Available online at www.sciencedirect.com

science (d)Dinect.
LINEAR ALGEBRA

Periodic Coxeter matrices

José A. de La Peña
Instituto de Matemáticas, UNAM, Ciudad Universitaria, Circuito Exterior, Mexico 04510, D.F., Mexico Received 4 July 2001; accepted 25 April 2002
Submitted by D. Happel

Abstract

Let $A=k Q / I$ be a finite dimensional triangular k-algebra. Consider the Cartan matrix C_{A} and the Coxeter matrix $\varphi_{A}=-C_{A}^{-t} C_{A}$. Let $\chi_{\varphi}(T)=\operatorname{det}\left(T \mathrm{id}-\varphi_{A}\right)$ be the Coxeter polynomial of A. We study conditions on $\operatorname{Spec} \varphi_{A}$ in order that φ_{A} is a periodic matrix. We show that in case φ_{A} is periodic then the Euler quadratic form $q_{A}(x)=x C_{A}^{-t} x^{t}$ is nonnegative and $q_{A}>0$ if and only if $1 \notin \operatorname{Spec} \varphi_{A}$. © 2002 Elsevier Science Inc. All rights reserved. Keywords: Coxeter matrix; Euler quadratic form; Periodic matrix

0. Introduction

Coxeter matrices of finite dimensional algebras play an important role in several topics, such as Lie theory and the representation theory of associative algebras (see for example [2-5,7] for fundamental concepts and [9,11] for revisions of the use of Coxeter matrices in representation theory).

Let A be a finite dimensional associative algebra over an algebraically closed field k. We shall assume that A is basic and triangular, that is, $A=k Q / I$ for a quiver (=finite oriented graph) without oriented cycles and an admissible ideal I of the path algebra $k Q$ (see [2]). Let $Q_{0}=\{1, \ldots, n\}$ be the set of vertices of Q. Then the Cartan matrix C_{A} is the $n \times n$ matrix whose (i, j)-entry is $\operatorname{dim}_{k} A(i, j)$. This matrix is invertible and defines a bilinear form $\langle x, y\rangle_{A}=x C_{A}^{-t} y^{t}$ with the property that

$$
\langle[X],[Y]\rangle_{A}=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}(X, Y)
$$

[^0]for the classes $[X],[Y]$ in the Grothendieck group $K_{0}(A)$ of finite dimensional A modules X, Y. The Coxeter matrix is the $n \times n$ matrix $\varphi_{A}=-C_{A}^{-t} C_{A}$.

In this note, we give conditions on the eigenvalues of φ_{A} which imply the periodicity of φ_{A}. In particular, we show that if φ_{A} is periodic, then the Euler form $q_{A}(x)=$ $\langle x, x\rangle_{A}$ is non-negative. The proofs use elementary linear algebra arguments.

Section 2 of the work provides examples of algebras with periodic Coxeter transformation. Some of these examples are well-known, some were recently obtained in the study of supercanonical algebras [10]. In Section 3 we shall consider the relation of the Coxeter matrices φ_{A} and φ_{B} for a one-point extension $A=B[M]$ of a k-algebra B by a B-module M.

1. Periodicity of Coxeter matrices

1.1. Let $A=k Q / I$ be a finite dimensional triangular k-algebra. Consider the Cartan matrix C_{A} and the Coxeter matrix $\varphi_{A}=-C_{A}^{-t} C_{A}$. Let $\chi_{\varphi}(T)=\operatorname{det}\left(T \mathrm{id}-\varphi_{A}\right)$ be the Coxeter polynomial of A. The roots of $\chi_{\varphi}(T)$ form the set $\operatorname{Spec} \varphi_{A}$ of eigenvalues of φ_{A}.

Theorem. With the above notation, the following are equivalent:
(a) φ_{A} is periodic.
(b) $\operatorname{Spec} \varphi_{A} \subset \mathbb{S}^{1}$ and φ_{A} is diagonalizable.
(c) $\chi_{\varphi}(T)$ is the product of cyclotomic polynomials and φ_{A} is diagonalizable.

