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This paper mainly focuses on dimensional reduction of fused dataset of holistic and geometrical face
features vectors by solving singularity problem of linear discriminant analysis and maximizing the
Fisher ratio in nonlinear subspace region with the preservation of local discriminative features. The com-
binational feature vector space is projected into low dimensional subspace using proposed Kernel
Locality Preserving Symmetrical Weighted Fisher Discriminant Analysis (KLSWFDA) method. Matching
score level fusion technique has been applied on projected subspace and combinational entire Gabor
subspace is framed. Euclidean distance metric (L2) and support vector machine (SVM) classifier has been
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implemented to recognize and classify the expressions. Performance of proposed approach is evaluated
and compared with state of art approaches. Experimental results on JAFFE, YALE and FD expression
database demonstrate the effectiveness of the proposed approach.
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1. Introduction

Several face appearance situations exhibit varieties of expres-
sions like happy, sad, angry, fatigue, confusion, surprise, thinking,
fear, pain, wink, fun and disgust. The purpose of recognizing the
expressions is to understand the feelings of face appearances for
several applications in various fields like pattern recognition and
computer vision. Sometimes it is needed to know the nonverbal
capability of lecture class by the students during smart class teach-
ing, this can be determined through recognizing the expressions of
individual students. Driver feelings can be determined during vehi-
cle driving to avoid the accidental hazards. In real time election
voting, determination of persons identity at different expressions,
is made possible with standard facial expression recognition
system.

One and half decade back Ekman et al. [1] carried out study of
expressions and observed that at least six expressions like anger,
disgust, fear, happiness, sadness and surprise are exhibited by
human beings and author noted a neutral state as normal expres-
sion. In pattern recognition, computer vision and biometrics, facial
expression recognition task is one of the most challenging works
due to larger variations of illuminations, noisy environments during
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recognition [1-4]. There are many applications in psychological
studies, medical diagnosis, during different painful situations,
and determination of human emotional states for criminal and
security issues [4]. In this work singularity problem of scatter
matrix has been resolved by introducing symmetrical weighted
principal components at kernel region by preserving local discrim-
inant features. To synthesize a complete image face under an
appearance based approach, both shape and textures features
found a significant domain in several studies as given in [5-7,66].
The rest of the paper is organized as follows: Section 2, presents
overview of earlier works. Section 3, illustrates proposed frame-
work by comparing related earlier works. In Section 4, results
and discussion are made. In Section 5, conclusions are summarized.

2. Literature survey

Linear discriminant analysis (LDA) method is an important task
for recognition of objects used in many fields. When all the scatter
matrices are become singular, it causes degradation of efficiency of
expression recognition for small data samples, hence it is difficult
to maintain larger variability between classes. Most of the LDA
extension methods or algorithms proposed in earlier studies were
unable to optimize the singularity matrix problems. This problem
was resolved by Belhumeur et al. [9] who proposed a Fisherface
method (FF) in 1997, which uses a principal component analysis
(PCA) [64], based projection and a change of matrix size so that

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the matrix is nonsingular. But still for Fisher LDA algorithm it is
needed to improve the singularity problem scenarios. In this paper
singularity problem of within class scatter matrix have been
considered as one of the main issues for dimensional reduction
purpose. LDA is a linear supervised subspace method using class
labels it discriminates the different expression classes and converts
the high dimensional space into subspace. There are several LDA
based methods improved and proposed by several researchers
and authors. Li et al. [10] worked on discriminant analysis with
non parametric approach based face recognition. Ming et al. [11]
introduced spectral regression kernel discriminate analysis
(SRKDA) based on regression and spectral graph analysis. They
have suggested that when the sample vectors are non-linear then
SRKDA method can efficiently give better solutions than ordinary
subspace learning approaches. Wang and Sun [50] proposed semi
supervised kernel marginal Fisher analysis (SKMFA) in which
authors suggested that singularity problem can be avoided by
non linear structure captured by the data dependent kernel based
on labeled and unlabeled data. Rahulamathavan et al. [5] devel-
oped facial expression recognition system with encrypted domain
using linear Local Fisher discriminant analysis (LFDA). Author sug-
gested there was a challenge to work with encrypted domain even
if there was a not good recognition rate for unencrypted domain.
This method has been applied to JAFFE database and achieved
94.37% recognition rates. Depending on facial land marks position
features were extracted from specific facial active patches of differ-
ent face appearances. Discriminative features were considered by
further patches obtained from active patches for expression
classification. SVM one against one classification technique was
implemented by the authors Happy and Routray [62].

The effect of expression analysis using subspace methods have
been made in [35,36].

There are several researchers who implemented subspace pro-
jection methods directly on input images to achieve feature extrac-
tion and dimension reduction. In [45] different earlier subspace
methods were implemented on feature dataset for dimensional
reduction and the strength and weakness of subspace methods
were compared. From literature survey it has been noted that
many linear and nonlinear subspace methods were found to be
more robust for expression recognition. Subspace methods like
principal component analysis (PCA) [5-15,31], linear discriminant
analysis based [52] and Fisher LDA based approaches [16-22,63],
and locality preserving projection (LPP) [23-27,30] are linear
approaches. Nonlinear approaches include mapping subspace
(Isomaps) [28,29], KPCA [34], Locality Preserving Fisher Discrimi-
nant Analysis (LFDA) [40], KFDA [45], and KLFDA [44,48,49].
The common drawback of these nonlinear embedding methods
are consumes more time while computing high dimensional
feature dataset. Yu et al. [32] proposed a direct LDA algorithm for

Table 1
Comparison of overall recognition accuracy for JAFFE face dataset for proposed and
state of art approaches.

