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0. Introduction

Throughout, R denotes an associative ring with identity, modules are unitary left
R-modules. A descending chain C of non-zero submodules of a noetherian module M
is well-ordercd under reverse inclusion, and we denote by o(M) the supremum of the
ordinal types ord(C) of all such chains C in M.

In [1], Bass proved that if R is a commutative noetherian ring with countable
Krull-ordinal k(R) (called classical Krull-dimension in [2, 4]), then w*(R) < o(R)
with equality in case R is a domain. The purpose of this note ts to extend this re-
sult to noetherian modules over arbitrary (not necessarily commutative) rings and to
sharpen it at the same time. Cur proofs have been inspired by the methods used in
[1]; we use, however, the Krull-dimension K-dim(M) of the module M (see below for
a definition) instead of the Krull-ordinal «(R).

For any noetherian module M with Krull-dimension a there exists a sequence of
ordinals

a=al)>a(2)>..>ak)20,

a sequence of natural numbers
(n(1), n(2), ..., n(k)),

and a finite descending chain of submodules
M=MyDM,>..OM, DM =0

n-1
of submodules M, sa_h that the first n(1) factor modules of this chain are of 1)-critic-
al, the next n(2) fac.ors are a(2)-critical, and so forth, and the last n(k) factors are
af(k)-critical. Here a module X is called a-critical if K-dim(X) = a but K-dim(X/Y)<a
for every non-zero submodule Y of X. As a partial generalization of the classical
Jordan-Hoélder Theorem we show that the type (a(1), n(1), ..., a(k), n(k)) is ar. in-
variant of the module M (Theorem 2.6) and that for countable a(1) = K-dim(M) we
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get (Theorem 4.6)
M) = W (1) + ... + Wik ’n(k)

Since K-dim(R) and k(R) coincide for a commutative noetherian ring (see |4, Theo-
rem 13]). our result vields [1. Theorem 2.12] as a special case. We should like to
point out that Theorem 4.6 is no fonger true if K-dim{}) is uncountable: there ex-
ist even commutative noetherian domains of arbitrarily large Krull-dimension (see
[2. Theorem 9.8]), but every descending chain of nbn-zero ideals of a commutative
noetherian ring is countable by |1, Theorem 1.1].

Some of the results in Sections 2 and 3 have also been proved by Jategaonk
for tinitely generated modules over fully bounded noetheriai nings. Our hypotheses.
however, are much less restriictive, and the proofs are more translucent.

1. Definitions and notations

A submodule N of a module M is essential if N 11X # 0 for all non-zero submo-
dules X of M: M is uniform if all its non-zero submodules are essential. Two modules
are subisomorphic if each has a monomorphism into the other one. and a3 module M
is compressible if 1t is subisomorphic with each of its non-zero submodules. The m-
jective hull ot a module M is denoted by £(M).

The Krull-dimension K-di (M) ot the mwoadule M s defined by transtinite recur-
ston as follows: K-dim(M)=- 1 iff ** - { and for an ordinal a. K-dim(M) = a it K-dimt.M)
< a and there is no infinite d:acending chain M =M, M, 2 .. of submodules M, such
that K-dim(M, ‘M <€afori=1,2, ... ltis possible that there is no ordinai a wiili
K-dim(¥) = a: in that case M is said to have no Krull-dimension. We note that
K-dim(M) = 0.1ff M is a non-zero artinian module, and that K-dim(Z) = 1, Z the ring
of integers.

A module M is o-critical if K-dim(M) = a and K-dim(M/ V) < a for every submo-
dule N # 0 of M. Non-zero submodules of a-critical modules are again a-critical, and
it is easy to verify that compressible mocules with Krull-dimension are critical, and
that criticu! modules are uniform.

