calculus, using again Fubini's theorem, we get:
1 1 ; 5
—/gbak[Y]dtzfgk(t)<a—¢[V]+—¢[V’]> dr, (40a)
Z ow
0 0
where
1 P P
gk(t) = / ak[Y] <8—¢[Y] + a_d)[Y/]) e,/:f(gff[YH'g%[Y’]) dr ds — ak[Y], (40b)
9z Jw
t
and
1 1 ; 5
—fi/fak[Y’] dr =fhk(t)<—¢[V] + —¢[V’]> dt, (41a)
9z Jw
0 0
where
1 P P
hi () = — / a[Y' el EIHE D g (41b)

t

Substituting (40a)—(41b) in (39), and considering as before all the variaticnsh that
V(0)= V(1) =0, we have:

1 1 t
0 0
falo—vma= oo - ( [armie) e w
0 0 0

Since{ax} converges to 0 irL?", combining together (38) and (42) into (37), and using
(92)-(10b), there exists a sequetieg in L?" such that|b |, £2% 0and

t

(%_)Lk%> _/<%—Ak%) ds — by =cx, in[0,1], (43)
0z 0z
0

wherec; =0.
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Since ||zx ||, is equibounded too, by (9a)—(10b), integrating (43) we obtain also
equibounded. Let us now observe that, by (9a)—(10&}),) and

t
f (B_L —Aka—(p)ds
0z 9z
0

are equibounded i 11, Therefore

oL . a9 .
— (2, 2, 1) — Me— (Zk, 2k, 1) = Xk (44)
Jw ow

for somey; converging inL?" (up to subsequences, becadsk?! is compactly embedded
in L?" (see [4]), andb, goes to zeroirL”".

Let us apply both members of this equatiortoand exploit (8a) to find the existence
of a constant such that

2617 < C(1+ [xel”),

and the right-hand side above convergesin
Then we have reduced ourselves to find a pointwise convergencgfgrup to
subsequences, in order to apply Lebesgue Theorem, since it is, for some cénstant

|20 — 2|7 < D(1+ 1217 + 1 xl”), (45)

and the right-hand side above convergesin
For this aim (that is, to find pointwise convergence), we will use the Implicit Function
Theorem and Caccioppoli Global Inversion Theorem (see [5]), starting from Eq. (44).
Let us choose a local coordinate system where

Y= .
az"
From (5), in this system the constraint can be written as

¢(w,z,t)=w"—g(wl,...,w"71,z,t), (46)

with g € C2. Using this equation and (28) in (44) we have, for eaehN,

aL . cn— . cn—
LCRE SO INE ST )
¢ /. e . e
—Ak(t)a—i(z,f,.-.,zz Le(h ) 1)

—(xpi(t)=0, i=1...,n-1, 47
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and
Ac(D) = —(Xr)n (2).

Let us denote byy the point inR”—1:

Yk = (Z,%, e 2271).

We claim that we can apply Implicit Function Theorem and Caccioppoli Theorem to (47),
in order to prove thay is pointwise convergent. Note that, up to subsequengesnd
are convergent almost everywhereitand x, respectively.

Letr € [0, 1] be fixed and such that, (1) — A(¢) and xx (1) — x(¢t). We want to prove
thatzy (r) converges. To this aim, we consider the applicatigriocally defined as:

A(wl,. ,w"_l)
= aaufl (wl, wh g(wl, w g 1),2,1)
9 n—1 1 n—1
—A(t)awi(w,...,w cg(wh o w" Tz ),z 0) — xi ()
=0, i=1,...,n—1, (48)

Deriving (48) with respect ta’/ we get, fori, j=1,...,n—1,
Aij (ks ks 2u5 1) 28, 1)

92L 2L  9g 32¢ 29 og
= 4 )0 AT S
Jw!ow/ Jw!dw™ dw/ Jw!ow/ Jwlow™ dw/

X ()’kvg(ykkayt)ka,f), (49)

and we must show thht
A E'ET #0.

Now we use hypothesis (6). A vect@?, ..., &") € Sy, e(vz0.0.200) 1S SUCh that, in
this local system,

9 .
£ = a—gi(yk, 2k, DE".
w
Writing (6) in coordinates we have (dropping the argum@ept g (vk, zk, t), 2k, 1)):

1 We use Einstein’s indices convention: here, and in the following, the repeated irdjcesn from 1 to
n—1.
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%L . 9%L 9%L 9%L dg og
0 < — — glig] 2 g4 Jy J
< swawi 5 & ¥ suiaant awfE dwdwl 8w’$$ 9w ,,)zaw, FTAR
9%L 9%L 9%L 3%L  dg
=+ 50 + ) Sl
Jw!ow/’ qwidw" 8w1 Jw"ow/’ a(wn)< dw/ dw!
92L 2L  ag
= —— J 50
(8w’8w/ + dwigwn E)w/>g 5 (50)
Last equality above follows from (28), that in local coordinates reads:
9 9 9 1t 9 7t 201
3o Vo 8Os 242,10, 2,1)
and deriving this with respect o/ we have:
92L 2L  dg
B -~ P} E) E) 7t ’ ,t :07
<8w”8w/ T2 awj)(yk 8(Vk» 2k: 2,1), 2, 1)
from which we obtain last inequality in (50).
Moreover we have, for eadhe Sy, ¢ (v, z1.1),21,1)
920
_)\k(t)w()’ksg(YkaZkat),Z,t)[éag]
92¢ %¢p  dg o
=M (t . ,t JH)EVET. 51
K )(awlawf t o aw])(}’k 8k 2k: 1), 2k 1)E'E (51)

We now observe that, from (7), this quantity is alway$® (indeed, if (7) holds, from (35)
we haver,(¢) <0).
Using this fact and (50) in (49) we find
AjjE'El >0 ifE#£0.

