provision can be reduced by apocynin. However, the protein expression of NADPH oxidase’s subunits, p22phox and gp91phox have no significant difference among all the groups. Regarding the MAPK pathway, the phosphorylation level of JNK 1 and p38 are up-regulated and apocynin can reduce the protein expression levels of their phosphorylation (P<0.01). The downstream fibrosis-related protein MMP9 is over-expressed by up-mentioned stimulation and can be reduced by apocynin (P<0.05).

Conclusions: High concentration of glucose and H2O2 promote the proliferation of atrial fibroblast and the combined stimulus has more remarkable effects. Similarly to the mechanism of H2O2, glucose enhances the expression of fibrosis-related protein MMP9 through up-regulating the function of NADPH oxidase and the expression and phosphorylation level of JNK 1 and p38. Apocynin, a NADPH oxidase inhibitor, can reduce the up-regulation of NADPH oxidase/MAPK/MMP9 signal pathway and suppress the abnormal proliferation of atrial fibroblast.

GW25-e2527 Inhibition of the NF-κb pathway by the R65 ribosome gene via adeno-associated virus serotype 9 in human umbilical vein endothelial cells
Zhai Hui1,2, Yang Yi-ning1,2, Ma Yi-tong1,2
1Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China, 2Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China

Objectives: NF-κb signaling plays a central role in the regulation of inflammatory responses in atherosclerosis. To our knowledge, it is less intensively studied whether R65 ribosome gene can decrease the expression of NF-κb pathway. Therefore, we used a recombinant adeno-associated virus serotype 9 vector to deliver the R65 ribosome gene (aAVV9-R65) into oxidized LDL (ox-LDL) induced human umbilical vein endothelial cells (HUVECs). We also assessed whether recombinant R65 ribosome gene transfection can be expressed for a longterm and inhibit the activity of NF-κb.

Methods: rAVV9-R65 was transfected into HUVECs at different multiplicities of infection, which was measured by flow cytometry. The activity of NF-κb pathway was analyzed by Western blot and Immunofluorescence staining. NF-κb inflammatory factors and endothelial cell function markers were measured by ELISA. Cell apoptosis was detected by Flow cytometry.

Results: The effects of the aAVV9-R65 upon ox-LDL induced injury of the HUVECs were evaluated. First, rAVV9-R65 was transfected into HUVECs at different multiplicities of infection and it could be stably and efficiently expressed. Second, ox-LDL led to concurrent increased NF-κb expression in a dose- and time-dependent manner, and it increased inflammatory factors (TNF-α, IL-6) and cell apoptosis in HUVECs. Third, over-expression of aAVV9-R65 gene could inhibit the NF-κb pathway and protect HUVECs against ox-LDL induced cell apoptosis.

Conclusions: These results demonstrate that aAVV9-mediated R65 ribosome gene transfection may inhibit the expression of NF-κb and significantly down-regulate the expression of downstream components of NF-κb and its transcription factors.

GW25-e3079 Association of coronary artery disease and Metabolic Receptors C5aR and CS1L2 gene
Zheng Yingying1,2, Ma Yi-tong1,2
1Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China, 2Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People’s Republic of China

Objectives: Adipose tissue receptors C5aR and CS1L2 and their heterodimerization/ functionality and interaction with ligands C5a and acylation stimulating protein (ASP) have been evaluated in cell and rodent studies. Their contribution to coronary artery disease (CAD) factors in humans remains unclear. We hypothesized that C5a receptors, classically required for host defense, are also associated with CAD.

Methods: Anthropometry and fasting blood parameters were measured in 492 CAD patients and 577 control subjects.

Results: CS1L2 gene Heterozygote carriers of the CT genotype were more frequent among CAD patients than among controls (7.3% versus 1.7%). The odds ratio (OR) for carriers of the CT genotype for CAD was 4.484 (95% confidence interval (CI) : 2.197-9.174). C5aR gene Heterozygote carriers of the CT genotype were more frequent among CAD patients than among controls (4.7% versus1.6%). The odds ratio (OR) for carriers of the 969CT genotype for CAD was 4.484 (95% confidence interval (CI) : 2.197-9.174). CS1L2 gene CS1L2/CS1L2 carriers increased with BMI (P<0.001) with correlations between CS1L2/CS1L2 and waist circumference, HDL-C, and apodinone.

Conclusions: Suggest relationship to The CT genotype of CS1L2 and C5aR gene may be a genetic maker of CAD and highlight adipose-immune interactions.

