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SUMMARY

Clonally variant gene families underlie phenotypic
plasticity in Plasmodium falciparum, a process indis-
pensable for survival of the pathogen in its human
host. Differential transcription of one of these gene
families in clonal parasite lineages has been associ-
ated with chromatin modifications. Here, we deter-
mine the genome-wide distribution in P. falciparum
of a histone mark of heterochromatin, trimethylation
of histone H3 lysine 9 (H3K9me3), using high-resolu-
tion ChIP-chip analysis. We show that H3K9me3 is
specifically associated with clonally variant gene
families, which are clustered on subtelomeric and
some chromosome internal regions. High levels of
H3K9me3 correlate with genes localized to the
nuclear periphery, implying chromosome loop
formation. Disruption of the histone deacetylase
PfSir2 causes changes in H3K9me3 that are discon-
tinuous along chromosomes and associated with
disrupted monoallelic transcription. Our data point
to the existence of perinuclear repressive centers
associated with control of expression of malaria
parasite genes involved in phenotypic variation and
pathogenesis.

INTRODUCTION

The human protozoan malaria parasite P. falciparum kills more

than 2 million people (mainly children) per year (Snow et al.,

2005). This parasite is well adapted to survive in changing host

environments such as the Anopheles mosquito midgut and sali-

vary glands, human liver hepatocytes, and erythrocytes. Malaria

pathogenesis is linked to the parasite’s capacity to develop

different phenotypic states in genetically clonal blood stage

parasites (Fried and Duffy, 1996; Jensen et al., 2004). However,

most processes causing pathogenesis are not yet understood at

the molecular level and may involve expression of particular

combinations of clonally variant molecules.

In P. falciparum, phenotypic diversity is commonly achieved

by the expression of clonally variant surface molecules either

at the erythrocyte membrane or merozoite surface (Cortes
Cell Hos
et al., 2007; Scherf et al., 1998; Stubbs et al., 2005). Switching

of expression to another variant molecule prolongs the period

of infection and generates alternative evasion pathways. Little

is known about factors that govern phenotypic plasticity. The

best-studied example of variant surface proteins is the P. falcipa-

rum erythrocyte membrane protein 1 (PfEMP1) (Leech et al.,

1984). PfEMP1 is a major virulence factor involved in antigenic

variation and adherence of infected erythrocytes to host recep-

tors, resulting in their sequestration to capillaries in the brain

and other critical organs (Kyes et al., 2007). PfEMP1 is encoded

by genes of the 60 member var family, which are located on sub-

telomeric and internal chromosome loci. In a single parasite, only

one var gene is expressed in a mutually exclusive manner under

the control of epigenetic factors (Scherf et al., 1998).

A number of recent publications point to reversible chromatin

changes, such as histone methylation and acetylation, as impor-

tant control elements of P. falciparum gene silencing and mono-

allelic activation (reviewed in Scherf et al., 2008a). Enzymes that

add or remove acetyl and methyl marks in P. falciparum have

also been identified (Cui et al., 2008; Merrick and Duraisingh,

2007; Miao et al., 2006). It has been demonstrated that trimethy-

lation of histone H3 lysine 9 (H3K9me3) is associated to tran-

scriptionally silent var genes (Chookajorn et al., 2007; Lopez-

Rubio et al., 2007). Upon var gene activation, in the 50 flanking

region (50UTR), methylation is replaced by acetylation at lysine

9 of histone H3 (H3K9ac), and histone H3 lysine 4 is di- and trime-

thylated (H3K4me2/3) (Lopez-Rubio et al., 2007). Furthermore,

PfSir2 histone deacetylase has been shown to spread from telo-

meres into the subtelomeric coding regions, leading to stable but

reversible repression of subtelomeric var genes (Duraisingh

et al., 2005; Freitas-Junior et al., 2005; Mancio-Silva et al.,

2008). Genetic elements such as the 50UTR (Voss et al., 2006)

contain essential information able to interact with the epigenetic

control machinery. Experimental data suggest that the var

intron-linked promoter activity also contributes to monoallelic

expression (Dzikowski et al., 2006).

Sequencing of the P. falciparum genome has led to the

discovery of multiple gene families mainly clustered at subtelo-

meres adjacent to var genes (Gardner et al., 2002). A few of these

have been studied, such as rif (Fernandez et al., 1999; Kyes et al.,

1999), clag (Cortes et al., 2007), stevor, and PfMC-2TM (Blythe

et al., 2008; Lavazec et al., 2007) and, similarly to var genes, are

clonally variant and possibly involved in immune evasion (Scherf

et al., 2008a). Telomeres are spatially restricted to nuclear

periphery, where they form clusters of three to seven
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custom tiling array included probes only to the extremities of

one chromosome (chromosome 12) (see Supplemental Experi-

mental Procedures). We observed a strong enrichment in

H3K9me3 in the entire TAREs 1–6 (Figures 1B, right, 2, both

flanks, and S1). On the contrary, telomeric repeat DNA pre-

sented only a modest H3K9me3 level (Figure S1, right).

H3K4me3 and H3K9ac were completely absent from TAREs

and telomere repeats, and H4K20me3 was detectable only at

low levels (Figure 2, both flanks).

