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Abstract

Let A = kQ/I be a finite dimensional triangular k-algebra. Consider the Cartan matrix
CA and the Coxeter matrix ϕA = −C−t

A
CA. Let χϕ(T ) = det(T id − ϕA) be the Coxeter

polynomial of A. We study conditions on SpecϕA in order that ϕA is a periodic matrix. We
show that in case ϕA is periodic then the Euler quadratic form qA(x) = xC−t

A
xt is non-

negative and qA > 0 if and only if 1 �∈ SpecϕA.
© 2002 Elsevier Science Inc. All rights reserved.
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0. Introduction

Coxeter matrices of finite dimensional algebras play an important role in several
topics, such as Lie theory and the representation theory of associative algebras (see
for example [2–5,7] for fundamental concepts and [9,11] for revisions of the use of
Coxeter matrices in representation theory).

LetAbe a finite dimensional associative algebra over an algebraically closed fieldk.
We shall assume that A is basic and triangular, that is, A = kQ/I for a quiver
(=finite oriented graph) without oriented cycles and an admissible ideal I of the path
algebra kQ (see [2]). LetQ0 = {1, . . . , n} be the set of vertices ofQ. Then the Cartan
matrixCA is the n × nmatrix whose (i, j)-entry is dimk A(i, j). This matrix is invert-
ible and defines a bilinear form 〈x, y〉A = xC−t

A yt with the property that

〈[X], [Y ]〉A =
∞∑
i=0

(−1)i dimk ExtiA(X, Y )
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for the classes [X], [Y ] in the Grothendieck group K0(A) of finite dimensional A-
modules X, Y . The Coxeter matrix is the n × n matrix ϕA = −C−t

A CA.
In this note, we give conditions on the eigenvalues of ϕA which imply the period-

icity of ϕA. In particular, we show that if ϕA is periodic, then the Euler form qA(x) =
〈x, x〉A is non-negative. The proofs use elementary linear algebra arguments.

Section 2 of the work provides examples of algebras with periodic Coxeter trans-
formation. Some of these examples are well-known, some were recently obtained in
the study of supercanonical algebras [10]. In Section 3 we shall consider the rela-
tion of the Coxeter matrices ϕA and ϕB for a one-point extension A = B[M] of a
k-algebra B by a B-module M .

1. Periodicity of Coxeter matrices

1.1. Let A = kQ/I be a finite dimensional triangular k-algebra. Consider the Cartan
matrix CA and the Coxeter matrix ϕA = −C−t

A CA. Let χϕ(T ) = det (T id − ϕA) be
the Coxeter polynomial of A. The roots of χϕ(T ) form the set SpecϕA of eigenvalues
of ϕA.

Theorem. With the above notation, the following are equivalent:

(a) ϕA is periodic.
(b) SpecϕA ⊂ S1 and ϕA is diagonalizable.
(c) χϕ(T ) is the product of cyclotomic polynomials and ϕA is diagonalizable.

Proof. (a) ⇒(c): Assume ϕp
A = In. Consider the Jordan form

⊕
Jni (λi) of ϕA, then

Jni (λi)
p = Ini . This implies that ni = 1 and λ

p
i = 1.

(c) ⇒(b): is clear.
(b) ⇒(a): The polynomial χϕ(T ) is monic with integral coefficients. By a clas-

sical result of Kronecker (see [8] or a recent proof in [5]), if the roots of χϕ(T ) are
in S1, then they are roots of unity. We may choose p ∈ N with λp = 1 for every
λ ∈ SpecϕA. Since ϕA is diagonalizable, the ϕ

p
A = In. �

1.2. We recall that qA(x) = xC−t
A xt is the Euler (quadratic) form.

Proposition. Assume ϕA is periodic, then the following hold:

(a) qA � 0;
(b) 1 /∈ SpecϕA if and only if qA > 0.

Proof. Consider the symmetrization C−1
A + C−t

A of the matrix associated to qA.
We shall prove that the eigenvalues of C−1

A + C−t
A are non-negative. Suppose that

x(C−1
A + C−t

A ) = λx with λ < 0. Then we get for µ = −λ > 0,
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xϕA = x(In + µCA), xϕ2
A = x(In + µCA)

2, . . .

x = xϕ
p
A = x(In + µCA)

p = x

[
In + pµCA +

(
p

2

)
µ2C2

A + · · ·
]
,

where p is the period of ϕA. Then

0 = x

[
pµCA +

(
p

2

)
µ2C2

A + · · ·
]
.

But the matrix in the parenthesis is triangular with positive diagonal entries pµ +(
p
2

)
µ2 + · · ·. Hence x = 0. Therefore qA � 0.

Clearly 1 /∈ SpecϕA if and only if 0 /∈ Spec (C−1
A + C−t

A ) and in that case
qA > 0. �

1.3. The following complement to (1.2) follows a statement in [6].

Proposition. Assume ϕA is periodic and 1 ∈ SpecϕA. Then 1 is a multiple root of
χϕ(T ). Equivalently corank qA � 2.