Proof. (a) \Rightarrow (c): Assume $\varphi_{A}^{p}=I_{n}$. Consider the Jordan form $\bigoplus J_{n_{i}}\left(\lambda_{i}\right)$ of φ_{A}, then $J_{n_{i}}\left(\lambda_{i}\right)^{p}=I_{n_{i}}$. This implies that $n_{i}=1$ and $\lambda_{i}^{p}=1$.
(c) $\Rightarrow(b)$: is clear.
(b) \Rightarrow (a): The polynomial $\chi_{\varphi}(T)$ is monic with integral coefficients. By a classical result of Kronecker (see [8] or a recent proof in [5]), if the roots of $\chi_{\varphi}(T)$ are in \mathbb{S}^{1}, then they are roots of unity. We may choose $p \in \mathbb{N}$ with $\lambda^{p}=1$ for every $\lambda \in \operatorname{Spec} \varphi_{A}$. Since φ_{A} is diagonalizable, the $\varphi_{A}^{p}=I_{n}$.
1.2. We recall that $q_{A}(x)=x C_{A}^{-t} x^{t}$ is the Euler (quadratic) form.

Proposition. Assume φ_{A} is periodic, then the following hold:
(a) $q_{A} \geqslant 0$;
(b) $1 \notin \operatorname{Spec} \varphi_{A}$ if and only if $q_{A}>0$.

Proof. Consider the symmetrization $C_{A}^{-1}+C_{A}^{-t}$ of the matrix associated to q_{A}. We shall prove that the eigenvalues of $C_{A}^{-1}+C_{A}^{-t}$ are non-negative. Suppose that $x\left(C_{A}^{-1}+C_{A}^{-t}\right)=\lambda x$ with $\lambda<0$. Then we get for $\mu=-\lambda>0$,

$$
\begin{aligned}
& x \varphi_{A}=x\left(I_{n}+\mu C_{A}\right), \quad x \varphi_{A}^{2}=x\left(I_{n}+\mu C_{A}\right)^{2}, \ldots \\
& x=x \varphi_{A}^{p}=x\left(I_{n}+\mu C_{A}\right)^{p}=x\left[I_{n}+p \mu C_{A}+\binom{p}{2} \mu^{2} C_{A}^{2}+\cdots\right]
\end{aligned}
$$

where p is the period of φ_{A}. Then

$$
0=x\left[p \mu C_{A}+\binom{p}{2} \mu^{2} C_{A}^{2}+\cdots\right] .
$$

But the matrix in the parenthesis is triangular with positive diagonal entries $p \mu+$ $\binom{p}{2} \mu^{2}+\cdots$. Hence $x=0$. Therefore $q_{A} \geqslant 0$.

Clearly $1 \notin \operatorname{Spec} \varphi_{A}$ if and only if $0 \notin \operatorname{Spec}\left(C_{A}^{-1}+C_{A}^{-t}\right)$ and in that case $q_{A}>0$.
1.3. The following complement to (1.2) follows a statement in [6].

Proposition. Assume φ_{A} is periodic and $1 \in \operatorname{Spec} \varphi_{A}$. Then 1 is a multiple root of $\chi_{\varphi}(T)$. Equivalently corank $q_{A} \geqslant 2$.

Proof. Observe that $\chi_{\varphi}(T)$ is a reciprocal polynomial, that is, $T^{n} \chi_{\varphi}\left(T^{-1}\right)=\chi_{\varphi}(T)$. Indeed,

$$
\begin{aligned}
T^{n} \operatorname{det}\left(T^{-1} I_{n}+C_{A}^{-t} C_{A}\right) & =\operatorname{det}\left(C_{A}^{t}\right) \operatorname{det}\left(I_{n}+T C_{A}^{-t} C_{A}\right) \operatorname{det}\left(C_{A}^{-1}\right) \\
& =\operatorname{det}\left(T I_{n}-\varphi_{A}^{t}\right)=\chi_{\varphi}(T) .
\end{aligned}
$$

Hence we may write $\chi_{\varphi}(T)=\left(1+T^{n}\right)+a_{1}\left(T+T^{n-1}\right)+a_{2}\left(T^{2}+T^{n-2}\right)+\cdots$ for certain integral numbers a_{1}, a_{2}, \ldots Since $(T-1)^{2}$ divides $\left(T^{i}-1\right)\left(T^{n-i}-1\right)$, then $\chi_{\varphi}(T)$ and $\left(1+a_{1}+a_{2}+\cdots\right)\left(1+T^{n}\right)$ are congruent modulo $(T-1)^{2}$.