Eukaryotic centromeres and pericentromeric regions are

embedded in heterochromatin and exhibit unique chromatin

architecture necessary for their chromosome segregation

function (Grewal and Jia, 2007). P. falciparum centromeric

DNA differs from centromeres of other organisms. It consists

of AT-rich (97%) domains with a sharply defined size limit of

2.3–2.5 kb, which lack interchromosomal conserved motifs

(Kelly et al., 2006). Our tiled array also covered pericentromeric

DNA. In contrast to other organisms in which this region is en-

riched in H3K9me3, our ChIP-chip analysis showed that pericen-

tromeric chromatin in P. falciparum was not enriched for

H3K9me3 (example for pericentromere in Figure 2), which is

consistent with the unusual nature of centromeric DNA in this

parasite.

H3K9me3 Is Associated with Differentially Transcribed
Virulence Gene Families
Detailed examination of the major heterochromatin regions

revealed that the entire var gene family was enriched in

H3K9me3, which agrees with previous predictions (Chookajorn

et al., 2007; Lopez-Rubio et al., 2007). In addition, we observed

that many distinct gene families adjacent to subtelomeric var

genes were also enriched in H3K9me3 in the 50UTR and coding

region (Figure 1B). Chromosome internal H3K9me3-enriched

domains contained generally only var, rif, and stevor genes

(Figure 1C). We found H3K9me3 enrichments in seven previously

identified subtelomeric gene families: var, rif, stevor, Pfmc-2TM,

clag, PfAcs, and PHIST (Table 1). For almost all of these gene

families, there are experimental evidences demonstrating

a differential transcription mode of individual members. Another

common feature is that many of these gene families code for

variant surface proteins participating in the vast phenotypic plas-

ticity of blood stage parasites and immune evasion (Scherf et al.,

2008a).

Additionally, based on our H3K9me3 findings together with

OrthoMCL database (Chen et al., 2006), we identified five putative

subtelomeric gene families. In the absence of any biological data,

we called these families PFD0075w-like, PF14_0742-like,

PF14_0758-like, PF14_0743-like, and MAL8P1.335-like (Table 1).

Published expression profile data of these genes (Le Roch et al.,

2003) analyzed using PlasmoDB (http://plasmodb.org/plasmo/)

strongly suggest a differential transcription profile of these

gene families, which is a hallmark for phenotypic variation.

Silent members presented high levels of H3K9me3, whereas

transcribed members had low levels of this mark in the 50UTR

(Table 1). Therefore, our results indicate that H3K9me3 in the

50UTR may predict genes that are controlled by a similar epige-

netic mechanism.

However, our analysis also showed that some subtelomeric

gene families were not enriched for H3K9me3, such as surfin,
heterologous chromosome ends (Freitas-Junior et al., 2000). This

compartment is believed to enhance continual genetic exchange

between members of gene families and may explain the vast var

repertoire diversity observed between field isolates (Barry et al.,

2007). Investigating the role of clusters in gene expression has re-

sulted in inconsistent data. Experimental evidence, using para-

sites transfected with various constructs, reported relocation of

an active var gene into a cluster (Duraisingh et al., 2005; Marty

et al., 2006; Voss et al., 2006), whereas other studies, using para-

site populations expressing a single var gene, observed the relo-

cation outside of cluster (Ralph et al., 2005).

Whether phenotypic variation shares common epigenetic

control mechanisms in any pathogenic parasite remains unclear.

Here, we report that repressive centers at the perinuclear space

participate in virulence gene family silencing in P. falciparum.

Genome-wide analysis of histone modifications revealed that

heterochromatic mark H3K9me3 is restricted to clonally variant

gene families. Furthermore, we demonstrate that H3K9me3 is

associated to the perinuclear location of internal and subtelo-

meric regions. This histone modification is controlled by the

histone deacetylase PfSir2—however, only for a subset of

variant gene family members—revealing an unusual mechanism

of PfSir2 repression distinct from the postulated telomere posi-

tion effect. In addition, this study allowed us to identify subtelo-

meric gene families not yet characterized, which are apparently

differentially transcribed and represent potential virulence

factors participating in phenotypic plasticity of malaria parasites.

RESULTS

H3K9me3 Shows a Highly Localized Atypical
Distribution in P. falciparum Chromosomes
We performed ChIP-chip analysis to determine the localization

of H3K9me3 across the P. falciparum 14 chromosomes.

Because most of the dynamic histone modification changes

controlling gene regulation in P. falciparum appear to occur in

the flanking noncoding regions (Cui et al., 2007; Lopez-Rubio

et al., 2007) and to take advantage of the small size of the para-

site genome, we developed a custom-made high-resolution

tiling array covering coding, intergenic, and also noncoding sub-

telomeric regions (for details, see Supplemental Experimental

Procedures available online). We observed several prominent

H3K9me3-enriched domains restricted to all subtelomeric

regions as well as to internal regions of chromosomes 4, 6, 7,

8, and 12 (Figure 1A). ChIP-chip analysis of another repressive

mark (H4K20me3) and activation marks (H3K4me3 and

H3K9ac) showed a broad distribution across the genome (as

exemplified for chromosome 12 in Figure 2), contrasting with

the pattern of H3K9me3. H3K4me3 and H3K9ac were basically

absent at the major heterochromatin loci coated with

H3K9me3. Our results demonstrate the almost universal utiliza-

tion of H4K20me3, H3K4me3, and H3K9ac, whereas H3K9me3

is highly restricted to chromosome ends and some internal

regions.

