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The  Shannon lower bound approach to the evaluation of rate distortion func- 
tions R(D) for countably infinite alphabet memoryless sources is considered. 
Sufficient conditions based on the Contraction Mapping Theorem for the 
existence of the Shannon lower bound RL(D) to R(D) in a region of distortion 
[0, D1], D1 > 0 are obtained. Sufficient conditions based on the Schauder 
Fixed Point Theorem for the existence of a Dc > 0 such that  R(D) = RL(D ) 
for all D ~ [0, De] are derived. Explicit evaluation of R(D) is considered for a 
class of column balanced distortion measures. Other  results for distortion 
measures with no symmetry conditions are also discussed. 

1. INTRODUCTION 

T h e  r a t e - d i s t o r t i o n  f u n c t i o n  R(D) of a source  r ep re sen t s  i ts  equ iva l en t  ra te  

sub jec t  to a f idel i ty  cr i ter ion.  Recen t ly  m a n y  resu l t s  have  appea red  o n  t he  

eva lua t ion  of  R(D) for  va r ious  sources  a n d  d i s to r t ion  measu re s  ( Je l inek ,  

1967; Gal lager ,  1968; P inks ton ,  1969; Berger ,  1970, 1971; W y n e r - Z i v ,  
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1971; Gray, 1970, 1971a, 1971b, 1973a, 1973b; Rubin, 1973). Expiicit 
evaluation of R(D) for most sources and distortion measures remains a 
formidable task although a general method for the numerical computation 
of R(D) for finite-alphabet memoryless sources is available (Blahut, 1972). 
A common approach to circumvent this difficulty is to derive the Shannon 
lower bound RL(D ) to R(D) and then to find conditions on source statistics 
and distol~ion measure for the existence of a Dc > 0 such that R(D) -~ RL(D ) 
for all values of distortion D ~ [0, D J .  Sufficient conditions for the existence 
of such a D c > 0 have been derived for finite-alphabet discrete-time memory-  
less sources by Jelinek (1967) and Pinkston (1969), for certain finite-alphabet 
discrete-time sources with memory  by Gray (1971a, 1971b, 1973a) and for 
certain Gaussian sources with memory  under square-error distortion criterion 
by Berger (1970) and Gray (1970). 

In  this paper we consider the Shannon lower bound approach to the 
evaluation of rate-distortion functions R(D) for countably infinite alphabet 
discrete-time memoryless sources. Specifically, in Section 2 we derive 
sufficient conditions for the existence of the Shannon lower bound RL(D) 
to R(D) in a region of distortion [0, D1], where D 1 > 0. In  Section 3, sufficient 
conditions for the existence of a Do > 0 such that R(D) = RL(D ) for all 
distortion D in [0, De] are derived. In  Section 4, we consider in detail the 
evaluation of rate-distortion functions under a class of column balanced 
distortion measures for a range of distortion [0, De], Dc > 0. In Section 5, 
we discuss a possible application of the results in Sections 2 and 3 to distortion 
measures with no symmetry  conditions. Conclusions are given in Section 6. 

2. THE SHANNON LOWER BOUND 

We consider the source {Xt : t = 0, 1, 2,...} to be a sequence of i.i.d. 
random variables taking on values in the source alphabet d .  d will be taken 
to be either I = {0, l, 2,...} or J ~ {..., - 1, 0, 1,...}. Let  Xt have probabili ty 
distribution p(j) = Pr[Xt = j],  j ~ A. Let  the reproduced source alphabet be 
equal to the source alphabet A and the distortion measure p: d × / i  - ,  [0, ~ )  
satisfy 

p(j,k) > p(j,j) = 0  V j : / : k , j , h ~ A .  (1) 

As usual, the assumption p(j,j) = 0 involves no loss of generality (p. 26 of 
Berger, 1971). Moreover, since for j :/= k, p(j, k) can be made arbitrarily 
small, Eq. (1) allows a broad class of distortion measures. Let  QD be the set 
of all conditional probability distrituions q(k I j ) =  Pr[output  reproduced 
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k I source produced j], j, k e A, such that Z ~ n  ZJ~A P(J, k) p(j) q(k I j) ~ D 
for each D ~ 0. Then the rate-distortion function R(D) of the source {Xt} 
with respect to the distortion measure p is defined by (Berger, 1971, p. 23) 

R(D) ~- inf I(q), 
q~QD 

where 

I(q) = ~ ~, q(k l j) P(j) log q(k I j) and 

(2) 

q(h) = ~ q(k IJ) P(J). 
j~A 

We note that if there exists a k* ~ A such that ~s~A P(J) P(J, k*) < m, then 
appropriate source coding theorems exist to give R(D) as defined by Eq. (2) 
the desired operational significance (p. 281 of Berger, 1971). 

The following theorem is useful for the evaluation of R(D). This theorem 
is equivalent to Theorem 9.4.1 of Gallager (1968) and Theorem 2.5.3 of 
Berger (1971). 