Now, multiplying both terms in (44) by, and using (8a) we obtain thaj(z) is
bounded. Lew be a limit point. We have the following situation: fixed

(z@0), 1, x (1), 1(0)),

there existaw such thatp (w, z,7) =0 and A ).r, x1).1¢))(w) = 0, whereA is defined
in (48). Taking into accounti (w)[w] and using (8a) we have that

A7 O N T (M} — A({¢p7H(O0) N To(yM])

is a proper function between two metric spaces.
Considering Remark 2.14 antilcw + u(0)Y (z)) we see that

A({e~H0) N T M)
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is contractible toA ()1 y ()1 (0). Moreoverg=1(0) N T, M is arcwise connected,
again by Remark 2.14. Hence, using Caccioppoli Theorem, we seeithgt= 0 has a
unique solution, which is the limit o (¢).

Repeating this argument for almost eveky [0, 1], we have pointwise convergence a.e.
of zx, and we can apply Lebesgue Theorem, finding that, by #&5has a converging
subsequence iIHY?. O

Remark 3.6. Proposition 3.5 immediately gives the existence of the minimizer{or
in £2¢., (¢). Indeed the following well-known theorem applies to our case:

Theorem 3.7[14]. Let F: X — R be aC? functional on aCc! Banach manifold with the
following properties

(1) there existg > infx F such thatF© = {x € X: F(x) < c} is complete,
(2) infy F > —o0, and
(3) F satisfies the Palais—Smale conditionafty F.

ThereF admits a minimizer irX.

The pseudo-coercivity assumption df on 29 ,(¢) gives hypothesis (1) of the
theorem, and moreovét is bounded from below by hypotheses (1). Therefore the Palais—
Smale condition proved in Proposition 3.5 allows us to obtain the existence result stated in
Theorem 3.1.

We stress the point that the constraint in our problem is in general not closed with
respect to the weak convergence. This is the reason why we had to introduce the Palais—
Smale condition and use Theorem 3.7 to prove existence of minimizers. Clearly, they are
critical points ofL in £2¢ , (¢).

Regularity of solutions is stated by the following:

Proposition 3.8.The critical points; € £2¢ ,, (¢) of £ belong toC2([0, 1], M). Moreover,
there exists. € C1([0, 1], R) such that the couplé&, 1) solves Eqs(30)—(31)

Proof. We will use a bootstrap argument to prove the first part of the assertion. Let
z(t) € 29, (¢) a critical point of £. Arguing as in the proof of Proposition 3.5 there
exists a function.(r) € H1 such that

1
JL oL it 3¢ 1y
A = f O vy 4 2y el e var g (52)
9z Jw

t

and

1
dE(z)[V—va]=/<%—)\%)[V]—i—(%—A%>[V/]dt, (53)

9z 0z ow ow
0
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YV €T, 0., V(0)=V(1)=0.Then

8—L(Z, z,1) — A1) a—d)(é, z,1) =0(1), (54)
Jw Jw

whered € H1([0, 1], M) is

t

0(t) =c—|—f(aa—§ —AZ—?)[V]ds, (55)
0

and¢’ =0.
Sinced andi are now continue, we can use the Implicit Function Theorem exactly as
done in the proof of Proposition 3.5, finding locally’a function’ such that

2(t) = h(z(t), 1, x (1), (1)),

and sincez, 6 anda are continue, so is(r). This implies (see (52) and (55)) that alsds
C1, andg is €. Thus, the above equality givef classC?.

Itis now possible to integrate by parts expression (53) in the “right” direction, obtaining
the Euler-Lagrange equation (30).

Corollary 3.9. Let us supposé and¢ does not depend on time, thatlis= L(w, z) and
¢ = ¢(w, z). Then, given a critical point for £ in £2¢ , (¢) andA as in PropositiorB.8,
the following quantity is constant along):

E:%Z(l)—l‘_)‘(t)%i(t)' (56)
0% 0z

Proof. Let us rewrite Euler-Lagrange equation (30):

d/oL _o¢ oL _0p\],. B
[&(@ ‘%) - ( 7 ‘Aa_z)}(“’)’“”’t) o

Applying this toz we get:
d/oL\ . aL . d ap \ . a9 .
0= —(—)izl-=[I]-—(r— A—
dt(&w)m P [z] dt( aw)[z]—i- 2z (z]

_ E(%['Q - (%['H %["J) = E(A%['O +)~<%[']+ %["J)
B AT 0z 0 T w ) T ar \Maw 0z 0w

- 3(%[']—L—A%[']+A¢> + 2L
“d\ow” w o1 o

The result follows using time-independencdoand¢. O
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Remark 3.10.Let us consider the case of a functior{0, 1] € M, of classC?, that solves
Euler—Lagrange equation (30), where) is given by (31). We ask whether this conditions
are sufficient to guarantee th@ir), z(¢), 7) is in the constrain$ = 0 or not.

