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Abstract 

This paper is devoted to so-called semianalytical plate analysis, based on combined application of finite element method (FEM) 
[1,2] and discrete-continual finite element method (DCFEM) [3-11]. Kirchhoff model is under consideration. In accordance with 
the method of extended domain, the given domain is embordered by extended one. The field of application of DCFEM comprises 
structures with regular (constant or piecewise constant) physical and geometrical parameters in some dimension (“basic” 
dimension). DCFEM presupposes finite element mesh approximation for non-basic dimension of extended domain while in the 
basic dimension problem remains continual. Corresponding discrete and discrete-continual approximation models for 
subdomains and coupled multilevel approximation model for extended domain are under consideration. Brief information about 
software and verification sample are presented as well. 
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1. Formulation of the problem and notation system 

Let’s consider problem of analysis of plate loaded by concentrated force with hinged ends (cross-sections) along 
basic dimension (Fig. 1). Some elements of notation system is presented at Fig. 1 as well. 

Fig. 1. Considering structure (thin plate). 

Let’s  be domain occupied by structure, }0,0:),({ 221121 lxlxxx , where 21  and 

2,1},,0:),({ 1,22,21121 kxxxlxxx b
k

b
kk ; 21, xx  are coordinates ( 2x  corresponds to basic dimension); 

01,2
bx , 1,22,2 lxb , 22,21,23,2 lllxb  are coordinates of corresponding boundary points (cross-sections) along basic 

dimension; 1  and 2  are subdomains of ; 1  and 2  are extended subdomains, embordering subdomains 

11  and 22 ; 21 ; dcdc
i Nix 1,1 ...,2,,1,  are coordinates (along 1x ) of nodes (nodal lines) of discrete-

continual finite elements, which are used for approximation of domain 1 ; )1( 1
dcN  is the number of discrete-

continual finite elements; fefe
i Nix 1,1 ...,2,,1,  and fefe

j Njx 2,2 ...,2,,1,  are coordinates (along 1x  and 2x ) of nodes of 

finite elements, which are used for approximation of domain 
2 ; )1( 1

feN  and )1( 2
feN  are numbers of finite 

elements along coordinates 1x  and 2x .

Two-index notation system is used for numbering of discrete-continual finite elements. Typical number of has the 
form ),( ik , where k  is the number of subdomain, i  is the number of element (along 1x ). Three-index system is used 

for numbering of finite elements. Typical number of has the form ),,( jik , where k  is the number of subdomain, i  and 

j  are numbers of elements (along 1x  and 2x ). Let’s 
111 NNN dcfe  and 1,1,1,1 ...,2,,1, Nixxx i

dc
i

fe
i .

2. Discrete-continual approximation model for subdomain 

Discrete-continual approximation model is used for two-dimensional problems. It presupposes mesh 
approximation for non-basic dimension of extended domain (along 1x ) while in the basic dimension (along 2x )

problem remains continual. Thus extended subdomain 1  is divided into discrete-continual finite elements  

1

1
,11

1N

i
i ; },:),({ 2,221,21,11,121,1

bb
iii xxxxxxxx .                                                                           (1) 

Flexural rigidity, Poisson’s ratio and bedding value for discrete-continual finite element are defined by formulas: 

1,1,11,1,11,1,1 ;;DD iiiiii ;                                                                                                                    (2) 
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where i,1
 is the characteristic function of element i,1

; kh  is thickness of plate; kE~  is the modulus of elasticity of 

material of plate. Let’s 1w  be deflection of plate at subdomain 1 .
Basic nodal unknown functions are the following functions: 

),(),( 21121
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ii ;                                                          (4) 
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)1( jxxyxxz jj .                                                                                                                  (5) 

Thus, 4,3,2,1),,( 21
)1( jxxy j  and 4,3,2,1),,( 21

)1( jxxz j  are basic nodal unknown functions (superscript 

hereinafter corresponds to the number of considered subdomain i.e. 1 ). Thus for node ),1( i  we have the following 

unknown functions: 4,3,2,1),( 2
),1( jxy i

j  and 4,3,2,1),( 2
),1( jxz i

j .

Polynomial (cubic) approximation along 1x  is used for 4,3,2,1),( 2
),1( jxy i

j  within discrete-continual finite 

element. Approximation formulas for 4,3,2,1,)1( jz j  can be obtained after derivation in accordance with (5). 

DCFEM is reduced at some stage to the solution of systems of 18N  first-order ordinary differential equations: 

)(
~

)()( 2121121 xRxYAxY ,             (6) 

where )( 21 xY  is global vector of nodal unknown functions (subscript corresponds to the number of subdomain 1 ),

TTTTT yyyyxYY ])()()()([)( 4,13,12,11,1211 ;                                                                                                       (7) 
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1A  is global matrix of coefficients of order 18N ; )(
~

21 xR  is the right-side vector of order 18N .
Correct analytical solution of (6) is defined by formula 

)()()( 2112121 xSCxExY ,                                                                                                                                      (9) 

where 
1C  is the vector of constants of order 18N ;

)()()( 2,2211,22121
bb xxxxxE ; )(

~
)()( 212121 xRxxS ;                                                                               (10) 

)( 21 x  is the fundamental matrix-function of system (6), which is constructed in the special form convenient for 
problems of structural mechanics [3];  is convolution notation. 