THEOREM 1. 

of nonnegative numbers satisfying 

Z As(j)p(j)exp(sp(j, k)) ~ 1 
jeA 

Then for each D >/O, we have 

R(D) = sup [sD + 

For each s ~ O, let A s be the set of all sequences {As(j): j ~ A } 

vk ~ ~ .  (3) 

p(j) log As(j)]. (4) 

Moreover, for each s ~ O, a necessary and sufficient condition for {As(j)} to 
achieve the supremum in Eq. (4) is the existence of a probability distribution 
{Q,(k): k ~ A} such that 

Y. Qs(k) exp(sp(j, k)) = [As(j)] -1, Vj e A, (5) 
kEA 

and such that equality holds in Eq. (3) for all k e A such that Qs(k) > 0. 

Let t*s(j) = As(j) p(j) in Theorem 1 and suppose we require Eq. (3) to hold 
with equality for all k E A. If, for each s ~< 0, there exists a sequence 
{/*s(j): j ~ A} of nonnegative numbers satisfying 

~s(j) exp(sp(j, k)) = 1, Vk e A, (6) 
j~A 
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then for each D >~ O, R(D) >~ RL(D), where RL(D ) is called the Shannon 
lower bound to R(D) and is given by 

RL(D) = sup [sD 4- 2 P(J) log/~(j) 4- H(X)], (7) 
s~<0 J~A 

where the entropy rate of the source H(X) = ~ . 4  P(j) logp(j) is assumed to 
be finite. For many probability distributions and distortion measures, the 
quantity to be maximized in the right-hand side of Eq. (7) is a strictly concave 
function of s (Berger, 1971, p. 92; and Jelinek, 1967). We will implicitly 
assume that this is true. Thus the supremum in Eq. (7) can be solved by 
differentiating the right-hand side of Eq. (7) with respect to s and setting it 
equal to zero, yielding the following parametrically defined equations for 
RL(D), 

RL(D~) = sns 4- H(X) 4- ~,, p(j) log/x~(j), (8) 
J~A 

-- a /z,(j) l (9) D~ ~s Ij~A , ( j )  log . 

We note that RL(D ) is well defined only for those values of distortion 
Ds in Eq. (9) with values of the parameter s for which there exist a sequence 
of nonnegative numbers { ~ ( j ) : j ~  A} satisfying Eq. (6). Moreover, from 
Theorem 1 we conclude that R(D) is equal to RL(D ) for those values of 
distortion D~ in Eq. (9) with values of the parameter s for which there exist 
a sequence of nonnegative numbers {Q~(k): k ~ A} satisfying Eq. (5). We note 
that the only condition required on this sequence is that it be a sequence of 
nonnegative numbers since any sequence {Q~(h): k ~ A} satisfying Eq. (5) 
will sum to one provided that A~(j) = t~(j)/p(j) and {/~,(j): j ~ A} satisfies 
Eq. (6). Using Eqs. (8) and (9) and an argument similar to the proof of 
Theorem 2.5.1 of Berger (1971), it can be shown that the parameter s is the 
derivative of RL(D ) at D = D~. We note that by assumption, the quantity 
to be maximized on the right-hand side of Eq. (7) is strictly concave in s, 
which along with Eq. (9) implies that dDs/ds > 0 for all values of s. We also 
note that for s = --o% since the distortion function p satisfies Eq. (1), the 
necessary and sufficient conditions given in Theorem 1 are satisfied by 
A~(j) = 1/p(j) for all j E A, which implies that R(0) = RL(O ) and D~ = 0 
at s = -- oo. Thus an interval of the parameter s, (-- o% s*], where s* > -- oo, 
corresponds to an interval of distortion Ds, (0, D*], where D* = D~, > O. 

In order to evaluate R(D) by the Shannon lower bound approach, conditions 
must be derived for the existence of RL(D ) and for the existence of a Ds > 0 
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such that R(D) = RL(D) for all D in [0, De]. For finite-alphabet memoryless 
sources, Pinkston (1969) and Jelinek (1967) have shown that a sufficient 
condition for the existence of such a D~ > 0 is that the distortion measure 
satisfies Eq. (1) and that Pr[Xt = j] > 0 for all lettersj in the source alphabet. 
Jelinek's proof depends on the fact that under these assumptions, the finite 
matrix {exp(sp(j, k))} -1 exists and approaches the identity matrix I in the 
limit as s approaches - - ~ .  An elementary perturbation argument is then 
successfully applied due to the finite dimensionality of the matrix 
{exp(sp(j, k))}. However, for the countably infinite alphabet case, such an 
argument fails due to the infinite dimensionality of the matrix {exp(sp(j, k))}. 

