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0. INTRODUCTION

Deciding whether two given generating systems x = {x,, .., x,} and
y=1{y1,-» V. of a group G are Nielsen equivalent (see Definition 0.1
below) is a well known problem in combinatorial group theory, with
important applications to low dimensional topology. The difficult part of
this problem is the case where one has to prove that x and y are
inequivalent. There are various known techniques for doing so but, apart
from certain singular examples, they apply only to three special classes of
groups: 2-generator groups, l-relator groups, and groups with finite
abelian quotient of equal rank as G (see the discussion given in [L1,
Sect. 1]).

In this paper we present a fundamentally different approach by
establishing a direct connection between the Nielsen equivalence question
and the classical notion of Reidemeister—Whitehead torsion. This connec-
tion yields a new invariant for Nielsen equivalence classes of generating
systems. The strength of our new invariant is that it applies directly to all
finitely generated groups, and that calculating this invariant for any specific
group with explicitly given generating systems (together with a system of
defining relations} depends only on the computational capacities of the
user.

Denote by F(X) and F(Y) the free groups on bases X={X, .., X} and
Y={Y,,., Y,}, respectively, and let §,, 8, be the canonical epimorphisms
F(X) - G, given by X;— x,, and F(Y)—> G, given by Y, - y,.
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DEerINITION 0.1. The generating systems x and y of G are called Nielsen
equivalent if there exists an isomorphism a: F(Y)— F(X) with B, o a=§,.

For every finitely generated group G we define in Section | an abelian
group .47°(G). This group .47(G) is the “Whitehead group” of the quotient
of the group ring ZG modulo the Fox ideal I of G (see Definition 1.1). If
I=ZG we call 47(G) degenerate and define .47(G) = {0}. We prove:

THEOREM 1. Every ordered pair x, v of generating systems of minimal
cardinality for G defines an element A°(y, x)e A°(G), such that the follow-
ing properties hold:

(1) A"(y, x) depends only on the Nielsen equivalence classes of x and
y. If x and y are Nielsen equivalent then A" (y, x)=0€ A4"(G).

(ii) If z={z,,..,z,} is another generating system of minimal
cardinality, then

Az, )+ Ay, x)=A(z, x).

(i1) For Hi=G* (uyp»--xupp, Hy=G»[{(0,)® - ®<v,>]
(m=2),and Hy=G * {w |w3) - {w, | w2 ) one has A (G) = A (Hy) =
N (Hy) g A(H)) and AV (p,x)=AH(yuw, xuw) = A (yur, xuv) -
A(you, xvu)

(iv) For all neN the construction A" describes a functor from the
category C,, of groups with fixed rank n and surjective homomorphisms to the
category Ab of abelian groups. In particular we obtain for all objects G, H
of C, and any morphism - G - H

A WA (p, X)) = A ([ (x), f(¥))
Jor all generating systems x and y of G with cardinality n.

Part (i) of «TheoremI provides a tool for distinguishing Nielsen
inequivalent generating systems x, y of G by showing that A"(y, x)#
0e .#4°(G). This is done using Theorem II as stated below or the more
elaborate methods described in Section 2. As a result the authors have been
able to exhibit non-trivial elements A"(y, x) for many families of groups, in
particular for Fuchsian groups (see [LM1]), finite groups (see [L17), knot
groups (see Section 4 and [LM21]), and one relator products of cyclics (see
Section 4). For Fuchsian groups the invariant .47(y, x) is a complete
invariant of Nielsen equivalence classes of minimal generating systems, but
in general .47(y, x) is not quite as sharp.

The original notion of Reidemeister torsion can be reinterpreted as a
weaker but more computable vesion of Whitehead torsion. (For a reference
on Whitehead torsion see [M2, Tu].) The basic idea here is to represent
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the group ring in a matrix ring with commutative entries, and to evaluate
an equivalence class of matrices (i.e., an element of K;) by the determinant
map. In our case this approach yields:

THEOREM II. Ler G be presented by
G={x,.. X, 1 R, Ry, ..,

and let a second generating system vy, =w (X, ., X,); ey Vo =W, (X(, ey X,)
be given as words in the x;. For any word w=w(x,, ..., x,,) let W denote the
corresponding word W=w(X, .., X,)e F(X). Let dw/0x,€ ZG denote the
image of the Fox derivative OW/0X,; under the map B..ZF(X)- ZG,
X, —x,.

Let A be a commutative ring with 1€ A, and let p.ZG - M, (A),
p(1)=1, be a ring homomorphism satisfying p(éR,/0x,;)=0 for all R, and
x;. If the determinant of the (mn x mn)-matrix p((0w,/0x,), ;) is not contained
in the subgroup of A* generated by the determinants of p(+x,), .., p(£x,),
then x,, .., X,, and y,, ..., y, are Nielsen inequivalent generating systems of G.

In Section 2 we investigate this concept systematically and introduce
“Reidemeister type” torsion groups .47(G),,, me N, which are quotients of
the group .4°(G). The groups .4#°(G),, are obtained via representations of
ZG/I as (m x m)-matrices over certain universal commutative rings. These
are quotients of polynomial rings in finitely many variables and hence
easily tractable. As m is taken successively larger one can calculate the
valué of A47(y, x) in A7(G),, with increasing computational effort and
decreasing information loss. Denote by A4°(G)* the quotient of .47(G)
modulo all elements which map to zero in all of the .47(G),,. Particular
evaluation techniques of .47((),, are described at the end of Section 2; the
authors are currently engaged in implementing one of them on a computer.

Since .#°(G) is the analogue of the Whitehead group Wh(G), with ZG
replaced by ZG/I, it is natural to ask which of the properties of Wh(G) are
inherited by 47(G) (or .47(G)*), and which are not.

A striking difference, for example, is the frequent occurence of non-trivial
values: Whereas no example of a torsion free group G with Wh(G)#0 is
known, many such groups with A47(G)#0 (e.g., knot groups) can be found
easily (see Section 4).

Furthermore, J. Stallings proved that the Whitehead group of a free
product of groups G, * G, is isomorphic to the direct sum of the
Whitehead groups of the summands (see [St]). Unfortunately the precise
analogue is not true for A47°(G) (see Example 3.1). In order to obtain an
analogous result for .47°(G) one needs to pass over to coefficients in a field
f, where one can similarily define groups A4°(G;t) and A°(G;1)* (see
Section 3). We obtain:
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THEOREM III. Let G, and G, be groups and t be a field, such that both
A(Gy; 0)* and A (G,; 1)* are non-degenerate. Then the natural embeddings
G, 5 G, *xG,and G, 5 G, * G, induce an isomorphism

A(G D@ AN(Gy; 1) = A(Gy Gy D™

It is shown in Section 3 that without the non-degeneracy assumption on
the summands the above theorem fails in general. It seems likely that using
deep results of Waldhausen (see [W]) the above statement can be proved
for A7(G; t) rather than A7(G; T)*, but for our applications this does not
make a difference since all our computations take place in A7°(G;)* or a
quotient of it.

The invariant .4°(G) presented in this paper can be generalized in a
natural way to higher dimensional analogues .A4"Y(G), ¢=>2. For g=2 it
yields finite 2-dimensional complexes which are homotopy equivalent but
not simple-homotopy equivalent (see [L1, L2]).

In the course of this work the authors have had many inspiring conver-
sations with friends and collegues. In particular they thank Donu Arapura
and Bronek Wajnryb for their helpful advice. In addition they thank the
Ruhr-Universitdit Bochum and the Technion at Haifa for their hospitality
at the occasion of various visits.