A ring R is left (right) bounded if every essential left (right) ideal of R contains a
non-zero two-sided ideal. R is fullv left (right) bounded if R;P is left (right) bounded
tor every two-sided prime ideal P of R. R is fully bounded noetherian if it is a fully
left and right bounded ring with maximum condition on left and right ideals.

tinally, we recall that the classical Krull-dimension ¢l K-dindR ) (Kruli-ordinal
K(Ryin [1]) of the ring R is the smallest ordinal a for which speciR) = spec,(R).
where the subsets spec, (R) of the set spec(R) of all two-sided prime ideals of the
ring R are defined as follows: spec((R) is the set of all maximal ideals of R.and for
an ordinal « > 0 we put

spec, (R)={P € spec(R): PC Qimplies@ € U, ospecy(R) 1
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If no such ordinal exists, we say that K has no classical Krull-dimension.

2. Critical composition series

Let M be a left R-module. A finite properly descending chain
M=M,D>M DM,D..OM, DM, =0

of submodules with critical factors M,_; /M, is called a critical composition series. 1f
there is a sequence of ordinals

a)>a)>...>ak)>0

such that the first n(1) factors are of 1 }-critical, the next n(2) factors are of 1)-critical,
the next n(2) factors are af 2)-critical, and so on, then we call the series a decreasing
composition series of type

(ad 1), n(1), o 2), n(2), ..., alk), n(k)).

The objective of this section is to show that if a module M has two decreasing critic-
al composition series of types (ad 1), n(1), ..., a(k), ntk)) and (8(1). m(1), .... 3(1),
n{/N.then kK =17 and 3() =a) and () =m(H foralli= 1,2, ...k = 1. A critical
composition series of type (a, n) will also be called an a-critical composition series
tor short.

It s fairly easy to show that every noetherian module has a decreasing critical
composition series {of some type). in fact, noetherian modules can be characterized
by the fact that every epimorphic image has such a series. We note that the Krull-
dimension of a module with a decreasing critical composition series of type
(a(1).n(1), ..., a(k), n(k)) is equal to a(1) by [4, Lemma 7].

2.1. Lemma. If the left R-module M has a decreasing critical aﬁ:mposition series of
tvpe (af 1), n(l), ..., alk), n(k)), then K-dim(N) 2 a(k) for each submodule N # 0
of M.

Proof. Let M =M, DA, = .. DM, DM, =0 be a decreasing critical composition
series of the type mentioned. It 0 # NV C M, then NV C M, but N Z M, for some ¢,
O<i<n-l,andhenc: M,y CN+ M, CM, sothat

K'di"l‘N/.N n ﬁ’l"l ) = K‘dln](N + /‘,",} ] /1""+‘ ) = K-dlm(;",,"ﬁflﬂ ) .2 a(k ).

Thus K-dim(V) 2 a(k) by |4, Lemma 7].
2.2. Lemma. If for a submodule N of M the module M/N has a decreasing critical

compuosition series of tvpe (..., a(k), n(k)) and if K-dim(V) < a(k), then N is the
unique maximal submodule of M with K-dim(V) < a(k).
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Proof. Let X be any submodule of M with K-dim(X) < afk). Then
K-dim(X + V/A) = Kdim(X/X N.V) < K-dim(X) < a(k).
so X + N N=0by Lemma 2.1, and hence Y C X + V=V,

2 3. Lemma. If M has a decreasing critical composition series of type (of V). n(h), ...,
afk). i(k)), then a non-zero submodule N of M has a decreasing critical composition
sertes of tvpe (B(1), m(1), ... 3(D. m(D), where for cach 1, } <i< |, there exists a |,
1 <7 <K, such that o(j) = 8 and m(1) < n(j).

Proof. Let M =M, DM, O..2M, | DM, =0 be a decreasing critical compos:tion
series for M of the indicated type, and assume NV C My, but N @ M, | for some b,
dsh <y 1. Consider the series

%) N=V "\,";3 2N 'q""lnl 2N m‘"ll“ S 2NOM, |~ Yo, =0,
lori=0.1,...n h 1, wehave
NOM, N "iu ] N "hﬂ N0 " ’h"’l
'—“;’"’” ‘H \’ﬁ"hn' ’honl‘” 'hﬂ ’h*l‘l

As My My 4y is ag)critical for some /. | <7 <k, the series (*) is of the desired
type if we delete those factors which are equal to zero.

