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'All-or-none' mechanism of the molten globule unfolding 
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The Gdm-HCl-induced unfolding of bovine carbonic anhydrase B and S. at~ret~s fl-lactamase was studied at 4°C by a variety of  methods. With 
the use of FPLC it has been shown that within the transition from the molten globule to the unfolded state the distribution function o f  molecular 
dimensions is bimodal. This means that equilibrium intermediates between the molten globule and the unfolded states are about ,  i.¢. the molten 

globule unfolding follows the "all-or-none' mechanism. 
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1. I N T R O D U C T I O N  

The molten globule is a state of  protein molecules 
which, in many cases, is thermodynamically stable 
under mild denaturing conditions. It is almost as com- 
pact as the native state (N), has a pronounced secondary 
structure and differs from N mainly by the absence of  
~ight packing of  side chains in the protein core and by 
a substantial increase of  fluctuations [1-4]. The molten 
globule state (MN) accumulates during the renaturation 
of  globular proteins from the fully unfolded state (U) 
[1-8] and therefore may play a universal role in protein 
folding [7]. It has been also suggested [9] and shown 
experimentally that the molten globule is trapped by 
Gro-EL chaperons ([10] and unpublished data of  G.V. 
Semisotnov) and is involved into protein insertion into 
the membrane [11]. All this determines the interest in the 
structural and thermodynamic properties of  MG. 

It has been shown [1,12,13] that the transition be- 
tween N and M G  is tl'te 'all-or-none' one, just as in other 
types of  protein denaturation [14]. However, the ques- 
tion remained as to whether MG is separated from U 
by another all-or-none transition, or if it is no more than 
a limiting case of  the 'squeezed' coil and which can 
gradually 'swell' into a lull U. 

Here we show that at least Gdm-HCl-induced unfold- 
ing of  the molten globule is an all-or-none transition. 
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Abbreviations: N, native state; MG, molten globule state; U, unfolded 
~tate of protein moiu,'ui~:s; BCAB, bovit~¢ carbolfie anhydrase P.,; 
Gdm-HCI, guanidinium hydrochloride; ANS, l-anilino-naphthalene- 
8-sulphonatc; CD, circular dieh~oism; U¥, ultraviolet. 

This means tlmt a protein molecule can be in three 
discrete states: N, MG and U. 

2. MATERIALS A N D  M E T H O D S  

2. I. Material.~" 
Bovine carbonic anhydrase B (BCAB) was purified from bovine 

blood erythroc),tes by N.V. Kotova (Institute of  Protein Research) 
according to II 5] with minor modification,c, fl-Laetama=~ was purified 
from Staphylococcus aureus (strain PC l) by T. Picard (University of 
Newcastle-upon Tyne). 

2.2. Preparatlon qf protein solutlotts 
The proteins were incubated at 4°C for 40 h in 100 mM sodium 

phosphate buffer, pH 6.8, containing the desired Gdm-HC! concentra- 
tion (plus 0.01 mg/ml ANS in the ~a~ of  fluorometri¢ experiments). 
Protein concentrations for FPLC mea,~urements were about 0.01 mE/ 
ml, for fluorometric measurements 0.0Ol mg,'ml, for activity measure- 
ments 0.1 mg/ml, for activity ch~k just after chromatography 1.0 
mg/ml and for circular dichroism (CD) measurements 0.8 m~ml. 

2.3. F.quipment 
Size-exclusion chromatography (SEC-FPLC) experimenl~ were car- 

ried out in a cold room. using a Superose-12 column and FPLC 
equipment (Pharmacia. The Netherlands). CD measurements were 
made with a Jaseo-600 spectropolarimeter (Japan). Enzymatic activity 
measurements were made using a Spec.ord M40 spectrophotometer 
(Germany). Fluorescent measurements were made with a Amlneo 
(SPF-1000CS) corrected spectrofiuorimeter (USA). All these instru- 
ments were equipped with a temperature-controlled holder. 

2.4. E.vperimet~tal procedures 
Size exclusion chromatography (SEC-FPLC) measurements were 

made by loading a protein stock solution (0.01 mg/ml) with the desired 
Gdm-HCI concentrations on to a column, equilibrated by the same 
buffer with the same Gdm-HCI concentration. The flow rate was 20 
ml/h. The elution profiles were obtained with the use o fa  2158 Uvieord 
SD (LKB) equipped with a 226 nm filter. 