1. THE TORSION INVARIANT

Let G be a finitely generated group with presentation

G={x,, ..., x,|R,, Ry, ..D,

and let f.: F(X)— G, B,: F(Y)—> G as defined in Section 0. Denote by
0/0X,: ZF(X)—> ZF(X) the ith Fox derivative of the integer group ring
ZF(X); ie, the unique Z-linear function satisfying 0X,/0X;= 4, and
OVW/oX,=8V/0X,+ V OW/OX, for any V, We F(X) (see, e.g., [G]). By a
slight abuse of notation we denote throughout this paper a group
homomorphism F— G and its Z-linear extension to a ring homomorphism
ZF — ZG by the same symbol. Similarily we do not distinguish notationally
between a ring homomorphism A — B and the induced homomorphism on
the (m x m)-matrix rings M,,(4) - M, (B).

DerFiNITION 1.1, Let G=<{x,,..,x,|R,, R,,..> and B, F(X)—> G be
as above.
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(a) Let I, be the two sided ideal in ZG generated by
{B\(aRk/aXr) | k = 1* 29 very X,'EX},

and let y, denote the quotient map ZG — ZG/I .

(b) Define the Fox ideal of G to be the two sided ideal [ in ZG
generated by all 7, where x is a generating system of minimal cardinality
of G. Denote the quotient map ZG — ZG/I by 7.

Remark 1.2. (1) An easy computation using the chain rule for Fox
derivatives (see [ BZ, pp. 125]) shows that the ideal I, < ZG is equal to the
two sided ideal generated by

{P.(OR/0X;)| ReKerf,, X;e X},

and hence independent of the choice of the generators R, of the kernel

of ..

(2) If X' is a different basis of F(X) and x’ its § .-image in G then,
using the chain rule again, one obtains /,=1,.. Thus /_is an invariant of
the Nielsen equivalence class of x.

(3) The authors do not know of any example of generating systems
x and x’ of G with the same cardinality where I #7.. In particular we
obtain 7, =1 for all examples known to us.

(4) If we consider non-minimal generating systems with the property
that the kernel of some f.: F(X)—— G contains a primitive element of
F(X) we always have I = ZG, as follows directly from the definition of 7.
Hence the analogue to Defimtion 1.1 (b) for non-minimal generating
systems leads always to an ideal which is equal to the whole group ring.

Let a:F(Y)— F(X) be a homomorphism (not necessarily an
isomorphism) which satisfies f,.-a = fi, (compare also with Definition 0.1).
Such a homomorphism exists always, since F(Y) is free, but « is in general
far from being unique. The map « determines an (#Xxn)-matrix
(0x(Y;)/6X,);,; with entries in ZF(X). In general both (8x(Y,)/6X,);, and its
image f ((6x(Y;)/0X,);,,)e M, (ZG) are different for different choices of a.

LeEMMA 1.3, Let a: F(Y)—> F(X) be a homomorphism which satisfies
Bioa=4B,.
(1) For any two minimal generating systems x,y of G the matrix
(8y/0x) e M (ZG/I), obtained from B (0x(Y;)/0X}),; by applying the map
v: ZG — ZG/1, is independent of the choice of a.

(2) The matrix (0y/0x) is invertible.
Proof. (1) Let o': F(Y)— F(X) be a second map which satisfies
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B.oa'=f,. Then for all WeF(Y) one has B («'(W))=p (W)=
B.(a(W)), and hence

2 (W) (W) 'eKer B.= (R, Ry, ..> < F(X).

But this implies f§ (o' (W)/0X,;)— B (Ca(W)/éX,)el, foralli=1, .., n (see
for example Lemma 1.3 of [LM17]). Hence one has y (f,.(da’' (W)/0X;)) =
7 (B (Ca(W)/0X,)). Setting W=Y,, for j=1, .., n, proves (1).

(2) Consider now a map 4: F(X)— F(Y) with §,-d=f,.. For any
k=1,.,n one has B (X,)=p,(d(X,)) =B (x(d(X,))). As before one
obtains y B (6X,/éX,)=7y.B.(0ad(X,)/0X,) for all i=1, .., n The chain
rule for Fox derivatives gives

Bad( X, /0 X, = Z a(d(X,)/2Y,) - da( Y )/0X,,
j=1

J=

and hence y B, a(0d(X,)/0Y ) ;7B (Ca(Y))/OX); ;=7 B (Cad(X)/OX ) ;i
= v P (X /OX )i = (B = 1 € GL(ZG/I,). The same argument
shows that y,B,d(da(Y,)/0X,),,-v,B,(C&(X,;)/0Y,), ,=1€ GL(ZG/I,). But
7B, 4(0a(Y,)/0X,),, = vB.(6a(Y;)/0X}), ;= (Cy/éx). So (dy/éx) has both a
right and a left inverse, which proves (2). 1|

Lemma 1.3 shows that the matrix (Jdy/dx) lies in GL,(ZG/I) and hence
in GL(ZG/I)=lm GL,(ZG/I). Let T denote the subgroup of trivial units of
GL(ZG/I): that is, the subgroup generated by all matrices of the form

1
0
1
+
t8 i geG.
0
1

DEfFINITION 1.4, (a) Assume [# ZG. We define the torsion invariant
A7(G) as the following quotient of the first K-group of the ring ZG/I

A(Gy= K (ZG/H)/T.
For any two minimal generating systems x, y of G define

(3= [(@y/0x)] € 4 (G)

481/157/1-12
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(b) If I=2G call A7(G) degenerate and define formally .4'(G)= {0}.
In particular one always has .4°(y, x}=0.

Proof of Theorem1. 1t is convenient to prove the statements listed in
the theorem in the following order:

(ii) The claim is an immediate application of the chain rule property
of the Fox derivatives.

(i) Any two generating systems of G which are Nielsen equivalent
differ by a sequence of elementary Nielsen operations (see [MKS,
Chap. 3]). But one can see directly that if x and y differ by an elementary
Nielsen operation, then (dy/0x) is a generalized elementary matrix, ie.,
a matrix with at most one non-zero off diagonal element and elements
of Gu —G in the diagonal. Thus (i) follows directly from (i1) and the
definition of A47(G).

(iv) Any surjective homomorphism f: G — H of groups with equal
rank maps a minimal generating system x of G to a minimal generating
system y of H. Thus f is induced by an isomorphism f': F(X)— F(Y) via
the canonical epimorphisms §,: F(X)—- G and f,: F(Y) > H as defined
in Section 0. The kernel of #, is mapped by /' into the kernel §,, and
hence (by Remark 1.2(1)) /I, is mapped by f: ZG - ZH into I . Since x
was an arbitrary minimal generating system of G, the map f induces a
well defined ring homomorphism f”: ZG/l - ZH/I. By Lemma 1.3(1) the
homomorhism f” maps (dx/dx’) to (8f(x)/df(x")) for any two minimal
generating systems x, x' of G. Claim (iv) then follows directly from the
functonality of K, and the definition of .4°(G).

(ii1) Tke above argument in (ii) works as well under the weaker
hypothesis that a non-surjective homomorphism f: G — H maps a minimal
generating set x of G to a set f(x) which becomes a minimal generating set
of H when suitable elements of H are added. The canonical injections
G H,, i=1,2 3, give precisely this situation, as can be seen from the
Grusko-Neumann theorem and abelianization of the right factor of H,.
Thus ZG/I maps canonically to ZH,/L

In order to derive a presentation for H, from G = {x, .., x,,| R, R,, ..},
one adds the generators v, together with defining relators v,v,v, ‘n, !
i#je{l,..,m}. The Fox derivatives then give

0 for k#i,j
dvow; o, Yoo, =<1—v; for k=i

v,—1 for k=j.