2.4. Remark. An analogue of Lemma 2.3 for cnimorphic iniages of M instead of sub-

modules is generally not true. In fact, n Mis a non-noetucnian a-critical module, then
there exists at least one subinodule 0 # N C M such that M N has no critical compo-

sition series at all (see |2, Corollary 9.5]).

2.5. Proposition. /f M is a medule with an a-critical composition series, then any
two a-critical composition series have the same length.

Proof. Let (M) be the least possible length of an a-critical composition series of M.
We proceed by induction on I(M). If (M) = 1, then M is a-critical, so M cannot have
an a-~critical composition series of length > 1. Let /= {M) > 1, and let

M=My DM D .. DM DM =0,

M=NyDN D..DN, DN, =0

be two a-critical composition series. Assume m > I Since (M) = 1--1, every a-critic-
al composition series of M; has length /- 1. Assume M; NN, _ ; =0. Then

' 0$Nm", 21’\’,"_,/1“' ﬂfv 4’ +N /M

m-l = -l
so N, _, is a-critical, contradicting the fact that NV, _, has an a-critical composition
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sertes of length £ > 1. Thus 1I| AN F 0 Assume My =My NN, Then
M, C Ny opcand hence My = N for otherwise K-dim(A1V,, ) <. u)llll’JdILU'!é
the Iud that M-\, has an a-critical composition series of length m /2 1. Thus

My =N, has an a-citical composition senies of length /, and this Lomradlctmn
shu\n that My DN, M Now
0# '" "" A m-l N "" + "\}n e ‘\m -l

so My Moo ,h.xs an a-critical composition series of fength 2 1 by Lemma 2.3.
Also by Lemma 2.3 the module My OV, # 0 has an a-critical composition series
which must be of Lzngth </ 2, because ne a-eritical composition series of My has
length > 1.Now N, N,y OMy M+ N My so N, AN, VM s either
2~ro ot a-cntical. In the first case this would yield an a-critical compuosition series in
Ve ot length <O 20an the second case it would give one of length<(/-2)+ 1 =
[+1. 50 N, =1 Linany case. But then .V, could not have an a-critical compo-
sition series ot length £ by induction hypothesis. This contradiction shows that m = 1.

2.6. Theorem. Lot M be a left R-module with two decreasing critical composition
series of tvpestal )t Dy, Lotk atkn and (801 m(1), oplh). mih). respectively.
Then k =1 and gty = adi)yend miy=n@iyfori =1, .k =1

Proof. Since a1 > a(N) > .. > afk)yand (1 > 3(2) > ... > 3(), we have (1) =
K-dimtM) = a(1) by [4. Lemma 7). We proceed by induction on a(1). o 1) =0
then the assertion follows by the classical Jordan  Holder Theorem because O-critical
modules are simple. Assume a( 1) 22 1, and let K be the largest submodule in the de-
creasing crincal composition series of type (ol 1), n(1), ..., a(k), n(k)) for which
K-dim(K) = a(2), and lei L be the largest submodule in the other decreasing critical
composition senies for which K-dim(.) = 3(2). Then K = 1. by Lemuna 2.2 and

K- dimun-a(’)"ﬁ(‘)= K-dim(Z)< g(1) = oaf1). Thus k =/, and o) = g{i) and
n(i) = mi) fori =2, 3. ...,k = by induction hypoihesis. Finally, M/K = M/L has an
of 1 )-critical composition series of length n(1) and one of length m(1), so n(1) =

m( 1) by Proposition 2.5.

