Catheter-Based Cryoablation of Ventricular Infarct Age and Electrogram Characteristics in Patients with Postinfarction Ventricular Tachycardia

Frank M. Bougn, Subramanian C, Krishnan, Joseph E, Marine, Fabio Arnaldo, Daejon Anh, Claudo Schuger, Henry Ford Hospital, Detroit, MI

Background: Replacement and reactive fibrosis resulting in scar formation is part of the healing process after myocardial infarction (MI). Deposition of fibrous tissue results in delayed activation of these muscle strands may be arrhythmogenic. In experiments with superfused canine infarct hearts, the infarct age impacted on the duration of left ventricular (LV) electrograms (EGM) and the separation of isolated potentials (IP). Systematic assessment of MI age with respect to local EGM characteristics is lacking in humans. The purpose of this study was to assess the relation between MI age and EGM characteristics during sinus rhythm (SR) in patients with a history of ventricular tachycardia (VT).

Methods: In a consecutive series of 16 patients (age: 68±7 years, ejection fraction: 0.23±0.11) with a history of remote MI (age 1-31 years) and VT, mapping of the LV was performed with an electroanatomic mapping system (CARTO) during SR. Careful analysis of EGM morphology and EGM width and RF ablation of the earliest activation (EAT) with optimal pace mapping for idiopathic VT.

Results: Nine ischemic and 3 idiopathic VTs were targeted in 10 pts. All but 1 ischemic VT had a right bundle branch block (RBBB) morphology with a northwest (n=2), left (n=3) or right (n=3) axis and a mean cycle length of 400 ± 61 ms. One idiopathic VT had a left bundle branch block morphology with right axis and two with a RBBB morphology. Mapping was performed at right axis. In pts with ischemic VT, concealed entrainment and mid-diastolic potentials (preceding the QRS by -115 ± 59 ms) were obtained at the successful ablation sites. The 3 pts with idiopathic VT had an optimal pace map and a mean EAT of -37 ± 22 ms at the successful ablation site. All but 2 (83%) VTs were successfully treated with a mean of 5 ± 4 (range 1-12) applications. Mean catheter-tip temperature was -81 ± 2 (76 to 83 °C). Mean fluoroscopy and procedure time were 63 ± 29 (range 26 to 132) and 237 ± 53 (range 165 to 340) min. The 2 unsuccessfully treated VTs occurred in a patient with ischemic VT and aortic stenosis (transseptal approach). One pt had a pericardial effusion post procedure. After a follow-up of 9 ± 5 months, 1 pt with ischemic VT had a recurrence with another morphology than the ablated VT. The pt with idiopathic RBBB-VT with northwest axis continued to have non-sustained VT episodes with a lower frequency.

Conclusion: Cryo VT is feasible and effective. When used for ischemic or idiopathic VT, it is also safe.

Identification and Characterization During Sinus Rhythm of a Mural Ischemia in Patients With Inferior Myocardial Infarction and Monomorphic Ventricular Tachycardia

Angel Arena, Mercedes Ortiz, Esteban Gonzalez Torrejosa, Felipe Atienza, Javier Jimenez Canedi, Alberto Puchol, Juan Jose Gomez de Diego, Ana Sanchez Hernandez, Luz-Maria Rodriguez, Academic Hospital Maastricht, Maastricht, The Netherlands

Background: Previous studies have suggested that an ischemia of surviving fiber between the infarct and the scar border is a critical component of the slow conducting zone in some ventricular tachycardias (VT) associated to remote inferior myocardial infarction. These VT are characterized by 2 typical morphologies: 1) Right bundle (monophasic R waves in lead V1 and QS or Rs configurations in V6) with right superior axis (RSA) and tall R waves in lead AVR, and 2) Left bundle (rS configuration in lead V1 and a monophasic R wave in V6) with left superior axis (LSA) and tall R in AVL.

Methods: We investigated the feasibility of identifying Mural Ischemia (MI) in voltage maps obtained during sinus rhythm. Left ventricle electroanatomic maps (Carto System, Biosense) were obtained during right ventricular apex (RVA) pacing in 12 patients with chronic inferior myocardial infarction referred for VT RF ablation were analyzed. A MI was defined by the presence of a corridor of consecutive electrograms differentiated by a higher voltage than the surrounding area in the scar. The effect of several voltage levels of scar definition from 0.5 to 1.0 mV were compared. A MI extending from the septum to lateral wall was identified in 5 patients (72±6 years, LVEF 31±6 %). The clinical VT morphology was left bundle LSA in 4 patients and right bundle RSA in 1 patient. A left ventricular electrogram showed multiple component and the activation sequence was from the entrances to the inner part. During pacing from the inner part of the MI sudden change from left to right bundle morphology were observed, the stimulus-QRS interval was always >50 ms. All patients were randomized to 1 right bundle RSA and 1 left bundle LSA. Radiofrequency ablation of MI suppressed VT inducibility in all patients. No VT recurrences were observed during the follow-up (median 7 months).

Conclusions: MI can be identified prior to VT induction in all patients with the typical described ischemic VT morphology. MI electrograms suggest this area are surviving fibers imbedded in scar than normal tissue bounded by scar and the mitral annulus. This information is useful to treat non inducible non tolerated VT.

Ablation of Postinfarction Ventricular Tachycardias Targeting Delayed Local Potentials Guided by Electroanatomical Mapping

Juergen Schreiber, Bernhard Zrenner, Jun Dong, Isabel Deisenhofer, Michael A. Schneider, Christof Kolb, Claus Schmitz, Deutsches Herzzentrum München and 1. Med. Klinik, TU München, Munich, Germany

Background: Linear ablation connecting scars or separating ventricular tachycardia (VT) exit points have been suggested for catheter ablation of ischemic VTs. However, linear ablation in the ventricle is technically challenging and a clear validation is lacking. Therefore, we investigated a simplified anatomically based method for ablation of post infarction VT by targeting all delayed local potentials in the scar area of interest.

Methods: We investigated 35 patients with frequent and drug refractory ischemic VT (age 66±10 years, 32 men, ejection fraction 32±14%). Thirty patients had already received an implantable cardioverter defibrillator (ICD) and presented with frequent shocks deliveries or frequently hemodynamically compromising VTs. All patients underwent programmed stimulation to define the number, morphology and hemodynamic stability of induced VTs. A mean of 2.7±1.7 VTs were induced and 18 patients (51%) had at least one unstable VT. Electroanatomical voltage mapping (CARTO, Biosense Webster) in the left ventricle during sinus rhythm was used to identify myocardial scar areas (sites with bipolar voltage <1.5 mV). Pace-mapping was performed around the scar border to identify VT exit points of induced or documented spontaneous VTs. Multiple radiofrequency energy applications (37±28) with large-tip or cooled-tip catheters were used to ablate all delayed local fractionated potentials in the scar area around all pace-mapping match sites up to a distance of 1.5 cm. If the clinically documented VTs were still inducible, more distant delayed local potentials were ablated. All except two patients had an ICD during follow-up.

Results: In all patients clinically documented VTs were not inducible any more after ablation. All the MI mapping (angiogram) at all. Seven patients underwent two ablation sessions. During a mean follow-up of 20±12 months, 24 patients (68.6%) remained free of any VT recurrence, and 31 patients (88.6%) had a more than 90% reduction of VT episodes. Conclusion: Segmental ablation targeting only delayed local fractionated potentials in scar areas around VT exit points is an effective alternative to strictly linear lesions for ablation of post infarction VT.