

LINEAR ALGEBRA AND ITS APPLICATIONS

ER Linear Algebra and its Applications 365 (2003) 135–142

www.elsevier.com/locate/laa

Periodic Coxeter matrices

José A. de La Peña

Instituto de Matemáticas, UNAM, Ciudad Universitaria, Circuito Exterior, Mexico 04510, D.F., Mexico Received 4 July 2001; accepted 25 April 2002

Submitted by D. Happel

Abstract

Let A = kQ/I be a finite dimensional triangular k-algebra. Consider the *Cartan matrix* C_A and the *Coxeter matrix* $\varphi_A = -C_A^{-t}C_A$. Let $\chi_{\varphi}(T) = \det(Tid - \varphi_A)$ be the *Coxeter polynomial* of A. We study conditions on Spec φ_A in order that φ_A is a periodic matrix. We show that in case φ_A is periodic then the *Euler quadratic form* $q_A(x) = xC_A^{-t}x^t$ is non-negative and $q_A > 0$ if and only if $1 \notin \operatorname{Spec} \varphi_A$. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Coxeter matrix; Euler quadratic form; Periodic matrix

0. Introduction

Coxeter matrices of finite dimensional algebras play an important role in several topics, such as Lie theory and the representation theory of associative algebras (see for example [2–5,7] for fundamental concepts and [9,11] for revisions of the use of Coxeter matrices in representation theory).

Let *A* be a finite dimensional associative algebra over an algebraically closed field *k*. We shall assume that *A* is basic and triangular, that is, A = kQ/I for a quiver (=finite oriented graph) without oriented cycles and an admissible ideal *I* of the path algebra kQ (see [2]). Let $Q_0 = \{1, ..., n\}$ be the set of vertices of *Q*. Then the *Cartan* matrix C_A is the $n \times n$ matrix whose (i, j)-entry is dim_k A(i, j). This matrix is invertible and defines a bilinear form $\langle x, y \rangle_A = xC_A^{-1}y^I$ with the property that

$$\langle [X], [Y] \rangle_A = \sum_{i=0}^{\infty} (-1)^i \dim_k \operatorname{Ext}_A^i(X, Y)$$

E-mail address: jap@penelope.matem.unam.mx (J.A. de La Peña).

for the classes [X], [Y] in the Grothendieck group $K_0(A)$ of finite dimensional Amodules X, Y. The Coxeter matrix is the $n \times n$ matrix $\varphi_A = -C_A^{-r}C_A$.

In this note, we give conditions on the eigenvalues of φ_A which imply the periodicity of φ_A . In particular, we show that if φ_A is periodic, then the Euler form $q_A(x) =$ $\langle x, x \rangle_A$ is non-negative. The proofs use elementary linear algebra arguments.

Section 2 of the work provides examples of algebras with periodic Coxeter transformation. Some of these examples are well-known, some were recently obtained in the study of supercanonical algebras [10]. In Section 3 we shall consider the relation of the Coxeter matrices φ_A and φ_B for a one-point extension A = B[M] of a k-algebra B by a B-module M.

1. Periodicity of Coxeter matrices

1.1. Let A = kQ/I be a finite dimensional triangular k-algebra. Consider the Cartan matrix C_A and the Coxeter matrix $\varphi_A = -C_A^{-t}C_A$. Let $\chi_{\varphi}(T) = \det(T \operatorname{id} - \varphi_A)$ be the *Coxeter polynomial* of A. The roots of $\chi_{\varphi}(T)$ form the set Spec φ_A of eigenvalues of φ_A .

Theorem. With the above notation, the following are equivalent:

(a) φ_A is periodic.

(b) Spec $\varphi_A \subset \mathbb{S}^1$ and φ_A is diagonalizable.

(c) $\chi_{\varphi}(T)$ is the product of cyclotomic polynomials and φ_A is diagonalizable.

Proof. (a) \Rightarrow (c): Assume $\varphi_A^p = I_n$. Consider the Jordan form $\bigoplus J_{n_i}(\lambda_i)$ of φ_A , then $J_{n_i}(\lambda_i)^p = I_{n_i}$. This implies that $n_i = 1$ and $\lambda_i^p = 1$.

