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Abstract

Let A =k(Q/I be a finite dimensional triangular k-algebra. Consider the Cartan matrix
C4 and the Coxeter matrix 4 = —CZICA. Let xo(T) = det(Tid — @4) be the Coxeter
polynomial of A. We study conditions on Spec ¢4 in order that ¢4 is a periodic matrix. We
show that in case ¢4 is periodic then the Euler quadratic form qa(x) = xCth’ is non-
negative and g4 > 0 if and only if 1 & Spec 4.

© 2002 Elsevier Science Inc. All rights reserved.
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0. Introduction

Coxeter matrices of finite dimensional algebras play an important role in several
topics, such as Lie theory and the representation theory of associative algebras (see
for example [2-5,7] for fundamental concepts and [9,11] for revisions of the use of
Coxeter matrices in representation theory).

Let A be a finite dimensional associative algebra over an algebraically closed field k.
We shall assume that A is basic and triangular, that is, A = kQ/I for a quiver
(=finite oriented graph) without oriented cycles and an admissible ideal I of the path
algebrak Q (see [2]). Let Qg = {1, ..., n} be the set of vertices of Q. Then the Cartan
matrix C 4 isthe n x n matrix whose (i, j)-entry is dimy A (7, j). This matrix is invert-
ible and defines a bilinear form (x, y)4 = xC X’ y! with the property that

o0
(X1 [YDa = (=1 dimy Ext}y (X, )
i=0
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for the classes [X], [Y] in the Grothendieck group Ko(A) of finite dimensional A-
modules X, Y. The Coxeter matrix is the n X n matrix ¢4 = —CX’CA.

In this note, we give conditions on the eigenvalues of ¢4 which imply the period-
icity of 4. In particular, we show that if ¢4 is periodic, then the Euler form g (x) =
(x, x) 4 is non-negative. The proofs use elementary linear algebra arguments.

Section 2 of the work provides examples of algebras with periodic Coxeter trans-
formation. Some of these examples are well-known, some were recently obtained in
the study of supercanonical algebras [10]. In Section 3 we shall consider the rela-
tion of the Coxeter matrices ¢4 and gp for a one-point extension A = B[M] of a
k-algebra B by a B-module M.

1. Periodicity of Coxeter matrices

1.1. Let A = kQ/1 be a finite dimensional triangular k-algebra. Consider the Cartan
matrix C4 and the Coxeter matrix g4 = —C;’CA. Let x,(T) = det (Tid — @4) be
the Coxeter polynomial of A. The roots of x,(T) form the set Spec ¢4 of eigenvalues
of DA.

Theorem. With the above notation, the following are equivalent:

(a) @4 is periodic.
(b) Specpa C S' and ¢, is diagonalizable.
(¢) xo(T) is the product of cyclotomic polynomials and ¢4 is diagonalizable.

Proof. (a) =(c): Assume (pﬁ = I,. Consider the Jordan form € J,,, (A;) of ¢4, then
Jn; (A;)? = I,,. This implies that n; = 1 and kf =1.

(c) =(b): is clear.

(b) =(a): The polynomial x,(7) is monic with integral coefficients. By a clas-
sical result of Kronecker (see [8] or a recent proof in [5]), if the roots of x,(T') are
in S!, then they are roots of unity. We may choose p € N with A? = 1 for every
A € Spec 4. Since ¢4 is diagonalizable, the (pﬁ =1, O

1.2. We recall that g4 (x) = xC;txt is the Euler (quadratic) form.
Proposition. Assume ¢4 is periodic, then the following hold:

(@) ga =2 0;
(b) 1 ¢ Spec oy if and only if g4 > O.

Proof. Consider the symmetrization C;l + C;’ of the matrix associated to g4.
We shall prove that the eigenvalues of C;l + CXI are non-negative. Suppose that
)C(CXI + CXt) = Ax with A < 0. Then we get for u = —A > 0,
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xpa =x(Iy +uCa),  xg; =x(I, +uCa)’, ...
x =xh =x(I, + uCa)? = x [ln +puCa + <§>MZC/§ +-- } :
where p is the period of ¢4. Then

0=x [p,uCA—i- (Z)MZCZ‘ —i—}

But the matrix in the parenthesis is triangular with positive diagonal entries pu +
('27)/12 + - ... Hence x = 0. Therefore g4 > 0.