By hypothesis, $T-1$ divides $\chi_{\varphi}(T)$, therefore $T-1$ divides $\left(1+a_{1}+a_{2}+\right.$ $\cdots)\left(1+T^{n}\right)$. But $T-1$ is not a divisor of $1+T^{n}$, which implies that $1+a_{1}+$ $a_{2}+\cdots=0$. Therefore $\chi_{\varphi}(T) \equiv 0 \bmod (T-1)^{2}$.
1.4. Consider the Coxeter matrix φ_{A} as a linear transformation

$$
\varphi_{A}: V=K_{0}(A) \bigotimes_{\mathbb{Z}} \mathbb{Q} \rightarrow V
$$

Consider the spectral decomposition $V=\bigoplus_{\lambda \in \operatorname{Spec} \varphi_{A}} V_{\varphi_{A}}(\lambda)$. We get also the following characterization.
Proposition. The matrix φ_{A} satisfies $\varphi_{A}^{p}=I_{n}$ if and only if the following hold:
(i) $q_{A} \geqslant 0$;
(ii) $\operatorname{rad} q_{A}=V_{\varphi_{A}}(1)$;
(iii) $\left(\sum_{i=0}^{p-1} \varphi_{A}^{i}\right)\left(V_{\varphi_{A}}(\mu)\right)=0$ for $1 \neq \mu \in \operatorname{Spec} \varphi_{A}$.

Proof. Suppose $\varphi_{A}^{p}=I_{n}$. By (1.2), $q_{A} \geqslant 0$. Always $\operatorname{rad} q_{A} \subset V_{\varphi_{A}}$ (1). Let $x \in$ $V_{\varphi}(1)$, by (1.1), $x \varphi_{A}=x$ and therefore $q_{A}(x)=0$.

Finally, if $1 \neq \mu \in \operatorname{Spec} \varphi_{A}$ and $x \in V_{\varphi}(\mu)$, then

$$
(1-\mu) x\left(\sum_{i=0}^{p-1} \varphi_{A}^{i}\right)=x\left(I_{n}-\varphi_{A}\right)\left(\sum_{i=0}^{p-1} \varphi_{A}^{i}\right)=x\left(I_{n}-\varphi_{A}^{p}\right)=0 .
$$

Suppose (i)-(iii) hold. By (iii),

$$
\operatorname{Im}\left(\sum_{i=0}^{p-1} \varphi_{A}^{i}\right) \subset V_{\varphi}(1)
$$

If $x \in V_{\varphi_{A}}(1)$, then by (ii), $x \varphi_{A}=x$. Therefore,

$$
I_{n}-\varphi_{A}^{p}=\left(\sum_{i=a}^{p-1} \varphi_{A}^{i}\right)\left(I_{n}-\varphi_{A}\right)=0
$$

2. Examples

2.1. Let A be an algebra tilted of Dynkin type Δ (see [12] for definitions). Then $q_{A}>0$ and in particular $\operatorname{rad} q_{A}=\{0\}$. The Coxeter matrix ϕ_{A} is periodic of period $p(\Delta)$. Moreover, if $\chi_{A}(T)$ is the characteristic polynomial we get the following table (where $Q_{n}(T)$ denotes the nth cyclotomic polynomial in $\mathbb{Z}[T]$). See $[1,11,12]$.