Literature Approaches OFERR (%)

Zhang et al. [3] LBP based LDA 734+5.6

Zhang et al. [3] Boosted LBP based LDA 77.67 £5.7

Wang et al. [51] Orthogonal LDA 86.33

Cohen et al. [4] LFDA 90.70

Shih et al. [53] 2DLDA +SVM 94.13

Dongcheng et al. [54] Gabor + PCA, 91 and 94
Gabor + 2DPCA

Bai et al. [55] Gabor + LBP + LDA 92-97

Zhi and Ruan [56] 2D discriminant LPP 9591

Zhang et al. [57] Multilayer perceptron 90.34

Liejun et al. [58] SVM based 95.7

Zhao et al. [59] PCA and NMF 93.72

Lee [60] RDAB 96.67

Ours CEGKLSWFDA 97.14

face recognition which incorporates the concept of null space for
high dimensional data. A complete kernel Fisher discriminant
framework for feature extraction and recognition using KPCA and
LDA is proposed in [34]. State of art approaches based on LDA
algorithms are listed in Table 1.

The conventional LDA problem attempts to find an optimal
linear transformation by minimizing the total intra class distance
and maximizing the between class distance simultaneously. It is
well known that this optimization problem can be solved by
applying eigenvalue decomposition to the scatter matrices.
However, this requires the total scatter matrix to be nonsingular.

Singularity problem of scatter matrices of discriminative analy-
sis subspace methods degrades the Fisher ratio and efficiency of
recognition during intra and inter class local feature separation
and dimensional reduction.

Less preservation of local and global features of face images
causes less recognition rate in nonlinear region is counted as
another problem during projection of subspace.

To optimize the above problems in this work kernel based local-
ity preserving symmetrical weighted Fisher discriminant analysis
subspace approach is proposed for dimension reduction of higher
dimensional feature dataset defined by different scales and
orientations of Gabor filter by introducing symmetrical weighted
principal components while projecting PCA space into subspace
for creating FLDA space. Larger values of eigen components yield
good feature for efficient recognition of expressions.

3. Proposed frame work

This paper mainly focuses on and illustrates the projection of
high dimensional image space into low dimensional subspace by
solving the singularity problems of linear discriminant analysis.
This task has been carried out by proposing Kernel Locality
Preserving Symmetrical Weighted Fisher Discriminant Analysis
algorithm (KLSWFDA). In the beginning of this expression recogni-
tion system work, face detection [65] was carried out and a trained
database has been created from input raw images by resizing the
images as per the previous work as given in [42]. Texture feature
extraction has been carried out by implementing Gabor filter as
given in [39]. Both Gabor magnitude and phase parts are isolated
and features are extracted separately. Then combinational entire
Gabor feature dataset has been formed by fusing the Gabor magni-
tude feature vector and Gabor phase vector with geometrical
feature vector (from 18 fiducially created points) as presented in
Fig. 1 for equal distribution of feature dimension. These two vec-
tors are named as combinational Gabor magnitude vector (CGMV)
and combinational Gabor phase vector (CGPV). These vector sizes
are found to be large in dimension and projected into subspace
by applying KLSWFDA algorithm. Both these projected subspaces
with similar matrix are fused by matching score level fusion as
introduced in [33] and combinational entire Gabor subspace has
been framed. Using Euclidean distance metric (L2) and SVM [41]
classifier technique all the expressions are recognized and
classified. Gabor filter is constructed with different scales and ori-
entation parameters for different dimensions are listed in Tables 3
and 4 for JAFFE and YALE database respectively. Geometrical
feature are extracted as per the procedure mentioned in [42].

Table 2
Comparison of overall recognition accuracy for YALE dataset for proposed and state of
art approaches.

Literature Approaches OFERR (%)
Wang and Sun [50] SKMFA 73.6
Wang and Gong [47] Gabor + PCA + NN 86.64
Ours CEGSWKLFDA 83.33
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A 4

Face detection and pre-processing

Face detection and pre-processing |

v

v

Dimensionality reduction by linear and

v v v v v v
Gabor Geometrical Gabor Gabor Geometrical Gabor
magnitude feature phase magnitude feature phase
feature vector feature feature vector feature
vector (GFV) vector vector (GFV) vector
(GMFV) | i (GPFV) (GMFV) | (GPFV)
[ T T | [ I I |
Feature level Feature level Feature level Feature level
fusion fusion fusion fusion
Combinational Combinational Combinational Combinational
Gabor magni- Gabor phase Gabor magni- Gabor phase
tude feature feature vector tude feature feature vector
vector (CGPFV) vector (CGPFV)
(CGMFV) (CGMFV)

v

v

Dimensionality reduction by linear and

nonlinear subspace methods like PCA,
ICA, KPCA, LPP, FLDA, LFDA,

nonlinear subspace methods like PCA,
ICA, KPCA, LPP, FLDA, LFDA,

KLFDA, KLSWFDA KLFDA, KLSWFDA,
sprPace Subspace Spbspace Subspace
projection by projection by projection by projection by
linear and linear and linear and linear and
nonlinear nonlinear nonlinear nonlinear
subspace subspace subspace subspace
methods methods methods methods
v A 4 v \ 4
Creation of combinational entire Gabor Creation of combinational entire Gabor
subspace by matching score level subspace by matching score level
fusion fusion
h A 2

| Computation of similarity matrix and Euclidean distance |

| Support vector machine (SVM) classifier |

| Expression recognition and classification |

Performance evaluation of subspace approaches for JAFFE, YALE and FD databases

Gabor filter parameters and feature vector dimension of JAFFE database.

Fig. 1. Schematic diagram of expression recognition system using subspace approaches.
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Number of Number of Gabor filter size  Gabor filter feature vector Geometrical feature vector Combinational Gabor feature vector
scales (m) orientations (n) (GFmn) dimension (GFgyp) dimension (Ggyp) dimension (CGgyp)
5 4 20 279,720 16 279,736
3 8 24 335,664 16 335,680
3 4 12 167,832 16 167,848
5 8 40 559,440 16 559,456
Table 4

Gabor filter parameters and feature vector dimension of YALE database.