We first observe that, from (31),solves the following ODE:

. 0 0 oL
i) — [( fm + —"’[ ])[Y]}A(r) + (—[Y] + —w[Y’])[Y] —0, (57

with initial conditionA(0) =0

Applying (30) toY we find:
2 nlr@li+ x(ag—‘f’ - a—¢)<z 2N[Y@)]
- <%% - %)(2, z,0[Y(@)]=0. (58)
But we have:
(%% - %>(z =D[Y(@@)]= —(—‘bm 422 4 ])[Y] + = (%[Y])

and analogously
(E%_%>(' N[Y(@)]=- (aL[VH%[V])[YHE(%[Y])
dtow 9z ) =75 dr \ ow '

Let us now suppose that

g
SolYl=

onall T M x R. Using this fact and the above expressions together with (57) we find:

daL
——[¥]=0 59
T an =0 (59)

il

that |s(§‘t 95 [Y] = const. Then if the equation

aL
ﬁ(u},z, n[Y@@]=0

describe®xactly the constraint, that is (28) it is satisfied if and onlyifw, z, 1) = 0, we
conclude that if the initial datéz(0), z(0), O) is in the constraint, then the curyés in the
constraint for alk € [0, 1]. This is, for example, the case of the sub-Riemannian geodesics
(see (90) of Section 6.1).

Also multiplicity results can be obtained. We first recall the following:
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Definition 3.11. The Ljusternik—Schnirelman categonat X) of a topological spac&
is the possibly infinite minimal number of closed contractible subset¥ diat form a
covering ofX.

We can apply the classical Ljusternik—Schnirelman theory (see [14]) to obtain a
multiplicity result for critical points betwee® andy given in terms of the Ljusternik—
Schnirelman category of the Banach manif@lg , (¢):

Theorem 3.12.Under the assumptions of Theor@, there are at least

cai($2¢,,(¢))

critical points betweerQ andy. Moreover, ifcat($2¢., (¢)) is infinite, then there exists a
sequencéz, },en Of critical points betweer® andy such that

lim L(z,) =4o0.
n—00

Note that sup, ) £ = +o0.
Now we want to show some results that allows us to calculatgat (¢)), supposing
thatY does not allow closed integral curves. Let us introduce the spaces:

Ch,., =20, NC*(I0, 1], M), (60)
and
C(XQQ,V@) = QQ’V((Z&) N C(x([o’ 1], ./\/l) (61)

Letz e Cxle,y andy : M x R — R be the flow of the vector field (v (z, 1) = v, (1),
wherey;, is the integral curve of such that, (0) = x). We define:

() = (2(0), h-n()),

wheren: [0, 1] — R must be opportunely chosen. Then it musyig@) = 0, in such a way
that z1(0) = Q. Moreover the definition of flow assures(1) = ¥ (z(1), n(1)) € y(R).
Then we would like to haveyr € [0, 1],

{ o (dy (z(), nO) 2] + Y (¥ (z@), n®))) (@), ¥ (), n(1)), 1) =0, 62)

n(0 =0.
Using the initial condition we have:

9

_99.. _
3,0~ 92 (200, . 0)[Y ()] =1,

from (5). Then there exists a uniq@¥n, r) defined in[0, o) x [0, fp), such that (0, 0) =
w(z(0), 0,0) (n(z(0), Q,0) is defined in Lemma 2.13), and (62) is equivalent to
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(0 =060.1), n(0)=0.

Let us suppose that we can extend this solution to the whole intgyval; we can now
observe that, it € C_(12Q (@) n(t) = 0 is the unique solution of (62). Then (1) = z(¢)

in [0, 1]. This assures tha(f}zQy(d)) is a strong retract OC_:(L?Q L and then the following
proposition is proved:

Proposition 3.13.1f Eq. (62) can be solved if0, 1] for everyz € C}ZQ ) thenC}ZQ ) and

C}ZQ L(p) Are homotopically equivalent.

Using convolution operators it can be seen 2 , (¢) and C}2Q (@) are homotopi-

cally equivalent. Moreover, since ¢aj is invariant under homotopic equivalences, we get
cal(C}ZQ V) = cat(C_(l2Q y(¢)), and using again convolution operators it can be seen that

calCp, ) =calCg, ).

Then, from a well know result by Fadell and Husseini [6], and from regularity of critical
points stated by Theorem 3.8, we can state the following:

Theorem 3.14.Under the above hypothesgsee in particular Propositior8.13), if M
is not contractible, there exist infinite critical points betweenQ and y, such that
lim;, s 00 £(z5) = +00.

As a particular situation, we will consider the case whehadmits a global splitting
M = Mg x R. We put onM the coordinates

(Zl, o Zn—l’ 9)’
and suppose that the vector fidldof the hypotheses is

a
Y=—.
a6

Let us denot&) = (xp, 6p) and lety = (x1, y (¢)) be and integral curve df, xg # x1. Let
us also fix a curve(z) in the space

Ch={z € (10,11, Mo) | 2(0) = x0 z(1) = x1}.
Then, arguing as before, or some functi®pthe constraint equation
¢ (2(1),0,2(),6,t) =0
is equivalent to the ODE:

0(1) =0,(0,1), 6(0) =6
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Thus, the curve(z(z),0(t)) just found is in the space}zgly((p) (61). This process is

obviously reversible, giving a homomorphism betweeh curves inM between point
and line satisfying the constraint agd curves inMg between two points.