In Theorem 2 below, we will give sufficient conditions on the distortion 
measure p for the existence of a D 1 > 0 such that RL(D) is well-defined for 
all D in [0, D1]. The proof of this theorem based on the Contraction Mapping 
Theorem (Luenberger, 1969, p. 272) is somewhat involved and is given in 
Appendix 1. 

THEOREM 2. Suppose the distortion measure p satisfies Eq. (1) and that 
there exists a s* ~ (--o9, O) such that 

sup ~ exp(s*p(j, k)) < or. (10) 

For s ~ s*, define 

~(s) = sup ~ exp(sp(j, k)). (1t) 
k jeA 

j~:k 

Then there exists a sl~ ( -  c~, s*] such that a(sl) ~ 1 and such that there exists 
a unique sequence {/~s(j): j ~ A )  of nonnegative numbers satisfying Eq. (6) for 
each s ~ s I . Moreover we have 1 - -  a(s) ~ b~s(j) ~ l for a l l j  ~ A and s ~ s 1 . 
Thus the Shannon lower bound RL(D) exists for all D ~ [0, D1], where D 1 ~ 0 
is given by Eq. (9) with s = s 1 . 

It is interesting to note that the hypothesis of Eq. (10) prohibits all bounded 
distortion measures when A is not finite but allows all distortion measures 
which grow as fast as ln(] j --  k t ~) for some a > 0. 

In order to evaluate R(D) by the Shannon lower bound approach, conditions 
must be obtained for R(D) to be equal to RL(D ). In the next section we derive 
sufficient conditions for the existence of a De > 0 such that R(D) -~ RL(D ) 
for all D ~ [0, De]. 
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3. REGION OF EQUALITY 

From previous discussion in Section 2, R(D) = RL(D ) for those values of 
distortion Ds in Eq. (9) with values of the parameter s for which there exists 
a probability distribution {Q,(k): k ~ A) satisfying 

exp(sp(j, k)) Q.(k) = p(j)/ix,(j), Vj E A, 
k~A 

(12) 

where {/~(j):j ~ A} is the sequence of nonnegative numbers satisfying Eq. (6). 
In Theorem 3 we show the existence of a D c > 0 such that R(D) = RL(D) 
for all D ~ [0, D j ,  by showing the existence of a s~ E ( - - ~ ,  sl] such that 
Eq. (12) has a nonnegative solution {Q~(k): k E A) for each s ~ se. The 
Contraction Mapping Theorem was used in the proof of Theorem 2 to show 
the existence of a nonnegative solution to Eq. (6). Here, we need to use the 
Schauder Fixed Point Theorem (p. 96 of Schwartz, 1969). The proof of 
Theorem 3 is somewhat involved and is given in Appendix 2. 

THEOREM 3. Let the distortion measure p satisfy the hypothesis of Theorem 2, 
let s 1 be defined as in Theorem 2 and for each s <~ sl , let {tzs(j): j 6 A} be the 
nonnegative solution of Eq. (6). Suppose there exists a s c ~ (--0% sl] such that 
for all s ~ sc, 

Z exp(sp(j, k)) p(k)/tzs(k) ~ p(j)/tzs(j), Vj ~ n .  (13) 
k~A 
k # j  

Then for each s ~ so, there exists a probability distribution {Qs(k): k ~ A} 
satisfying Eq. (12). Thus R(D) = RL(D ) for all D e [0, Dc], where D e > 0 is 
given by Eq. (9) with s = s , .  

Theorems 2 and 3 together have given sufficient conditions for the 
evaluation of R(D) in a range of distortion [0, D J, D c > O, for countably 
infinite alphabet sources without memory. In particular, for finite-alphabet 
sources, hypotheses (10) and (13) of Theorems 2 and 3 are always satisfied; 
and thus results of Theorems 2 and 3 include the known results of Jelinek 
(1967). Of course, Theorems 2 and 3 are only existence theorems. In order 
to explicitly evaluate R(D), the Shannon lower bound RL(D) must first be 
evaluated. Thus the nonnegative solution {tZs(j):j ~ A} to Eq. (6) must be 
obtained. Unfortunately, explicit evaluation of the solution does not appear 
to be possible in general due to the infinite dimensionality of the problem. 
In the next section we indicate a class of distortion measures for which the 
explicit nonnegative solution of Eq. (6) may be obtained. 

643/27/3-6 



278 TAN AND YAO 

4. COLUMN BALANCED DISTORTION MEASURES 

We will define a class of distortion measures with symmetry conditions such 
that the explicit nonnegative solution to Eq. (6) can be easily obtained. Then  
sufficient conditions dependent only on source statistics and distortion 
measure are given for the existence of a D e :> 0 such that R(D) = RL(D ) 
for all D ~ [0, De]. 