Number of Number of Gabor filter size  Gabor filter feature vector Geometrical feature vector Combinational Gabor feature vector
scales(m) orientations (n) (GFmn) dimension (GFgyp) dimension (Gpyp) dimension (CGpyp)

5 4 20 81,920 16 81,936

3 8 24 98,304 16 98,320

3 4 12 49,152 16 49,168

5 8 40 163,840 16 163,856
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Gabor filter extracts rich texture content from face images. In gen-
eral, Gabor filters are also called Gabor wavelets [39]. Gabor mag-
nitude information can capture the facial structure and phase
information can give a detailed description of facial texture [37,38].

3.1. Brief description about SWFLDA

PCA is a standard eigenface based popular algorithm used for
dimensional reduction and feature extraction [17]. To find the
symmetrical weighted FLDA the given feature dataset was sub-
jected to PCA transformation. Larger variations with principal com-
ponents and unequal distribution of components were observed in
PCA subspace. It causes the class discrimination problem of feature
data in LDA subspace. Let G=(g1,82,...8i, ...&n) represent the
n x N combination Gabor feature dataset matrix, where g; is a com-
binational Gabor face vector of dimension n of a x b face vector
matrix, m is a mean of combinational Gabor face vector and N is
the number of different combinational Gabor feature data of input
samples in the image dataset. Projection matrix of PCA [22] is given as

N
Sp =& ~mg—m)’ (1)
i=1

The value of Sp is made with equal distribution of eigen values
by applying symmetrical weights to principal components for
equalizing the variance of principal components in order to solve
the singularity problems. Symmetrical weighted PCA representa-
tion is made in [46].

In this work odd-even rule is implemented as given in [46] to
decompose face image. Combination Gabor dataset images are
g = (81,85, - - 8u] and mirror symmetrical combinational Gabor
image set is g§ = [g],83, - - - &].- So the ith image can be decom-
posed as. g; =g, + &Z.;~ Where odd symmetrical image can be
denoted by g, = (g, —gM) and even symmetrical image can be
denoted as g,; = (g; +gV).. Here i=1, 2, 3,.. .M. Odd symmetrical
sample set is (go1, L2, Lo3»- - -8om) and even symmetrical sample
set iS (8e1,8e2,&e3,- - -» em) Doth are derived from original training
samples set by mirror symmetrical transformation. Odd and even
sets can be defined as follows [46]

N

Sop =D (801 — Mo) (Zoi — o) (2)
i=1
N

Sel’ = Z(gei - me)( ei — mE)T (3)

i=1

where, Sp = Sop + Sep, hence the eigenvalue decomposition on Sp is
equal to the eigen decomposition on S,p and S.p. Hence, image g;
can be reconstructed by the feature vector of S, and S.p. With
respect to eigen theory assume all the non-zero eigen values of
Sop and S,p are Z,; and A, and the corresponding eigen vectors are
W,i and wej where i = 1.. .rank(S,p) and j = 1.. .rank(S.p). Transforma-
tion of weight matrix for odd (T,) and even (T.) symmetrical sample
sets are derived from above demonstration as

To = [WoLWoZ e 'Wor0]> No = diag(/lolviob o ;Lora) (4)

Te = [Wel.wez Tt 'Werg}a Ne = diag(/leh/lez; e /lerg) (5)

where r, = rank(Syp), o = rank(Sep).
The representation of the odd and even symmetrical images can
be represented as,

8oi = ToPoi, Poi = Tf,goi, 8ei = TePei, Pei= Tetagei (6)

Above, P,; and P.; are the odd symmetrical feature and even
symmetrical feature of the ith face combinational Gabor image.
In order to reduce the effects made by the principal components

which contain the variation due to illumination or face expression,
it can treat each component equally and let each component have
equal variance through transforming conventional PCA feature
space to weighted PCA feature space by the following whitening
transformation for odd symmetrical sample set and even symmet-
rical sample set as given in [46]:

Q, = AT =

(Gt 2 Wor, 2y *Waa -+ Jot* W, ) (7)

2
Qe = NPT = (2] PWer, Ay PWea - 201 P Wer, ) (8)

Here Q, and Q. are the transform matrix of odd symmetrical
images and even symmetrical images for WPCA feature space. In
particular, the representation of the odd or even symmetrical
images in WPCA feature space is given as [47]

oi — QOZOiv Zoi = Qggoh 8ei = QEZEiv Zej = égei (9)
= [2] a-.al A-digiand  (10)
g = =[Q., Q) {Z""}, z=Q'g (11)

For feature selection in symmetrical weighted PCA [46], sorting
the eigenvalues either in ascending or descending order, the largest
eigen vectors are selected corresponding to the first largest
eigenvalues. Since the variance (corresponding to eigenvalues) of
the weighted even symmetrical components is bigger than the
variance of the correlative components of weighted odd symmetri-
cal components, it is natural to consider the even symmetrical
components first, and then the odd symmetrical components if
necessary otherwise discarded. All the zero eigen values of PC
components are eliminated.