4. Local theory

In this section we will provéocal uniqueness of minimizers fat in £2¢ ,, (¢), through
the study of the flow induced by the Euler-Lagrange equations (30).
For this aim we will make the assumptions

2 2

oL 0L 0L
—(0,0,00=——(0,0,00=—--(0,0,0)=0. 63
82( ) Bzaz( ) awaz( ) (63)

Remark 4.1. The above assumption is satisfied by the particular cases exposed in
Section 6.1.

We will begin proving the following theorem:
Proposition 4.2.Let Q € M andvg € To M such thafug| is sufficiently small. Then there
exists a unique solution(s) of the integro-differentia(30)—(31) defined in the interval

[0, 1], such thatp (z(2), z(¢), ) = 0, satisfying the initial conditions(0) = Q, z(0) = vo.

Proof. We will work in a local coordinate system ofR" such that

0
Y = .
az"

(64)

From (5) and the Implicit Function Theorem there exists a neighborifod V" x
(—e&,+¢) 0of (0,0,0) € R" x R" x R such that

p=w"—g(wh ... w1t z1), (65)

where g is a C! function, uniquely determined. Let us now write Euler-Lagrange
equations: in local coordinates we have:

d L L
— 9 .—Aa¢. — a—.—ka—(l). =0, Vi=1,...,n, (66)
dr \ dw? ow' 7! 7!

wherea(r) is—using (64) together with (5) and (28)—

1

oL e
A0y = / (200, 2().s)e i (40200 dr g (67)
Z

t
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We observe that, integrating (66) in 1] for i = n we obtain (67). Then, #"~! denotes
the projection ont&®”~* of 4", we define the application:

®:{ze 10,1, Ut x V") | 2(0) =0} x "t — €°([0, 1], R"~* x R"),
D1(w, z, v)(t)

b 1@. 200

<1>(w1, w g V) (1) = f wlds | (68)

" —fow ds

where, fori =1,...,n —1,

®; (wl, w g v)(1)

oL a¢ oL a¢

0
oL
— <—@, 0,0) — )»(0)—¢(v, 0, 0)), (69)
Jw! ow!
with the functional dependencies
w' =g(wl, ... w" z,1), (70)
‘ oL
t 0,
Aw, 2)(1) :/ P (w(s), z(s), s)e—fs o (W), z(r),r) dr ds. (71)

:
We also set, forany = (v1, ..., v" 1),
v= (vl, v Up—1, 81, ..., 0021, 0, 0)).
Moreover, if® (wl(r), ..., w" (1), z(r), vo) = 0 we can set:
w'(t) = g(wl@), ..., w" L), 2(0), 1)

and then, using (67)—(70(t) = z(¢), ¢ (w, z,t) =0, and(w, z) solves Euler-Lagrange
equations withz(0) = 0, w(0) = g = (vo, g(vo, 0,0)). Here we stress the fact that
w(0) = vp comes from the local inversion showed in the proof of Theorem 3.5 (see pp. 12—
13).

To prove the theorem we want to show that

0P
d(w, z)

(0,0,0):€°([0, 11, R"~* x R") — €°([0, 1], R""1 x R")
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is invertible, so that there exists@ map
v (W, Z0),

unique for|v| sufficiently small, with® (w,, z,, v) = 0. With the notation:

32
G(wazat) ZGij(wa Z7t) = ﬁ(wazat)a VI,JZ 1,...,” - 17

widw/
and using (63)—(71) it can be seen that, gifens] € R"~1 x R”, we have:

t

(0,0,0)[w, &]1= (G(O, 0,0)-w, & — /wds), (72)

0

o(w,z)

which is an invertible map, with inverse given by:

1

_ t
[ i (0,0,0>} [w,é]z(G1(0,0,0)-0),5—/G1(0,0,0)-a)ds). (73)
0

o(w,z)

The result is proved. O

Using @ of Proposition 4.2/ Q € M we define arexponential mags follows. Let us
denote byQ a point of M with coordinategz), and set

To={veToM|¢(v,z,00=0}.

We can think the map — (w,, z,) as defined idp = Tp N Vg, whereVy is an open
subset of 0 i M. Then we definerp (v) as the end-point of the (unique) solution of
Euler-Lagrange equations (66), that is

erpo(v) =zy(1). (74)

From the Implicit Function Theorem, the differentiahet 0 of v — (w,, z,) is given by:

-1
[ i (0,0, 0)} o <E(O, 0, 0)[w]) =w,w-1), YweR" 1 (75)
d(w, 2) av

where® is given by (69).
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Since the derivative of the exponential mapvat 0 in the directionw is given by
the evaluation at = 1 of the second component of (75), it isi, (0)[w] = w, that is
derpy(0) is the identity map orfgllp C ToM, thenerp,, is a local diffeomorphism.
Then the integral curves df, that in local coordinates are given by:

vy =y @),

are transversal to the imagg, of Uy through the exponential map, and intercept it exactly
once ify (¢) is sufficiently close ta. By the local uniqueness of the flog, we have here
showed the following:

Theorem 4.3.For all Q € M, if y is sufficiently close t@ then there is a unique minimal
curvez for £in 29, (¢).
5. Thecasep=1

We dealt so far with problems where the Lagrangian funcfiom, z, r) was estimated
by a powerp of |w|, with p > 1. This is the case of most mechanical systems, where
is a quadratic function in the velocitiep & 2), and this is the reason why it has been so
widely treated.