3. Basic series

Following (3], we call a non-zero submodule N of a module M with Krull-dimen-
sion busic if & is maximal among the a-critical submodules of M, where a =
min{K-dim(X): 0 # X C M}. A basic series of M is a chain

0=8B,CB, C..CB,_ CB,=M

of submodules of M where B;/B;_; is a basic submodule of M/, for I <i<n.The
purpose of this section is to show that basic series and decreasing critical «,omposmon

series are the same. This will establish the validity of [3, Theorem 3.4(1)] for modules
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over any ring. The following two results appear in |3]. where they are proved under
the assumption that the ring R is fully bounded noectherian.

3.1. Lemma. The following propcrties of the module M are equivalent:
() Mis critical
(ii) M is unitorm and contains a critical submodule L st:ch that

K-dim(M/L) < K-dim(l.).

Proof. (1) = (ii). It M is critical, then M is clearly uniform. If L is any non-zero sub-
module of M. then L is critical and

K-dim(M/L) < K-dim(}M) = K-dim(L).
(ii) = (i). Since by [4, Lemma 7]
K-dim(M) = max(K-dim(L). K-dim(M L)),

we get K-dim(M) = K-dim(L). Assume K-dim(M /X)) = K-dim(M) for some submodule
X # 0. Since M is uniform. . N X # 0 and we have

K-dim{L + X/X) = K-dint{L /L N X) < K-dim(L).
Also
K-dim(M/L + X) < K-dim(M L) < Kdimil) = K-dim( M),
so we obtain
K-dim{3) = K-dim(M/X) = max-K Y.L+ X)), Kdim(] + X X)) <K-dim(M),
and this contradiction shows that K-dim(3//X) < K-dim(M) for all non-zero submodules

X of M. Thus M is critical.

3.2. Lemma. If the submodule L of the module M with Krull<dimension contains a
basic submodule B of M properly, then K-dim(B) < K-dim(/L./B).

Proof. Since (1) and (6) of |3, Theorem 2.5} are equivalent by Lemma 3.1 without
the restriction that M is a finitely generated module over a fully bounded noetherian
ring, the original proof of {3. Lemma 3.2} can be used.

3.3. Propasition. The following properties of the series
C M=MyoM, D..OMDOM, , D.. oM, DM, =0

of submodules M, of the left R-module M with Krull-dimension are equivalent:
(1) C is a basic series.
(i) C is @ decreasing critical composition series.
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Proof. (i) = (ii). If Cis a basic series. then every factor M;/M,,,.0 <i<n-1.is critic-
al. so Cis a cnitical composition series. it remains to show that K-dim(M;/M,, ) >
K-dim(M,, /M, ). Since L = M;/M,, 5 contains the basic submodule B =M, ;/M,,,
properly, we have

K-dim(M, /M, ,~) = K-dim(B) < K-dim(L/B) = K-dim(M;/M,,)

by Lemma 3.2.
(i1) = (i). We have to show that M;/M, ., is a basic submodule of M/M, . By
Lemma 2.1 we have

K‘di“l( ""'j“fl"“‘ ) > K'diﬂ\(ﬁ’i,'/x‘ll+l )= ﬁ

for every submodule X/M,,, # 0 ot M/M,, . so the ordinal 8 is minimal among the
Krull-dimensions of non-zero submodules of M//M;, . Assume now that there exists
asubmodule X O M, of M such that X/M,,, is f-critical. Again by Lemma 2.1 we
get

3 = K-dim(X/M,) > K-dim(M_ /M) =2 K-dim(M /M, ) =8,

so K-dim(X/M;) = 8. which is impossible if X/M,,, is §-critical. Therefore M;/M, ., is
a basic submodule of M/AM;, , .
In [3]. Jategaonker called two basic series

M=M,DM D..OM,_ DM =0.