(c) \Rightarrow (b): is clear.

(b) \Rightarrow (a): The polynomial $\chi_{\varphi}(T)$ is monic with integral coefficients. By a classical result of Kronecker (see [8] or a recent proof in [5]), if the roots of $\chi_{\varphi}(T)$ are in \mathbb{S}^1 , then they are roots of unity. We may choose $p \in \mathbb{N}$ with $\lambda^p = 1$ for every $\lambda \in \operatorname{Spec} \varphi_A$. Since φ_A is diagonalizable, the $\varphi_A^p = I_n$. \Box

1.2. We recall that $q_A(x) = x C_A^{-t} x^t$ is the Euler (quadratic) form.

Proposition. Assume φ_A is periodic, then the following hold:

(a) $q_A \ge 0$;

(b) $1 \notin \operatorname{Spec} \varphi_A$ if and only if $q_A > 0$.

Proof. Consider the symmetrization $C_A^{-1} + C_A^{-t}$ of the matrix associated to q_A . We shall prove that the eigenvalues of $C_A^{-1} + C_A^{-t}$ are non-negative. Suppose that $x(C_A^{-1}+C_A^{-t}) = \lambda x$ with $\lambda < 0$. Then we get for $\mu = -\lambda > 0$,

$$x\varphi_A = x(I_n + \mu C_A), \quad x\varphi_A^2 = x(I_n + \mu C_A)^2, \dots$$
$$x = x\varphi_A^p = x(I_n + \mu C_A)^p = x\left[I_n + p\mu C_A + \binom{p}{2}\mu^2 C_A^2 + \dots\right]$$

where *p* is the period of φ_A . Then

$$0 = x \left[p \mu C_A + {p \choose 2} \mu^2 C_A^2 + \cdots \right].$$

But the matrix in the parenthesis is triangular with positive diagonal entries $p\mu + {p \choose 2}\mu^2 + \cdots$. Hence x = 0. Therefore $q_A \ge 0$.

Clearly $1 \notin \operatorname{Spec} \varphi_A$ if and only if $0 \notin \operatorname{Spec} (C_A^{-1} + C_A^{-t})$ and in that case $q_A > 0$. \Box

1.3. The following complement to (1.2) follows a statement in [6].

Proposition. Assume φ_A is periodic and $1 \in \text{Spec } \varphi_A$. Then 1 is a multiple root of $\chi_{\varphi}(T)$. Equivalently corank $q_A \ge 2$.

Proof. Observe that $\chi_{\varphi}(T)$ is a reciprocal polynomial, that is, $T^n \chi_{\varphi}(T^{-1}) = \chi_{\varphi}(T)$. Indeed,

$$T^{n} \det (T^{-1}I_{n} + C_{A}^{-t}C_{A}) = \det (C_{A}^{t}) \det (I_{n} + TC_{A}^{-t}C_{A}) \det (C_{A}^{-1})$$

= det $(TI_{n} - \varphi_{A}^{t}) = \chi_{\varphi}(T).$

Hence we may write $\chi_{\varphi}(T) = (1+T^n) + a_1(T+T^{n-1}) + a_2(T^2+T^{n-2}) + \cdots$ for certain integral numbers a_1, a_2, \ldots Since $(T-1)^2$ divides $(T^i-1)(T^{n-i}-1)$, then $\chi_{\varphi}(T)$ and $(1+a_1+a_2+\cdots)(1+T^n)$ are congruent modulo $(T-1)^2$.

By hypothesis, T - 1 divides $\chi_{\varphi}(T)$, therefore T - 1 divides $(1 + a_1 + a_2 + \cdots)(1 + T^n)$. But T - 1 is not a divisor of $1 + T^n$, which implies that $1 + a_1 + a_2 + \cdots = 0$. Therefore $\chi_{\varphi}(T) \equiv 0 \mod (T - 1)^2$. \Box

1.4. Consider the Coxeter matrix φ_A as a linear transformation

$$\varphi_A: V = K_0(A) \bigotimes_{\mathbb{Z}} \mathbb{Q} \to V.$$

Consider the spectral decomposition $V = \bigoplus_{\lambda \in \text{Spec } \varphi_A} V_{\varphi_A}(\lambda)$. We get also the following characterization.