The sub-Riemannian geodesics case (see [7]) suggests a common technique to deal with
problems where the Lagrangian is estimated:bly that is well-working with functionals
where bothl. and¢ are homogeneous of degree 1. It is an open problem whether suitable
techniques can be exploited where the homogeneity condition is lost.

Let us consider a Lagrangidn(w, z) on a Banach manifold such that

L(pw,z) =puL(w,z), VY(w,z)eTM, YueR, (76)

and we want to study critical points of

1
L(z) = f L(z(t),z(0)) dt (77)
0

parameterized in such a way that
L(z(1), z(t)) = const,

in the set:

Ch, (@) ={zeC([0.1. M) | 2000 = Q. z(D) e y(R),
o(2(1),z(1)) =0 ae}, (78)
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wherey is an integral curve of the usual vector fidldbn M, Q ¢ y (R), and the constraint
equationy is a linear function inu:

¢(w,z) =D(2) - w, (79)
with D(z) linear operator irf, M. We will first study critical points for the functional

1

£() = f (L), 20)) e, (80)

0

in the space2gp., (¢),
20.,@) ={ze H*([0,1], M) | 200 = Q. z(D) € ¥(R), $(2(1). (1)) =0 a.e}.
Remark 5.1.The function
Ew,2) = (L(w,2))

is homogeneous i of degree 2. This implies

2 w
E(w,2)=|w[°E|( —.z,
[w]

and since
SINTM=|we .M ||w| =1}

is compactyz € M, we can obtain the estimates énand its derivatives as in (8a)—(9b).
Similar estimates og are straightforwardly found sinagis linear.

As usual, we require pseudo-coercivityétith respect to the constraint. This happens
for instance, recalling Remark 2.7, if

E(w, Z)|SlﬂTZM

is bounded away from 0, for eaghe M, and M is complete.

In order to relate the two functionals, we need the hypotheses made in Section 2
regarding the vector field.

Therefore, using theory from Sections 2—3, we have existence and regularity for critical
points of L in £2¢ ., (¢). Since hypotheses (63) of Section 4 are satisfied, as it can be easily
seen using homogeneity, then local uniqueness of critical points is obtained.

Moreover, using Corollary 3.9, we have the following first integral for solution of the
problem:

IE 3
—.Z—E—A—({)ZzE—)uqb:E, (81)
0z 0z
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that is
L(z,z) =const.

if z is a critical point for the “energy” functional.
Minimizers of £ and€ are related by the following

Proposition 5.2.1f a curvez is a minimizer for€ in £2¢ ,, (¢), then it is a minimizer fol
in Cé’y(cp) parameterized by.(w, z) = const

Remark 5.3. The converse is straightforwardly true, recalling a standard argument using
Hélder’s inequality.

Proof of Proposition 5.2. Let z € £2¢,, (¢) be a minimizer for€. We knowz is C2 and
L(z(1), z(¢¥)) is constant. We want to show thais a minimizer forZ in be(cp).

Indeed, let us suppose there exists Cé’y(qs), with L(y) < L(z).
Thus we can reparameterigebtaining a curve:

1

x(p)=y(0), plo)= o)

/L(j)(s), y(s)) ds.
0
Thenx € 24, (¢), and

L@,y
LG(@), y@))

1 1
) ( 2
£(r) = f L(5(p). x()) dp = L) f . L]’ (82)
L )
) / (y(o),y(0))

Therefore
£ =Ly < [L@]=£@), (83)
obtaining a contradiction. O
Thus we come to the following:

Theorem 5.4.Under the assumptions made, the functiofdahttains its minimuny in
be(qb), that is of clas¥°2 and satisfies Euler—Lagrange equatiq88), with L replaced

by E(w, z) = (L(w, z))2. Moreoverz can be parameterized in such a way that, z) is a
constant.

Since local uniqueness results holds§oiProposition 5.2 yields the following:

Corollary 5.5. Under the assumptions madeyifis sufficiently close t@ there exists a
unigue minimizer foiC in be(cp) with L(z, z) constant.
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Also multiplicity results can be found, using the same techniques as in Section 3.

6. Examples
6.1. Example 1. Sub-Riemannian geodesics

A sub-Riemannian manifold consists of a tripl#1, A, g), where M is a smooth
manifold,A € T M is a smooth distribution itM andg is a positive definite metric tensor
on A. We recall that aistribution D of dimensiond on M is a differentiable map that
associates to every poiit of M ad-dimensional subspace &p M.

We are interested in what are usually calfe@mal geodesigs.e. those curves such
that z € A—calledhorizontalcurves—and that “locally” minimize their length—that is,
their restriction to a sufficiently small intervédi, b] C [0, 1] are horizontal curves of
minimal length between(a) andz(b) (see Appendix B in [7] for further details).

The main obstruction for the approach to the problem is that, usually, the set of
horizontal curves between two fixed point does not have a differential structure in general.
This obstruction is overcome if we let the end point free to move on a submanifold which
is transversal t\.