DEFINITION 1. The  distortion measure p is said to be column balanced 
if the sets A~ = {p(j, k ) : j~  ./I} are identical for every k c A .  For the case 
-// = J = { . . . , - 1 , 0 ,  1,...}, the class of all co lumn  balanced distortion 
measures contains the class of all difference distortion measures, that is, 
the class of distortion measures of the form p(j, k) = p(j -- k). Thus,  for this 
case, the class of column balanced distortion measures is sufficiently rich 
for applications. For the case A = I = {0, 1, 2,..}, t he  condition of column 
balanced appears to be fairly restrictive, yielding distortion measures which 
are not necessarily realistic for applications. For A = I,  we give two cases 
of  column balanced distortion measures below. 

EXAMPLE 1 (Column Balanced Distortion Measures). 

(a) p(j, k) = 

(b) p(j,k) = 

j if j < k  
if j = k 

OJ-~ if j > k 

t~ _j if j < k 
if j = k  

I 
Oo if j = k + 1 
P~'-I if j > k + l .  

The  following lemma gives the solution to Eq. (6) when the distortion 
measure p is column balanced. 

LEMMA 1. Let the distortion measure p be Column balanced and suppose 
there exists a s* ~ (--oo, O) such that ~j~a exp(s*p(j, 0)) < oo. Then for each 
s <~ s*, the sequence {/~(j): j ~ A} ofnonnegative numbersgiven by 

-1 
Vj ~ A (14) 

is a solution of Eq. (6). 
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Proof. It suffices to show that E~A exp(sp(j, k)) = ~,j~A exp(sp(j, 0)) 
for each s ~ s* and k 4: 0. By the definition of column balanced, the series 
~ A  exp(sp(j, k)) is a rearrangement (Rudin, 1964, p. 66) of the series 
~J~A (sp(j, 0)) for each k 4= 0. Since ~~A exp(sp(j, 0)) converges absolutely 
for each s ~ s*, by a well-known theorem (Rudin, 1964, p. 68) on rearrange- 
ments of series, every rearrangement of ~.~.~ exp(sp(j, 0)) converges to the 
same sum. This completes the proof of the lemma. Q.E.D. 

For the remainder of this section we assume that the hypothesis of Lemma 1 
is always satisfied. In order that the Shannon lower bound Rz(D) be given 
by Eq. (8) and (9) we must determine if the quantity to be maximized in the 
right-hand side of Eq. (7) is strictly concave in s, that is to show that 

re(s) = sD + H(X) + ,~ p(j) log ( X  exp(sp(j, 0))) 
jeA 

is strictly concave in s for all s ~ ( - -~ ,  s*]. This is established in the next 
lemma. 

LEMMA 2. Under hypothesis of Lemma 1, re(s) is strictly concave for 
s E ( - ~ ,  s , ] .  

Proof. It suffices to prove that m"(s) < 0 for every s ~ ( - -~ ,  s*). Note 
that the series ~'~n exp(sp(j, 0)) converges uniformly on (--0% s*], and 
that Ei~a P(J, O) exp(sp(j, 0)) converges whenever ~,j~A exp(sp(j, 0)) converges 
(Hardy and Riesz, 1915, p. 5) and thus by a well-known theorem on differen- 
tiation (Rudin, 1964, p. 140), we have 

-~s exp(sp(j, 0)) = ~ p(j, O) exp(sp(j, 0)) for all s ~ (--o% s*). 
J~A 

Similarly, we also have 

-~s o(j, O) exp(sp(j, 0)) = 2 p2(j, 0) exp(sp(j', 0)) 
jeA 

for s ~ (--oo, s*). Thus we have 

m"(s) = --I 2 p2(j, m exp(so(j, 0)) _ 
j~.~ -" ~_,m~A exp(sp(m, 0)) 

- -  [i~ p(j' •] exp(sp(j, 0))0))]'I 
-" E.~A exp(sp(m, 
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or equivalently m"(s)=--Var(p(Zs,  0)), where Z~ is a random variable 
with distribution 

exp(sp(j, 0)) j ~ A. 
Pr[Z~ = j] = Emma exp(so(m, 0)) '  

Since p(j, O) > 0 for all j va 0 and Pr[Z, = j] > 0 for all j ~ A, we conclude 
that m"(s) < 0 for all s E (--o% s*). This completes the proof of the lemma. 

Q.E.D. 

Thus substitution of Eq. (14) into Eqs. (8) and (9) yield the following 
parametric equations for RL(D), 

RL(Ds) = H(X) + s D ~ -  In ( ~  exp(sp(j, 0))), (15) 
\ ~-A 

exp(sp(j, 0)) (16) D~ ~ ( O) ~,,m~A exp(sp(m, 0)) '  

where s ~ s*. We note the general forms of Eqs. (15) and (16) are similar 
to those in the finite-alphabet case. We can now use Theorem 3 to obtain 
sufficient conditions for the existence of a D e > 0 such that R(D) = RL(D ) 
for all D ~ [0, De]. Note that the hypothesis of Theorem 3 contained also 
the hypothesis of Theorem 2. However, in the case of column balanced 
distortion measures, the hypothesis of Theorem 2 can be replaced 
by the hypothesis of Lemma 1 and :Eq. (1) and s 1 replaced by s*. 
The proof of Theorem 3 will still :carry through replacing the role of 
fs  by [~J~A exp(sp(j, 0))]p, where _p = {p( j ) : j~A} .  We state this special 
case of Theorem 3 below as Theorem 4. 