Proposition. The matrix φ_A satisfies $\varphi_A^p = I_n$ if and only if the following hold:

(i) $q_A \ge 0$; (ii) rad $q_A = V_{\varphi_A}(1)$; (iii) $(\sum_{i=0}^{p-1} \varphi_A^i)(V_{\varphi_A}(\mu)) = 0$ for $1 \ne \mu \in \operatorname{Spec} \varphi_A$.

Proof. Suppose $\varphi_A^p = I_n$. By (1.2), $q_A \ge 0$. Always $\operatorname{rad} q_A \subset V_{\varphi_A}(1)$. Let $x \in V_{\varphi}(1)$, by (1.1), $x\varphi_A = x$ and therefore $q_A(x) = 0$.

Finally, if $1 \neq \mu \in \operatorname{Spec} \varphi_A$ and $x \in V_{\varphi}(\mu)$, then

$$(1-\mu)x\left(\sum_{i=0}^{p-1}\varphi_A^i\right) = x(I_n - \varphi_A)\left(\sum_{i=0}^{p-1}\varphi_A^i\right) = x(I_n - \varphi_A^p) = 0.$$

Suppose (i)-(iii) hold. By (iii),

$$\operatorname{Im}\left(\sum_{i=0}^{p-1}\varphi_A^i\right)\subset V_{\varphi}(1)$$

If $x \in V_{\varphi_A}(1)$, then by (ii), $x\varphi_A = x$. Therefore,

$$I_n - \varphi_A^p = \left(\sum_{i=a}^{p-1} \varphi_A^i\right) (I_n - \varphi_A) = 0. \qquad \Box$$

2. Examples

2.1. Let *A* be an algebra tilted of Dynkin type Δ (see [12] for definitions). Then $q_A > 0$ and in particular rad $q_A = \{0\}$. The Coxeter matrix ϕ_A is periodic of period $p(\Delta)$. Moreover, if $\chi_A(T)$ is the characteristic polynomial we get the following table (where $Q_n(T)$ denotes the *n*th cyclotomic polynomial in $\mathbb{Z}[T]$). See [1,11,12].

Δ	Factorization of $\chi_A(T)$	Period of φ_A
\mathbb{A}_n	$\prod_{2 \le m \mid n+1} Q_m(T)$	n + 1
\mathbb{D}_n	$Q_2(T)\prod_{n\leq m 2n}Q_m(T)$	2(n-1)
\mathbb{E}_6	$Q_{3}(T)Q_{12}(T)$	12
E7	$Q_2(T)Q_{18}(T)$	18
\mathbb{E}_8	$Q_2(T)Q_{10}(T)Q_{30}(T)$	30

2.2. Let A be a *canonical* algebra, that is, A = kQ/I, where Q is given as

139

with $t \ge 2, p_1, \ldots, p_t \ge 2$ and *I* is generated by $\alpha_{i1} \cdots \alpha_{ip_i} - \alpha_{21} \cdots \alpha_{2p_2} + \lambda_i \alpha_{11}$ $\cdots \alpha_{1p_1}$ for pairwise different $\lambda_3, \ldots, \lambda_t \in k$. The algebra *A* is *canonical tubular* if t = 4 and $p_i = 2$ ($1 \le i \le 4$) or if t = 3 and $\sum_{i=1}^3 1/p_i = 1$. In this case φ_A is periodic of period lcm{ p_1, \ldots, p_t }. See [9].

2.3. In [10] the concept of *supercanonical algebras* was recently introduced. Let S_1, \ldots, S_t be a finite family of posets $t \ge 2$. Define $A = A(S_1, \ldots, S_t; \lambda_3, \ldots, \lambda_t)$ for pairwise different $\lambda_3, \ldots, \lambda_t \in k$, as follows: A = kQ/I, where Q consists of the disjoint union of the vertices of S_i $(1 \le i \le t)$ and additionally, a minimal element α and a maximal element ω . The relations in I are those in the posets S_i $(1 \le i \le t)$ plus the t - 2 relations

$$\kappa_i - \kappa_2 + \lambda_i \kappa_1, \quad 3 \leq i \leq t,$$

where κ_i denotes any non-zero path in A from α to ω passing through S_i .