P. falciparum chromosome ends display a conserved higher-

order structure being composed of telomeric DNA followed by

six repetitive noncoding polymorphic DNA blocks (TAREs 1–6),

with an average total length of �30 kb (Figueiredo et al., 2000).

Because these regions are composed of repetitive DNA, our
ier Inc.
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Figure 1. ChIP-chip Genome Map of H3K9me3
(A) Paired tracings of raw data (top tracing for each chromosome) and the distribution of peaks (lower tracing for each chromosome) of H3K9me3 in the P. falci-

parum 14 chromosomes (noncoding chromosome ends are excluded). Regions represented in (B) and (C) are boxed. Regions analyzed in (D) are marked with i, ii,

and iii.

(B) H3K9me3 distribution at telomeric and subtelomeric regions of chromosome 12. TAREs and coding regions are separated with a dotted line.

(C) H3K9me3 distribution for an internal H3K9me3-enriched domain in chromosome 12. Paired tracing for (B) and (C) as in (A).

(D) Table presenting H3K9me3-enriched genes that are neither var genes nor genes associated with var gene loci. Transcriptional data were collected from

PlasmoDB. Gene marked with asterisk indicates that the enrichment covers partially the locus.

In all cases, raw data are presented as the log2 ratio of the hybridization signal given by DNA immunoprecipitated using specific antibody against H3K9me3

compared with the signal given by the input DNA sample. Peak data are represented as described in the Supplemental Experimental Procedures. The position

on the genome sequence is indicated at the bottom for (A) and at the top for (B) and (C). The position and annotation of the predicted genes are presented at the

bottom (coding DNA sequence; blue bars, sense; green bars, antisense).
Cell Ho
show that some members are not expressed during blood

stages. Further quantitative expression data of cloned parasites

are necessary to determine whether these families undergo

clonal variation.

We also detected three H3K9me3 short-ranged peaks

outside of the large var-defined heterochromatic domains on

chromosomes 10, 11, and 12 (Figure 1A, i, ii, and iii, respectively).

Genes encoded in these heterochromatic ‘‘islands’’ are listed in
FIKK, and ETRAMP (Table S1). These genes were interspersed

into H3K9me3-enriched regions, resulting in a mosaic pattern

of this histone modification. The question arises of whether these

non-H3K9m3-enriched gene families are differentially tran-

scribed or not. For the 20 member FIKK family, quantitative

PCR data show that some members are transcribed at low levels

during blood stage development (Nunes et al., 2007). For the sur-

fin and ETRAMP families, expression profile data (PlasmoDB)
st & Microbe 5, 179–190, February 19, 2009 ª2009 Elsevier Inc. 181
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Figure 2. Chromosome 12 Distribution Profiles of Different Histone Modifications

The raw data (top tracing) and the distribution of peaks (lower tracing) identified for H3K9me3, H4K20me3, H3K4me3, and H3K9ac are presented. Noncoding

chromosome ends (TAREs and telomeres) are separated with a dotted line. A schematic representation of chromosome 12 showing main features and the posi-

tion on the genome is indicated at the top. Raw and peak data are presented as in Figure 1.
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telomeric genes), and group C (13 genes grouped in 7 internal

regions) (Lavstsen et al., 2003) (Figures 1A and 3B). We observed

two to five foci per nucleus for each var exon2 probe, indicating

clustering of var genes from groups A, B, and C (Figures 3C and

S2). The other FISH probes tested were gene-specific probes

(single internal var PFF0845c, PF11_0479, and PFL1085w) and

produced single foci per nucleus (Figure 3C).

In order to precisely define the nuclear boundaries, we devel-

oped an antibody that recognizes a P. falciparum protein

encoded by a gene orthologous to a yeast nuclear pore protein

(PF14_0706) (Figure S3). The area of the nuclear section

obtained in immunofluorescence staining was calculated and

then divided into equal thirds. FISH signals were scored as local-

izing to zones 1, 2, and 3 (Hediger et al., 2002), as illustrated in

Figures 3C and S3. Quantitative analysis of nuclear position

revealed that all var and non-var genes enriched for H3K9me3

and analyzed were not randomly distributed but, rather, located

predominantly at the nuclear periphery. By contrast, internal

genes nonenriched in H3K9me3 were found mostly in internal

nuclear regions (Figures 3C and S4). Thus, virulence gene fami-

lies and single-copy genes enriched in H3K9me3 are localized at

the perinuclear space, irrespective of their chromosomal posi-

tion. This led us to hypothesize that PfKMT1 and H3K9me3 might

determine the nuclear organization of genes.

P. falciparum chromosome ends are tethered to the nuclear

membrane forming clusters (Freitas-Junior et al., 2000). To

exclude the possibility of internal H3K9me3-enriched genes

(var group C, var PFF0845c, and PFL1085w) being at the nuclear

periphery as a consequence of being associated to telomeric

clusters, we analyzed their relative position to these clusters.

Simultaneous FISH analysis of var exon2C with a telomeric
Figure 1D. Apart from PFL1085w, which encodes a member of

the ApiAP2 family of transcription factors (De Silva et al.,

2008), very little information is available for the other genes.

Further analysis is needed to determine whether these genes

participate in phenotypic diversity of parasites or are epigeneti-

cally coregulated.