3. Discrete (finite element) approximation model for subdomain 

Discrete (finite element) approximation model for the considering two-dimensional problems presupposes finite 
element approximation along 1x  and 2x . Thus extended subdomain 2  is divided into finite elements  
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Flexural rigidity, Poisson’s ratio and bedding value for finite element are defined by formulas: 

2,,2,,22,,2,,22,,2,,2 ;;DD jijijijijiji ;                                                                                                    (12) 
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where ji ,,2
 is the characteristic function of element ji ,,2

,

Basic nodal unknowns are nodal values of function of deflection of plate and corresponding derivatives with 
respect to 1x  and 2x  (deflection angles), i.e. the following functions 
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Thus for node ),,2( ji  we have the following unknown functions: ),,2(
1
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2

jiy  and ),,2(
1

jiz .

Formula for approximation of deflection ),( 212 xxw  within discrete-continual finite element ji ,,2  has the form: 
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where 12...,2,,1,),,2( pji
p  are polynomial coefficients.  

In other words, we find it convenient to use polynomials as form functions, which are defined by 12 coefficients (the 
fourth-order polynomials with several zero coefficients can be used). It should be noted that formula (15) has certain 
advantages. In particular, deflection ),( 212 xxw  along line constx1  or line constx2  is described by cubic 
polynomial. All of the external boundaries and boundaries between the elements consists precisely of such lines. Since 
the third-order polynomial is uniquely defined by four coefficients, displacement along the boundary are uniquely 
determined by nodal displacements and nodal deflection angles at the ends of this boundary. Function ),( 212 xxw  is 
continuous along any boundary between elements because values of polynomials at the ends of the boundary are the 
same for the adjacent elements. Besides, it can be noted that the gradient of function ),( 212 xxw  with respect to normal 

to any boundary is described by third-order polynomial along this boundary (for instance, function ),( 2121 xxw
along line constx1 ). Since we have only two given values of deflection angles at these lines, the third-order 
polynomial is ambiguously determined and deflection angle may be  discontinuous (i.e. continuity of the first-
order derivatives at boundaries between several finite elements is not provided). Thus, we have so-called 
nonconforming form function and nonconforming finite elements [12-19]. 

We should introduce additional nodal basic unknown, i.e. nodal value of function (mixed derivative) 

),(),(),( 21
)2(

22122121
)2( xxzxxwxx                                                                                                                (16) 

in order to obtain conforming finite elements. Corresponding formula instead of (15) has the form 
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where ),( 212 xxw  is defined by formula (15); 16...,2,,1,),,2( pji
p  are polynomial coefficients. 

As known, FEM is reduced to the solution of systems of 214 NN  linear algebraic equations: 

222 RYK ,                                       (18) 
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where 
2U  is global vector of nodal unknowns (subscript corresponds to the number of subdomain 2 ),
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2K  is global stiffness matrix of order 214 NN ;
2R  is global right-side vector of order 214 NN  (global load vector). 

4. Multilevel approximation model for domain 

System (18) can be rewritten for all nodes with indexes 21 Nj  (i.e. bb xxx 3,222,2 ) in the following form 

(resolving system of )2(4 21 NN  linear algebraic equations): 

222

~~ RYK ,                                      (21) 

where 2

~K  is reduced global stiffness matrix of size ]4[)]2(4[ 2121 NNNN ; 2

~R  is reduced right-side vector of order 

)2(4 21 NN .

Boundary conditions at section bxx 1,22
 (hinged edge) has the form ( 14N  equations): 

11,2
),1(

1 ...,2,1,,0)0( Nixy bi ; 1,2
),1(

1 ...,2,1,,0)0( Nixz b
k

i ;                                                                  (22) 

1,2
),1(

3 ...,2,1,,0)0( Nixy b
k

i ; 1,2
),1(

3 ...,2,1,,0)0( Nixz b
k

i .                                                                 (23) 

Equations (22)-(23) can be rewritten in matrix form: 

11,211 )0( gxYB b ,                                                                                                                                                (24) 

where 
1B  is matrix of boundary conditions of size 11 84 NN , which can be constructed in accordance with 

algorithm presented at Table 1; 
1g  is the zero vector of order 14N  (i.e. 01g ).

Table 1. Algorithm of construction of matrix 
1B  (All other elements of matrix 

1B  are equal to zero). 