M=N,DN D..DON, DN, =0

-1
to be cquivalent if m = n and if for some permutation = of the set (1, 2, ... n) each
M,_; M, 1s subisomorphic with NV ;)1 /N ). [3, Theorem 3.1] states that any two
basic series of a finitely generated module A over a fully bounded noetherian ring
are equivalent, and in view of Proposition 3.3 our Theorem 2.6 shows that they have
at least the same length, with no restrictions on M and R whatsoever. Although we
are presently unable to obtain the second part of |3, Theorem 3.1] in general, we
obtain an alternate generalization of the Jordan—Holder Theorem by showing that
any two basic series of M are similar in the sense of Definition 3.4 below. It is

clear that in the case of an artinian and noetherian module M both concepts reduce
to the usual concept of equivalence of two composition series. Furthermore, as

M;_, /M, is uniform, two equivalent basic series »re clearly similar.

3.4. Definition. Two basic (or decreasing critical composition) series

M=M, DM D.DM, =0,
M=N,DN, D..DON, =0

are similar if m = n and if for some permutation 7 of the set (1, 2, ..., n) the modules
E(M;_y/M;) and E(N ;) /N ;) are isomorphic.
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3.5. Theorem. Anv two basic series of a lett R-module are similar.

Proof. 1.ct

M=M,DM D..0OM =0
=\ . A =/(

M=N,DN, D..2N =0
be two such series. By Theorem 2.6 tirey have the same length m = a1 In view of
Lemma 2.2 w2 may assume that both series are in fact a-critical composition series
tor some ordinal a 32 0. We proceed by induction on n. 1 1= 1. then M is a-critical,
so there is nothing to show. Let = 2 and assume My, NV, # 0. Then

a > K-dimtM, ‘M, NNy = K-dim(M, + N, V),
and hence My =M, NN since boto MZVy and M, are a-critical. Similarly, .V, =
M, O N L and the two series are identical. It My OV, = 0. then

= NN, M, > NN

Ny NN OM M+ N M
and hence

EGCN) ™~ LM+ N M)~ EMM)
stnce MMy is uniform. Similarly

M) ™~ BN ).
Letnow n > 2 1M, 7N =0, we would have

My =M My OGN SMO 4N
so M, would be e-critical, contradicting the fact that it has a decreasing critical com-
postion series of length 1= 2. Thus My NN # 0. 1M, NN, =M, then

M, € N,;.and hence My =V, . because both M/M, and M/N are a-critical, and we
are done by induction hypothesis. Therefore, we may assume that My NN, C M,
and similarly M, 0N, CN,. Now

/ 7~ ATOIN
A’l/"l m.{\, Ali +;\l;1\‘,

so M /M| 0N is aecritical, and the same is true for Ny /M, NN . By Lemma 2.3
and Proposition 2.5 the submodule My M.V, possesses an a-critical composition
series

x"’]\ nx\" :)Xl o 1Y2 2.0 Xﬂ-} ) X"_Z =0
of length n--2. Using the induction hypothesis and the case n = 2, we get

- M=M0 DMl 3M2 DM3 D I)M"_l DM” =0
similar to
M=MO Z)Ml DMI mvl :)Xl D... DX"‘z =0
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similar to

A= AN TN ) A =
o M A\” .,,\1 DMI ﬂ,\l DXl D ?)X"_2 0
similar to

M= .»\.'u DN DN, DN DL DN ON DN =0,

! 2 n-1 n-1 n
Since two compressible left R-modules with Krull-dimension and isomorphic njec-
tive hulls are obviously subisomorphic, we get the tollowing corollary of Theorem 3.5.

3.6. Corollary. Let C be a class of feft R-modules which is closed with respect to the
Jormation of submodules and epimorphic images. If every critical module in C with
Krull-dimension is compressible, then any two basic series of a module M in C are
equivalent.

By [3. Theorem 2.5] every finitely generated critical module over a fully bounded
noctherian ring R is compressible, so Corollary 3.6 is a generalization of {3, Theorem
31

4. The ordinals (M) and K-dim(Af)

Every descending chain of non-zero submodules of a noetl.erian medule is well-
ordered under reverse inclusion, and we denote by o(M) the supremum of the order
types of all such chains. The purpose of this section is to establish a relationship be-
tween the ordinals o(M) and K-dim(M} for the case where the second one is count-
able.