PfKMT1 and H3K9me3-Enriched Genes Are Localized
to the Nuclear Periphery
Given the unusual highly localized H3K9me3 pattern in P. falcipa-

rum genome, we were interested in investigating the nuclear

organization of H3K9me3 domains. H3K9 methylation is per-

formed by a histone lysine 9 methyltransferase KMT1 (Allis

et al., 2007), of which an homolog (PF08_0012) has been found

in P. falciparum genome (Cui et al., 2008). Antibodies raised

against the P. falciparum KMT1 were used to study the cellular

location of this molecule. Surprisingly, we observed that PfKMT1

fluorescent signals located largely at the periphery of P. falcipa-

rum nuclei (Figure 3A). Likewise, antibodies specific for

H3K9me3 showed a predominant enrichment in the perinuclear

space (Figure 3A), strongly suggesting that H3K9me3-enriched

genes might locate in this nuclear compartment.

To test this hypothesis, we performed a quantitative large-

scale localization study of genes enriched in H3K9me3 using

fluorescent in situ hybridization (FISH). We chose to examine

the entire var gene family and two non-var genes, which form

distinct H3K9me3 peaks at internal (PFL1085w) and subtelo-

meric chromosomal positions (PF11_0479) (Figures 1A and 1D,

iii and ii, respectively). For analysis of the var 60 members, we

used exon2 probes that crosshybridize to var genes of each

major group: group A (10 subtelomeric genes), group B (22 sub-
vier Inc.
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Table1. Subtelomeric Gene Families Enriched in H3K9me3

Number of

Members

Expressed Members/Total

Number of Members

H3K9me3 Enriched at:

Name Silenced Member Active Membera Comments

PfEMP1/var 60 1/60 yes no cytoadherence immune escape

immunomodulation IE surface

RIFIN 150 several/130 yes no data IE surface PVM

STEVOR 39 1/39b yes no data IE surface PVM

PfMC-2TM 13 1/13b yes no data IE surface PVM

PfACS 10 �6/10 yes no metabolic protein

clag

clag3.1/clag3.2 2 1/2 yes no invasion rhoptry protein

clag2/clag8/clag9 3 3/3 - no

PHIST

PHISTa 23 �6/23 yes no pexel

PHISTb 25 20/25 yes no pexel

PHISTb (RESA) 7 6/7 yes no pexel

PHISTc 16 most of them no no pexel
ePFD0075w-like 10 1/10 yes no TM
ePF14_0742-like 5 1/5 yes no TM
ePF14_0758-like 3 1/3 yes no TM
ePF14_0743-like 4 2/4 yes no TM
eMAL8P1.335-like 4 �1/4c yesd no data

IE, infected erythrocyte. PVM, parasitophorus vacuole membrane. TM, transmembrane domain.
a At least in the 50 flanking regions.
b Clonally variant family in which one dominant member is expressed, although some clones do not express any.
c Only data for two members.
d Microarray covers only 30 regions of some members.
e OrthoMCL DB recognizes several paralogs.
Cell Ho
RNA FISH. Telomeric clusters were then visualized performing

a second hybridization using the TARE6 probe by DNA FISH.

We observed that var2CSA transcripts were clearly dissociated

from telomeric clusters (Figure 3E).

To rule out the possibility that this observation was specific for

the var2CSA gene, we localized transcripts of the entire var gene

repertoire. We performed RNA/DNA FISH using the exon2 var

group-specific probes. We observed that mRNA transcripts

from the different var groups did not associate with the telomeric

clusters (Figure 3E), implying that activation of any var gene

involves nuclear reposition into a peripheral region compatible

with transcription. With regard to var group A and B, which are

physically linked to telomeric repeats, activation involving acquisi-

tion of active chromatin marks, such as H3K9ac and H3K4me2/3,

presumably leads to chromatin decondensation and formation of

a single-gene loop, which separate out the transcribed gene from

more compact and silent telomeric clusters (schematically shown

in Figure 3F). Although anchoring at the nuclear periphery must

require appropriate proteins, the fact that the H3K9me3 subsists

in the active gene (in the 30 coding region) may be important for

maintenance of the gene in a perinuclear position.

PfSir2 Controls H3K9me3 in a Discontinuous Manner
In order to determine whether the putative PfKMT1 was respon-

sible for H3K9 methylation and its role in the localization of

heterochromatin domains to the nuclear periphery, we
cluster marker TARE6 demonstrated that var group C clusters

localized randomly relative to chromosome end clusters

(Figure 3D). Similar random distribution was obtained for coloc-

alization of TARE6 with 50UTR from var group C and the single

internal var PFF0845c (data not shown), thus suggesting that

perinuclear tethering of chromosome internal genes is indepen-

dent of telomeric clustering. Taken together, our results indicate

that heterochromatic peripheral region is composed of telomeric

and nontelomeric clusters. Moreover, it implies that certain Plas-

modium chromosomes (the case of chromosome 12, which has

several domains of H3K9me3 enrichment; see mapping of

nuclear position of different loci in Figure S4) should form several

large loops into the nuclear membrane, as exemplified in

Figure 3F.