Δ	Factorization of $\chi_{A}(T)$	Period of φ_{A}
\mathbb{A}_{n}	$\prod_{2 \leqslant m \mid n+1} Q_{m}(T)$	$n+1$
\mathbb{D}_{n}	$Q_{2}(T) \prod_{n \leqslant m \mid 2 n} Q_{m}(T)$	$2(n-1)$
\mathbb{E}_{6}	$Q_{3}(T) Q_{12}(T)$	12
\mathbb{E}_{7}	$Q_{2}(T) Q_{18}(T)$	18
\mathbb{E}_{8}	$Q_{2}(T) Q_{10}(T) Q_{30}(T)$	30

2.2. Let A be a canonical algebra, that is, $A=k Q / I$, where Q is given as

with $t \geqslant 2, p_{1}, \ldots, p_{t} \geqslant 2$ and I is generated by $\alpha_{i 1} \cdots \alpha_{i p_{i}}-\alpha_{21} \cdots \alpha_{2 p_{2}}+\lambda_{i} \alpha_{11}$ $\cdots \alpha_{1 p_{1}}$ for pairwise different $\lambda_{3}, \ldots, \lambda_{t} \in k$. The algebra A is canonical tubular if $t=4$ and $p_{i}=2(1 \leqslant i \leqslant 4)$ or if $t=3$ and $\sum_{i=1}^{3} 1 / p_{i}=1$. In this case φ_{A} is periodic of period $\operatorname{lcm}\left\{p_{1}, \ldots, p_{t}\right\}$. See [9].
2.3. In [10] the concept of supercanonical algebras was recently introduced. Let S_{1}, \ldots, S_{t} be a finite family of posets $t \geqslant 2$. Define $A=A\left(S_{1}, \ldots, S_{t} ; \lambda_{3}, \ldots, \lambda_{t}\right)$ for pairwise different $\lambda_{3}, \ldots, \lambda_{t} \in k$, as follows: $A=k Q / I$, where Q consists of the disjoint union of the vertices of $S_{i}(1 \leqslant i \leqslant t)$ and additionally, a minimal element α and a maximal element ω. The relations in I are those in the posets $S_{i}(1 \leqslant i \leqslant t)$ plus the $t-2$ relations

$$
\kappa_{i}-\kappa_{2}+\lambda_{i} \kappa_{1}, \quad 3 \leqslant i \leqslant t
$$

where κ_{i} denotes any non-zero path in A from α to ω passing through S_{i}.
Consider the supercanonical algebras:

$$
A=A(S,(1),(1) ; 1)
$$

$$
A^{\prime}=A\left(S^{\prime},(1)\right)
$$

The algebra A is tame with $q_{A} \geqslant 0$ of corank $q_{A}=2$. Moreover, φ_{A} is periodic of period 10 . The algebra A^{\prime} is wild but $q_{A^{\prime}} \geqslant 0$ of corank $q_{A^{\prime}}=2$; moreover, $\varphi_{A^{\prime}}$ is periodic of period 18.
2.4. A supercanonical algebra $A=A\left(S_{1}, \ldots, S_{t} ; \lambda_{3}, \ldots, \lambda_{t}\right)$ is called of Dynkin class if for each $1 \leqslant i \leqslant t$, the incidence algebra $k\left[S_{i}\right]$ is tilted of Dynkin type. For these algebras it is shown in [10] that φ_{A} is periodic if and only if $q_{A} \geqslant 0$ with $\operatorname{corank} q_{A}=2$.

3. One-point extensions

3.1. Let B be a finite dimensional k-algebra and M be a finite dimensional B-module. The one-point extension $A=B[M]$ of B by M is the algebra

$$
\left(\begin{array}{cc}
B & M \\
0 & k
\end{array}\right)
$$

with the usual matrix operations. The following is shown in [12]:

$$
\begin{aligned}
& C_{A}=\left[\begin{array}{c:c}
C_{B} & v \\
\hdashline 0 & 1
\end{array}\right] \quad \text { for } v=[M] \in K_{0}(B), \\
& \varphi_{A}=\left[\begin{array}{c:c}
\varphi_{B} & -C_{B}^{-t} v^{t} \\
\hdashline-\bar{\varphi}_{B} & q_{B}(\bar{v})^{-}-1
\end{array}\right] .
\end{aligned}
$$

We start with a remark essentially shown in [4].