Hence we get ZH,/I=ZG/I, and the subgroups T of trivial units coincide.
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The canonical injection G — H, induces an isomorphism 4°(G) — A°(H,)
with A (y, x) = A (yup, xUp).
For H, one adds generators w; and relators w?. Differentiating we get

owl/ow, = {0 Héj

1+w, i=jJ.
As before we get ZH,/I=ZG/I with a coinciding set T of trivial units, and
the canonical injection G — H, induces an isomorphism 4 (G) - A4"(H)
with A°(y, x) = A (yuv, xUD).

For H, one adds new generators u; but no new relators. However, in this
case there is a retraction map from ZH /I onto ZG/I induced by the map
H, — 1, which maps the trivial units of H, to those of G. The functoriality
of K, implies then that .47(G) injects into .4°(H), mapping A7(y, x) to
A (ypouu, xvu) |

The reader may find it interesting to compare statement (iii) of
Theorem I to the following still unsolved problem:

Conjecture 1.5 (M. Dunwoody and B. Zimmermann). If x, y are Nielsen
inequivalent generating systems of a group G then xu:z and yu:z are
inequivalent generating systems of G * F(z).

We conclude this section with a computation of .47°(G) and .47(y, x) in
the case of G a finite abelian group.

ExaMpLE 1.6. (1)Let G be the cyclic group of prime order with a
presentation G = {a|a”). Consider the two generating systems x = {a}, y =
{a’}, 1 <q<p/2. One can easily check that /., =(1+a+a’+ --- +a”" ")
and that /=/7.. We have ZG/I=7[a,a ']/l +a+a*+ --- +a" )=
Z[£], where ¢ is the p-th root of unity. It is well known that K, (Z[£]) is
the group of units of Z[¢] (see [MI, p. 32]). Consequently we obtain

A(G) =K (Z[£1)/ £ G =Z[£]*/<E).

Furthermore .47°(y, x) = [(8y/dx)] = 1 + E+E2 4 - 4 E97 e Z[E]*/(ED
and is non-trivial as [1 + &+ &3+ - + &9 £ 1.

(2) Let G=Z/q,Z@--~(—BZ/q,,Z=(x,,...,x,,lxj", [xi’xj] (i’jz
1,..,n)) be a finite abelian group which cannot be generated by less
than »n elements. Furthermore assume that d=gcd.(q,, ... q,)#]1.
The Fox derivatives of the relators are dx¥/éx,=1+x,+ --- +x%#~! and
élx,, x;1/6x;=1—x;, 6[x,, x;1/6x,= x,— 1. Thus one obtains ZG/I=Z/dZ
and hence A (G)=Z/dZ*/{+1} (see [Si, p. 140]).

From the above computation and Theorem I(1) one recovers the known
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classification of Nielsen equivalence classes of minimal generating systems
for finite abelian groups G (see [D]). (Note that by Theorem I (iii) and the
Grusko-Neumann theorem this classification extends to the groups
G+ 727 ---xZ/2Z. For d odd the previously known methods did not
yield this extension.)

2. EVALUATING A47(G)

The goal of this section is to present a method for computing non-zero
elements A7(y, x}e A7(G) with relative ease (contrary to the situation in
Whitehead groups). The idea is to evaluate .47(G) via a representation of
ZG/I in the ring of (m x m)-matrices over a commutative ring with a unit
element. Throughout this section 4 denotes such a ring. The first problem
in finding representations of ZG/I is that according to Definition 1.1(b) the
ideal /< ZG seems to require information about all Nielsen equivalence
classes of minimal generating systems of G. The following lemma resolves
this problem and explains the choice of 4.

LEMMA 2.1. Let x be a minimal generating system of G and A any
commutative ring with 1 € A. Every ring homomorphism o .. ZG/I, - M, (A)
with o (1)=1 maps y.(I) to 0eM, (A) and hence induces a ring
homomorphism ¢: 2G/1 — M, (A).

Proof. Let G=<{x|R)>={y|S) be two presentations for G, where x
and y are both minimal. Consider any commutative diagram as described
in the proof of Lemma 1.3 (2):

ZF(X)
\m

ZG—'*’ ZG/]\M”"* Mm(A)
s
) —

It suffices to show that oy, maps I, to 0, where /, is the two-sided ideal
of ZG generated by {f,(0S,/0Y,)| S, €S, Y,e Y} (see Definition 1.1(a)). In
the proof of Lemma 1.3 we have shown:

(1) For any S,€S one has y.f.(62(S,)/0X),,=0eM,(ZG/I,), as
Ba(Sy)=B,(Sy)=1

(2) 7B OUX, )Y )i ;7 B (0(Y))/OX,);;=1€ GLZGI,).

The map o, induces maps M, ., ((ZG/I,) > M, (A) for any &k, 1eN

ZF(Y
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via “forgetting the brackets,” which we also denote by o,.. Since A4 is a
commutative ring, the left inverse of a matrix in M, (A) is also a right
inverse. Thus (1) and (2) above imply the following equations in
M., « mn(A) for any S, e S:

0. (7 B (2(3S,/0Y)),)
=0.(7.B.:(2(05,/0Y))))) - 6. (v, B a(O4(X,)/0Y )y ;- 7. B (8l ¥ )/OX ), )
=0.(7.8.2(35,/2Y)))) -0 (7. B.(82(Y))/X,); ;)
10 (7B G XL)CY ) )
=0, (7. B.(a(3S,/0Y,);- (2a(Y,)/0X,); ) - 6, (7 B 2(PA(X,)/OY )y ;)
=0, (7. 8.(0x(S,)/0X,);) -0 (7 B a(CA(X,)/OY ) ;)
=0-0,(7.8.2(04(X,)/0Y)) ;) =0. |
All maps o: ZG/I - M,,(A) induce by the functoriality of K, a map
K (0): K, (ZG/I)—» K, (M, (4))=K,(A)

(where the last equation is induced by the “forgetting the brackets” map).
On K, (A) we have the determinant map det: K, (4) —» 4* into the multi-
plicative group of units A* of 4. Let 7, denote the composition map

S K, (A) A* (%)

1,: GL(ZG/I) K, (261 Ki(a) det

definition

We define the subgroup T, of 4* as the image 7,(7) of the set of trivial
units 7 GL{ZG/I) (see Definition 1.4). We now sum up with the following
proposition:

PROPOSITION 2.2. Let x be a minimal generating system of G and A a
commutative ring with 1e A. Any representation o:ZG/I—-M,,(4) (or
equivalently o .: ZG/I . — M, (A)) with 6(1)=1 induces a homomorphism

N(6): A (G)— A¥/T,.