RNA FISH Locates var Transcripts to the Nuclear
Periphery Dissociated from Telomeric Clusters
Previous work has demonstrated that, upon activation of a var

gene (var2CSA), H3K9me3 in the 50UTR is lost but persists in

the 30coding region (Lopez-Rubio et al., 2007). It has also been

shown that the active var2CSA gene locates at the nuclear

periphery. However, there are conflicting conclusions with re-

gard to its association with the telomeric clusters (Scherf et al.,

2008b). To overcome potential problems linked to DNA FISH,

such as possible relocation of the var2CSA gene to telomeres

once transcription ceases, we located var2CSA transcripts using
st & Microbe 5, 179–190, February 19, 2009 ª2009 Elsevier Inc. 183
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Figure 3. PfKMT1 and Genes Enriched in H3K9me3 Are Positioned at the Nuclear Periphery

(A) Immunofluorescence assays using antibodies against H3K9me3 (right) and the P. falciparum putative H3K9 methyltransferase PfKMT1 (left). 3D7 parasites are

in late schizont (main image) and ring stage (top-right square). Nuclear DNA was detected with Dapi (red).

(B) Schematic of the var loci organization. Each var gene consists of a large variable exon1 (4–9 kb) and a conserved exon2 (�1.5 kb). The 60 member var gene

family can be divided into three major groups (A, B, and C) based on chromosome location and sequence similarity. Group A contains 10 telomeric genes tran-

scribed toward the telomere; 22 telomeric genes belong to group B and are transcribed toward the centromere; and group C includes 13 internal genes (Lavstsen

et al., 2003). Among the var arrays, there are members of other multigene families, such as rifin and stevor. The location of FISH probes is indicated with horizontal

bars.

(C) DNA FISH analysis of 3D7 ring stage parasites nuclei. (First row) Subtelomeric (var exon2A, var exon2B, and PF11_0479) and internal H3K9me3-enriched

genes (var exon2C, var PFF0845c, and PFL1085w). (Second row) Internal gene nonenriched in H3K9me3 (PFB0540w). FISH signals are in green, and the nuclear

DNA was stained with Dapi (red). (Bar graph) Subnuclear position of FISH signals with respect to three concentric zones of equal surface (zones 1, 2, and 3).

The number of nuclei analyzed and the 95% confidence values (p) for the c2 test between random and test distributions are: var exon2A n = 143, p = 1.50 3 10�8;

var exon2B n = 166, p = 3.02 3 10�16; var exon2C n = 194, p = 6.92 3 10�15; var PFF0845c n = 180, p = 1.90 3 10�2; PF11_0479 n = 226, p = 7.59 3 10�3;

PFL1085w n = 159, p = 5.30 3 10�2; PFB0540w n = 151, p = 1.10 3 10�2.

(D) Two-color DNA FISH of var exon2C probe (green) and telomeric clusters (TARE6 probe) (red) on 3D7 ring stage parasites. Nuclear DNA was detected with Dapi

(data not shown). (Bar graph) Colocalization was 48.06% (n = 105), and the 95% confidence value (p) for the c2 test between random and test distributions was

p = 0.615.

(E) RNA/DNA FISH analysis of var transcripts and telomeric clusters. (First row) RNA FISH signals are shown in green, and DNA FISH signals are shown in red

(TARE6 probe). Nuclear DNA was visualized with Dapi (data not shown). var2CSA transcripts were detected in ring stage FCR3-CSA-selected parasites (first

image). Exon2 probes of each var group were hybridized on bulk-cultured 3D7 ring stage parasites. (Second row) Quantification of colocalization of var transcripts

with telomeric clusters (var2CSA 77.94% of noncolocalization, n = 68; var exon2A 83.64%, n = 55; var exon2B 81.48%, n = 54; var exon2C 78.95%, n = 38).
184 Cell Host & Microbe 5, 179–190, February 19, 2009 ª2009 Elsevier Inc.
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attempted to disrupt the unique PfKMT1 locus. Using the

currently available knockout methods for P. falciparum, we

were incapable of generating viable parasites without PfKMT1.

H3K9 trimethylation requires the action of a histone deacetylase

to remove the acetyl group before the methylation step

(Nakayama et al., 2001). We used a parasite knockout strain

for the histone deacetylase PfSir2 (Duraisingh et al., 2005) to

analyze the molecular events leading to derepression of a subset

of subtelomeric genes and its role in the formation of heterochro-

matin and nuclear organization. ChIP-chip analysis of PfSir2-dis-

rupted 3D7 parasites showed that H3K9me3 levels were

reduced and H3K9ac levels were increased, compared to wild-

type parasites, in the 50UTR of the previously published upregu-

lated genes (Figure 4 and Table 2). Competition between acety-

lation and methylation at H3K9 in the 50UTR has been previously

shown to influence transcription activity of var genes (Lopez-Ru-

bio et al., 2007). In the absence of PfSir2, apparently this balance

is disturbed in favor of H3K9ac. Unexpectedly, this effect is seen

only in 2 out of 12 gene families enriched in H3K9me3, the var

and rif (Figures 4A–4D). Our results suggest that PfSir2-mediated

H3K9 deacetylation is required for establishing repressive H3K9

methylation for a subset of var and rif genes.

Surprisingly, the lack of PfSir2 resulted in very local effects in

a discontinuous manner (Figures 4A–4D). The postulated telo-

mere position effect of PfSir2 (Freitas-Junior et al., 2005) would

have predicted a continuous H3K9me3 depletion from the telo-

mere into the coding region. Together, these data suggest that

different separated DNA regions may interact with PfSir2 via

small loop formation (schematically shown in Figure 4G). Consis-

tent with this confined effect of PfSir2 in H3K9me3, analysis of

the nuclear localization of PfKMT1 and H3K9me3-enriched

genes in DPfSir2 parasites did not produce major changes

(data not shown).