In several expression classification approaches Fisher linear
discriminant analysis (FLDA) finds a significant role for statistical
feature extraction. Discriminant feature space is kept maximum
by limiting the total number of training samples. When rank of
within class scatter matrix is less than the number of features then
within the class scatter matrices or intra covariance matrix
becomes singular. So that limited training samples and dimension-
ality reduction problems occur. As mentioned in paper [22] LDA
separated the samples of distinct groups by maximizing between
class distances while minimizing within class distance. Between
class matrix S, can be given as

C
Sp="> Ni(i —
P

Within class scatter matrix S,, can be defined as

) (; — )" (12)

Ni

c c
= Z(Nf ZZ mgj — 1) (m;; — Wi)r (13)

i=1 i=1 j=1

where m;; is the n-dimensional pattern j from class C;, and N; is the
number of training pattern from class C;, and C is the total number
of classes or expression groups. The total meanvector is given by

_1E
m=y >N, (14)
i=1
ﬁflzc: 3 m (15)
I_N, 1J

1 1

I
o
I

Vector m; and matrix i are the unbiased sample mean and sam-
ple covariance of matrix of class. In above Eqgs. (14) and (15) N is
the total number of samples, that is N=N; + Ny + N3 +- - - N¢. It
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is important to note that the within class scatter matrix S,, defined
Eq. (13) is essentially the standard pooled covariance matrix
multiplied by the scalar factor (N — C) and symmetrical weighted
within scatter matrix becomes

st =

-

Il
—_

(Ni =1)Si = (N=-C)Sp (16)

1

The main objective of FLDA is to find a projection matrix Pgpa
that maximizes the ratio of the determinant of the between-class
scatter matrix to the determinant of the within-class scatter matrix
[32] (Fisher’s criterion), that is

IPS,P|
|P"SqP)|

Pripa = arg max (17)
P

where P is the projection of PCA covariance matrix has an unequal

variance distribution. Projection in FLDA subspace i.e. Pg;p, is in fact

the solution of the following eigen system problem [32].

SyP — SewPA =0 (18)
Multiplying both sides by S}, Eq. (18) can be rewritten as
SoaSyP — S, 1S PA =0 (19)
SeuSpP —PA =0 (20)
(SoaSp)P = PA (21)

where P and A are respectively the eigenvectors and eigenvalues of

S;M}Sb. In other words, equation (21) states that if Sy, is a non-
singular matrix then the Fisher criterion described in Eq. (17) is
maximized when the projection matrix Pgpa is composed of the

eigenvectors of S_!S, with at most (C — 1) nonzero corresponding
eigenvalues. This is the standard FLDA procedure. The performance
of the standard FLDA can be seriously degraded if there is only a
limited number of total training observations N compared to the
dimension of the feature spacen. Since the within-class scatter
matrix S, is a function of (N — C) or less linearly independent vec-
tors, its rank is (N — C) or less. Therefore, S, is a singular matrix
if Nis less than (n +C), or, analogously, might be unstable if N is
not at least five to ten times (n+C). The Fisherfaces subspace
method is essentially a two-stage dimensionality reduction method.
First the face images from the original vector space were projected
to a lower dimensional space using Principal Component Analysis
(PCA) [39] and then Linear Discriminant Analysis was applied next
to find the best linear discriminative features on that PCA subspace.
Or in other words PCA subspace is transformed into FLDA subspace.
Let us consider Py, is the projection matrix from the original image
space to the PCA subspace, and Pr;p, is the projection matrix from
the PCA subspace to the FLDA subspace obtained by maximizing
the ratio as given below [32].

|PTp;CasprmP| (22)
PP} oSsw PpeaP

Prips = arg max
P ca

(22) analogously states that if P;isprca is a non singular
matrix then the Fisher criterion

is maximized when the
projection matrix Ppsis composed of the eigenvectors of

(PZMSS‘,VP[,Q,)f1 (PyaSbPpea) With (C — 1) at most nonzero correspond-
ing eigen values. The singularity problem of the within-class scat-
ter matrix S,, is then overcome if the number of retained principal
components varies from at least C to at most N-C, PCA features. In
PCA space unequal distribution of eigen values causes less discrim-
ination among the features between class scatter matrix. Hence

symmetrical weighted principal components strategy is used. If

within scatter matrix is non singular then eigen vectors correspond
to the set of the largest eigenvalues of matrix (Sp + Ss) — 1.Sp. The
problem of SWFLDA is the preservation of local image information
under nonlinear region. This can be extended by constructing
KLSWEFDA as illustrated in Section 3.1.1.

3.1.1. Construction of KLSWFDA

In this section Kernel Locality Preserving Symmetrically
Weighted Fisher Discriminant Analysis (KLSWFDA) finds projec-
tion of vectors in a higher dimensional kernel domain space such
that it maximizes Fisher’s ratio in that space. The idea of KLSWFDA
is to solve the problem of SWFLDA and in an implicit feature space
F constructed by a nonlinear mapping as in (23). Feature space F of
Gabor face image dataset in kernel region can be defined as

?(8) = [$(81), P(82) -, P(gn)] (23)

¢:geR" > p(g) €F

In implementation, implicit feature vector ¢ does not need
to be computed explicitly, instead it is embodied by computing
the inner product of two vectors in F with a kernel function,
k(x, y)=(¢ (x),¢ (¥)). Let g be a vector of the input Combinational
Gabor feature dataset set with n elements and C classes, and i,
represents the number of samples in the ith class. The mapping
of g; is noted as ¢; = ¢(g;). Performing FLDA in F mean to maximize
the following Fisher discriminant function and the objective func-
tion of kernel discriminant analysis is given as

u'siu
wist U

J(U) = arg max (24)
u
within class kernel space symmetrical weighted scatter matrix
is given as

C
Soe=D_> (¢(g) —m!)(p(g) —m)) (25)

i=1geG;

S?, matrix is a symmetrically weighted within class scatter
matrix its concept is illustrated above in Section 3.1. Between the
class scatter matrix can be given as

C
Sy = Y _Ni(m! —m®)(m{ —m?) (26)
i-1

where G; is the number of samples from the ith class, m¢ is the
centroid of the ith class, C is the number of classes, and m? is the
global centroid, g is a vector for a specific class and G; is the set of
samples of the ith class. S, represents the degree of symmetrical
weighted scattering within class of expressions and is calculated
as the summation of covariance matrices of each class, whereas S¢
represents the degree of scattering between classes of expressions
and is calculated as the summation of the covariance matrix of
the means of each class. The kernel domain space usually has a
much higher dimension than the input space. The “kernel trick”
[58] allows for the computation of algorithms in a kernel domain
space without explicitly evaluating the mapping, as long as the
algorithm can be expressed in terms of dot products of vectors in
the input space.