Clearly 1 ¢ Specg4 if and only if O ¢ Spec (C;1 ~|—C;’) and in that case
qA > 0. O

1.3. The following complement to (1.2) follows a statement in [6].

Proposition. Assume @, is periodic and 1 € Spec ¢ 4. Then 1 is a multiple root of
Xo(T). Equivalently corank g4 > 2.

Proof. Observe that x,,(T') is a reciprocal polynomial, that is, 7" X(p(T_l) = xo(T).
Indeed,

T" det (T_lln + CXICA) = det (Ci‘) det (1, + TCX[CA) det (C;l)
=det(T1, — (Pfq) = xo(T).

Hence we may write x,(T) = (14+T") + a1 (T + T" Y apy(T2+T"2) + ...
for certain integral numbers ay, az, ... Since (T — D2 divides (T* — 1)(T"1 = 1),
then x,(T) and (1 +ay +a + ---)(1 + T") are congruent modulo (T — 1)2.

By hypothesis, T — 1 divides x,(T), therefore T — 1 divides (1 +a; + a2 +
-+ )(1+T™). But T — 1 is not a divisor of 1+ 7", which implies that 1 + a; +
a + - - = 0. Therefore x,(T) = 0mod (T — ). O

1.4. Consider the Coxeter matrix ¢4 as a linear transformation

pa:V =Ko(A) Q) Q— V.
z
Consider the spectral decomposition V = @xeSpec or Viou (A). We get also the

following characterization.
Proposition. The matrix g4 satisfies (pi = I, if and only if the following hold:
() ga = 0;

(1) radga = V(/,A(l);
(i) (X7 @/ (Vy, (1)) = 0 for 1 # € Spec ga.

Proof. Suppose goi =1I,. By (1.2), g4 > 0. Always radgs C V,,(1). Let x €
Ve (1), by (1.1), x4 = x and therefore g (x) = 0.
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Finally, if 1 # u € Spec ¢4 and x € V,,(u), then

p—1 p—1
(1- u)x(Z soj;) = x(I, - m)(z soj;) = x(I, — ¢}) = 0.

i=0 i=0
Suppose (i)—(iii) hold. By (iii),

p—1
Im (Z goi,) C V(D).

i=0
If x € V,, (1), then by (ii), xp4 = x. Therefore,

p—1
I — ¢} = (sz)(ln—goA):o. O

i=a

2. Examples

2.1. Let A be an algebra tilted of Dynkin type A (see [12] for definitions). Then
g4 > 0 and in particular rad g4 = {0}. The Coxeter matrix ¢4 is periodic of period
p(A). Moreover, if x4 (T) is the characteristic polynomial we get the following table
(where Q,(T) denotes the nth cyclotomic polynomial in Z[T]). See [1,11,12].

A Factorization of x4 (T) Period of ¢4
Ap [h<ming1 Om(D) n+1

Dn 0,(T) Hn<m|2n Om(T) 2(n — 1)

Ee 03(T)Q12(T) 12

E7 02(T)Q13(T) 18

Eg 02(T)Q10(T) Q30(T) 30

2.2. Let A be a canonical algebra, thatis, A = kQ/I, where Q is given as

012

(1’1) (172) >t (1,P1 '1)
Gy,
P ) R
(271) (212) e (27p2~1) ®
Gip,

(t’l) 0’!2, (ta2) Tt (t,p t'l)
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witht > 2, p1,..., p 2 2 and I is generated by o;1 - - - atjp; — @21 -+ - 02p, + X011
---ayp, for pairwise different A3, ..., A; € k. The algebra A is canonical tubular
ift=4and p; =2 (1 <i<4orifr=3and 21'3:1 1/p; = 1. In this case g4 is
periodic of period lem{py, ..., p;}. See [9].

2.3. In [10] the concept of supercanonical algebras was recently introduced. Let
S1, ..., S; be a finite family of posets ¢ > 2. Define A = A(S1, ..., St A3, ..., A¢)
for pairwise different A3, ..., A; € k, as follows: A = kQ/I, where Q consists of the
disjoint union of the vertices of S; (1 < i < 7) and additionally, a minimal element
« and a maximal element w. The relations in / are those in the posets S; (1 <i < 1)
plus the ¢ — 2 relations

ki — ko + XAk, 3<i<t,

where «; denotes any non-zero path in A from « to w passing through S;.
Consider the supercanonical algebras:

/

P
l >
IR |
|

[0 (04

Y

/
S ‘L S’
~¢ ~Y
A=A(5,(1),(1);1) Ar=A(S",(1))

The algebra A is tame with g4 > 0 of corank g4 = 2. Moreover, ¢4 is periodic
of period 10. The algebra A’ is wild but g4/ > 0 of corank g4/ = 2; moreover, @4’ is
periodic of period 18.