In particular, if y is a second minimal generating system of G and
1, [(8y/éx)] is not in T,, then y is not Nielsen equivalent to x. |}

For the purpose of a direct practical application we observe that for any
representation o:ZG/I—- M, (4) as above and any invertible matrix
MeM, (ZG/I) the map 1, associates to the matrix o(M)eGL,,, (A)<
GL{A) the value det(a(M)). In particular we see that for any generating
system x,.., x, of G the group T, is precisely the subgroup of A*
generated by all the values det(o( + x,)), ..., det(a( + x,})). Hence we obtain:



180 LUSTIG AND MORIAH

Proof of Theorem1l. The statement of Theorem II is an immediate
consequence of Lemma 2.1 and Proposition 2.2. |}

We show next that all representations ¢ as in Proposition 2.2 can be
derived from particular representations of ZG/I into “universal” rings 4,,,
me N. From these representations one can compute all non-trivial values
which can possibly be evaluated by any (m xm)-representation ¢ as in
Proposition 2.2.

Let {(x,,.., x,| Ry, R,,..> be a presentation for the rank n group G. We
fix the size me N of the representations in question and consider the poly-
nomial ring Z[affj,ak] on variables aff,. and a,, where 1</ j<m and
1 <k < n. The variables aﬁi can be arranged as an (m x m)-matrix (af‘_,)
and in the quotient ring

ise

A=272[a*,, a,])/(a, det(a ), ,— 1)

the determinant of the matrix (a%), , is invertible. Hence there is a
homomorphism I,,: F(X, .., X,,) » GL,,(A) which maps X, to the matrix
(afj),-"/ and which S‘,xtends to a ring homomorphism I,,: ZF(X,, .., X,)—
M, (A). Let J,,= 4 denote the two sided ideal generated by the entries of
all I',,(¢R,/0X;). Define the universal ring A, to be

Am = “i/‘lnz'

The fundamental formula for Fox denivatives (see [Fo] or [LS, p. 99]) is

R,— 1= 0R,/0x;-(x;— 1),

i=1

which implies that I, induces a group homomorphism y,,: G — GL,,(4,,).
The canonical extension to y,,: ZG — M, (4,,) fits then into the following
commutative diagram:

ZF(XI""v Xn) i Mm(AO)

| |

AG —— M, (4,

By definition of 4,, one has y,,(/,)=0. Thus y,, induces a representation
0, ZG/I, - M, (4,,).

For the rest of the paper we abbreviate the notation introduced above
T, t07,and T, to T,.
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LEMMA 2.3. The ring A, (G) as well as the multiplicative subgroup
T, < A,(G)* are independent of the presentation of G used in the
construction.

Proof. We first observe that for every commutative ring 4 with 1e 4
and any ring homomorphism o: ZG/I,—M,,(4) with a(1)=1, o{(x,)=
(o(x,), ;). there is a canonical map p,: A,,— A with the property that
the induced map p,: M, (4,,)—M,, (4) satisfies 6=p,-0a,,. Such a
homomorphism p,: A4,, = A is given by affj - 0(x,); ; and a, — det(a(x,)).
This follows from the definition of A4,, and from the fact that ¢ is a ring
homomorphism; i.e., the entries of the matrices a(x,) have to satisfy all the
relations given by the ideal J,. The statement of the lemma now follows
by symmetry: Let x’ be a second generating system for G, with
T, <A,,o.,,ad', and p.. denoting the corresponding objects as above. The
argument above, applied to o=o0,, and to ¢'=g0,, gives the equations
6,=p, 0, and g, =p, -o,. Hence we obtain

’ o ar ’ — R
Om=Po,°Pon°Om and 0 =P0,°Poy°Orm-

These matrix equations imply equations on all entries. Thus the maps
po, A, A, and p, : A, — A, are isomorphisms. As all the x} are words
in the x, and conversely the isomorphism p,; maps T, to 7,,.. |

The representation o,:ZG/I,—~ M, (A4,) satisfies the hypotheses of
Proposition 2.2 and maps the group T of trivial units to the multiplicative
subgroup T,, < A%, which is generated by the images of all +aq,.

DeriNITION 2.4. Let A47(G),, be the image of .47(G ) under the evaluation
map

NN6,,): K (G)=> A%/ xay, .., ta,).

The following proposition establishes the universality of A47(G}),,.

PROPOSITION 2.5. Let A be any commutative ring with 1€ A, and let
a:Z7G/I—- M, (A) be a ring homomorphism with 6(1)= 1. Then the induced
map A (o): 4 (G)— A*/T, as given by Proposition2.2 factors through
AT} A(G)—> A(G),,, giving a map e,: N (G),,— A*/T,.

Proof. As shown in the proof of Lemma 2.3 any o:ZG/I-M,,(4)
factors through a,,: ZG/I - M, (A,,). The proposition is equivalent to the
existence of the lower left map in the right hand triangle of the com-
mutative diagram below. But this is a straightforward consequence of the
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functoriality of K, and the existence of the maps in the left hand triangle,
which was shown above:

——s A(G),,

K
a/ ‘ Wlom)/

7G/I ——————— ¥ (G)  |*

WL

Mm(A) _T’ A*/Ta I

We finish this section by describing some particular evaluation methods,
based on the invariant .47(G),,, for exhibiting Nielsen inequivalent
generating systems of G. The computational imput for these methods is

(1) a finite presentation G = {x, .., x,,| Ry, .., R,>, and

(2) a second generating system ¥, = w, (X, .., X,), 0y YV, =
w,(x, ..., X,), given as words in the x,.

From these data we derive polynomials in finitely many variables as
follows: Consider the words W, =w, (X,, .., X,,), ..., W,=w, (X, .., X,) in
the free group F(X) and compute the Fox derivatives dW,/0X, and
OR,/6X, in ZF(X) for all 1<h, k<n and 1<g<s Associate to every
generator X, the matrix (af{ ,)i.; with entries in the introduced polynomial
ring Z[a},, a,], 1<i,j<m and 1<k<n above. To X' associate the
matrix a, - Adj((affj),-__,), where Adj denotes the adjoint. Although this does
not define a ring homomorphism, we obtain in this way for every element
of ZF(X) a well defined (m x m)-matrix with entries in Z[affj, a,]. Denote
by w(éW,/0X,) and w(dR,/0X,) the matrices associated to dW,/0X, and
CR,/0X,, respectively. Thus we have derived from the data (1) and (2) in
finitely many steps:

(3) Finitely many generators of an ideal J,, of Z[af ,» ax ], namely all
entries of the matrices w(dR,/CX,) together with the polynomials
a, -det(af ), ,—1 (for k=1, ., n).

(4) The determinant 5, . of the (mnxmn)-matrix over Z[a{fj, a;]
which is given as (n x n)-block matrix with w(éW,/dX,) as (A, k)th block
entry.

From the arguments above it is immediate that Z[a! i a7, is
precisely the ring 4, and that 4, . modulo J ., is equal to t,,([dy/dx]).
Hence A7(y, x) is the coset of 4, , in A}, modulo { +a,, .., t+a,), and we
obtain the following:
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CrITerION 2.6. 1If, for any choice of exponents s, €Z, none of the
polynomials &, .+ aj ---a) is contained in the ideal J/,, then x and y are
not Nielsen equivalent.

Criterion 2.6 can be applied in practise, due to the existence of an
algorithm (see [Tr]) which decides the following question: Given a
polynomial ring Z[x,, .., x,] and polynomials p, p,,..,p,€Z[x, -, X, ],
is p contained in the ideal (p,, ..,p, )= Z[x,, .., X, ]?

This algorithm can be used in our context in the following way: Consider
generators p, .., p, of the ideal Jch[afj,ak]. For some large te N
consider in addition the 2»n polynomials (+a,)' — 1 for k=1, .., n, denoted
by Pus1s - p,. Now apply the algorithm to p=4, tai---a¥, p,, ... p,,
for all 0< s, <1t (ie., finitely many times). If p is never contained in the

ideal (p,, .., p,) then y is not Nielsen equivalent to x. If for some choice of
the s, the polynomial p is contained in (p,, .., p,). then repeat the test for
larger te N.