A number of additional puzzling features of PfSir2 emerged

from our study. First, a general decrease of H3K9me3 with no

increase of H3K9ac in basically all intergenic regions of the

heterochromatic domains was observed, even in genes whose

transcriptional state did not change (Figure 4E). Second, nearly

the entire subtelomeric domain in the left arm of chromosome 7

(comprising 13 members of gene families) was depleted of

H3K9me3, and H3K9ac levels remained low (Figure 4F). Unfortu-

nately, there are no available transcription data for these loci in

PfSir2-disrupted parasites to see whether the absence of H3K9

methylation without induction of acetylation affects repression.

Third, we observed only a weak reduction of H3K9me3 at

subtelomeric repeats (Figure S1) associated to a slight increase

in H3K9ac, suggesting that other histone deacetylases may

cooperate with the process of H3K9me.

DISCUSSION

In this study, we demonstrate a link between malaria parasite

virulence genes enriched for H3K9me3, their spatial location at

the nuclear periphery, and their epigenetic silencing via a perinu-
Cell Hos
clear repressive center. This unique association is almost entirely

restricted to clonally variant multigene families involved in

phenotypic plasticity.

Here, we established a high-resolution genome-wide

H3K9me3 heterochromatin map for a malaria parasite. P. falci-

parum chromosome end regions (TAREs 1–6) are enriched in

H3K9me3 and may represent constitutive heterochromatin, like

in other organisms. The formation of heterochromatin in associ-

ation with repetitive sequences is apparently crucial for func-

tional organization of chromosome ends (Grewal and Jia,

2007). In contrast to other organisms, however, no enrichment

was found on pericentromeric DNA, and high enrichment was

found in all subtelomeric coding regions. A few small blocks of

H3K9m3 were also detected in chromosome internal regions

(Figure 1). Other histone modifications showed a broad distribu-

tion along chromosomes (Figure 2), and their genome-wide link

to gene expression has been initiated in collaboration with

PlasmoDB. The fact that we used a high-resolution tiling array

including noncoding regions may explain why, in a previous

ChIP-chip study using only coding regions with a very low

coverage, the authors did not observe the restricted localization

of H3K9me3 (Cui et al., 2007).

Importantly, we found five subtelomeric gene families not yet

characterized, which are enriched in H3K9me3, differentially

transcribed, and that may participate in the phenotypic makeup

of genetically clonal blood stage parasites. Insight into these

potential virulence factors is very important for our under-

standing of malaria pathogenesis. It is noteworthy that other

variant gene families such as surfin, FIKK, and ETRAMP (Table

S1), which are not enriched in H3K9me3, are interspersed within

the subtelomeric region, demonstrating that two types of gene

families, apparently controlled by distinct mechanisms, coexist

in P. falciparum subtelomeres.

The data also reveal that epigenetic boundaries do exist in the

heterochromatin domains to prevent the spreading of the repres-

sive mark into neighboring regions. We provide genome-wide,

precise physical limitations for H3K9me3 in P. falciparum. It

has been suggested that RNA polymerase III (Pol III)-transcribed

genes act as barriers against self-propagating heterochromatin

in single-celled eukaryotes (Lunyak, 2008). Indeed, some tRNA

genes localize in the proximity of heterochromatin domain

borders of P. falciparum (for example, in chromosome 4 left

end and chromosome 13 right end). Assays need to be devel-

oped to elucidate whether Pol III-transcribed genes or other

specific DNA elements are involved in blocking the spreading

of H3K9me3.

The present work highlights the idea that P. falciparum

genomic DNA is nonrandomly distributed in the nucleus and

that gene expression and spatial organization are strongly linked

(see the model in Figure 3F). Nuclear position analysis of actively

transcribed var genes, in their native chromosomal context,

confirmed their dissociation from telomeric clusters. We specu-

late that chromatin loop formation may be associated with

activation and relocation of subtelomeric var genes in a
In all cases, representative examples are shown as merged images, FISH signals were scored using nuclei from multiple experiments, and scale bars represent

1 mm. For quantification of colocalization, only nuclei containing at least three TARE6 signals were considered as positive, and colocalization was defined as any

overlap between two fluorescent signals.

(F) Proposed model for nuclear organization of H3K9me3-enriched domains. The chromosome 12 was used as an example (see text for details).
t & Microbe 5, 179–190, February 19, 2009 ª2009 Elsevier Inc. 185
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Figure 4. ChIP-chip Analysis of PfSir2 Knockout Parasites

Raw data for H3K9me3 (black) and H3K9ac (gray) in 3D7 wild-type (WT) and sir2 KO parasites. Schematic representation of the analyzed regions showing main

features and the position on the genome is indicated at the top. The position, annotation, and whether upregulated or not in sir2 KO parasites of the predicted

genes are presented at the bottom.

(A–D) Local effects: decrease of H3K9me3 and increase of H3K9ac in the 50UTR of var and rif genes.

(E and F) Regional effects: decrease of H3K9me. Gray squares highlight the regions with histone modification changes. Transcription data have been obtained

from PlasmoDB. Raw data are presented as in Figure 1.