THEOREM 4. Let the distortion measure p be column balanced, satisfy Eq. (1) 
and the hypothesis of Lemma 1. Suppose there exists a s c ~ (--oo, s*] such that 

exp(sep(j, k)) p(k) ~ p(j), Vj ~ A. (17) 

k~j  

Then R(D) -~ RL(D) for all n e [0, DJ,  where RL(D)~ # given by Eqs. =(1:~ l 
and (16) and D e > 0 by Eq. (16) with s = s~ . 

In the finite-alphabet case necessary ~nd .sufficient Conditions for the 
existence of a De > 0 such that R(D) ---- RL(D), VD ~ [0, D~] is thatp(j) > 0, 
Vj. In the countably infinite alphabet case, the: condition p(j) > O, Vj ~ A is 
a necessary condition but not a sufficient C(ii~dition (Rubin, 1973). We now 
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consider some examples using Theorem 4 to determine the existence of a 
De > 0 such that R(D) = RL(D ) for all D ~ [0, DJ.  

EXAMPLE 2. Consider the case A = J, the distortion measure p given by 
p(j, k) = l j - - h i  ~, where v / > 1  and the source distribution {p(j): j ~ J} 
given by 

p(j)  _ 0(1 -- 0)rJ/ 
2 7 _ ~  , 0 < 0 < 1 ,  V j ~ J .  

This is the distribution of the difference of two i.i.d. Geometrically distri- 
buted random variables. For this example, RL(D ) is given by 

RL( s) = - - log  0) 2(1 - -  O) log(1 --  O) 
(2 - 0) 

+ s D , -  log ( 1 - / 2  ~ exp(sjv)), 
j = l  

(18) 

2Z,=lJ  exp(sj ~) (19) 
D~ = I ,-k 2 3~Z1 exp(sff) ' 

where s < 0. It can be easily shown that Eq. (17) is satisfied if so is given by 

1 - - 0  1 
s o = l o g [ m i n { 2 ( 1 @ ( l _ 0 ) 2 )  ' 3 ( 1 - - 0 ) ] I "  (20) 

Thus R(D) = RL(D ) for all D 6 [0, Dso], where Ds, given by Eq. (19) with 
s c given by Eq. (20). 

EXAMPLE 3. Consider the case A = I, the distortion measure p given by 

{log[(/-k 2)!], j < k, 
p(j, k) = {0, j = k, 

( log[(j + 1)!], j > k, 

and the source distribution be Poisson with parameter h. For this example, 
RL(D ) is given by 

~ A  k log(h!) 
RL(D~) = --A -- h log h q- e -a k! 

/v=O 

~- sD~ - -  log (h!) ~ , (21) 
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D, = Z~=l (kl) * log(k!) 
Z e ~ l  (kt)* ' (22)  

where s < 0. I t  can be shown that  Eq. (17) is satisfied if so is given by 

se = - -  1 - -  a/log 2. (23) 

Thus  R(D) = RL(D ) for all D E [0, D j ,  where D,o is given by Eq. (22) 
with se given by Eq. (23). 

These two examples show that  the conditions in the hypothesis of 
Theorem 4 lead to nonvaccuous results. 

5. DISTORTION MEASURES WITH N o  SYMMETRY CONDITIONS 

In  the last section, we demonstrated the applicability of Theorem 3 to 
determine the existence of a D c > 0 such that R ( D ) =  RL(D ) for all 
D E [0, De]. The  pr imary constraint there was the assumption that the 
distortion measure be column balanced which was seen to be quite restrictive 
for the source alphabet A = I .  This  assumption was made in order to obtain 
the explicit solution of Eq. (6). I t  may be possible to obtain the explicit 
solution of Eq. (6) for some specific distortion measures which are not column 
balanced. T h e n  Theorem 3 can still be used to determine the existence of a 
De > 0 such that R(D) = RL(D) for all D ~ [0, D J .  An example of this 
situation is given by the case when A ~ I and p(j, k) = ] j  - -  k ]. I t  can 
be shown that the explicit solution of Eq. (6) for s < 0 is given by 

re(J)= q-+e~' j=o ,  _ e s (24) 
• + e  ~ , j > 0 ,  

substitution of which into Eqs. ( 8 ) a n d  (9) given the following parametric 
equations for RL(D), 