Esterase activity of  BCAB was measured by the rate of  increa~ of 
absorption at .,.,,,~a° nm, ::'hieh is the m ~easa.",z- of p-nitrophenylaeetate 
cleavage [15]. The reaction was initiated by adding 20 liters of  protein 
stock solution to the 2,000 liters of reactive mi~.ture eonmlning p- 
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nitrophenylacetat¢ ( ~  0.18 m~mi). For the d l ~ k  o~' activity in ,~am- 
pies just after chromatography the protein stock solution (1 mg/ml) 
was loaded as above, the elution peak. which corresponds to the 
cona~act pro~m m6~eca~es, was cdhectdz an~ ~ ' ~  d~ li~s sara0~e was 
added xo 6 ~  ~3ters d the rm~efwe m~x~ure )see ahoy=). 

Enzymatic activity or #-Iactamase was measured by the rate of 
decrease of absorption at 23~ am, which is the measure of benz~lpen- 
icillin cleavage [16]. The reaction was initiated by addin~ 20 liters of 
protein stock solution to the 2,000 I of  reactive mixture contair~ing 
b~'nz~l~nicillin (.-- 0A m~/ml~. 

The AN S binding was registered by the characteristic increase ol'the 
ANS fluorescence intensity at 480 nm [17] in the presence of BCAB 
([BCABI/[ANS] = 1/50). 

3. RESULTS AND DISCUSSION 

The most direct approach to establish an all-or-none 
transition is to show that molecules can be only in one 
of the two states in the transition region, i.e. that their 
distribution function is bimodal. If these two states sub- 
stantially differ by their volumes, and if the exchange 

between these states is slower than a characteristic time 
of chromatography (which is about IO-20 min), the 
bimodal distribution can be demonstrated by. the hi=hlv. 

The curves of urea- or Gdm-HCl-induced denatura- 
tion (N = U transition) of  proteins on a column (mon- 
itored either by relative areas of these two peaks or, for 
fast exchange, by the position of an average peak) coin- 
c~de with ~he curves monitored by far UV CO in soJ~u- 
tion [18,19] and our unpublished data). We have shown 
that this is true also for MG = U transition of proteins 
which denaturate through MG (unpublished). More- 
over it was shown that Gdm-HCl-induced N = MG 
transition in BCAB (monitored by esterase activity) co- 
incides on a column and in solution (see below, Fig. 1B). 
Thus, a column does not shift the equilibrium between 
N, MG and U and therefore can be used for a quamita- 
tive study of  protein denaturation. 

The time of protein renaturation from U (i.e. of  
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Fig. i. Gdm-HCl-indueed equilibrium unl'oldint of bovine carbonic anhydrase B at 4°C. (A) Elation profiles of size exclusion cllromatography 
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Fig. 2. Gdm-HCl-induccd equilibrium unfolding of  S. uuretts fl.lactamase at 4°C, monitored by (A) size e~clusion chromatography (FPLC). (B) 
Decrease of molar el!ipticity at 270 nm (o) and of enzymatic activity (e). The insert presents the far UV CD spectra at 0.0.63 and 4,83 M Gdm-HCI 

(curves 1, 2 and 3, respectively). 

U ~ N transition) can be as large as ~ 40 min at 23°C 
[1,2], which suggests the possibility of observing a bimo- 
dal equilibrium size distribution even at room tempera- 
ture. This distribution has been actually observed for 
equilibrium urea-induced unfolding of myoglobin [18] 
and of bovine serum albumin [19] at 25°C. 

The U -> MG transition usually takes place in a few 
seconds [4,7]. However, this transition takes much more 
time for some proteins in cool Gdm-HCI solutions. For 
example, U--~ MG transition takes ~ 40-50 rain in 
BCAB at 1.5 M Gdm-HCI and in S. aureus[3-1actamase 
at 0.6 M Gdm-HCI (data not shown). Therefore one can 
expect that at least for these two proteins U = MG 
exchange can be slow enough to permit separate obser- 
vations of MG and U by FLPC. 