However there are groups for which the criterion can be applied in
a “shorthand” version and one can distinguish Nielsen inequivalent
generating systems with a stimpler computation. For example:

(1) If one can find an ideal Jc Z[af{,, a,] which contains J,, such
that Z[affj, a,1/J,, is finite, then there are only finitely many elements of
this quotient ring which are the images of any a}' ---a)’, s, € Z. If the image
of 4, . is not among them then y and x are Nielsen inequivalent.

For many examples even the rings Z/gZ for a proper choice of ge N
yield (for m = 1!!) such inequivalent generating systems. This is shown in
Example 2 of Section 4 (for G torsion free).

(2) Find a common solution for all generating polynomials of J,,,
i.e., a homomorphism v: Z[affj, a,1/J,, — C, with the additional property
that the multiplicative subgroup U of C* generated by v(a,) for k=1, ..., n
is not dense in C. Since U is finitely generated it is possible to decide
whether v(4, ) is contained in the closure of U. If not, then y and x are

Nielsen inequivalent. This method is illustrated in Example 1 of Section 4.
3. Free ProbuUCTS

In this section we prove an analogue of Stalling’s direct sum theorem

Wh(G, * G,) = Wh(G,)® Wh(G,), for the functor 47°(-) (see [St]). We

first observe that in general the strict analogue is not true:

ExaMpLE 3.1. In Section 1 we computed

N(Kala*) @ (b|b*>)=(Z/AL)*
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and
A (Lele®> @ (d|d®>) = (Z/6Z)*
but
N(Kala® ) @ <h|b* ) @ Ll > D d|d*>)=(2/22)*.

The situation can be even worse. For example, if G, =2Z/pZ ® Z/pZ and
G,=72/qZ ® Z/qZ with relative prime p,ge N, then the torsion group
A(G, * G,) is degenerate, whereas both A4(G )= (Z/pZ)* and A (G,)=
(Z/qZ)* are non-degenerate.

In order to avoid these phenomena we consider from now on group
rings with field coefficients. We need to adapt the constructions of Section 2
to this situation:

DErFINITION 3.2. Let f be a field. In the group ring f[G] we define the
ideal I" to be the (I®1)-image of t®/int®, ZG =¥[G], where 1: I 5 ZG
denotes the inclusion map. If I' #{[G] we define

MG 1) = K, (G T)E*-G.
Otherwise we say A47(G; ) is “degenerate” and formally set A7(G; t) = {0}.

Let 4 be a commutative ring with 1, with a subring f-1 isomorphic to
f. As in Proposition 2.2 every representation p:{[G]/I' > M, (A4) (with
p(f)=¥%-1) induces a map A(G;1)—» A*/T,. For technical reasons we
quotient further to 4*/f* . T and denote the composed map by .A"(p; f).

DerFINITION 3.3, (1) Assume that there exists a representation p as
above. Denote by SA4°(G; ) the subgroup of all £e A47(G;t) such that
A (p; TWE)=1 for all p, A, and m as above. We define

NG V)* = A (G; V/SH(G; 1)

(2) Otherwise set A°(G; )* =0, and call A'(G; f)* “degenerate.”

Define a ring 4,,(G;) as the quotient ring of the polynomial ring
f[affl., a,} by the ideal J,,(G; ), which is defined analogously to J,, as in
the discussion before Lemma 2.3. Denote by t*-7,, the subgroup of
A,,(G; 1)* generated by all elements c¢-a,, where cef*. As in Section 2
there is a map o,:{[G]/I'> M, (4,,(G;t)), which induces a map
N(6,,): A (G; 1) > A*(G; 8)/k* - T,,. The image of A'(g,) is denoted by
A(G; 1),,; it has the analogous universality property as .4(G),, as stated
in Proposition 2.5.
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LemMa 34, A(G;E)*=Im(T17_, A (0,) = T1%_, A(G;1),..

m=1v

Proof. From the definition of S.4°(G;I) we obtain that all its elements
are mapped to O by the product map [].4(g,,). Conversely, given an
element & of A47(G; ) not contained in S.47°(G; 1), there are an meZ, a
commutative ring A, and a representation ¢:{[G]//' = M,,(4) such that
Ao )(&)#0. By the universality property of 47(G;t),, this map factors
through .47(o,,). Hence the image of ¢ in [] .A47(G;t),, is non-zero. This
shows that the kernel of the product map [].4(s,,) is precisely
SA(G:H. |

THEOREM III.  Ler G, and G, be groups and t be a field, such that both
NG 0D)* and A7(G,; D)* are non-degenerate. Then the natural embeddings
G, cG,*G, and G, = G, *x G, induce an isomorphism

NG, DO NGy D* — A(G * Gy D™

Proof. By definition the Fox ideal I'(G,)ct[G,], i=1, 2, is generated
by the images of all Fox derivatives ¢R/0x, where x is an element of a mini-
mal generating system X, for G,, and R is any element of ker(F(X;)— G,).
By Grusko’s theorem any such generating system X, is part of a minimal
generating system for G, * G,, and the above element R lies in the kernel
of B .. FIX,, X;)> G, * G, for some minimal generating systems X of
G, X, of G,. Hence B, ., (0R/Ox)el'(G, *G,), and the embeddings
G, — G, * G, induce ring homomorphisms

ZUHGYING) -G * G YING +Gy)  for =12
The functoriality of K,(-) then gives a map

2 K (G NG ) @ K (LG )/T'(GY) = K (G + G, 1/'(G, * G))

which maps £* -G, and t* -G, to t*.(G, * G,). Thus we obtain a natural
map

Lyt MG D)@ NGy 1) » A(Gy * Gos T,

Assume that an element ¢ in one of the A47(G;;¥) is mapped by 2, to an
element of A(G, * G,; ) which is not contained in S.A4°(G, * G,; ). By
definition this gives us a non-trivial representation of {[G, * G,1/I'(G, * G,)
and an induced evaluation of 4°(G, * G,; I) with non-trivial value of . By
composition with X, we obtain a representation for {[G,]/7'(G,), which
also gives a non-trivial value for ¢ under the induced evaluation of
A7°(G,; §). Hence € does not lie in SA7(G;; t), and thus X', induces a map

Zy MG DN (Gy 1)* — A(Gy % Gy )™,
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The above three maps X'; can be composed by definition to a commutative
diagram:

2y Kl(f[Gl]/I[(Gl))G')Kx(f[sz/Ir(Gz))””““’ K, (T[G, * G2]/Il(Gl * (7))

l |

2 AG @A (G ) —————————— (G, * Gy 1)

| |

T NG DD A(G,; ) NG, x Gy D>

CLaM 1. X, is surjective.

Proof of Claim 1. Since all vertical maps in the above diagram are
quotient maps it suffices to show that X, is surjective. This will be derived
below as consequence of a Theorem of Casson (see [C]). We use his
notation and definitions.

(1) We first show that the conditions of Theorems 1 and 2 of [C]
are satisfied: It follows from Grusko's theorem and Remark 1.2(1) of
Section 1 that I'(G, * G,) is the ideal in {[G, * G,] generated by I'(G,)
and /'(G,). Note that since [{G,] and {[G,] are vector spaces over f, the
subrings -1 < f[G,] are both pure (ie, I[G;]=1-1® 4 as f-bimodule for
some suitable A4, see [C]). Hence we can form the amalgamated free
product of rings I[G,] *,1[G,] and §[G,1/I'(G,) *, I[ G, )/T1'(G>).