(G) Proposed model for a common epigenetic default silencing mechanism at the nuclear periphery for gene families linked to virulence. Intergenic DNA regions

may interact with perinuclear repressive centers (PERC) via small loop formation. We hypothesize that PERC is composed of PfSir2, PfOrc1, PfHP1, PfKMT1, and

presumably other histone deacetylases.
subperinuclear transcriptional-competent region that might be

specific for var genes (Ralph et al., 2005). The expression of

two distinct var promoters in a similar perinuclear location

provides additional evidence for a var-specific expression site

(Dzikowski et al., 2007). Relocalization of a subtelomeric gene

from a telomeric focus associated with transcriptional activation

has also been described in S. cereviseae (Taddei et al., 2006).

Notably, induction of the same gene through an alternative arti-

ficial pathway produces relocalization to a different region in the
186 Cell Host & Microbe 5, 179–190, February 19, 2009 ª2009 Elsev
yeast nucleus. This underlines the importance of the natural

chromosomal context to decipher epigenetic mechanisms of

gene activation.

One of the most striking findings is that perinuclear large loop

formation of internal chromosome coding regions is associated

with H3K9me3 (Figures 3 and S4), and this is independent of

either telomeric clustering or a GC-rich element. This �200 bp

GC-rich element apparently produces noncoding RNAs and is

strictly associated with internal var arrays, although it is not found
ier Inc.
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Table 2. Histone Changes Linked to Derepressed var Genes in DPfSir2 Parasites

var Group

PlasmoDB Accession

Number

H3K9me3 Levels in the 50 Flanking

Region in DPfSir2 Parasites

H3K9ac Levels in the 50 Flanking

Region in DPfSir2 Parasites

Fold Expression DPfsir2/WTa

Experiment 1 Experiment 2

var2CSA PFL0030c low high 2 10

group A PF13_0003 low high 100 90

group A PFA0015c low high 50 30

group A PFF0020c low low 19 3

group A PFD1235w no data no data 11 7

group B/A PFF1580c low high 24 22

group B/A PFF0010w low high 36 29

group B/C PF07_0050 low high 67 34

group C PFL1960w low high 26 12
a (Duraisingh et al., 2005). Only genes with fold expression DPfSir2/WT R 10 are shown.
Cell Hos
in Figure 4G). In the case of PfSir2, this interaction appears to

focus in the 50UTR of some var and rif genes, underlining the

important role of this DNA region in var gene control.

Several elements suggest that subtelomeric chromatin is

made up of other histone deacetylases. First, PfSir2 only

controls repression of a small subset of the H3K9me3-enriched

genes (5%), and second, PfSir2 inactivation has no major

change in the H3K9me3 levels in the noncoding subtelomeric

region. This is in contrast to S. pombe, wherein loss of Sir2

resulted in a general decrease in H3K9me3 and an increase in

H3K9ac at telomeres and telomeric-associated sequences

(Shankaranarayana et al., 2003). We had searched in the P. falci-

parum genome for other Sir-like genes and found an open

reading frame on chromosome 14 that is homologous to human

Sirt6, which acts at subtelomeric repeats (Michishita et al., 2008).

Antibodies raised against this protein show a similar location at

the nuclear periphery as PfSir2 (L.M.-S. and A.S., unpublished

data), strongly suggesting that a second telomere-associated

histone deacetylase contributes to epigenetic silencing of viru-

lence gene families.

In conclusion, our study demonstrates that P. falciparum has

a specific mechanism to restrict repressive H3K9me3 almost

exclusively to clonally variant gene families. Moreover, our data

show a complex spatial distribution of plasmodial chromosomes

in the nucleus, which apparently creates functional distinct

compartments that are important for epigenetic gene expression

of a subgroup of genes. We postulate that distinct DNA loops

may exist: large chromosomal loops, which bring specific chro-

mosome regions to the nuclear periphery; small DNA loops that

allow interaction with different components of PERC; and chro-

matin loops associated with relocation from telomeric clusters of

active genes into a perinuclear expression site. In addition, we

provide a detailed insight into the underlying chromatin modifi-

cations that are necessary to overcome the precise monoallelic

counting mechanism of var genes. Our PfSir2 mutant analysis

demonstrates that the removal of the H3K9me3 and replace-

ment by acetylation in the 50UTR is a key step toward unlocking

the default silent state of var genes. It will be interesting to inves-

tigate whether other protozoan pathogens that rely on subtelo-

meric gene families for immune escape (Borst, 2003) may use

this type of epigenetic silencing mechanism. Insight into the

complexity of control of gene families involved in malaria
near the single internal var genes on chromosomes 6 and 12 (Hall

et al., 2002; Mourier et al., 2008). Together, our observations

point to PfKMT1 and H3K9me3 as determinants of spatial orga-

nization of chromosomes in P. falciparum nuclei. This is sup-

ported by data obtained in S. pombe showing SpKMT1 to be

crucial for correct subnuclear localization of the mating type

region (Alfredsson-Timmins et al., 2007). In P. falciparum,

however, deletion of PfKMT1 produces a lethal effect on parasite

proliferation. Improved inducible gene knockdown systems will

be necessary to gain insight into the PfKMT1 function in spatial

organization of P. falciparum nuclei.

Our results are compatible with the existence of ‘‘perinuclear-

repressive centers’’ (PERC) (see model in Figure 4G) composed

of PfSir2 and other potential silencing factors such as PfOrc1

(Mancio-Silva et al., 2008), PfHP1 (A.S. and R. Hernandez-Rivas,

unpublished data), and probably PfKMT1. Although experiments

are needed to clarify whether these telomeric-associated

proteins form complexes, evidences from studies in S. pombe

(Bannister et al., 2001; Nakayama et al., 2001; Yamada et al.,

2005) indicate that H3K9me provides the binding site for HP1 to

recruit other proteins, such as histone deacetylases and methyl-

ases, involved in heterochromatin stabilization and spreading.