This suggests the following setup: take a complete Riemannian mariifdid g =
{-,-)), and a never vanishing vector fiellon M, that we will suppose without loss of
generality to be normalized:

(Y,Y)=1. (84)

For sake of simplicity we consider the case of a codimension 1 distribution, precisely
A =Y+, the orthogonal distribution t&, fix a point Q € M, and consider a maximal
integral curvey :R — M, QO ¢ y(R), letting the end point free to move on it. Sub-
Riemannian length minimizers are related to critical points of the functional,

1
L(z) =/\/(2(I),Z'(t)>dt, (85)
0

in the set
Ch,(A)={zeCH[0,11, M) | 2(0)=Q, z(D) e ¥(R), (,Y) =0}, (86)

satisfying|z(7)| = const. The presence of the square root in the expressiémudy result
in some technical difficulties that are overcome — as for the Riemannian geodesics — taking
into account thenergyfunctional

1

E(z)= / (@), z2(0))dr (87)

0
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in the space:
20.,(A) ={ze H*?([0,1], M) | 2000 = Q, z(D) ey (R), (z,Y)=0a.e}. (88)

Then results from Section 5 can be exploited to link critical point§ ahd E.
The constraint equatiop:

Pp(w,2) =(w, Y (2))
is linear inw, and the constraint is admissible (in the sense of (4)), since
Swa=A@)=Y"(2), Y(wz2)eTM, (89)

and therefore dins,, ;) = n — 1. Condition (5) is equivalent to assumption (84) bn
since

. (90
w

Moreover, Eq. (6) is straightly verified. Inde@dL /dw? is now a real metric, andl is
orthogonal to the vectors in the constraint, that in this case are the same veddrecdll
thatS = kerd¢/dw).

Also Eq. (7) holds, sincé is a linear constraint. It is also straightforward to verify the
estimates orl. and¢ (8a)—(10b) forp = 2 and, using the fact thai\1, (-, -)) is complete,
also pseudo-coercivity assumption is easily checked to hold.

The theory exposed ensures existence and regularity for critical poiAtsidgfen, using
results from Section 5, we can pass to the length functional and obtain the same results for
it.

Defined the transpose of the covariant derivative’)* as the(1, 1)-type tensor field
on M such thatvx e M, Vv, v € Ty M,

((VY)*[v1], v2) = (Vy,Y (x), v1), (91)

we have that a normal geodesids a curve of clas€?, parameterized withz| = const.,
that satisfies the equation:

Viz = Vi(hs - Y) + A, - (VY)*[2] =0, (92)

where

1
hp (1) = elo&VrYds [/(2, V:Y)e ol vryydr ds:|. (93)
t
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About multiplicity, we first observe that Eq. (62) now takes the form:

{ (d (20, n@) 2], Y (¥ (2(0), n(®)))) + (1) =0, (04)

n(0)=0,

that can be solved ifD, 1] for anyz Cé’y(A). Using Ljusternik—Schnirelman theory we
get a multiplicity result for sub-Riemannian geodesics betw@emdy :

Theorem 6.1. There are at Ieas'cal(be(A)) normal geodesics betweeh and y.

Moreover, if cat(be(A)) is infinite, then there exists a sequeng},cny Of normal
geodesics betweah andy such that

lim E(z,) = +o0.
n—00

Note that L is quadratic in the velocitiesv, therefore (63) is verified, and local
unigueness of critical points holds whéhandy are sufficiently close.

Example 6.2.As a dynamical interpretation of sub-Riemannian geodesics, let us consider
the free motion of a solid bod# that slides on a horizontal plame All but one contact
points between the body andr are free to slide in all directions, whereas the last contact
point P is realized by a knife edge, and such tBatan move onr along the knife edge.

We consider the special case when the projection of the mass celesrothe plane
coincides with the contact poirt.

If (x, y) are the coordinates of the projection of the mass center on the ptandkf),
and 6 is the angle between the plane of the knife edge and a fixed axes £3ath@
Lagrangian is given by (the body is assumed to have unit massk as@ constant —
namely the radius of gyration)

1,. . .
L= E(xz—i— y2 ~|—k292).
The condition on motion of the contact poiAtcan be prescribed by the equation:

dy = tané dx,

where d and dy are infinitesimal displacements respectively along the directicaredy.
Therefore the equation of constraint comes from the above relation:

¢ =xsind — ycosy =0.

This can be viewed as follows: lg¢f = R? x S, and fix a point ofM with coordinates
(x,y,60).Given(&, n, ¥) € Tx,y,0) M, define the metric — induced Hy,

(€. v), En ) =2+ n? +ky?
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Also letY be the vector field:

.0 a
Y =sinf— — cosp—.
ax dy

Then the constraint equatign= 0 can be written as
(Y(2).2)=0,

for eachz € M, and the Lagrangiah is

L=-(z,2).

NI =

Since, fixed)p € 1, an integral curver of Y is given by
¥ (s) = ((sinbo) s, —(cosho) s, 6o).

this means that we can study the motion of the wheel from a configurétipmo, 6o)
given, to the set of configurations describedyy).

6.2. Example 2. Stably-causal Lorentzian manifold
Let(M, (-, -)) be a Lorentzian manifold, endowed with a smaoalisolute timefunction
T(z): M — R, suchthafVT(z), VT (z)) = —1. This is a particular case efably-causal

Lorentzian manifold [8]. Light-rays between a poi@t € M and an observer, i.e. an
integral curvey of VT, are related to critical points of

1
E=f<2(s),2(s)>(P) ds (95)
0

in the space
24, ={ze H"*(10,1, M) [ 2(0) = @, z(1) e y(R),
(VT(2),2)— /(2. 2)py=0a.e}, (96)
where(., -) py is the pseudo-Riemannian structure given by:

(E.8)p = (5.8 +(VT (2,87 &eT.M.