The proof of the following fact ( *x ) is an elementary exercise, based on
the universality property of the amalgamated free product of rings:

Given two f-algebras 4, B with ideals /< 4, J< B, then
A/l B/J = (A %, B)/(1, J). (%)

As an application of (**) we obtain

tG VING) G VING,) =[G, * G, )/I'(G, * Gy).

(2) By the non-degeneracy assumption in Theorem IIl there are
canonical injections a: f — {[G,1//'(G,) and B:f - [ G,]/I'(G,). For these
injections Casson defines in [C] a group K, («, ) and homomorphisms
Jr K (([G )/ING))) @ K (H[G,1/1Gy)) = K (a f) and 1: K, (%, B) —
K, E[G,1/IYG,) + t{[G,V/I'(G,)). Tt is immediate from his definitions
(using the last equation) that tcj differs from the above defined map 2,
only in the sign of the image of the second factor. Hence it suffices to show
that 7o/ is surjective.

(3) The map t is surjective: This is proved in Theorem 3 of [C],
under the hypotheses that first every f-bimodule is adirect limit of free
f-bimodules and second that Nil(f) =0. But in the present situation f is a
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field and hence every f-bimodule is free (and hence the direct limit of free
bimodules), and Nil(f)= K, (f[+])/K,(f)=0 by [M1, pp.27-28].

(4) The map j is surjective: We apply Theorem 1 of [C], where j
appears as part of an exact sequence:

K (LG, TG ))® K, (1[G, 1/1'(G2)) -5 K, (%, f) =D Ko(D)

— Ko(t[G WI1(G)) @ Ko (LG )/TH(G)).

The surjectivity of j is hence equivalent to the injectivity of the canonically
induced map i: Ko(f) = K (F[G, )/ IN(G ) D Ko (E[G,1/I'(G,). The latter
follows directly if one of the two rings 1[G,]/I'(G,) or t[G,]/I'(G,) has
the basis invariance property (see [M1, Chap. 1]). But the assumption that
A(G;; B)* is non-degenerate means that there exists a non-trivial ring
representation of I[G,]/I'(G,) into a matrix ring over a commutative ring
A. Such rings M,,(A4) have the basis invariance property, since left inver-
tible matrices over commutative rings are also right invertible. But for all
ring homomorphisms R — S it follows that if § has the basis invariance
property then so does R. This completes the proof of Claim 1.

CLaM 2. X, is injective.

Proof of Claim 2. It suffices to show that for any non-zero element
(e /(G B)* its image 24(&) is not contained in X, (A(G;1)*)c
NGy *x Gy B)*, for {i,j}={1,2}. By Lemma 3.4 this follows if we can
show:

For some ne N the image of ¢ in A7(G, = G,;{), is not
contained in the image of A(G;; F)*. (*%x)

From the universality property of the rings 4,,(G,; ) (see Lemma 3.4) it
follows that for some me N the image of & in A7(G,;f),, is non-zero (and
in particular 47(G,; 1), is non-degenerate). Similarily one obtains that for
some m’'e N the group 4°(G;; 1), is non-degenerate.

Assumption 1. There exists a number ne N such that

(1) both A7(G,;t), and A(G,; ), are non-degenerate, and

(2) A(G,; 1), maps surjectively and naturally onto A4°(G;;f),,. By
naturalness here we mean that the surjection commutes with the maps
NG 1) = A(GD* > (G, 1),

Assumption 2. Let f be a field such that both 47(G,; ), and A4(G,; 1),
are non-degenerate. Then the natural embeddings G,< G, * G, and
G, < G, * G, induce an injection

2T NG, @ N (G5 1), & (G x Gy ),
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From assumption 1 we obtain that 2" (&) e A47(G;; ), is non-trivial. From
assumption 2 we obtain that X”({) is not contained in 2"(A(G;;1),)c
A(G, * G,; 1),. By naturaliness the following square commutes:

NG, 1) —— N (G, x G, 1)*

J l

N(G;; V), —— (G, * G,; 1),

This gives the above fact (**#). The assumptions 1 and 2 are proved below
in Lemma 3.7 and Lemma 3.6 respectively. |

Before proving the two statements used in the last proof we show:

LemMma 3.5. Let t be a field. Assume that both of the rings A,,(G ;) and
A, (G ¥) are non-trivial. Then the injections a;:G;, g G,* G, induce
infective ring homomorphisms o ;. A, (G;1)—> A,(G,*xG,; 1), i=1,2
Furthermore one has

im(o, ) nim(o,,)=F-1.

Proof. As f-vector spaces one has (non-canonical) direct sum decom-
positions A4,, (G, f)=1-1®4,, i=1,2. Hence a, - a,®1, a, » 1 ®a, for
a;€ A,,(G; ¥} defines maps ¢,:A4,(G;1)—A4,,(G,;H)®,4,(G,; )=
1,11 1®,4,)D(4,®,T-1)B(A4,®,; A4,) which are injective,
and their images meet precisely in (f-1®,t-1). It suffices to show that
there is a f-vector space isomorphism ¥ from 4,,(G,;)®, 4,,(G,; ) to
A, (G, * G,; 1) such that y - ¢, =a,,. This can be seen as follows:

We denote by P, P, and P, the polynomial rings f[af;, a,] for G, » G,,
G,, and G,, respectively, constructed via the presentations G, = {(X|R),
G,=<Y|S) and G, *xG,=<X, Y|R, S) as introduced in the discussion
before Lemma 3.4. We obtain a I-vector space isomorphism,

n: P ® Py— P,

if one just replaces the tensor product in every element of P, ®, P, by the
ring multiplication. But the rings A4,,(-; ) are defined as quotient of these
polynomial rings modulo ideals J,(-), generated by the polynomials
det(a¥ ;)—a, and the ideal J,,(-). It follows from the Grusko-Neumann
Theorem that J,, (G, * G,)=ker(P—> A4,(G;f)) is generated by the
n-images of the ideals J,(G,)®1 and 1®J,(G,). Hence n induces a
f-vector space isomorphism

Ay (G 1) @1 A4,(G: 1) > 4,,(Gy+ Gy 1),



GENERATING SYSTEMS OF GROUPS 189

The following proposition is used in the above proof for the injectivity
of the map X'y, but is also relevant in itself for practical applications

PROPOSITION 3.6. Let t be a field such that both A (G, ; 1), and A" (G,; 1),
are non-degenerate. Then the natural embeddings G, =G, G, and G,
G, * G, induce an injection

2T NG D), @ NG5 1), 5 A(G, % Gyi 1),

Proof. By definition A4°(G, * G,; 1), is the quotient of a subgroup of
A, (G *G,;E)* modulo t* - T, (G, * G,). By Lemma 3.5 the multiplicative
group of units 4,(G, * G,; )* contains isomorphic images of the groups
A, (G,;1)* and A4,(G,, )* as subgroups which meet precisely in f*-1.
Hence one obtains an injection

A (G DY@ A, (G B o 4,(G =Gy Y

It remains to show that the subgroups of A4,(G, * G,;)* isomorphic
to 4,(G;;1)* (i=1,2) intersect t*.7,(G, * G,) precisely in *.7,(G,).
From the definition it follows directly that {*.7,(G,) is contained in
A (G, * G,y H)* ni*. T,(G, * G,). The converse inclusion follows from the
fact that (1) A,(G,;1)* " A,(G,;H)*=1* and (2) I*-T,(G, xG,) is an
abelian image of G, * G, (since by definition it consists of the determinants
of a representation of G, * G, in a matrix ring with abelian entries). ||

LEMMA 3.7. For any field t and any two numbers m, ne N, such that
m divides n and A(G;1),, is non-degenerate, there exists a surjection
AG, By, = A(G; Y),, which is natural in the following sense: It commutes
with the quotient maps A (G; ) o A7(G;1),, A (G; 1) - V(G T),,.