2.4. A supercanonical algebra A = A(Sy, ..., S; A3, ..., As) is called of Dynkin
class if for each 1 < i < ¢, the incidence algebra k[S;] is tilted of Dynkin type. For
these algebras it is shown in [10] that ¢4 is periodic if and only if g4 > 0 with
corank g4 = 2.

3. One-point extensions

3.1. Let B be a finite dimensional k-algebra and M be a finite dimensional B-module.
The one-point extension A = B[M] of B by M is the algebra

(s %)
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with the usual matrix operations. The following is shown in [12]:

CA=|: ------ } for v =[M] € Ko(B),

[ es | —Cstv’}
va [—vws’;qm)—l '

We start with a remark essentially shown in [4].

Lemma. Let A = B[M] and v = [M] € Ko(B). Then g5 > 0 if and only if the
following hold:

(1) g = 0;
(i) (v,radgp)p = 0;
(iii) there exists a vector y € Ko(B) with y(pp — 1) =vand gp(y) = 1.

Proof. Clearly ga(}) = gp(y) —a(v,y)s +a*. Hence g4 >0 of and only if
qp(y) — %(v, y)%; > 0 for every y € Ko(B). The minimum of the last inequality is
reached in a vector yg € Ko(B) satisfying yO(CEt + CEI) = vC;. Hence gp(y0) >
1if g4 > 0. Observe that for y = yogogl we get y(pp — 1) = v. If we had gp(y) =
g5 (yo) = 0, then ypp = y and v = 0, a contradiction. [J

3.2. Proposition. Let A = B[M] and v = [M] € Ko(B). Assume that ¢ 4 is periodic
with period p. Then the following hold:

(a) For every x € Ko(B), x<p§ —Xx € Zf:l] va%;
(b) #{1 € Specgp: A ¢ S'} < dimg Y7~ Q vl

Proof. (a) Let x € Ko(B). Set xg:=x and ag:=0. Then

(x0, ap)pa = (xo@p — apvep, —(xo, v)p + ao(qp(v) — 1)).
Set x1 :=xppp — apvep and aj := — (xg, v)p + ap(gp(v) — 1) and in general

(xi, ai)pa = (Xiq1,aiv1),

where x; 11 = xj@p — ajvep.

If (x, 0)p) = (x,0), then x = x¢} + Zf;ll b;vgl, for certain b; € Z (observe
that b, = ap = 0).

(b) If xpp = px for some o ¢ S', then

p—1
(x,0) = (x, a)gof; = (upx — Zbiv(p%,ap).

i=1
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Hence
o
71 Zbivwg. a
w i=1

3.3. Corollary. Let A = B[M] with v = [M] € Ko(B). Assume that ¢4 is periodic
and g4 (v) = 0. Then the following happens:

(i) Specgpp C st
>ii) @p is not periodic.

Proof. (i) Suppose xop = ux for some u ¢ s By Section 3.2, x = av for some
a € Z and ux = xpp = av = x, a contradiction.

(i1) By Section 3.1, there is a vector y € Ko(B) with ypp — y = v. Since vpp =
v, then y(pg =y+ pvforany p > 1. If wg =1, then pv = 0, a contradiction. [J

3.4. In some cases, we may give conditions for a one-point extension A = B[M] to
get g4 periodic.

Proposition. Let A = B[M]withv = [M] € Ko(B) be such that gg(v) = 0. Then
@4 is periodic (of period p) if and only if p is even and

x(pg —x = —g(x, v)p foreveryx € Ko(B).

Proof. As in Section 3.2 we get for x € Ko(B),

(xok + 5 (x, v)pv, 0) if i is even,
(xgjp + %(x, v)gv, —{(x,v)p) ifi odd

(x, 0)¢l, = !

If <p/’_; = 1, we get p even (since otherwise (x, v)p = 0 for all x € Ko(B) which
implies that v = 0). Conversely, if p is even and x(pg —x = —(p/2){x, v)pv holds,
then (x, O)gai = (x, 0) for every x € Ko(B). Moreover,

(v, Dpa = (0, —1)
and

(0, =1)ga = (v, 1), whichyieldsgf =1. O
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