Lemma. Let $A=B[M]$ and $v=[M] \in K_{0}(B)$. Then $q_{A} \geqslant 0$ if and only if the following hold:
(i) $q_{B} \geqslant 0$;
(ii) $\left\langle v, \operatorname{rad} q_{B}\right\rangle_{B}=0$;
(iii) there exists a vector $y \in K_{0}(B)$ with $y\left(\varphi_{B}-1\right)=v$ and $q_{B}(y)=1$.

Proof. Clearly $q_{A}\binom{y}{a}=q_{B}(y)-a\langle v, y\rangle_{B}+a^{2}$. Hence $q_{A} \geqslant 0$ of and only if $q_{B}(y)-\frac{1}{4}\langle v, y\rangle_{B}^{2} \geqslant 0$ for every $y \in K_{0}(B)$. The minimum of the last inequality is reached in a vector $y_{0} \in K_{0}(B)$ satisfying $y_{0}\left(C_{B}^{-t}+C_{B}^{-1}\right)=v C_{B}^{-t}$. Hence $q_{B}\left(y_{0}\right) \geqslant$ 1 if $q_{A} \geqslant 0$. Observe that for $y=y_{0} \varphi_{B}^{-1}$ we get $y\left(\varphi_{B}-1\right)=v$. If we had $q_{B}(y)=$ $q_{B}\left(y_{0}\right)=0$, then $y \varphi_{B}=y$ and $v=0$, a contradiction.
3.2. Proposition. Let $A=B[M]$ and $v=[M] \in K_{0}(B)$. Assume that φ_{A} is periodic with period p. Then the following hold:
(a) For every $x \in K_{0}(B), x \varphi_{B}^{p}-x \in \sum_{i=1}^{p-1} \mathbb{Z} v \varphi_{B}^{i}$;
(b) $\#\left\{\lambda \in \operatorname{Spec} \varphi_{B}: \lambda \notin \mathbb{S}^{1}\right\} \leqslant \operatorname{dim}_{\mathbb{Q}} \sum_{i=1}^{p-1} \mathbb{Q} v \varphi_{B}^{i}$.

Proof. (a) Let $x \in K_{0}(B)$. Set $x_{0}:=x$ and $a_{0}:=0$. Then

$$
\left(x_{0}, a_{0}\right) \varphi_{A}=\left(x_{0} \varphi_{B}-a_{0} v \varphi_{B},-\left\langle x_{0}, v\right\rangle_{B}+a_{0}\left(q_{B}(v)-1\right)\right) .
$$

Set $x_{1}:=x_{0} \varphi_{B}-a_{0} v \varphi_{B}$ and $a_{1}:=-\left\langle x_{0}, v\right\rangle_{B}+a_{0}\left(q_{B}(v)-1\right)$ and in general

$$
\left(x_{i}, a_{i}\right) \varphi_{A}=\left(x_{i+1}, a_{i+1}\right),
$$

where $x_{i+1}=x_{i} \varphi_{B}-a_{i} v \varphi_{B}$.
If $(x, 0) \varphi_{A}^{p}=(x, 0)$, then $x=x \varphi_{B}^{p}+\sum_{i=1}^{p-1} b_{i} v \varphi_{B}^{i}$ for certain $b_{i} \in \mathbb{Z}$ (observe that $b_{p}=a_{0}=0$).
(b) If $x \varphi_{B}=\mu x$ for some $\mu \notin \mathbb{S}^{1}$, then

$$
(x, 0)=(x, a) \varphi_{A}^{p}=\left(\mu^{p} x-\sum_{i=1}^{p-1} b_{i} v \varphi_{B}^{i}, a_{p}\right)
$$

Hence

$$
x=\frac{1}{\mu^{p}-1} \sum_{i=1}^{p-1} b_{i} v \varphi_{B}^{i}
$$

3.3. Corollary. Let $A=B[M]$ with $v=[M] \in K_{0}(B)$. Assume that φ_{A} is periodic and $q_{A}(v)=0$. Then the following happens:
(i) $\operatorname{Spec} \varphi_{B} \subset \mathbb{S}^{1}$;
(ii) φ_{B} is not periodic.