Note that, by Lemma 3.4, the surjection A"(G; 1), = A47(G; 1), also com-
mutes with A (G, 1) = A(G; D)* = A7(G; 1), A (G 1) o> A(G;1)* -
A(G; 1),

Proof. 1t suffices to show the existence of a natural map .47(G; ), —
A(G; 1), since by definition of naturalness such a map must be surjective.
For any (n x n)-matrix one can consider the sequence of n/m (m x m)-block
matrices along the diagonal. In each of the matrices (af ), ; consider the
elements a* ; which lie outside these diagonal blocks. Let A be the quotient
of 4,(G;t) modulo the ideal generated by this subset.

For he{l,.,n/m} let A, be the subring of 4 generated by all the
variables & , which appear in the hth diagonal block of any of the matrices
(affj)u. For each of the rings A4, there is a “natural” isomorphism
i,: A,(G;t)— A4,, since the affj are subject to exactly the same relations as
the corresponding generators of A,,(G;f). Here the precise meaning of
“natural” is that the following diagram commutes, where the lower right
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horizontal map identifies an element (M,, ... M,,,) € @, m M, (4,)
with the corresponding block diagonal matrix in M, (A):

T

tlGyr  —— M, (4,(G: 1))

- |

M, (4, (G 1)) =22 @ M,,,(4,) = M, (4)

The subrings 4,, .., 4,,,, = A meet precisely in {1, by the same argument
as in the proof of Lemma 3.5. As in the proof of Proposition 3.6 the maps
i, induce an injection of the direct sum of m/n copies of A(G, 1),, into the
quotient of 4* modulo the subgroup generated by all the “trivial units”
i,(t*. T,). Hence there is an isomorphism { from 4°(G; 1), to the diagonal
subgroup D of this direct sum. Lemma 3.7 will be proved if we can show:

CLamM.  The map A,(G; ) > A induces a homomorphism j: A (G; 1), —» D
which satisfies jo A (6,)=1icA(a,,).

Proof of the Claim. Every element ¢ € A7(G, T} is represented by some
square matrix Me Mq(f[G]/l‘), geN. Applying the representation
6, H{G]/I'">M,(A4,(G;T)) to the entries of M gives a matrix
M eM,(M,(4,(G;1)))=M, ,(4,(G; 1)), which by definition of ¢, has as
determinant (a representative of ) the image of £ in .A7(G; f),,.

If we apply the quotient map A4,(G;¥)— A4 to the matrix M’ it takes a
form M” which we describe schematically as follows (for the schematic
representation we choose g =4, n/m=23):

gz _ — - - =

B B B B
. ]l cfl <l ]
(4 a4 U4 4 7]
B B B B
| ]l cfl i ]
(4 4 a4 4
B B B B
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By elementary row and column operations M” is transformed into a
diagonal block matrix:

TAAAA
AAAA
AAAA
AAAA

BBBB
BBBB
BBBB
BBBB

M =

ccece
ccce
ccce
- ceee

For all h=1, .., n/m the hth block of M"” has entries in the ring
A,=1i,(4,,(G; ). By the commutativity of the above diagram each such
block coincides with the image of M induced by the composed map
ino0, 1[G~ A,(G;1)— A,. Since the determinant of M’ is mapped
by A4,(G; ) = A to the product of the n/m determinants of the (mqg x mq)-
diagonal blocks of M, this map induces a map from .47(G,1), into D
which maps A" (¢, (&) to ic A (g, )E). 1

481/157/1-13



192 LUSTIG AND MORIAH
4. APPLICATIONS

In this section we give four examples of applications of the invariant
A7(@). These examples show that one can find non-zero elements of 47(G)
and in particular Nielsen inequivalent generating systems for many groups.

The first two examples are knot groups (which are of course torsion
free). An application of .4°(G) to a much wider class of knot groups,
including all 2-bridge knots/links and many Montesinos knots/links, is
given in [LM2], where non-trivial values .47(x, y) are used to determine
inequivalent systems of unknotting tunnels. The third example concerns
one relator quotients of free products of cyclics. A particular case of such
groups are Fuchsian groups, for which .47(G) computations gives the full
classification of all Nielsen classes of minimal generating systems (see
[LM1]). In our fourth example we present a group G and use the
invariant .47(G) to show that G admits an automorphism which does not
lift to the free group specified in the presentation.

4.1. Knot Groups

Let KcS® be a knot and X=cl(S®—int N(K)) its exterior. The
fundamental group G ==n,(X) has a Wirtinger presentation of the form
G={x,.,x,|ry, ., r,_y». The ring homomorphism ¢: ZG — Z(G/[ G, G])
=7Z[t,t~ '] given by the abelianization of G induces the map ¢, (defined
in Section 2) on the quotient ring ZG/I,. Let X denote the infinite cyclic
covering space of X. It is a well known fact that the matrix (@B, (dr,/0x,))
is a presentation matrix for H,(X)®Z[t,t '] as a Z[1,r ']-module
(see [G, Section 6]). We can get a presentation for H,(X) by deleting
any column from the matrix. Hence det(¢f, (ér,/dx,)) is the Alexander
polynomial A4f(z). By Lemma 2.1 we have a commutative diagram:

2G/l,—— Z[1, ¢ ‘(1))

N

ZG/I

In the case of a 2-bridge knot K(a, ) (see [BZ]), where a, f are
odd integers such that —a<f<a and gcd. (o, f)=1, one obtains
G = {xy, x3|r(a, B)> and @(I,) = (det(pf.(0r/dx,))) = (4T (1)) is the ideal
generated by the first Alexander polynomial of the knot K. In particular, if
{x,,x,} and {y,,y,} are two generating systems for G with the property
that det(pf,(éy;/0x;)) # + 1" mod(4{ (1)) for all meZ, then A"(y, x)#
0e A4(G).

In the case of a 3-bridge knot one has G = {x,, x5, x5|r;, r,). It follows
that ¢(/,) is the second elementary ideal and is contained in the unique
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FIGURE 1

minimal principal ideal generated by the second Alexander polynomial.
As before if det(o,y.B,(dy;/0x,)) # £ 1" mod(45 (1)) for all meZ, then
A7°(v, x) #0e A47(C). Similarly one can use the (n — 1)th Alexander invariant
to study .47(G) for n-bridge knots.

ExaMpLE 4.1. Let K be the figure 8 knot, ie., K= K(5, 3). We choose
generators x = {x,, x,} and y={y,, y,} as indicated in Fig. {. From the
Wirtinger presentation we obtain the relations x, =y, and y,=x, 'x, x,.
It follows that

[6}*] [ ! 0 ] i 0
—_ = e d .
ix —x;' =xy 4 xx -t -+

Furthermore det(¢B,(dy;/0x,))=t—1 up to units of Z[s,t ']. The
Alexander polynomial of Kis 4,(t)=t*—3¢+ 1, and 4,(¢) =0 implies that
t=(3+./5)/2. Hence [1]*7=[(3+ /5)2|*" #|(1 +./5)/2| =|t—1] for
all me Z. Therefore .47(y, x} is a non-trivial unit. Similar arguments work
for other 2-bridge knots.