Numbers (indexes) of elements Element value Corresponding boundary condition 

1...,2,,1),12,( Niii 1 The first equation from (22) 

11 ...,2,,1),2,( NiiiN 1 The second equation from (22) 

111 ...,2,,1),124,2( NiiNiN 1 The first equation from (23) 

111 ...,2,,1),24,3( NiiNiN 1 The second equation from (23) 

After substitution of (9) into (24) it can be obtained that 

)0()0( 1,211111,211
bb xSBgCxEB    or   

111 GCQ ,                                                                                       (25) 

where 1Q  is the matrix of size 11 84 NN ;
1G  is the vector of order 14N ;

)0( 1,2111
bxEBQ ; )0( 1,21111

bxSBgG .                                                                                                   (26) 
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Boundary conditions at section bxx 2,22  (perfect contact) has the form ( 14N  equations): 

1,...,2,1,,)0( 1
),,2(

12,2
),1(

1 jNiyxy jibi ; 1,...,2,1,,)0( 1
),,2(

12,2
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1 jNizxz jibi ;                              (27) 
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),,2(

212,2
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where )( 2
),1(

2 xM i , )( 2
),1(

2 xV i  and )(][ 2
),1(

21 xM i , )(][ 2
),1(

21 xV i  are nodal functions (after corresponding averaging) of 

bending moment 2M , adjusted shear force 2V  and corresponding derivatives with respect to 1x  ( 21M , 21V ) for discrete-

continual finite element ),1( i ; ),,2(
2

jiM , ),,2(
2

jiV  and ),,2(
21 ][ jiM , ),,2(

21 ][ jiV  are nodal bending moment 2M , adjusted shear 

force 2V  and corresponding derivatives with respect to 1x  ( 21M , 21V )  for finite element ),,2( ji ; 1j .
Equations (27)-(30) can be rewritten in matrix form: 

222,212 )0( YBxYB b ,                                                                                                                                              (31) 

where 
2B  is matrix of boundary conditions of size 11 88 NN , which can be constructed in accordance with method 

of basis variations [3-11]; 
2B  is matrix of boundary conditions of size 211 48 NNN , which can be constructed in 

accordance with method of basis variations [3-11]. 
After substitution of (8) into (22) it can be obtained that 

)0()0( 2,2122212,212
bb xSBYBCxYB    or   222,211,2 GYQCQ ,                                                                      (32) 

where 
1,2Q  is the matrix of size 11 48 NN ;

2,2Q  is the matrix of size 211 48 NNN ; 2G  is the vector of order 18N ,

)0( 2,2121,2
bxEBQ ; 22,2 BQ ; )0( 2,2122

bxSBG .                                                                                  (33) 

Boundary conditions at section bxx 3,22  (hinged edge) has the form ( 14N equations): 

21
),,2(

1 ,...,2,1,,0 NjNiy ji ; 21
),,2(

1 ,...,2,1,,0 NjNiz ji ;                                                              (34) 

21
),,2(

1
2
2 ,...,2,1,,0][ NjNiy ji ; 21

),,2(
1

2
21 ,...,2,1,,0][ NjNiy ji .                                             (35) 

Equations (34) and (35) can be rewritten in matrix form: 

323 gYB ,                                                                                                                                                              (36) 

here 
3B  is matrix of boundary conditions of size 211 44 NNN , which can be constructed in accordance with method 

of basis variations [3-11]; 
3g  is the zero vector of order 14N  (i.e. 03g ).

Thus, corresponding coupled system of 121 84 NNN  linear algebraic equations with 121 84 NNN  unknowns has 
the form: 
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It should be noted that boundary conditions (36) can be taken into account automatically within construction of 
global stiffness matrix and global right-side vector corresponding to subdomain 

2 . Then we get (instead of (28)): 
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~~~~
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QQ
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where 2

~~K  is corresponding reduced global stiffness matrix of size ]4[)]1(4[ 2121 NNNN ; 2

~R  is corresponding 

reduced global right-side vector of order )1(4 21 NN .
Bending moments, torque moments and shear forces are computed according to well-known formulas after 

solving of system (38). 

5. Software and verification samples 

We should stress that all methods and algorithms considered in this paper have been realized in software. The 
main purpose of Analysis system CSASA2DPL (DCFEM + FEM) is semianalytical plate analysis (Kirchhoff 
model), based on combined application of FEM and DCFEM. Programming environment is Microsoft Visual Studio 
2013 Community and Intel Parallel Studio 2015XE with Intel MKL Library [20-22]. Software is designed for 
Microsoft Windows 8.1/10. 

Corresponding verification samples (ANSYS Mechanical 15.0 [6,7] was used for verification purposes) proved that 
DCFEM is more effective in the most critical, vital, potentially dangerous areas of structure in terms of fracture 
(areas of the so-called edge effects), where some components of solution are rapidly changing functions and their 
rate of change in many cases can’t be adequately taken into account by the standard FEM [1]. 
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