LFDA preserves neighborhood relationships in the embedding
by employing an “affinity” matrix that is defined below.
The optimization solution J(U), corresponding to the largest
eigenvalues /, can be illustrated by the generalized eigenvalue
problem.

SoU; = 4S8, U; (27)

Because the eigenvectors are linear combinations of ¢(g;), there
exists a coefficient ¢; such that
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n
U= Z“iﬂ&') (28)
i=1
Let oo = [ot1,02,. . ., &3], it can be proved that Eq. (24) is equivalent
to
o "KL Kot
Olopt = AIg MaxX —————— 29
v = A8 A KLY K (@9)
And the corresponding generalized eigenvalue problem is
KL® Kot = 2KL™ Kot (30)
where K is the kernel matrix
Ky = k(g;.g;), L and L™ are defined as:
1 — p® _ yw® (31)
LW — pW) _ W (32)

where W® is the weight matrix of local between adjacency graph
and W™ is the weight matrix of local within adjacency class matrix.
D® and D™ are both diagonal matrices, and their entries are
column sums of W and W™ respectively.

n
Dy =>_wy (33)
j=1
D" =% Wy" (34)
j=1

So the problem of kernel linear discriminant analysis is con-

verted into finding the leading eigenvectors of (KL"'K) ' KL®K,
each eigenvector o gives a projection function U in the feature
space. For a new data point g its projection onto U in the feature
space F can be computed by

U.6@) = > u{o(2). 9(8)) 35)
i=1

= oik(g;,8) (36)
i1

During expression recognition singularity problem is solved
because matrix KL™K and KL®’ K made to be guaranteed to be non-
singular by eliminating zero eigen values. Hence the proposed
method solves the problem of singularity matrix concept.

3.1.2. Post level fusion technique

Final scores obtained from projected subspace of both combina-
tional Gabor magnitude space and combinational phase space
parts are normalized using z-score normalization and fused
together. Maximum normalized score is obtained and utilized for
computation of Euclidean distance.

CGMKLSWFDAs — 11(CGMKLSWFDAs)
Std(CGMKLSWFDAs)

(38)

N. SCGMI(LSWFDA =

CGPKLSWFDAs — p(CGPKLSWFDAs)
Std(CGPKLSWFDA;)

NSCGPKLSWFDA = (39)
where (CGMKLSWFDA)s is similarity score matrix of combinational
Gabor magnitude kernel locality preserved Fisher discriminant pro-
jected subspace. Similarly computational Gabor phase kernel local-
ity preserved Fisher discriminant (CGPKLSWFDA)s similarity score
matrix have also been computed. The combinational entire Gabor
subspace matrix (CEG) is created by post level fusion technique.

WCEGKLSWFDA = MAX[(NSCGMKLSWFDA + NSCGPKLSWFDA)] (40)

For both combinational entire Gabor subspace train and test
image dataset final score weighted matrices are computed, then
Euclidean distance is evaluated as

8i2 = W ceekiswrpaq — WCEGKLSWFDAT”2 (41)

where Wegckiswrpar and Wegckiswrpag are projected vector final
score weight matrices of training and testing combinational entire
Gabor subspace images. The image set with lower Euclidean dis-
tance is computed. Re-perform the operation on this image set with
a lower threshold value to get the image having the expression clo-
ser to the defined image. The image with lowest Euclidean distance
in expression images will be represented as the resultant expres-
sion image. So that testing expression image is matched with
trained image. Based on Euclidean distance metric and RBF kernel
based SVM classifier [41] facial expressions are classified.

4. Experimental testing and result analysis
4.1. Databases used

The experiments are performed in order to analyze the perfor-
mance of the proposed approach on three public databases as
given below. Proposed approach has been tested for JAFFE, YALE
and FD with different dimensions of baseline feature dataset.

4.1.1. JAFFE database

In this work, Japanese Female Facial Expression (JAFFE) data-
base [61] is used for experiment. This database contains 213
images of 7 facial expressions. In that six expressions are basic
and one is neutral facial expression. All the expressions are posed
by 10 Japanese female models of 256 * 256 resolution. Each image
has been rated on 6 emotion adjectives by 60 Japanese subjects. In
this work all the images of this database are pre-processed to
obtain pure facial expression images, which have normalized
intensity, uniform size and shape. Illumination and lighting effects
also removed as given in [43]. The pre-processing procedure used
in this work performs detecting facial feature points automatically
including eyes, nose and mouth. Finally histogram equalization
technique is used to remove illumination effects. Fig. 2 shows pre-
processed and resized cropped samples of JAFFE database.

4.1.2. YALE database

This database YALE contains 11 images per person for 15 indi-
viduals resulting in a total of 165 images. The images in this data-
base reveal major variations of illumination changes, different
facial expressions, and the persons wearing eyeglasses/no eye-
glasses. The original size of the images in this database is
243 x 320 pixels with 256 gray levels. For experiments, the size
of these images was scaled down to 64 * 64 pixel size. In this work
six expressions were used for experiment such as happy, surprise,
sad, wink, sleep and neutral. Totally 90 images were considered for
experiment without doing histogram equalization operation. Few
samples of YALE database is shown in Fig. 3.