RL(D,) =- sD, + H(X)  -- log(1 -}- e s) + (1 - -  p(0)) log(1 - -  e'), (25) 

es  e s 

D,  = 1 + e - - - - - - 7  + (1 - -  p(0)) 1 - -  e ' '  (26) 

where s < 0. Theorem 3 can now be used to determine the existence of a 
Do > 0 such that R(D) -= RL(D) for all D E [0, De]. 
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Consider the case where the source distribution is Geometric, that is 
p(j) -~ 0(1 - -  0) J, 0 < 0 < 1, j ~ I. Using Eq. (24), it can be shown for this 
example that Eq. (13) is satisfied for all s <~ so, where sc is given by 

(1 - -  0)(1 - -  (1 - -  0)2/2) (27) 
e~-~ 2 + ( 1 - - 0 ) - 7 2 ( 1 - - 0 )  2 - ( 1 - 0 ) ~ / 2 '  

which implies that R(D) = RL(D ) for all D e [0, D J ,  where Dso is given 
by Eq. (26) with sc by Eq. (27). This example demonstrates that the hypothesis 
of Theorem 3 leads to nonvaccuous results even when the distortion measure 
is not column balanced. 

Thus far, we have considered only the problem of explicit evaluation of 
R(D). I f  only numerical values of R(D) are required, Theorems 2 and 3 may be 
used to obtain numerical values of R(D) for a region of small distortion (0, De], 
D~ > 0. We note that numerical values of RL(D) can be obtained by finding 
the numerical solution of Eq. (6). We also note Blahut's algorithm is valid 
for finite-alphabet case, but in the countably infinite case not much is known 
about that algorithm. 

The proof of existence of a nonnegative solution to Eq. (6) for values of 
small distortion in Theorem 2 used the Contraction Mapping Theorem. It  
is well known that the fixed point guaranteed by the Contraction Mapping 
Theorem may be obtained by the method of successive approximations 
starting from any initial vector in the invariant set (Luenberger, 1969, p. 272). 
Thus for each s ~ s 1 , where sl is given by Eq. (11) in Theorem 2, the solution 
of Eq. (6) may be obtained by the following method of successive approxi- 
mations. Starting from the initial vector _x 0 - 1 ,  we define the sequence 
{_x~}n~=l C I~(A) by x n = T~*(_x~_l) , where Ts* was defined in the proof 
of Theorem 2. Then from the Contraction Mapping Theorem, we have 
]] -Xn --/~8 II® -~ 0 as n -+  oo. A numerical solution of Eq. (6) can thus be 
obtained. 

Theorem 3 can still be used to determine if R(D~) = RL(D~) even if the 
explicit solution of Eq. (6) is not available. Since by Theorem 2 we know that 
1 - -  ~(s) ~< t~(j) ~< 1 for al l j  in A and each s ~< sl ,  Eq. (13) in Theorem 3 
is satisfied if we can show that 

exp(sp(j, k))p(k) ~ (1 - -  o~(s))p(j) Y j e A ,  (28) 
kGA 

where c~(s) is given by Eq. (11). Thus if Eq. (28) is satisfied for a value of the 
parameter s, R(D~) = RL(D,) and so the numerical value of R(Ds) can be 
obtained by the method of successive approximations described above. 
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6. CONCLUSIONS 

In  this paper we have considered the problem of explicit evaluation of 
rate-distortion functions R(D) for countably infinite alphabet memoryless 
sources by the Shannon lower bound approach. While the explicit evaluation 
of R(D) by methods described in this paper is possible only for coiumn 
balanced distortion measures in general, we also indicated the applicability 
of our methods to certain distortion measures with no symmetry  conditions. 
The  condition of column balanced distortion measures was not critical for 
the validity of the proved existence theorems, but  was imposed to obtain 
explicit evaluation of RL(D), and thus explicit evaluation of R(D). We have 
also shown the usefulness of these theorems to the problem of numerical 
calculation of R(D) for values of small distortion. Finally it is interesting to 
investigate whether the functional analysis approach taken in this paper can 
be applied to treat the Shannon lower bound approach for sources with 
continuous alphabets. 

APPENDIX 1 

Proof of Theorem 2. Let  I~(A) denote the Banach space of bounded 
sequences of real numbers  _x = {x(j): j ~ A} with sup norm II _x I1~ = 
sup~'~A I x(j)[. For _x = {x(j):j ~ A} ,y  = {y(j):j  ~ A} in lo~(A), we say _x ~< y 
iff x(j) <~ y(j) for all j ~ A. We say x is nonnegative if x /> 0, where 
0 is the sequence of zeroes. Let  I.+(A) ~- {_x 6 I~(A): x >/0_}. For 
s ~ s*, let Bs* denote the linear operator on loo(A) defined by B~*_x---- 
{~jeA exp(sp(j, k)) x(j): k E A} for all x e l~(A). I f  /% = {~s(j):j e A} and 
1 = { l : j e A } ,  then Eq. (6) may be" written as /z s = ( I - - B s *  ) ~ s - } - l ,  
where I is the identity operator on l~ (A). Define the mapping T~ *: l=o (A)--+ loo(A ) 
by Ts*(x) = ( I  - -  Bs*) x q- 1 for all x e l=o(A). 