GW25-e3082 Distributional characteristics of β3-adrenergic receptors gene polymorphisms and association with serum lipidin Han and Uighurpopulations in Xinjiang
Zhong Jiaoy1,2, Ma Yi-tong1,2, Yang Yi-ning1,2
1Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China, 2Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People’s Republic of China

Objectives: To investigate the distributional characteristics of β3-adrenergic receptors gene polymorphisms (rs2298423 and rs6966132) and association with serum lipid in Han and Uighur populations in Xinjiang.

Methods: The genotypes of the ADRB3 gene were detected in 302 Uighur and 653 Han healthy individuals by real-time PCR (TaqMan).

Results: (1) The frequencies of TT, GT and GG genotypes of the rs2298423 locus were 54.5%, 37.0% and 8.5% in the Han. There was no significant difference in distribution of genotypes between the two populations (P=0.065). (2) The frequencies of GG, GA and AA genotypes of the rs6966132 locus were 81.5%, 16.6% and 1.9% in Uighurs, and 59.6%, 33.7% and 6.7% in Hans. There was significant difference in distribution of genotypes between the two populations (P<0.001); (3) Total cholesterol and low density lipoprotein cholesterol level were significantly higher in GG or GT genotype than in TT genotype carrier of rs2298423 in Uighur individuals, but not in Han populations. The serum lipid level which include TC, LDL-C, TG, HDL-C were no significant difference in distribution of genotypes between the two populations (P=0.001); (4) Total cholesterol and low density lipoprotein cholesterol level in Uighur populations in Xinjiang.

GW25-e3085 Genetic polymorphisms of SAA1 and coronary artery disease risk concentration of plasma HDL-C and SAA and ADRB3 gene in the Han and Uighur population of Xinjiang.
Xie Xiang1,2, Yang Yi-ning1,2, Ma Yi-tong1,2
1Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China, 2Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People’s Republic of China

Objectives: Serum amyloid A protein (SAA) is not only an inflammatory factor but also an apolipoprotein that can replace apolipoprotein A1 (apoA1) as the major apolipoprotein of HDL. However, the relationship between genetic polymorphisms of SAA1 and coronary artery disease (CAD) remains unclear.

Methods: 4 Single Nucleotide Polymorphisms (rs12218, rs4638289, rs7131332, and rs1603089) of SAA gene were genotyped by use of polymerase chain reaction - restriction fragment length polymorphism (PCR - RFLP) method in two independent case control studies: one was in the Han population (1416 CAD patients and 1373 control subjects) and the other was in the Uygur population (588 CAD patients and 529 control subjects).

Results: We found rs12218 CC genotype were more frequent among CAD patients than non-CAD controls not only in the Han population (P<0.05) but also in the Uygur population (15.5% versus 11.3%, P<0.05). After adjustment of confounding factors such as sex, age, smoking, drinking, hypertension, diabetes, serum levels of triglyceride, total cholesterol, high density lipoprotein, the difference remained significant in the Han group (P<0.001, OR=5.906, 95% CI: 2.877-12.124) and in the Uygur group (P=0.026, OR=3.288, 95% CI: 1.015-6.671).

Conclusions: Genetic polymorphisms of SAA1 may be a genetic maker of CAD in the Han and Uygur population in western China.

GW25-e3104 The Effects of Resveratrol on Cardioprotection of Ischemic Postconditioning in Diabetic and non-diabetic Rat Hearts
Fan Ying, Yang Shusen, Huang Yonglin, Liu Hongyu
Department of Cardiology, the First Affiliated Hospital of Haerbin Medical University, Harbin, China

Objectives: This study aimed to investigate whether acute or chronic administration of the Resveratrol (3, 5, 4′-trihydroxystilbene) affect the cardioprotective effects of ischemic postconditioning (Ipost) in diabetic and non-diabetic rat hearts.

Methods: Isolated rat hearts were subjected to 30 min of global ischemia, followed by 120 min of reperfusion. The hearts were subjected to the following treatments: non-conditioned (NC), Ipost (six cycles of 10-s reperfusion-ischemia after ischemia), acute Resveratrol (10 jmol/I Resveratrol during reperfusion), acute Resveratrol with Ipost, chronic Resveratrol (10 mg/kg/day Resveratrol for 2 weeks), and chronic Resveratrol with Ipost. Infarct size, haemodynamics and expression of Akt and eNOS were evaluated.

Results: Our results show that Ipost did not limit infarct size and recover contractile dysfunction in the hearts of diabetic rats (infarct size: 58.1% and 59.2%, P>0.05). Acute Resveratrol treatment with Ipost resulted in infarct size-limiting and contractile dysfunction-recovering effects in both diabetic and non-diabetic hearts (infarct size: 38.8% and 59.2% in diabetics and 24.3% and 43.7% in non-diabetics, P<0.05, respectively), and produced a further activation of Akt and eNOS signaling pathways to