4.1.3. FD database

Another database used in this work is Facial expression face
database (FD) that consists of 13 subjects and each subject has
75 images with different expressions. This database has total 975
images. In this work 500 images are used with 10 subjects, five
expressions such as happy, surprise, angry, sad and neutral. Each
class of expression has 100 images. For experiments, all the images
are pre-processed and the size of these images is scaled down to
92 * 92 pixel size shown in Fig. 4.
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Fig. 2. Detected and cropped face samples of JAFFE database.
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4.2. Testing results

In this work support vector machine classifier (SVM) [41] using
Radial Basis Function (RBF) kernel technique is implemented to
classify the expressions. To create input dataset, all 210 images
of JAFFE database, 90 images of YALE database and 500 images of
FD database are considered. In this work specific expression image
is recognized using Euclidean distance metric between trained and
testing images. Using “Leave One Out” SVM strategy all the expres-
sion classes of images are classified. All the public databases are
tested with all the subspace models and proposed approach. In
addition to a drastic reduction in the feature vector dimension
for highest recognition rates are considered, it has been noted
and observed that a considerable improvement in the recognition
rate concerned with expression recognition. Performance of pro-
posed approach is compared with state of art approaches listed
in Tables 1 and 2.

The work mentioned in literature about Gabor + PCA + LDA is
related to this approach but it is not concentrating on dimensional
reduction after finding suitable solution to singularity problem in
within scatter matrix. Simply Gabor features and PCA and LDA fea-
tures were fused, and recognition accuracy was found to be high.
Baseline method does not solve the efficient discrimination of face
features of fused dataset of geometrical and Gabor filter texture
information. Base line methods like PCA and LDA can preserve glo-
bal properties of feature while dimensional reduction or projection
of high dimensional data to subspace. But local properties of pixels
cannot be preserved by PCA and LDA baseline methods. This can be
made effective by proposed approach. Phase part of Gabor
filter can compensate the poor recognition of expressions when
it is combined with geometrical features. Proposed algorithm can

Angry

Fig. 4. Sample images of FD expression database of size 92 * 92 (preprocessed).
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reduce the redundant data which is created during fusion of phase
and magnitude part with geometrical features. Adopted represen-
tation can enhance discriminative information compared to base
line methods. Adopted approach is compared with related
approaches as shown in Table 15.

In this work baseline features are created by fusing the 8
dimensional geometrical feature vectors (upper face part) with
magnitude part of Gabor Filter. And remaining 8 dimensional geo-
metrical vectors (lower face part) are fused with phase part of
Gabor filter. Then total dimension is calculated for each input data-
set. The feature dimension is found to be high as mentioned in
Tables 3-5 respectively. Recognition accuracy is not considered
during this stage because, if it comes more or high our goal will
not complete. As per the objectives of this work we need the
efficiency of recognition only during dimensional reduction at
subspace scores fusion level. Hence base line method is not taken
to account.

In this work 3 public datasets are considered for experiment. All
the databases are having different dimensional images. We
checked the subspace approaches for different image dimensional
feature dataset with different Gabor filter parameters i.e. number
of scales and number of orientations. Gabor filter with a high value
of m and n yields higher texture features which influences and
causes the improvement of recognition accuracy. Implementation
part of this work has been carried out with SVM classifier by
considering Euclidean distance as computing matching features
metric. SVM leave one out technique finds better recognition
accuracy, and this will suite the best classification technique for
this whole subspace approach.

The recognition accuracy of base line approach might give the
same recognition accuracy as obtained from proposed approach.
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Table 5
Gabor Filter parameters and feature vector dimension of FD database.

Number of Number of Gabor filter size  Gabor filter feature vector Geometrical feature vector Combinational Gabor feature vector
scales (m) orientations (n) (GFmn) dimension (GFgyp) dimension (Ggyp) dimension (CEGgyp)
5 4 20 169,280 16 169,296
3 8 24 203,136 16 203,152
3 4 12 101,568 16 101,584
5 8 40 338,560 16 338,576
But regarding individual expression recognition rates of different Table 7
expressions the proposed approach gives good accuracy of correct Performance of subspace approaches for JAFFE database at m=5 and n=8.
recognition for different expressions. This is due to elimination of Subspace Overall facial Classification  Dimension
null space from between scatter matrix and preservation of high approaches expression recognition  time in (s) reduction feature
discriminative data structure information in proposed approach rate in (%) (OFERR) (€N vector (DRev)
during subspace conversion. CEGPCA 8235 1.012 147
In proposed approach classification time performance is also CEGICA 85.03 1.245 147
improved compared to base line approach. But base line approach CEGKPCA 87.52 1.045 147
. . . CEGFLDA 90.45 0.874 126
dimensional reduction vector found to be larger than proposed CEGLPP 88.08 1.010 147
approach may consume more space in memory and larger classifi- CEGLFDA 93.45 0.997 147
cation time. In most of the base line approach features of LDA and CEGKLFDA 95.83 0.982 126
PCA are added to Gabor features hence base line approach can give CEGKLSWFDA  97.14 0929 105
a yield nearer accuracy rate of proposed approach. But Gabor
+PCA + LDA approach not solving the problem of singularity by
eliminating zero eigen components completely from between Table 8
scatter matrix and preserving local information of both scatter Performance of subspace approaches For YALE Database at m=5 and n=8.
matrices completely. Subspace Overall facial Classification ~ Dimension
In this section to investigate the performance of proposed approaches expr?ssion recognition  time in (s) reduction feature
. s rate in (%) (OFERR) (CT) vector (DRgy)
approach for expression recognition from JAFFE, YALE and FD data-
base for CEGPCA, CEGICA, CEGKPCA, CEGLPP, CEGFLDA, CEGLFDA, CEGPCA 61.08 0.997 63
and CEGKLFDA approaches are compared. These subspace CEGICA 64.80 0.912 63
. . . . CEGKPCA 68.52 0.929 63
approaches have been framed for dimensionality reduction of CEGFLDA 75.78 0.929 63
higher dimensional baseline feature dataset obtained from con- CEGLPP 72.27 0.802 63
catenating of Gabor filter feature vector and geometrical feature CEGLFDA 77.15 0.797 63
vector dataset dimensions as given in Tables 3-5 respectively. CEGKLFDA 81.38 0758 54
For CEGLPP, CEGKPCA, CEGLFDA, CEGKLFDA and CEGKLSWFDA CECKLSWFDA 8384 0745 >
algorithms nearest neighbor number k is set to 7 where the value
of o was set to be 0.5. Performances of subspace approaches (time
and space measures) are given in Tables 6-8 for FD, JAFFE and YALE 120 Comparison of perk of subspace approaches for JAFFE datab
database respectively. Figs. 5-7 show the comparison of subspace ——CEGPCA
approaches in terms of overall expression recognition rates for
JAFFE, YALE and FD database respectively. Overall facial expression —8—CEGICA
recognition rate for JAFFE database is found to be 97.14% and over- —4— CEGKPCA
all expression recognition rate for YALE database is 83.84% and 2
overall facial expression recognition rate for FD database is 2 s0 —><CEGFLDA
93.33% using proposed approach. From the results it is noted that : = CEGLPP
CEGKLSWFDA proposed approach consistently outperforms the ‘g 40
CEGPCA, CEGICA, CEGKPCA, CEGLPP, CEGFLDA, CEGLFDA and ? REmCEGLEDA
CEGKLFDA expression recognition approaches. Comparison of =: 20 CEGKLFDA
individual facial expression recognition accuracy rates for JAFFE s
© 0 —— CEGKLSWFDA

