combined with the use of an inverse optimization method, can be used to generate IMPT plans. These plans can be used in future dosimetric comparisons with IMRT, the MR Linac and conventional IMPT. Finally, it shows the dosimetric feasibility of IMPT in a 1.5 T magnetic field.

OC-0163
Does the clinical benefit of IMPT persist if plans are made robust against setup and range errors?
L.V. Van Dijk1, R.J.H.M. Steenbakkers1, B. Ten Haken2, H.P. Van der Laan1, A.A. Van ‘t Veld1, N.M. Sijtsema1, J.A. Langendijk1, E.W. Korevaar1
1University of Groningen University Medical Center Groningen, Radiation Oncology, Groningen, The Netherlands
2University of Twente, Institute for Biomedical Technology and Technical Medicine (MIRA), Enschede, The Netherlands

Purpose/Objective: To compare the clinical benefit of robust optimized Intensity Modulated Proton Therapy (IMPT) with current photon radiotherapy (IMRT) and PTV-based IMPT for head and neck cancer (HNC) patients. The clinical benefit is quantified in terms of both Normal Tissue Complication Probability (NTCP) and target coverage in the case of setup and range errors.

Materials and Methods: For 10 HNC patients, PTV-based IMRT (7 fields), robust optimized (minimax) and PTV-based IMPT (2, 3, 4, 5 and 7 fields) plans were tested on robustness, meaning that at least 98% of the CTVs had to receive ± 95% of the prescribed dose in 90% of the possible systematic setup and range error scenarios. Robust optimized plans differed from PTV-based plans in that they target the CTV and penalize possible error scenarios, instead of using the static isotropic CTV-PTV margin. Perturbed dose distributions of all plans were acquired by simulating in total 8060 setup (+/- 2.5mm) and range error (+/-3%) combinations. Furthermore, NTCP models for xerostomia and dysphagia were used to estimate the clinical benefit of IMPT versus IMRT.

Results: The robustness criterion was met in the IMRT and minimax IMPT plans in all error scenarios, but for PTV-based IMPT plans this was only the case in 4 out of 10 patients. The volumes receiving deficient dose were sometimes centrally situated in the CTV (Figure), indicating that expansion of the CTV-PTV margin would not solve the underdosage. Mean doses to the major salivary glands and swallowing related organs at risk (OAR) were generally lower with minimax than with PTV-based IMPT. Xerostomia and dysphagia NTCP values calculated for IMRT plans were reduced by 16.4% (95% CI; 10.1-22.7%) and 9.9% (95% CI; 4.9-14.9%) with minimax IMPT in the 5 patients with the largest NTCP reductions. In the other 5 patients the average NTCP reduction was smaller (xerostomia: 4.7% (95% CI; 1.0-8.3%); dysphagia: 3.0% (95% CI; -0.2-6.2%)). Increasing the number of fields did not contribute to plan robustness, but improved organ sparing.

Conclusions: The clinical benefit in terms of NTCP of robust optimized (minimax) IMPT compared to IMRT is equal or even greater than that of PTV-based IMPT in head and neck patients. Furthermore, the target coverage of minimax IMPT plans in the presence of setup and range errors was comparable to that of current photon radiotherapy (IMRT) plans.

OC-0164
Calibration and validation of kV-CBCT in room imaging for dose calculation and adaptive radiotherapy
M. Soumokil-de Bree1, T.S. Rosario2, M.A. Palacios2
1VUMC and INHOLLAND University, MBRT/ Radiotherapy, Haarlem, The Netherlands
2VUMC, Radiotherapy, Amsterdam, The Netherlands

Purpose/Objective: To investigate the accuracy of dose calculation on cone beam CT (CBCT) data sets after HU-RED calibration and validation in phantom studies and clinical patients.

Materials and Methods: Calibration of HU-RED curves for kV-CBCT were generated for three clinical protocols (H&N, thorax and pelvis) using a Gammex RMI phantom ® (Gammex RMI, Middleton, WI) with human tissue equivalent inserts and additional perspex blocks to account for patient scatter. Two calibration curves per clinical protocol were defined, one for the Varian Truebeam 2.0 and another for the OBI systems (Varian Medical Systems Inc., Palo Alto, USA). Differences in HU values with respect to the CT-calibration curve were evaluated for all the inserts.