Proof. (i) Suppose $x \varphi_{B}=\mu x$ for some $\mu \notin \mathbb{S}^{1}$. By Section 3.2, $x=a v$ for some $a \in \mathbb{Z}$ and $\mu x=x \varphi_{B}=a v=x$, a contradiction.
(ii) By Section 3.1, there is a vector $y \in K_{0}(B)$ with $y \varphi_{B}-y=v$. Since $v \varphi_{B}=$ v, then $y \varphi_{B}^{p}=y+p v$ for any $p \geqslant 1$. If $\varphi_{B}^{p}=1$, then $p v=0$, a contradiction.
3.4. In some cases, we may give conditions for a one-point extension $A=B[M]$ to get φ_{A} periodic.

Proposition. Let $A=B[M]$ with $v=[M] \in K_{0}(B)$ be such that $q_{B}(v)=0$. Then φ_{A} is periodic (of period p) if and only if p is even and

$$
x \varphi_{B}^{p}-x=-\frac{p}{2}\langle x, v\rangle_{B} \quad \text { for every } x \in K_{0}(B)
$$

Proof. As in Section 3.2 we get for $x \in K_{0}(B)$,

$$
(x, 0) \varphi_{A}^{i}= \begin{cases}\left(x \varphi_{B}^{i}+\frac{i}{2}\langle x, v\rangle_{B} v, 0\right) & \text { if } i \text { is even } \\ \left(x \varphi_{B}^{i}+\frac{i-1}{2}\langle x, v\rangle_{B} v,-\langle x, v\rangle_{B}\right) & \text { if } i \text { odd }\end{cases}
$$

If $\varphi_{A}^{p}=1$, we get p even (since otherwise $\langle x, v\rangle_{B}=0$ for all $x \in K_{0}(B)$ which implies that $v=0$). Conversely, if p is even and $x \varphi_{B}^{p}-x=-(p / 2)\langle x, v\rangle_{B} v$ holds, then $(x, 0) \varphi_{A}^{p}=(x, 0)$ for every $x \in K_{0}(B)$. Moreover,

$$
(v, 1) \varphi_{A}=(0,-1)
$$

and

$$
(0,-1) \varphi_{A}=(v, 1), \quad \text { which yields } \varphi_{A}^{p}=1
$$

Acknowledgement

We acknowledge support of CONACyT, México.

References

[1] N. A'Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976) 61-67.
[2] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Proc. ICRA II (Ottawa 1979), Representation of Algebras, Lecture Notes in Mathematics, vol. 831, Springer, Berlin, 1980, pp. 1-71.
[3] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1960.
[4] Ch. Geiss, Derived tame algebras and Euler forms México (2000) (preprint).
[5] F.M. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer, Berlin, 1989.
[6] R. Howlett, Coxeter groups and M-matrices, Bull. London Math. Soc. 14 (1982) 137-141.
[7] V. Kač, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990.
[8] L. Kronecker, Zwei sätze über Gleichungen mit ganzzahligen Coefficienten, Crelle 1857, Oeuvres I, 105-108.
[9] H.Lenzing, A K-theoretic study of canonical algebras, in: Rep. Th. of Algebras. Proceedings ICRA VII Cocoyoc 1984, CMS Conference Proceedings, vol. 18, 1996, pp. 433-452.
[10] H. Lenzing, J.A. de la Peña, Supercanonical algebras, México (2001) (preprint).
[11] J.A. de la Peña, Coxeter transformations and the representation theory of algebras, CMS Conf. Proc. 19 (1996).
[12] C.M. Ringel, Integral Quadratic Forms and Tame Algebras, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984.

[^0]: E-mail address: jap@penelope.matem.unam.mx (J.A. de La Peña).