database, YALE database and FD database is presented in
Figs. 8-10 respectively. From Table 9 it has been noted that for

Table 6

Performance of subspace approaches for FD database at m=5 and n=8.
Subspace Overall facial Classification =~ Dimension
approaches expression recognition  time in (s) reduction feature

rate in (%) (OFERR) (CT) vector (DRpy)

CEGPCA 79.46 1.967 175
CEGICA 80.80 1.935 175
CEGKPCA 82.02 1.781 175
CEGFLDA 85.94 1.209 175
CEGLPP 84.28 1.126 175
CEGLFDA 89.46 1.098 175
CEGKLFDA 91.20 1.012 150
CEGKLSWFDA 93.33 0.989 150

21 42 63 84 105 126 147
Dimension reduction of feature vector

Fig. 5. Comparison of overall facial expression recognition rate for JAFFE database
with feature vector dimensional reduction of different subspace approaches at
m=5and n=38.

JAFFE database disgust, happy, sad, surprise and neutral
expressions recognition rate is 100%. But anger, happy and fear
expression recognition rate is 93.33%. Probably it is due to
confusion with sad and disgust expressions. Confusion matrix of
YALE database is shown in Table 10. From these results it has been
noted that overall recognition rate is 83.84%. For happy, and sur-
prise expressions correct recognition rate (CRR) is 100%. For sad
and sleep expression (closed eyes) recognition rate is 77.78%. For
wink expression CRR is 66.66% and neutral 80.88% respectively.
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Comparison of subspace approaches for YALE database
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= 40 -
‘g —<—CEGFLDA
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- —+—CEGKLFDA

0

9 18 27 36 45 54 §3 —— CEGKLSWFDA

Dimension reduction of feature vector

Fig. 6. Comparison of overall facial expression recognition rate for YALE database
with feature vector dimensional reduction of different subspace approaches at
m=5and n=8.
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Fig. 7. Comparison of overall facial expression recognition rate for FD database
with feature vector dimensional reduction of different subspace approaches at
m=5and n=8.

Similarly for FD database individual expression accuracy rate is
presented in Table 11. From this table it has been noted that for
happy and anger expression recognition rate is 96.67%, for surprise
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expression it is 100%. Sad and neutral expression CRR is 86.67%.
This work clearly analyzes that CEGFLDA algorithm performs com-
paratively better than CEGPCA, CEGICA, CEGKPCA and CEGLPP
approaches. It demonstrates that it is always necessary to discrim-
inate the feature for efficient recognition using class label informa-
tion. Although the CEGLFDA algorithm outperforms, CEGFLDA,
algorithm approach by using both local subspace structure and
class label information, it is still a linear algorithm and is
inadequate to describe the nonlinear face image space due to high
variability of the image content and style. Therefore it performs
worse and is weaker than the kernel based KLSWFDA algorithm.
Confusion matrix is derived from SVM_RBF kernel based using
“Leave One Out “strategy. It demonstrates the correct and
misclassification of expressions. It is also noted that classification
time (CT) of proposed approach is less compared to other
approaches.

Adopted proposed method in this paper can handle SSS problem
or singularity problem issues of within scatter matrix. Subspace
learning methods are compared with respect to their weakness
and strengthening effectiveness on databases regarding higher
value of recognition efficiency at specific features dimension. This
feature dimension depends on how many images are considered
for training. For example for YALE database 90 images are consid-
ered for experiment. Dimensionality reduction feature vector is 54
for proposed approach indicating that, for this value the highest
recognition is achieved. Hence at 54 dimensional reduced feature
vectors for proposed approach, it can give higher efficiency and less
classification time. If the number of features goes on multiples or
increases then SSS problem appears. This work estimates this prob-
lem in proposed approach. Hence each subspace approach is tested
with database by considering the number of trained samples is
greater than testing samples. Even in larger feature samples pro-
posed approach yields good efficiency. Other approaches like
CEGFLDA, CEGLFDA and CEGKLFDA are popular class discriminant
approaches but still gives less accuracy for higher features due to
incomplete solution of SSS problem. But GEGPCA, CEGICA,
CEGKPCA are not class discriminative approaches. Hence it can
support the SSS solution at certain extent. But due to its non
discriminant nature of classification of features the recognition
accuracy has been reduced. Proposed approach is made different
from the approaches mentioned in the paper is

1. To solve the singularity problem issues in the presence of higher
features by eliminating completely zero eigen components.