Four radiotherapy plans (breast, prostate, H&N and lung) were produced on an anthropomorphic phantom (Alderson) to evaluate dose differences on the kV-CBCT with the new calibration curves with respect to the CT based dose calculation. Dose calculation was performed in Eclipse TPS using an anisotropic analytic dose calculation algorithm (AAA, Varian Medical Systems Inc.). Dose differences were evaluated according to the D2%, D98% and Dmean metrics extracted from the DVHs of the plans and g- evaluation (2%, 1mm) on the three planes at the isocenter for all plans. Clinical evaluation was performed on ten patients and dose differences were evaluated as in the phantom study.

Results: HU values on the kV-CBCT calibration curves exhibited deviations with respect to the CT-calibration curve on the low- (lung) and high-density (bone) inserts. These deviations were found to be ca. 250 HU. Differences between the Truebeam 2.0 and OBI-system for HU-RED curve were ca.14 %. Radiotherapy plans calculated on the anthropomorphic phantom showed very good agreement with the CT-based calculated plans (Table 1, Figure 1).
Clinical evaluation in ten patients showed very good agreement with the dose calculation on the CT as expressed by the D2%, D98% and Dmean of the delineated structures. Several drawbacks were also found: the limited FOV of the kV-CBCT, which impairs the dose evaluation of those structures in its vicinity and the difference in beam profile of the kV-CBCT with respect to the CT, reducing the accuracy of the dose estimation at nearby the surface of the patient.

Conclusions: The generation of three kV-CBCT specific HU-RED curves for the pelvis, thorax and H&N cases resulted in accurate dose calculation on kV-CBCT images. Very good agreement was found with the CT-based dose calculated plans according to DVH dose parameters and g-evaluation. Limitations of the kV-CBCT warrant some caution when evaluating dose differences for adaptive radiotherapy.

OC-0165
FSD measurements are obsolete when treating prostate IMRT and VMAT
E. Forde1, J. Booth2, T. Eade2, A. Kneebone3, M. LeMotte2, M. Leech1
1Trinity College Dublin, Discipline of Radiation Therapy, Dublin, Ireland Republic of
2Royal North Shore Hospital, Northern Sydney Cancer Centre, Sydney, Australia

Purpose/Objective: Given the complexity of modulated fields, the validity of the traditional central axis FSD measurement is now being questioned. This study aims to quantify the impact a change in patient body contour, away from the central axis, has on target dose when treating those three planes at isocenter showed a pass-rate higher than 98% for all cases. Clinical evaluation in ten patients showed very good agreement with the dose calculation on the CT as expressed by the D2%, D98% and Dmean of the delineated structures. Several drawbacks were also found: the limited FOV of the kV-CBCT, which impairs the dose evaluation of those structures in its vicinity and the difference in beam profile of the kV-CBCT with respect to the CT, reducing the accuracy of the dose estimation at nearby the surface of the patient.

Conclusions: The generation of three kV-CBCT specific HU-RED curves for the pelvis, thorax and H&N cases resulted in accurate dose calculation on kV-CBCT images. Very good agreement was found with the CT-based dose calculated plans according to DVH dose parameters and g-evaluation. Limitations of the kV-CBCT warrant some caution when evaluating dose differences for adaptive radiotherapy.

OC-0166
The importance of creating an ITV with variable bladder filling status when using IMRT to treat cervical cancer
N. Bhuva1, A. Patel1, L. Roden1, A. Taylor1
1Royal Marsden Hospital, Radiotherapy, London, United Kingdom

Purpose/Objective: The use of IMRT for cervical cancer can significantly reduce dose to normal tissue. However, there is substantial uterine motion during treatment resulting from variation in bladder and rectal filling and this risk of a geographical miss has limited the implementation of IMRT. A population based CTV-PTV margin requires 15-30mm to ensure coverage throughout treatment but this encompasses large volumes of normal tissue. Daily online imaging with an adaptive approach may reduce margins but is very resource intensive. IMRT can still be safely introduced if internal motion throughout treatment can be accurately predicted to individualise volumes.

Our aim was to assess whether variable bladder filling scans can be used to predict uterine position during treatment and compare methods for generating the final PTV.

Materials and Methods: A retrospective analysis was performed of 11 patients treated with primary chemoradiotherapy for cervical carcinoma. Patients underwent ‘bladder full’ radiotherapy planning scans and ‘bladder empty’ pre-treatment diagnostic imaging, with images co-registered on the treatment planning software. The uterus and cervix were contoured on the planning scan to generate the CTVunre and an isotropic 15mm expansion made to generate the unmodified PTVunre. A manually modified PTV was made by the clinician taking into account the change in uterine position between scans. CBCT verification was performed weekly during treatment. The unmodified and