Figs. I A and 2A show elution profiles for Gdm-HCI- 
induced unfolding of these proteins at 4°C. At moderate 
concentrations of  Gdm-HCI (up to ,.- 1.3 M for BCAB 
and ~ 0.2 M for ,0-1actamase) a single elution peak is 
observed the position of  which virtually coincides with 
that of the native protein. At a higher Gdm-HCI con- 
centration a second peak appears which corresponds to 
a more expanded state of protein molecules. The inten- 
sity of  this peak increases with Gdm-HCI concentration 
at the expense of  the intensity of Ibe "oJd' peak and 
finally (at ~ 1.7 M Gdm-HCI tbr BCAB and -,- 1.0 M 
for ff-lactamase) on)y non-compact molecules remain. 
Thus, the Gdm-HCl-induced unfolding of  BCAB and 

fl-lactamase is an "all-or-none' transition accompanied 
by a substantial increase of  molecular dimensions. 

At Gdm-HCl-induced unfolding of  BCAB [20], fl- 
lactamase [21] and many other proteins [4], activity and 
near UV CD change at smaller Gdm-HCl concentra- 
tions than far UV CD. This means the existence o f two  
transitions: the first being interpreted [I] as the denatu- 
ration of a protein (i.e. N ~ MG transition), while tile 
second is interpreted as the further unfolding of a pro- 
tein (i,e. MG ~ U transition). 

The all-or-none transition observed by size exclusion 
chromatography is certainly a MG ---, U rather than a 
N --o MG transition. Ill Pact, Figs. 1B and 2B show that 
the denaturation, monitored by activity and near UV 
CD, occurs mainly between 1.0 and 1.5 M Gdm-HC! for 
BCAB, and between 0.1 and 0.6 M Gdm-HCi for ,8- 
lactamase. On the other hand, the all-or-none transition 
monitored by FPLC occurs between 1.3 and 1.8 M 
Gdm-HCI for BCAB and between 0.35 and 0.9 M Gdrn- 
I-ICI for/fl-lactamase. Thus, although these transitions 
overlap partially (especially in/~-lactamase), they are 
resolved clearly enough to exclude the possibility that 
the all-or-none transition monitored by FPLC may be 
N --~ MG transition. 

Fig. I B shows also that activity o f  BCAB collected 
from an elution peak of FPLC correspondint3 to t:om- 
pact protein molec~|es follows the same Gdm-HCi de- 
pendence as that measured without a column. Such a 
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coincidence shows that also on a column the N ~ MG 
transition occurs mainly before the ~tppearance of the 
second elution peak. 

Thus, we can conclude that the all-or-none Gdm- 
HCI-induced transition monitored by FPLC is  riot the 
transition between N and the denatured states. Rather 
it is the transition between two denatured state, a com- 
pact and an expanded one. The following experiments 
show that this intermediate compact state fulfills all 
criteria for the typical molten globule [1-4]: 

(i) The main elution peak for the intermediate states 
of  BCAB (Fig. IA) and ,8-1actamase (Fig. 2A) practi- 
cally coincides with that of  N. Thus, these intermediates 
are nearly as compact as N. 

(ii) Far UV CD spectra of these intermediates for 
BCAB (Fig. 1B) and for fi-lactamase (Fig. 2B) are very 
pronounced, which suggests that these intermediates 
have a pronounced secondary structure. 

(iii) Near UV CD spectra of BCAB and fl-laetamase 
(not shown) almost completely vanish in the intermedi- 
ate states, which shows the absence of an asymmetrical 
rigid environment of  aromatic side groups. 

(iv) The fluorescence intensity of the hydrophobic 
probe (ANS) in the presence of  BCAB (Fig. IC) has a 
sharp maximum at 1.45 M Gdm-HCI. This shows that 
BCAB strongly binds ANS under these conditions, 
which is a specific test for lVlG [4,6,7,17]. 

It follows that the intermediate states of  BCAB and 
fl-lactamase at moderate Gdm-HCi  concentrations cor- 
respond to MG, and therefore the observed all-or-none 
transitions (Figs. IA and 2A) are those between MG 
and a more expanded state. 

Figs. IA and 2A show also that the elution peaks of 
expanded molecules shift to smaller elution volumes 
with the increase of Gdm-HCi concentrations, suggest- 
ing the filrther increase of  molecular dimensions. 

Thus, all-or-none transitions occur not only between 
N and U [14] and Native MG [12,13], but also between 
MG and essentially U. This suggests that globular pro- 
teins can exist in at least three discrete states: N, MG 
and U. These three states of  globular proteins resemble, 
to some extent, the three states of  low molecular weight 
compounds, the crystal, the liquid and the gas. Thus, 
the molten globule is not like a squeezed coil, rather it 

is the real third state of  protein molecules (in addition 
to N and U described previously). 
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