In  order to show that there exists a s 1 e (--0% s*] such that Eq. (6) has a 
unique nonnegative solution {/z~(j):j E A) for each s ~ sx, we will show the 
existence of a s 1 e (--0% s*] such that T~* has a unique nonnegative fixed 
point in/oo(A); that is, there exists a unique _x e lo~+(A) such that Ts*(x ) = x_ 
for each s ~ s 1 . This  will prove the existence of a unique l®+(A) solution to 
Eq. (6) for each s ~ s 1 . But since every nonnegative solution of Eq. (6) 
must  be bounded, we can conclude that this proves the existence of a unique 
nonnegative solution to Eq. (6) for each s ~ s 1 . 

Now, since the distortion measure p satisfies Eq. (1) and by assumption, 
there exists a s* > - -oo such that sup/e~-~ieA exp(s*p(j, k)) < ~ ,  we can 
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find a s 1 ~ ( - o % s * ]  such that a ( s l ) <  1. For each s ~ s  1 define 
4 = {x E I~(A): (1 - -  ~(s)) _1 ~< x ~< !}. Since c~(s) ~< ~(sl) for all s ~< s l ,  
it is clear that J s  C l~+(A) for each s ~< Sl • Moreover, for each s ~ s l ,  

is a closed subset of I~(A) and is therefore a complete metric space. 
First we claim that all possible l~+(A) solutions of Eq. (6) for each s ~ s 1 must  
lie in J , .  Clearly from Eqs. (1) and (6),/,,(k) ~ 1 for all k e A which together 
with Eq. (11) implies that Fs(k ) q- ~(s) ~>/,,(k) + ~j+~/**(j) exp(sp(j, k)) = 1 
for each s ~ sz. Then/**(k) /> 1 - -  o~(s), gk ~ A, and s ~ s t . Thus  for each 
s ~ s 1 , we can restrict our consideration to ~ in the search of a unique 
l~+(A) solution of Eq. (6). 

We claim that for each s ~ s t , T** is a contraction (p. 272 of Luenberger,  
1969) on J , .  I f  this is true, then by the Contraction Mapping Theorem 
(p. 272 of Luenberger,  1969), T** has a unique fixed point in ~ for each 
s ~ s t and thus Eq. (6) has a unique nonnegative solution {l*~(j): j ~ A} such 
that 1 - -  ~(s) ~ /**( j )  ~ 1 for all j e A and s ~< s t . To  prove our claim, we 
first show that for each s ~< s t , T~*(J,) C J~ .  We note that since p( j , j )  = 0 
for a l l j  ~ A,  Ts*(_x) ~ Ts*(y)  whenever x ~ y ,  x, y ~ l~(A). Thus  for s ~ s t 
and x ~ J , ,  we have T**(_I) ~ T**(_x) ~ Ts*(0) - -  _1. So in order to show 
that T**(x) ~ J , ,  it suffices to show that T**(_1) > (1 - -  e~(s)) _1 or equivalently 
(Be* - -  I )  _1 ~ ~(s) _1. But this follows directly from Eq. (11). Thus  we have 
shown that T ~ * ( J , ) C  ~ .  For s ~ s t and x, y E l~o(A), we also have 
[[ Ts*(x) - -  T~*(y)H~o ~ ~(s)]l x - - y  II~ ~ ~(sl)iI_ x - y  I[~, where c~(s~) < 1 by 
assumption. This  completes the proof  of our claim. The  proof of the theorem 
is complete since by previous remarks, the interval (--o% st] of the parameter  
s corresponds to the range of distortion (0, Dr] where D t = D q  > 0. Q.E.D. 

APPENDIX 2 

In  order to prove Theorem 3, we need to use Schauder Fixed Point 
Theorem (p. 96 of Schwartz, 1969) which is stated as Lemma  A for reference. 

LE~I~IA A (Schauder Fixed Point Theorem).  Let X be a Banach space, 
K a compact convex subset of X .  Let  T: K -+ K be a continuous mapping, then 
T has a f ixed point x ~ K,  that is, T(x) -= x. 

T o  apply Schauder 's  Theorem we require conditions which identify the 
compact subsets of Banach Spaces. The  following result (p. 37 of Liusternik 
and 8obolev, 1961) stated as Lemma  B is sufficient for our purposes. 