W Anger(AN}

W Disgust (O1)

B Happy(HA)

M Fear(FE)

HSad(SA)

m Surprise(SU)
Neutral(NE)

Fig. 8. Comparative analyses of subspace approaches for individual expression correct recognition rate of JAFFE database at m=5 and n=8.
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Fig. 9. Comparative analyses of subspace approaches for individual expression correct recognition rate of YALE database at m=5 and n=8.
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Fig. 10. Comparative analyses of subspace approaches for individual expression correct recognition rate of FD database at m=5 and n=38.

Table 10
Table 9 Confusion Matrix of YALE database using proposed subspace approach using SVM,
Confusion Matrix of JAFFE database using proposed subspace approach using SVM, Leave One Out Technique in (%) at m=5 and n=8.

Leave One Out Technique in (%) at m=5 and n=8.

AN DI HA FE SA SU NE

Table 11
Confusion Matrix of FD database using proposed subspace approach using SVM, Leave
One Out Technique in (%) at m=5 and n=8.

2. Preservation of local image information as much as possible and
achieving highly discriminative class applications. Distance HA SuU AN SA NE

between within class variables is minimized and distance
between different variable classes of expressions is maximized.
The Tables 12-14 illustrate the results of proposed approach at
different values of texture parameters used for Gabor filter
design. From this table it has been noted that for a smaller
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Table 12

Performance of proposed subspace approach at different m and n values for JAFFE database.

1331

Number of scales and orientations Overall facial expression

recognition rate in (%) (OFERR)

Classification time in (s) (CT)

Dimension reduction
feature vector (DRgy)

m=5andn=4 89.68 1.636 126

m=3andn=8 91.76 1.611 126

m=3andn=4 83.33 3.532 126
Table 13

Performance of proposed subspace approach at different m and n values for YALE database.

Number of scales and orientations Overall facial expression

recognition rate in (%) (OFERR)

Classification time in (s) (CT)

Dimension reduction
feature vector (DRgy)

m=5andn=4 80.72 0.762 54

m=3andn=38 77.77 0.707 63

m=3andn=4 73.77 1.107 63
Table 14

Performance of proposed subspace approach at different m and n values for FD database.

Number of scales and orientations Overall facial expression

recognition rate in (%) (OFERR)

Classification time in (s) (CT)

Dimension reduction
feature vector (DRpy)

m=5andn=4 88.76 1.078 150

m=3andn=8 85.45 1.982 150

m=3andn=4 78.35 2.533 150
Table 15

Comparison of performance of different approaches related to singularity problems of
scatter matrix (SSS problem).

Literature Approaches Performance of recognition (%)
Zuo et al. [67] BDPCA + LDA 87.14

Yang et al. [68] YLDA 96

Yu et al. [69] DLDA 94.9

Chen et al. [70] CLDA 95.14

Thomaz et al. [71] MLDA 95.81

number of m and n subspace approaches are not effective in
improvement of recognition accuracy even though dimension
of feature vector has been reduced.

5. Conclusions

Subspace approaches find vital role in dimensional reduction
and expression recognition in several fields. Performance of
expression recognition depends on face detection, feature extrac-
tion and feature vector dimension. In this work Gabor features
are isolated and fused with geometrical features but not discussed
in this paper. Less number of geometrical vectors having dimen-
sion 16 has been utilized for making combinational Gabor feature
dataset. This geometrical feature does not affect much on feature
variations due to a few geometrical feature vectors in illumination
variations. Addition of geometrical features on magnitude and
phase part enhances the image information but extracted feature
dataset dimension is found to be too large. This work concludes
that higher dimensional combinational Gabor feature vector
dimension is reduced by discriminative subspace methods by pre-
serving local discriminative structure of data by resolving the sin-
gularity problem at non linear region. Gabor magnitude and phase
part vectors are having rich set of texture information, in order to
utilize these features sufficiently both these vectors are fused
separately with geometrical features. Higher dimension feature
dataset is projected into subspace by several linear and non linear

subspace methods. Proposed CEGKLSWFDA algorithm reduces the
higher dimension feature dataset which has been framed by com-
bination of Gabor filter and geometrical distance vector features
and improves the expression recognition efficiency. For JAFFE
dataset it has been observed that reduced dimensionality feature
vector is 105 for YALE dataset it is found to be 54 and for FD data-
base dimension reduction of feature vector is found to be 150 by
achieving higher recognition rate. Unlike most of the traditional
dimensionality reduction algorithms which seek the data indepen-
dent nonlinear structure of the face image space, proposed
algorithm explicitly considers both the intrinsic subspace structure
and discriminative information. From the experimental results it
has been noted that individual expression recognition rate has
been improved compared to earlier subspace approaches. For JAFFE
database over all accuracy rate of recognition is 97.14%, for YALE
database it is 83.84% and for FD database 93.33% accuracy rate is
achieved. Accuracy of proposed approach for different expression
of JAFFE and YALE database also improved compared to state of
art approaches. Accuracy rates for FD dataset are also increased.
The results for CEGFLDA is found less compared to other
approaches related to discriminative nature algorithms due to
incomplete solution for singularity problem with lesser Fisher ratio
value. The classification time of various expressions is also found to
be less in proposed approach due to elimination of correlated data
structure compared to other subspace approaches mentioned
above.
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