4.1. Lemma. Let M be a noetherian left R-module with X-dim(M) = a 2 0. For any
ordinal 3 < a there exists a submodule N of M such that M/N is p-critical.

Proof. The set of submodules X of M with K-dim(M/X) 2 3 is certainly not empty.
s0 it contains a maximal element V. Since K-dim(M/X) < g for all submodules
X DN of M, K-dim(M/N) < 8 by [4, Preposition 8], so M/N is S-critical.

4.2. Proposition. Let M be a noetherian a-critical left R-module. If o is countable,
then there exists a descending chain of non-zero submodules of M of ordinal type
W and hence w® < o(M).

Proof. We proceed by induction on a = K-dim(M). If @ = 0, then M is simple, and the
assertion is trivially true. Let a > 0.

Case 1: a =+ 1. Let Ny be equal to M, and for i > 1 let .V, be a non-zero sub-
module of N;_; such that N;_,/N; is f-critical. Since the non-zero submodule V;_; of
the a-critical module M is again a-critical, such a submodule N, does exist by Lemma
4.1. Because of [4, Lemma 7], we get an infinite descending chain of submodules

C fi”:z\[o :)Ni D...DNI;_‘ DN'D...DO
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with B-critical factors N;_, /N;. By induction hypothesis there is a descending chain
of submodules D ¥; between N;_; and N; which is of ordinal type wF. Using these
chains to refine the chain C, we obtain a chain of type

Fraf+. =Frw=df =0

Case 2: ais a limit ordinal. Since ais countable, we can find a countable sequence
of ordinals f(i) < a’such that a = supg(f(i)). Define M = Ny, and fori =1 let N; be a
non-zero submodule of N;_y such that N;_; /N; is f(/)-critical. By [4, Lemma 7] we
obtain an infinite descending chain

C M=N,DON DN, D..ON_ 2N;D..00
with f(i)-critical factors N;_;/V; fori =1, 2, ... . By the inductive hypothesis there

exists a chain of submodules > N; between N;_; and N; which is of order type w# ).
Using these chains to refine the chain C yields a chain of type

D 4 POy Dy s GUPEOD 2 e

4.3. Remark. If K-dim(M) = a is not countable, Proposition 4.2 fails to be true in
general. By [2. Theorem 9.8] there exists, for example, a commutative noetherian
integral domain R with K-dim(R) = €2 + 1, where §2 is the first uncountable ordinal.
By {4. Theorem 10] R is (§2 + 1 )-critical, and it follows from |1, Remark 2.13] that
ofR) = Q < Wil

4.4. Corollary. If M is a noetherian left R-module with a basic series of type
(a1, n(h). ....adk). n(k N, a1 ) < K2, then there exists a descending chain of non-zero
submaodules of M of order tvpe w2 {a gy + .+ w* Kk,

Proof. This is an immediate consequence of Theorem 2.6 and Proposition 4.2,

4.5. Propaosition. Ler M be a left R-module with a basic scries of type (od1). n(1), ...,
atk), n(k)), and let N # 0 be a submodule such that M/N has a basic series of type
@Gy, m(l), ... 30, m(y). Then

Ay + o+ PO m <V iy + L+ R ik,

Proof. We proceed by induction on K-dim(M) = a(1), the case a(1) = 0 being true by
the classical Jordan—Holder Theorem. Let o 1) > 0 and assume K-dim(M/N) =
B <afl). Then

Py + 4 PO <P (m(1) +m2) + o+ mily)

<A = (P oD
and we are done. Let now K-dim(M/N)=a(1) =g(1). If m(1) > n(1), then M would
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have a critical composition series of type (a(1). r, ...) with r = m(1) > n(1 )by Lemma
2.3, but this is impossible in view of Theorem 2.6. Thus m(1) < n(1). If m(1) < n(1).
then
Ny + ot S Dmly = 0™ (1) + P ) + L+ P mil)
<D m(1) + WP (m(2) + ... + m(1))

