PO-1056
Design and implementation of a checklist for intraoperative electron radiotherapy treatments
1Fundación Hospital Provincial de Castellón, Servicio de Radiofísica y Protección Radiológica, Castellón, Spain
2Consorcio Hospitalario Provincial de Castellón, Servicio de Enfermería Quirófano, Castellón, Spain
3Consorcio Hospitalario Provincial de Castellón, Servicio de Anestesiología, Castellón, Spain
4Consorcio Hospitalario Provincial de Castellón, Servicio de Oncología Radioterápica, Castellón, Spain
5Consorcio Hospitalario Provincial de Castellón, Servicio de Radiofísica y Protección Radiológica, Castellón, Spain

Purpose/Objective: There are general international recommendations about introducing checklists in medical procedures to reinforce patient safety. Specifically, Intraoperative Radiotherapy with electrons (IOERT) is one of these medical procedures that brings together anesthetic, surgical and radiotherapy procedures. Therefore, our aim is to present the design and implementation of various checklists for IOERT treatments with patient transportation. We adopted a multidisciplinary point of view with the objective of obtaining a safety tool that allows greater control in different areas and stages, which the whole procedure comprises.

Materials and Methods: A leading team consisting of a medical physicist, an anesthesiologist, a scrub nurse and a radiation oncologist was set. The team determined which items will be checked, and decided that the lists should be clear and concise. Furthermore, checklists were adjusted to the different areas involved in the procedure. The initial scheme was based on a convenient content to be verified and the timeouts for verifications.

Results: As a result, five checklists were obtained for every area of specialization which recorded the whole process of patient treatment. These lists correspond to the areas of: Medical Physics, Radio-Surgical-Anesthesia, Radiation Nursing, Scrub Nursing and Radiation Therapists. It was determined that the best way of synchronizing the lists was to consider the location of the patient all the time. Therefore, the process is divided into three main sections, corresponding to the three theatres where the patient is during the treatment at our center. The first one is the surgery in the operating room, the second one is the way between the operating room and the linear accelerator bunker, and the last one is the bunker. In every section, different blocks are specified. After every block there is a timeout to verify it. On average, the lists have 33 items and 5 timeouts. Thus, the procedure is interrupted as less as possible. In those blocks where transport occurs, there are a double checks for the outward and return to the operating room.

Conclusions: The multidisciplinary work allows to implement a checklist also in the field of IOERT. The decision to use the patient’s location with regard to transportation, as a link between the lists, was helpful for harmonizing and interconnecting them, because the lists are different due to the different nature of the tasks, but all have the same structure. The verification is optimized when the number of blocks and timeout is minimal. The set of these checklists presented proved to be invaluable in ensuring safety by themselves and reinforce the quality of treatment along with other actions.

PO-1057
Low-kilovoltage single dose intraoperative radiation therapy for breast cancer
C. Flores-Balcazar1, G. Santiago-Concha1, R. Sánchez-Castro1, S. Rosales-Pérez2, E. Bargalló-Rocha3, J. Rivera-Corona1
1Instituto Nacional de Cancerología, Radiation Oncology, Mexico City, Mexico
2Instituto Nacional de Cancerología, Surgery, Mexico City, Mexico

Purpose/Objective: Targeted intraoperative radiation therapy (IORT) as an alternative to whole breast irradiation has been described for patients with early-stage breast cancer. The randomized phase III TARGiT trial demonstrated similar recurrence rates to WBI and a lower overall toxicity profile on short-term follow-up. We report on our early Latin American surgical experience using the Intrabeam radiotherapy delivery system.

Materials and Methods: Prospectively gathered estrogen receptor-positive, clinically node-negative patients with invasive breast cancer < 2.5 cm receiving using the Intrabeam