DNA-binding proteins and/or transcribed repetitive subtelomeric

noncoding RNAs (Mourier et al., 2008) are possibly involved in the

initial targeting of histone-modifying enzymes to the PERC. It will

be also interesting to investigate whether telomeric and internal

heterochromatic regions share the same PERC components.

Having established high-resolution ChIP-chip assays for

P. falciparum, we were in a position to analyze chromatin

changes in PfSir2 mutant parasites, which display transcriptional

derepression of a subset of var and rif genes (Duraisingh et al.,

2005). We show that PfSir2 acts precisely on H3K9 methylation

in the 50UTR of genes, which have been shown to be upregulated

in DPfsir2 parasites. The discontinuous pattern of H3K9me3

removal along subtelomeric regions and replacement by acety-

lation was unexpected given the current model of telomere posi-

tion effect, which predicts a gradient along the telomere into

the subtelomeric coding regions (Freitas-Junior et al., 2005;

Mancio-Silva et al., 2008). The results strongly suggest a distinct

mechanism of PfSir2-mediated silencing. We hypothesize that

multiple small loop structures of chromosome regions harboring

variant multigene families interact directly with PERC (see model
t & Microbe 5, 179–190, February 19, 2009 ª2009 Elsevier Inc. 187
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pathogenesis is vital for understanding the disease and will

provide a major step toward controlling it.

EXPERIMENTAL PROCEDURES

Parasites

P. falciparum blood stage parasites were cultivated in the conditions previ-

ously described (Nunes et al., 2007). The 3D7DSir2 parasites were cultivated

in the presence of 2 mM Pyrimethamine. Selection of FCR3 parasites for

CSA binding was performed according to Scherf et al. (1998).

Antibodies

Antibodies against histone modifications were purchased from Upstate for

H3K9me3, H3K9ac, and H4K20me3 (07-442, 07-352, and 07-463, respec-

tively) and from Abcam for H3K4me3 (ab8580). To obtain polyclonal antibody

serum against PfKMT1, we used GenScript Corporation standard protocols for

immunizing a rabbit with a synthetic peptide (N-CASRDIQPNEPLKYH-C).

Custom P. falciparum High-Resolution Tiling Array Design

The design of the array was done with the assistance of NimbleGen Systems

Inc. We downloaded the P. falciparum genome sequence from The Sanger

Center website and subjected it to several iterative rounds of probe selection

(see Supplemental Experimental Procedures).

ChIP-chip Analysis

ChIP assays were carried out as previously described (Lopez-Rubio et al.,

2007) using ring stage unselected 3D7 parasites.

We subjected precipitated DNA and DNA from parasite extracts (input)

recovered after reverse crosslinking to amplification using Sigma GenomePlex

WGA kit. After amplification, the immunoprecipitated DNA was tested for

enrichment of control loci by qPCR (Realplex4 EpgradientS thermalcycler,

Eppendorf). DNA was labeled, hybridized, and the data extracted according

to standard operating procedures by NimbleGen Systems Inc. At least two

biological replicates were performed for each condition and two technical

replicates for each biological replicate. Detailed procedures and quantitative

real-time PCR validation of ChIP-chip data are described in the Supplemental

Experimental Procedures.

Immunofluorescence and FISH

Immunofluorescence assays were performed as previously described (Tonkin

et al., 2004) for PfKMT1 and (Mancio-Silva et al., 2008) H3K9me3. Antibody

dilutions were: anti-PfKMT1, 1:500; anti-H3K9me3, 1:500; and Alexa-Fluor-

488-conjugated anti-rabbit highly crossabsorbed, 1:500.

For FISH, infected red blood cells were lysed with saponine and the released

parasites fixed in suspension with 4% paraformaldehyde. Parasites were then

deposited on microscope slides and subjected to DNA FISH in the conditions

previously described (Mancio-Silva et al., 2008). For combined RNA/DNA

FISH, parasites were deposited on slides, treated with 0.1% Triton X-100 for

5 min, and hybridized first with var probes at 50�C for 16 hr. The slides were

washed three times in 2 3 SSC at 50�C, denaturated at 80�C, and hybridized

with the TARE6 probe at 37�C for 16 hr. Finally, the slides were washed as for

DNA FISH.

TARE6 and var2CSA probes were obtained as described before (Ralph

et al., 2005). All other FISH probes were PCR amplified from genomic DNA

using the primers listed on Table S2. Images were taken using a Nikon Eclipse

80i microscope with a CoolSnap HQ2 camera (Photometrics). NIS Elements

3.0 software (Nikon) was used for acquisition and ImageJ (http://rsbweb.nih.

gov/ij/) for composition. Chromatic aberration was corrected in all images by

aligning the red, green, and blue channel signals from 0.2 mm TetraSpeck

microspheres.

ACCESSION NUMBERS

Microarray data for ChIP-chip 3D7 and 3D7DSir2 parasites are available in the

ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession

numbers E-MEXP-1806 and E-MEXP-1805, respectively.
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The Supplemental Data include Supplemental Experimental Procedures, two

tables, and four figures and can be found with this article online at http://

www.cell.com/cell-host-microbe/supplemental/S1931-3128(09)00030-4.
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