Consider the supercanonical algebras:

The algebra A is tame with $q_A \ge 0$ of corank $q_A = 2$. Moreover, φ_A is periodic of period 10. The algebra A' is wild but $q_{A'} \ge 0$ of corank $q_{A'} = 2$; moreover, $\varphi_{A'}$ is periodic of period 18.

2.4. A supercanonical algebra $A = A(S_1, \ldots, S_t; \lambda_3, \ldots, \lambda_t)$ is called of *Dynkin class* if for each $1 \le i \le t$, the incidence algebra $k[S_i]$ is tilted of Dynkin type. For these algebras it is shown in [10] that φ_A is periodic if and only if $q_A \ge 0$ with corank $q_A = 2$.

3. One-point extensions

3.1. Let *B* be a finite dimensional *k*-algebra and *M* be a finite dimensional *B*-module. The one-point extension A = B[M] of *B* by *M* is the algebra

 $\begin{pmatrix} B & M \\ 0 & k \end{pmatrix}$

with the usual matrix operations. The following is shown in [12]:

$$C_A = \begin{bmatrix} C_B & v \\ 0 & 1 \end{bmatrix} \quad \text{for } v = [M] \in K_0(B)$$
$$\varphi_A = \begin{bmatrix} \varphi_B & -C_B^{-t}v^t \\ -v\varphi_B & q_B(v) - 1 \end{bmatrix}.$$

We start with a remark essentially shown in [4].

Lemma. Let A = B[M] and $v = [M] \in K_0(B)$. Then $q_A \ge 0$ if and only if the following hold:

(i) *q_B* ≥ 0;
(ii) ⟨*v*, rad *q_B*⟩_{*B*} = 0;
(iii) *there exists a vector y* ∈ *K*₀(*B*) with *y*(φ_B − 1) = *v* and *q_B*(*y*) = 1.

Proof. Clearly $q_A {y \choose a} = q_B(y) - a \langle v, y \rangle_B + a^2$. Hence $q_A \ge 0$ of and only if $q_B(y) - \frac{1}{4} \langle v, y \rangle_B^2 \ge 0$ for every $y \in K_0(B)$. The minimum of the last inequality is reached in a vector $y_0 \in K_0(B)$ satisfying $y_0(C_B^{-t} + C_B^{-1}) = vC_B^{-t}$. Hence $q_B(y_0) \ge 1$ if $q_A \ge 0$. Observe that for $y = y_0\varphi_B^{-1}$ we get $y(\varphi_B - 1) = v$. If we had $q_B(y) = q_B(y_0) = 0$, then $y\varphi_B = y$ and v = 0, a contradiction. \Box

3.2. Proposition. Let A = B[M] and $v = [M] \in K_0(B)$. Assume that φ_A is periodic with period p. Then the following hold:

(a) For every $x \in K_0(B)$, $x\varphi_B^p - x \in \sum_{i=1}^{p-1} \mathbb{Z} v\varphi_B^i$; (b) $\#\{\lambda \in \operatorname{Spec} \varphi_B : \lambda \notin \mathbb{S}^1\} \leq \dim_{\mathbb{Q}} \sum_{i=1}^{p-1} \mathbb{Q} v\varphi_B^i$.

Proof. (a) Let $x \in K_0(B)$. Set $x_0 := x$ and $a_0 := 0$. Then

$$(x_0, a_0)\varphi_A = (x_0\varphi_B - a_0v\varphi_B, -\langle x_0, v\rangle_B + a_0(q_B(v) - 1)).$$

Set $x_1 := x_0 \varphi_B - a_0 v \varphi_B$ and $a_1 := -\langle x_0, v \rangle_B + a_0 (q_B(v) - 1)$ and in general

 $(x_i, a_i)\varphi_A = (x_{i+1}, a_{i+1}),$

where $x_{i+1} = x_i \varphi_B - a_i v \varphi_B$. If $(x, 0) \varphi_A^p = (x, 0)$, then $x = x \varphi_B^p + \sum_{i=1}^{p-1} b_i v \varphi_B^i$ for certain $b_i \in \mathbb{Z}$ (observe that $b_p = a_0 = 0$).