The constraint equation contained in (96) is not smooth &at0. This problem can be
approximated studying critical points of the functional (95) among all A€ curves
betweenQ andy (R) satisfying the constraing, (z, z) =0 a.e., where
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pe(w,2) = (VT (2), w)+e& — [ (w, w)(p) + &2 (97)

This is aC? constraint, not linear inw. All the assumptions made are verified, as can be
checked by some calculations. The only additional requirement

(HT (2)[w], w) <0, Y(w,z) ¢ 10)
must be imposed to satisfy (7). Hefe! (z) denotes the Hessian of the functi@nat a
pointz € M. Note that it can always be possible to reduce to this case, as shown in [8].
Appendix A. Geometry of Lagrangian systems
The aim of this Appendix is to give an intrinsic description of the objects used through-
out the theory exposed in Sections 2-5, without dropping the coordinate representation we
have so far used.

First, we need to recall some basic notion about the tangent Buoidemanifold M.
We denote by:

TM - TM— M (A-l)
the tangent bundle oM. Let (z') = (z%, ..., z") be a coordinate system ok. Then

a coordinate systet(z’, w'), i = 1,...,n, is naturally induced off M; this system is
adaptedto the fibrationr », namely the expression afy, in coordinates simply reads

(o) 5 (),

Fixed a pointQ in this coordinate chart of1, we denote by:

a
{a_zi}i=l n (A2)

,,,,,

the basis offp M induced by the coordinate systeai).

Example A.1.LetY : M — T M be a vector field ooV1. We can expresg in coordinates
using either the notation:

Y= Y"(z)i., (A.33)
a9zt

2 For further details about the tangent bundle and the tangent map, that we use later, see [1].
3 From now we will use the notatioft’) to mean the:-tuple L ..., z™). We will, moreover, use Einstein’s
repeated indices convention, as done in Section 3, p. 12.
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or
(@) > (v 2). 7). (A.3b)

Remark A.2. If (z') is another coordinate system @1, andz’ = 7/ (z) are the transition
functions, these are the expression for the change of bagig.bf:

9z’ 9
_ —. A.4a
a0 oz (A43)

0
a7
Analogously, if(w’) are the induced coordinates @Vt by (z'), we have:

97 )
—i j
w'= 30 @Dw’. (A.4b)

Given a manifold, we can always build its tangent bundle. So we can dbdr Its
tangent bundle is denoted by:

arm TTM — TM. (A.5)

If (u’,y’, w', z') denotes the coordinate system®Ai M induced by(w!, z*) of T M, the
projection (A.5) simply reads

s

',y w,2) =5 (w', ). (A.6)

Fixed an elementw, z) € T M, the basis o, ,,T M induced by the systerw’, z') is
denoted by

99
. A
i=1,..,n

,,,,,

Let us now take into account the tangent map of (A.1),
Trap:TTM — TM. (A.8)

Its expression, in terms of the basis (A.7), reads

. S Twa ;O
T S 21 Y A.9
wo sty = i (A.9)

We define thevertical subbundleof 7T M to be the kernel of (A.8),

VTM =kerTmy. (A.10)
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This means the following: for eadlw, z) € T M, we consider the restriction @fry, (A.8)
to T,y T M. This is a linear application from the vector spagg ;)7 M to the vector
spaceT; M. Its kernel, by definition (A.8), it's jusV,, ;T M, and

ViM= | VwoIM
(w,z)eTM

is shown to possess a bundle structure ausi.
As it can be seen from (A.9),

ad
{ . } (A.11)
ow' i=1,...,n

forms a local basis foV,, ;)T M.
An injectionv

VIM<STTM (A.12)

is naturally induced by (A.10). This injection does not depend on the choice of the
coordinates, however, given the usual system,z') on T M, the induced system
onVTMis (u',w',z"). Then (A.12) reads

(', w', 7)< (uh, 0, w', ). (A.13)

Comparing (A.2) and (A.11), we get that, for evetw,z) € TM, a canonical
isomorphisniZ, ., betweenV, ;T M andT, M can be defined:

ad Tws O

— € TZM —> — € V(w,Z)TM. (A14)

a7 = Jw!

Remark A.3. It can be seen that this isomorphism does not depend on the choice of the
coordinate system. Indeed,# = 7' (z) is another coordinate system g, (A.4a) gives

the change of basis ifi; M, and analogously we can find the expression for the basis
component (A.7p/3z' andd/dw' in the new coordinates:

9 09z a8 ow! 9
—_— = f b - N pg—rat A15a
o7~ og Doz T g WD g (A-153)
9 dw’ 9

But recalling (A.4b) we have:

so that (A.15b) becomes:
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d _azf() d
w9z owi

(A.16)

Comparing (A.4a) and (A.16) we have thain (A.14) is independent from the coordinates
used.

Remark A.4. Relation (A.15b) also says that the vertical vector fields—linear combina-
tions of /9w’ —are intrinsically defined. We cannot say the same for linear combinations
of 8/dz', because, under coordinate changes, a vertical term arises in (A.15a).

Nevertheless, there exists the injectionVT M — TTM (A.12), such as its dual
counterpart, the projection

T*TM S VAT M (A.17)
from the cotangent bundle to the vertical bundl@d¥. This projection will be used later.