Proof. Observe that χϕ(T ) is a reciprocal polynomial, that is, T nχϕ(T
−1) = χϕ(T ).

Indeed,

T n det (T −1In + C−t
A CA)= det (Ct

A) det (In + T C−t
A CA) det (C−1

A )

= det (T In − ϕt
A) = χϕ(T ).

Hence we may write χϕ(T ) = (1+ T n) + a1(T + T n−1) + a2(T
2 + T n−2) + · · ·

for certain integral numbers a1, a2, . . . Since (T − 1)2 divides (T i − 1)(T n−i − 1),
then χϕ(T ) and (1 + a1 + a2 + · · ·)(1 + T n) are congruent modulo (T − 1)2.

By hypothesis, T − 1 divides χϕ(T ), therefore T − 1 divides (1 + a1 + a2 +
· · ·)(1 + T n). But T − 1 is not a divisor of 1 + T n, which implies that 1 + a1 +
a2 + · · · = 0. Therefore χϕ(T ) ≡ 0 mod (T − 1)2. �

1.4. Consider the Coxeter matrix ϕA as a linear transformation

ϕA:V = K0(A)
⊗

Z

Q → V.

Consider the spectral decomposition V = ⊕
λ∈SpecϕA

VϕA(λ). We get also the
following characterization.

Proposition. The matrix ϕA satisfies ϕp
A = In if and only if the following hold:

(i) qA � 0;
(ii) rad qA = VϕA(1);

(iii) (
∑p−1

i=0 ϕi
A)(VϕA(µ)) = 0 for 1 /= µ ∈ SpecϕA.

Proof. Suppose ϕ
p
A = In. By (1.2), qA � 0. Always rad qA ⊂ VϕA(1). Let x ∈

Vϕ(1), by (1.1), xϕA = x and therefore qA(x) = 0.
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Finally, if 1 /= µ ∈ SpecϕA and x ∈ Vϕ(µ), then

(1 − µ)x

(
p−1∑
i=0

ϕi
A

)
= x(In − ϕA)

(
p−1∑
i=0

ϕi
A

)
= x(In − ϕ

p
A) = 0.

Suppose (i)–(iii) hold. By (iii),

Im

(
p−1∑
i=0

ϕi
A

)
⊂ Vϕ(1).

If x ∈ VϕA(1), then by (ii), xϕA = x. Therefore,

In − ϕ
p
A =

(
p−1∑
i=a

ϕi
A

)
(In − ϕA) = 0. �

2. Examples

2.1. Let A be an algebra tilted of Dynkin type " (see [12] for definitions). Then
qA > 0 and in particular rad qA = {0}. The Coxeter matrix φA is periodic of period
p("). Moreover, if χA(T ) is the characteristic polynomial we get the following table
(where Qn(T ) denotes the nth cyclotomic polynomial in Z[T ]). See [1,11,12].

" Factorization of χA(T ) Period of ϕA

An
∏

2�m|n+1 Qm(T ) n + 1
Dn Q2(T )

∏
n�m|2n Qm(T ) 2(n − 1)

E6 Q3(T )Q12(T ) 12
E7 Q2(T )Q18(T ) 18
E8 Q2(T )Q10(T )Q30(T ) 30

2.2. Let A be a canonical algebra, that is, A = kQ/I , where Q is given as
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with t � 2, p1, . . . , pt � 2 and I is generated by αi1 · · ·αipi − α21 · · ·α2p2 + λiα11
· · ·α1p1 for pairwise different λ3, . . . , λt ∈ k. The algebra A is canonical tubular

if t = 4 and pi = 2 (1 � i � 4) or if t = 3 and
∑3

i=1 1/pi = 1. In this case ϕA is
periodic of period lcm{p1, . . . , pt }. See [9].

2.3. In [10] the concept of supercanonical algebras was recently introduced. Let
S1, . . . , St be a finite family of posets t � 2. Define A = A(S1, . . . , St ; λ3, . . . , λt )

for pairwise different λ3, . . . , λt ∈ k, as follows: A = kQ/I , where Q consists of the
disjoint union of the vertices of Si (1 � i � t) and additionally, a minimal element
α and a maximal element ω. The relations in I are those in the posets Si (1 � i � t)

plus the t − 2 relations

κi − κ2 + λiκ1, 3 � i � t,

where κi denotes any non-zero path in A from α to ω passing through Si .
Consider the supercanonical algebras:

The algebra A is tame with qA � 0 of corank qA = 2. Moreover, ϕA is periodic
of period 10. The algebra A′ is wild but qA′ � 0 of corank qA′ = 2; moreover, ϕA′ is
periodic of period 18.