(b) If $x\varphi_B = \mu x$ for some $\mu \notin \mathbb{S}^1$, then

$$(x,0) = (x,a)\varphi_A^p = \left(\mu^p x - \sum_{i=1}^{p-1} b_i v \varphi_B^i, a_p\right).$$

141

Hence

$$x = \frac{1}{\mu^p - 1} \sum_{i=1}^{p-1} b_i v \varphi_B^i. \qquad \Box$$

3.3. Corollary. Let A = B[M] with $v = [M] \in K_0(B)$. Assume that φ_A is periodic and $q_A(v) = 0$. Then the following happens:

(i) Spec φ_B ⊂ S¹;
(ii) φ_B is not periodic.

Proof. (i) Suppose $x\varphi_B = \mu x$ for some $\mu \notin \mathbb{S}^1$. By Section 3.2, x = av for some $a \in \mathbb{Z}$ and $\mu x = x\varphi_B = av = x$, a contradiction.

(ii) By Section 3.1, there is a vector $y \in K_0(B)$ with $y\varphi_B - y = v$. Since $v\varphi_B = v$, then $y\varphi_B^p = y + pv$ for any $p \ge 1$. If $\varphi_B^p = 1$, then pv = 0, a contradiction. \Box

3.4. In some cases, we may give conditions for a one-point extension A = B[M] to get φ_A periodic.

Proposition. Let A = B[M] with $v = [M] \in K_0(B)$ be such that $q_B(v) = 0$. Then φ_A is periodic (of period p) if and only if p is even and

$$x\varphi_B^p - x = -\frac{p}{2}\langle x, v \rangle_B$$
 for every $x \in K_0(B)$.

Proof. As in Section 3.2 we get for $x \in K_0(B)$,

$$(x,0)\varphi_A^i = \begin{cases} (x\varphi_B^i + \frac{i}{2}\langle x, v\rangle_B v, 0) & \text{if } i \text{ is even,} \\ (x\varphi_B^i + \frac{i-1}{2}\langle x, v\rangle_B v, -\langle x, v\rangle_B) & \text{if } i \text{ odd} \end{cases}$$

If $\varphi_A^p = 1$, we get p even (since otherwise $\langle x, v \rangle_B = 0$ for all $x \in K_0(B)$ which implies that v = 0). Conversely, if p is even and $x\varphi_B^p - x = -(p/2)\langle x, v \rangle_B v$ holds, then $(x, 0)\varphi_A^p = (x, 0)$ for every $x \in K_0(B)$. Moreover,

$$(v, 1)\varphi_A = (0, -1)$$

and

$$(0, -1)\varphi_A = (v, 1)$$
, which yields $\varphi_A^p = 1$.

Acknowledgement

We acknowledge support of CONACyT, México.

References

- [1] N. A'Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976) 61–67.
- [2] P. Gabriel, Auslander–Reiten sequences and representation-finite algebras, in: Proc. ICRA II (Ottawa 1979), Representation of Algebras, Lecture Notes in Mathematics, vol. 831, Springer, Berlin, 1980, pp. 1–71.
- [3] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1960.
- [4] Ch. Geiss, Derived tame algebras and Euler forms México (2000) (preprint).
- [5] F.M. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer, Berlin, 1989.
- [6] R. Howlett, Coxeter groups and M-matrices, Bull. London Math. Soc. 14 (1982) 137-141.
- [7] V. Kač, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990.
- [8] L. Kronecker, Zwei sätze über Gleichungen mit ganzzahligen Coefficienten, Crelle 1857, Oeuvres I, 105–108.
- [9] H.Lenzing, A K-theoretic study of canonical algebras, in: Rep. Th. of Algebras. Proceedings ICRA VII Cocoyoc 1984, CMS Conference Proceedings, vol. 18, 1996, pp. 433–452.
- [10] H. Lenzing, J.A. de la Peña, Supercanonical algebras, México (2001) (preprint).
- [11] J.A. de la Peña, Coxeter transformations and the representation theory of algebras, CMS Conf. Proc. 19 (1996).
- [12] C.M. Ringel, Integral Quadratic Forms and Tame Algebras, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984.