Remark A.5. We have so far shown ho®#7 M can be projected off M in two ways,
namely using eitherry o4 (A.6) or T (A.8). There exists a canonical involutieron
TTM —namely a map off T M such that? = id;7q —

1:TTM—>TTM (A.18)

such that the following diagram

TTM ——= TTM

nTM\L lTﬂM
id7 A4

TM——TM
is commutative (igh o4 is the identity map ol M). Its coordinate expression reads
l:(ui,yi,wi,zi)—> (ui,w[,y[,zi). (A.19)

Once we have set up the framework, to better understand how the objects can be
intrinsically defined, we will begin fronautonomousystem, (that is, time-independent),
and then we will extend to the case when time enters in the expression of either the
Lagrangian or the constraint equation.

Then, let us take into account a geneafalreal function defined iff" M,

fiTM—R.
Its differential df is a map
df :TM — T*TM, (A.20)

such thatyz e M andw € T, M, df (w, z) is a linear function orf{,, ;)7 M.
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We consider a vector field/ : M — T M on M. Its tangent mafg’ W is an application

TW.:TM—TTM (A.21)
that in coordinates reads:
o AW L .
(w',2') o ( 977 @w’,w', W’(z),z’>,
Z

and then it is not a vector field oAiM, sincenyaq o TW(z, w) is W(z), and not the
identity map onl" M. But, applying the canonical involutian(A.18) to T W we obtain a
true vector field orf M, whose coordinate expression reads:

SNL ow' ..
(w',z') Lol W, ( P (@)w’, W (z), w’,z’), (A.22a)

and nowry g o (1 o TW(z, w)) is the identity map ol M. Note that we can also write:

1oTW(w,z)= W"(z)i + (aW. (z)wj> 9 (A.22b)
a7t az/ ow!

We define:

df[W]:TM — R,
df[Wl(w,z) =df (w, 2)[t o TW(w, 2)]. (A.23)

Its coordinate expression is:

9 . 9 awW! <
df[W](w,z>=a—Zf,.(z)Wl<z>+ f (z)( <z>w1>. (A.24)

dw' az)

We can also define a fiber derivative 6fn the following way. From (A.20), we can project
df on V*T M, taking into account (A.17), obtaining

vidf:TM— VT M. (A.25)

Moreover, given a vector fieléV : M — T.M, and using the canonical isomorphigm
(A.14) (dropping the subscripy, ;) to lighten the notation), we define:

%[W]:TM — R,
ow

3
%[W](w,z) =v*df(w, )[Z(W(2)]. (A.26)
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Its coordinate expression simply reads:

a a
—f[W](w,Z)= /

™ T @OW Q). (A.27)

Itis clear that we can define in the same way higher order fiber derivatives. For instance,
given two vector fieldd¥1, W2 on M, we can consider the second-order fiber derivative

22 - ) . .
&/ [W1. W2] whose coordinate expression is:

92 f 92f
— LWy, Wol(w, 2) = ———
8wz[ 1, Wal(w, 2) S0l I

(w, Wi (@) W] (2).

All these objects can be naturally extended when we deal functfodgfined on
TM x R (as it happens, for instance, foon-autonomousystems), and with time-
dependent vector fieldg : T M x R — T M.

Taking into account the natural projections:

PTMTM xR —-TM, (A.28)
T*prp: TH(TMxR) - T*T M, (A.29)

and the canonical injection
J TMxR—T(M xR) (A.30)

whose coordinate expression is:

;9 a ;0
].(Z 8_zi’t>_>5+z Pyt (A.31)
we define:
df[VI:TM xR — R,
dfIVI(w,z,t) = (T*prapodf)(w,z, )10 TV o j (w,z,1)], (A.32)
and
%[V]:T./\/l x R — R,
Jw
B
%[V](w, 2,0 =v"(T*prpmodf)(w, 2, H[Z(V(z, )] (A.33)

Their coordinate expression respectively reads:

df[Vi(w,z, 1) =

af ; of avi avi .
8_zi(Z)V (z,0) + S0l (Z)(W(Z,I) + 2 (z,t)wf>, (A.34)
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and

%[V](w, z,t) = a—f.(z) Viz,1). (A.35)
ow ow!

Example A.6.Let V = A(¢) Y (z), wherer: R — R andY is a vector field onM. Then

df[VI(w,z,t)
af i af : i BY’ .
=At) = (w,z, )Y (2) + —=(w,z,1) (k(t) Y'(@)+210) —— () w")
qw' a7z’

a7t
%[Y](w,z, t). (A.36)
Jw

=A@ df[Y](w, z, 1) + A1)
Example A.7.Letz:[0, 1] - M be a curve onM, and
¢:[0,1]CR—TM, c@)=(E®), ),
a vector field onM alongz(z). Itslift to the tangent space &M is given by
¢:[0,11 = TTM, @)= (E®), 20, & 1), 7 ®).

Applying the involution: (A.18) to ¢ we obtain a vector field of M over (z(¢), z(¢)),
whose coordinate expression is:

zoc'zgi(t)(io(z,z)> +é"(r)( 9 o(z,z)). (A.37)

a7t Jw!

Thus, given a functiorf onT M oronT M x R, we can apply ¢ to: o ¢, exactly as done
for W in (A.24) and forV in (A.32). Analogously can be done taking into accodjfitow
instead of ¢ .
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