ExaMpPLE 4.2. Let K< S* be the oriented 3-bridge knot represented in
Fig. 2 below. By

f 1

I
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we mean #n full right hand twists. Note that if

t

N
AN

S
N\

Iy Sy

U

then ¢, =(zs) " t(z5)" and s, = (ts) " s(ts)”. The projection in Fig. 2 gives
us two presentations for the fundamental group G of the knot exterior,

G= <a’ b’C|R1’R2’ R3>= <x,)"’Z|S|’ SZ’SB>’

where the relators R;, S, come from the two possibilities of writing each of
x, y, z as a product of a, b, ¢, and vice versa.

We get x=(bc ) Pblbc™ "), z=(ab™ ') "b(ab 'y, and w,=
(be Yy Pe(be™ M), wy=(ca=') " Yc(ca ), wy=(ca= ") 7 a(ca ')%, and
wy=1(ab~") "a(ab~'). Hence y=(w;'w,) "wy(w, 'wy),, and R,=
x(wihwy) T w N w wy), Ry=z Y(wy twy) Y wa(wy 'wy)*. The image

- b .
c || a
14 q r
wy W, Wy Wy
-1 |
s u
T . | .

FIGURE 2
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of the Fox ideal /,,, . in Z[r,t '] is generated by the polynomials
{gs(1 —1)°, ps(1 —1)* + 1, qu(1 — 1), ru(l —t)> +t}. Hence we get a map

(p:ZG/I{a.h.c}
~Z[t, 171 (gs(1 = )%, ps(1 —t)2 + 1, qu(1 — t)%, ru(1 — ) +1).

ProposiTION 4.3. For all p, q, r, s, ueZ— {0} which satisfy q=
dkpr— 1, u=kp, s=kr for some ke Z, k =22, the generating systems a, b, ¢
and x, y, z as above are not Nielsen equivalent.

Proof. Consider the image of the above map ¢. We can further quotient
(as in the discussion below Criterion 2.6) Z to Z/qZ and t to —1 to get a
map

6:ZGi b= (Z/gZ)/(4ps— 1, 4ru—1)=Z/qZ.
The image of (é{x, y, z}/é{a, b, c}) under this map is the matrix

0 1-2p 2p
oyB(é{x, y,z}/0{a, b, c})=| O dps 1 —dsp
—2r 2r+1 0

Taking the determinant we get t,(3{x, y, z}/d{a, b, c})=4pr+# + 1 mod q.
Hence .4°({x,y,z}, {a,b,c}) is a non-trivial unit, and the systems
{x, v, 2}, {a, b, c} are not Nielsen equivalent by Theorem II. |

Remark 4.4. In fact, with no extra work the above examples give
Nielsen inequivalent generating systems in groups of closed 3-manifolds:
From X = S* —int N(K) we can obtain a closed manifold X(m/n) by doing
my/n-surgery, i.e., gluing a solid torus to the boundary of X along a rational
slope m/n (see [R]). For, if {u, 4} is a meridian longitude pair for K, we
get a presentation for n, (K(m/n)) by adding one relation of the form p™1”
to G. If m is even then the images of the Fox derivatives of this relation is
zero in Z/qZ/(4ps— 1, 4ru—1). This is because A is in the second com-
mutator subgroup of G, and u is mapped to re Z[1, 1~ ']. Hence the image
of the element A ({x, y, z}, {a, b, c}) e A"(n,(K(m/n))) is equal to the image
of A°({x,y,z}, {a, b, c}) € A(G), and is therefore not a trivial unit. In other
words, the generating systems {x,y,z} and {a, b, ¢} are not Nielsen
equivalent in n,(K(m/n)). This also implies that the ordered Heegaard
splittings of the closed manifolds induced this way are not isotopic (see
[LM2] for an extension of this result to regular Heegaard splittings).

Non-isotopic surfaces in 2-bridge knot complements which give non-
isotopic ordered Heegaard splittings of the closed 3-manifolds K(m/n)
where obtained by a completely different method in [BM].
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4.2. One Relator Quotients of Free Products of Cyclics

Let G be a group which is the one relator quotient of a free product of
cyclic groups,

G= (x| x| ) KWl gy ey %)™

with w(x,, .., x,) # x*, p,>2 for all i, k and with m > 2. For the simplicity
of the computations we assume that the exponents p; are pairwise relatively
prime and odd.

PROPOSITION 4.5. Two generating systems u={x%{,..,x%} and v=
{xV, . xiny, with 0<u;, v, <p,, are Nielsen equivalent if and only if

v;=tu,modp, for all i=1, ., n

Proof. The “if” direction of the proof is obvious. For the “only if”
direction we prove that the image of .47(v, u) in A"(G), is not zero. For this
purpose we use a representation technique described in [FHR . There it is
shown that the group G possesses a representation g:ZG — PSL,(C)
which is faithful on each factor {x,|x/> and also on the subgroup of G
generated by w(x,, .., x,,). Using the same methods as in the proof given in
[FHR] one can show that there is a representation p: ZG — SL,(C) which
is faithful on the same subgroups of G. The element A4"(v, u) is a product
of cyclotomic units in some field Q(¢), where £ is a root of unity. The
calculations performed in [LMI1] for Fuchsian groups generalize
straightforwardly to give the above claim.

4.3. Lifting Automorphism to Free Groups

Let F(a, b) be the free group with basis @, b and set w=w(aq, b)=
ab*ab~*a~'€ F(a, b) for an arbitrary integer k. Consider the group

G={a biw@a ', wh 'w NHwbw wa ,wb 'w ) 'h >

For any keZ the group G admits an involution ¢:G — G defined by
1,.,—1

pla)=a ! and g(b)=wb " 'w

PROPOSITION 4.6. The involution ¢ does not lift to an automorphism of
F(a, b) for any ke Z — {0, 1, —1}; ie., ¢ is non-tame.'

Proof. It suffices to show that the generating system ¢(a), ¢(b)
of G is not Nielsen equivalent to a, b We consider the quotient map

"An interesting (somewhat disguised) application of .4°(G) has been given recently
by Bryant er al. [BGLM], who showed that E.StShr’s automorphism of F,/[F,, F,] is
non-tame.
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0,:ZG - ZG/[ G, G]. Using the fundamental formula for Fox derivatives
one calculates that o,(/,,,) is generated by

(1-b)(—-a'—a b *+a?)
+2a '—a v *4+a b F—a )1 +abk—a))

Hence mapping ¢,(a) and o, (b*) both to (1+./—3)/2 gives a map
v: ZG/[G, G] - R with v(o,(/,,,)) =0 and v(c,(+g)) a 6th root of unit
y for all ge G. The representation o, maps (3{¢(a), ¢(b)}/é{a, b}) to a
lower triangular matrix with —g ' and —ab '+ a(a—1)(1 —b*)b "' as
diagonal entries. Hence we obtain

det vo, (0{¢(a), (b)}/0{a, b})=vo,(a” 'b7").

Choosing for o,(b) an appropriate |k |th root of (1 +\/——_3)/2 gives for
vo,(a'b™') a number which is not a 6th root of unity. Applying
Theorem II gives the proposition. ||
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