< wa(”’n(‘ 1)+ wﬁ(.’.,,w =w0t(l)'n(l«)+wﬁ(2)+|

D 1y + D = D 1y 4 1)

S W
<M < W a(ny + ..+ 0 k),
and we are done. i m(1) = n(1), let
M= 4"'“ ) .M| DD .“I"“) D.ON#0
be a decreasing critical composition series between M and .V of type
(1), n€1). 32y, m(2), ... 3D, m(1)). By Lemma 2.3, the submodule M, y has a de-
creasing critical composition series, and by Theorem 2.6 it must be of type
(a(2), n(2). ..., atk), n(D)). Since M, , /N has a decreasing critical composition series
of type (3(2). m(2), ..., 3D, m()) and since K-dim(M,; ;1)) = a(2) < oA 1), we get

kD R 3l b 1
G2+ L P <P 2y + o+ 0™ k)
by the inductive hypothesis, and the assertion follows since w‘“”n( )= WP m(1)

in this case.

4.6. Theorem. Let M # 0 be a noetherian left R-module with a decreasing critical
composition series of type (o 1), n(1), .... alk), n(k)) with countable K-dim(M) =
all). Then

oM = ™V (1) + ..+ W (k).

Proof. By Corollary 4.4 we know that
A=Wy + L+ 0 k) < o),

so we only have to show that any descending chain of non-zero submodules ot M is
of order type < A. We proceed by induction on A. If A =1, thenk =1, a(1) =0, and
n(1)=1,so M is simple and the statement is trivial. Let A > 1, and assume that there
exists a descending chain

¢ M>..D2L,;D..0L#0

of non-zero submodules of M of ordinal type A + 1. Since M/L is noetherian, it has a
decreasing critical composition series of type (8{1), m(1), ..., B(/), m({)). say . By
Propuosition 4.5 we have

POy + .+ PO my =k <.
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But since M/L contains a descending chain of non-zero submodules of ordinal type
A we get A € o(M/L) = k by the inductive hypothesis. This contradiction shows that
no descending chain of non-zero submodules of A can have order type > A, whence
oAM=\,

Since a left noetherian ring R has no zero-divisors iff g R is a critical module (see
{4, Theorem 10]), and since K-dim (g R) = cL.K-dim(R) for any fully left bounded
left noetherian ring R (see [S. Theorem 2.4]), Theorem 4.6 generalizes and extends
the first half of |1, Theorem 2.12]. The second half of that result can be obtained as
well: let N x R) denote the supremum of the ordinals o(M), where M varies over all
finitely generated left R-modules. We have:

4.7. Corollary. Let R be a left noetherian ring with countable left Krull-dimenston
K-dim(gR) = ol 1). Then

()(RR) = ()(RR)-w - wa(! ,*l .

Proof. By |1, Lemma 2.11] we have O(gR) S 0(gR) * w. Let xR be of type
{a(1).n(1), .... alk), n(k)). Then R contains a descending chain of non-zero left ideals
of order type w®!) by Theorem 4.6, and the free left R-module R™ contains a chain
of type w™ i) m_ Therefore

R AL ORRYS0(gRYw = (W 1y + .+ 0 (k)
<(w* D (n(1) + ...+ ntk)))w

= u“‘“((n(l VoLt nk)rw) = WDy = @I,

4.8. Corollary. Let R be a fully bounded noctherian ring without zero divisors. If
L K-dim(R) = a is countable, then

ApR)=0(Rp) = .

Proof. By [5. Theorem 2.4] we have

K-dim(4 R} = cLK-dim(R) = K-dim(R ),
and by [4, Theorem 10] both g R and Rg are a-critical. Thus the result follows from
Theorem 4.6.

4.9. Remark. If R has ze:o livisors then Corollary -5 fails to be true in general. There
exist even left and right artinian rings for which the length of a composition series of
left ideals is different from the length of a composition series of right ideals.
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Added in proof. Using a ditferent approacii, some of the results in Section 4 have
also been obtained by Gulliksen [2a].
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