LEMMA B. A closed subset M of a Banach space X is compact i f  and only 



286 TAN AND YAO 

i f  it is totally bounded, that is, for every E > 0 there exists a finite set of points 
in X ,  say {x 1 , x 2 ,..., x~} such that for each point x ~ M, there exists a point 
xi ,1 <~ i <~ n, so that [] x - -  xi ll < E -  

Proof of Theorem 3. Let  la(A ) denote the Banach space of absolutely 
summable sequences of real numbers  x - - - - { x ( j ) : j ~ A }  with norm 
]1 x_ 111 = ~.j~AIX(j)1. Similar to the proof of Theorem 2, let the partial 
ordering on ll(A ) be defined by x ~< y iff x(j) <~ y(j)  for all j ~ A. Let  
la+(A) = {x ~ ll(A): x >~ 0}. For s ~ s l ,  let Bs denote the linear operator 
on ll(A ) defined byB~x = {ZT~a exp(sp(j, k)) x(k):j  ~A}  for all _x e l~(A). Let  
_Qs = {Qs(k): k e A} andfs  = {p(j)/lzs(j):j ~ A}. Q_s E ll(A ) since it is required 
to be a probability distribution, f s  is also in l~(A) since ~J~A ]P(j)/t~s(j)] <~ 
(1 --  ~(s)) -~ ~ A  P(j) < 0C by virtue of Theorem 2. We can rewrite Eq. (11) 
as _Qs = ( I -  Bs)_Qs + f s .  Define the mapping Ts : ll(A) --~ l~(A) by 
T,(x) - -  ( I  - -  B 3 x + L  for all x e l~(A). For each s ~< s~, since by Eq. (11), 
B s is a continuous operator on ll(A), Ts is a continuous mapping on ll(A ). 
To  prove the theorem, it suffices to show that for each s ~< sc, Ts has a fixed 
point in ll+(A ). By applying the Schauder Fixed Point Theorem,  it suffices 
to show that for each s ~< s c , there exists a convex compact subset Ks C lx(A ) 
such that Ks C lx+(A) and T~(Ks) C Ks .  For each s ~ se, let Ks = [_0,fs] = 
{x e h(A): 0 ~< _x ~<f~}. We claim that this choice of K s meets the above 
requirements. We first show that for each s <~ s~, T~([O_,fs]) C [O,fs ]. Note 
that since o ( j , j ) = 0  for all j e A ,  T~(x_)>~ Ts(_y) whenever x ~ y ,  _x, 
3' e h(A). Thus  for s ~< s~ and x e [_0,fJ, Ts(fs) <~ Ts(x_) ~ Ts(O_) = f s .  
Thus  to show that Ts(x) ~ [0,f ,]  it suffices to show that Ts(fs) >/O_ or equiV- 
alently ( B ~ - - I ) f s  <~fs which follows from Eq. (13). This  proves that 
Ts([O_),fs] ) C [0_,fs] for each s ~ s e . 

We will next show that for each s ~< so, [0,f~] is a compact subset of h(A). 
I t  can be easily shown that [0_,_fs] is closed in/~(A). To show that [0,f ,]  is 
compact in Ii(A), by L e m m a  B it suffices to show that it is totally bounded. 
For i s A,  define ]i = {l(~/~: k e A}, where l(~/~ = 0 if k @ i, 1 if k = i. Then  
every x e h(Ai is uniquely representable in the form ~i~A x ( i ) / / ,  where 
x(i) is a real number.  For x = ~ieA x(i)_l~ e [-0,fs] and integer n >/ 1, we have 

x(i)l_~ <~ ~ x(i)l[L[[~ <~ ~ [p(i)/l~s(i)] 
lil)n+l i i [ )n+ l  [ i [ )n+l  

~< (1 - -  ~(s))  -~ Z p(i). 
i i l )n+  1 ' .  

Fix an e > '  0. Thus,  since ~i~A p(i) = 1, there exists an integer No > / i  such 
that l[Zl~l>~o+lX(/)LlI1 <~/2 uniformly for every x~[_0,f~]. Now let 
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S = (_y = { y ( j ) : j ~ A } :  0 ~ y ( j )  ~ p ( j ) / t ~ ( j )  for [ j l  ~ No and y( j )  = 0 
for [ j]  ) N o - } -  1}. Now S is a closed and bounded finite-dimensional subset 
of ll(A ) and thus by  the Heine-Borel  Theorem (p. 35 of Rudin, 1964) is 
compact.  By Lemma B, S is totally bounded,  so there exist {V1, V 2 ,..., y~} C 
ll(A ) such that  for e a c h y ~ S ,  there exists a V i ,  1 ~ i ~ m ,  so that  

[[Y - -  -Vi 111 < E/2. Now take a _x E [0_,f~]. We  can write 

x_ = Z x(i)l_, + Z x(i)!,. 
[/[<N O Ii[>/No+I 

Since ~ l i i<~  ° x(i) l_ i E S,  there exists a _V~, 1 ~ j ~ m, such that  

Z - P_;[ < ~/2, 
[i[<~N o 1 

Since l] ~lil~>N0+l x(i) l i [[1 < e/2, it  follows that [l ~ - -  _Vj 111 < e which proves 
that  [O_,fs] is totally bounded and therefore compact.  Finally, the convexity 
of [O,fJ is clear. This  completes the proof of the theorem. Q.E.D. 
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