2.4. A supercanonical algebra A = A(S1, . . . , St ; λ3, . . . , λt ) is called of Dynkin
class if for each 1 � i � t , the incidence algebra k[Si] is tilted of Dynkin type. For
these algebras it is shown in [10] that ϕA is periodic if and only if qA � 0 with
corank qA = 2.

3. One-point extensions

3.1. Let B be a finite dimensional k-algebra and M be a finite dimensional B-module.
The one-point extension A = B[M] of B by M is the algebra(

B M

0 k

)
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with the usual matrix operations. The following is shown in [12]:

CA=
[
CB- - - - - -v
0 1

]
for v = [M] ∈ K0(B),

ϕA=
[

ϕB
- - - - - - - - - - - - - -

−C−t
B vt

−vϕB qB(v) − 1

]
.

We start with a remark essentially shown in [4].

Lemma. Let A = B[M] and v = [M] ∈ K0(B). Then qA � 0 if and only if the
following hold:

(i) qB � 0;
(ii) 〈v, rad qB〉B = 0;

(iii) there exists a vector y ∈ K0(B) with y(ϕB − 1) = v and qB(y) = 1.

Proof. Clearly qA
(
y
a

) = qB(y) − a〈v, y〉B + a2. Hence qA � 0 of and only if
qB(y) − 1

4 〈v, y〉2
B � 0 for every y ∈ K0(B). The minimum of the last inequality is

reached in a vector y0 ∈ K0(B) satisfying y0(C
−t
B + C−1

B ) = vC−t
B . Hence qB(y0) �

1 if qA � 0. Observe that for y = y0ϕ
−1
B we get y(ϕB − 1) = v. If we had qB(y) =

qB(y0) = 0, then yϕB = y and v = 0, a contradiction. �

3.2. Proposition. Let A = B[M] and v = [M] ∈ K0(B). Assume that ϕA is periodic
with period p. Then the following hold:

(a) For every x ∈ K0(B), xϕ
p
B − x ∈ ∑p−1

i=1 Z vϕi
B;

(b) #{λ ∈ SpecϕB : λ /∈ S1} � dimQ

∑p−1
i=1 Q vϕi

B.

Proof. (a) Let x ∈ K0(B). Set x0 :=x and a0 :=0. Then

(x0, a0)ϕA = (x0ϕB − a0vϕB,−〈x0, v〉B + a0(qB(v) − 1)).

Set x1 :=x0ϕB − a0vϕB and a1 := − 〈x0, v〉B + a0(qB(v) − 1) and in general

(xi, ai)ϕA = (xi+1, ai+1),

where xi+1 = xiϕB − aivϕB.

If (x, 0)ϕp
A = (x, 0), then x = xϕ

p
B +∑p−1

i=1 bivϕ
i
B for certain bi ∈ Z (observe

that bp = a0 = 0).
(b) If xϕB = µx for some µ /∈ S1, then

(x, 0) = (x, a)ϕ
p
A =

(
µpx −

p−1∑
i=1

bivϕ
i
B, ap

)
.
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Hence

x = 1

µp − 1

p−1∑
i=1

bivϕ
i
B. �

3.3. Corollary. Let A = B[M] with v = [M] ∈ K0(B). Assume that ϕA is periodic
and qA(v) = 0. Then the following happens:

(i) SpecϕB ⊂ S1;
(ii) ϕB is not periodic.

Proof. (i) Suppose xϕB = µx for some µ /∈ S1. By Section 3.2, x = av for some
a ∈ Z and µx = xϕB = av = x, a contradiction.

(ii) By Section 3.1, there is a vector y ∈ K0(B) with yϕB − y = v. Since vϕB =
v, then yϕ

p
B = y + pv for any p � 1. If ϕp

B = 1, then pv = 0, a contradiction. �

3.4. In some cases, we may give conditions for a one-point extension A = B[M] to
get ϕA periodic.

Proposition. Let A = B[M] with v = [M] ∈ K0(B) be such that qB(v) = 0. Then
ϕA is periodic (of period p) if and only if p is even and

xϕ
p
B − x = −p

2
〈x, v〉B for every x ∈ K0(B).

Proof. As in Section 3.2 we get for x ∈ K0(B),

(x, 0)ϕi
A =

{
(xϕi

B + i
2 〈x, v〉Bv, 0) if i is even,

(xϕi
B + i−1

2 〈x, v〉Bv,−〈x, v〉B) if i odd

If ϕp
A = 1, we get p even (since otherwise 〈x, v〉B = 0 for all x ∈ K0(B) which

implies that v = 0). Conversely, if p is even and xϕ
p
B − x = −(p/2)〈x, v〉Bv holds,

then (x, 0)ϕp
A = (x, 0) for every x ∈ K0(B). Moreover,

(v, 1)ϕA = (0,−1)

and

(0,−1)ϕA = (v, 1), which yields ϕp
A = 1. �
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