Word representation of cords on a punctured plane ${ }^{\text {An }}$

Seiichi Kamada ${ }^{\text {a,* }}$, Yukio Matsumoto ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
${ }^{\mathrm{b}}$ Graduate school of Mathematical sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8914, Japan

Received 13 November 2002; received in revised form 4 December 2002; accepted 4 December 2002
Dedicated to Professor Kunio Murasugi on his seventy second birthday

Abstract

In this paper a purely algebraic condition for a word in a free group to be representable by a simple curve on a punctured plane will be given.

As an application, an algorithm for simple closed curves on a punctured plane will be obtained. Our solution is different from any algorithm due to Reinhart [Ann. of Math. 75 (1962) 209], Zieschang [Math. Scand. 17 (1965) 17] or Chillingworth [Bull. London Math. Soc. 1 (1969) 310]. Although the study here will be confined to the case of a plane, similar arguments could be carried out on the 2sphere. This research was motivated by monodromy problems appearing in Lefschetz fibrations and surface braids. See [Math. Proc. Cambridge Philos. Soc. 120 (1996) 237; Kamada, Braid and Knots Theory in Dimension Four, American Mathematical Society, 2002; Kamada and Matsumoto, in: Proceedings of the International Conference on Knot Theory "Knots in Hellas '98", World Scientific, 2000, p. 118; Kamada and Matsumoto, Enveloping monoidal quandles, Preprint, 2002; Matsumoto, in: S. Kojima et al. (Eds.), Proc. the 37th Taniguchi Sympos., World Scientific, 1996, p. 123]. © 2004 Elsevier B.V. All rights reserved.

MSC: primary 57Q35; secondary 57M99, 57R40

Keywords: Simple curve; Cord; Monodromy; Simple closed curve; Embedding; Homotopy

[^0]
1. Introduction

Let n be a fixed integer $\geqslant 2$. Let \mathbb{R}^{2} be the $x y$-plane, and let $P_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of n points on \mathbb{R}^{2}. To make our argument explicit, we will assume that for each $k=1, \ldots, n$, the point p_{k} is given by the following coordinates:

$$
p_{k}=(k, 0) .
$$

An (i, j)-curve on $\left(\mathbb{R}^{2}, P_{n}\right)$ is defined to be a continuous map

$$
\begin{equation*}
l:[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}, p_{j}\right\} \tag{1}
\end{equation*}
$$

satisfying $l(0)=p_{i}, l(1)=p_{j}$, where $i, j \in\{1, \ldots, n\}$ and $i \neq j$. Moreover, we assume that $l(t)=p_{i}$ if and only if $t=0$ and that $l(t)=p_{j}$ if and only if $t=1$.

If an (i, j)-curve l is simple (i.e., without self-intersections), it will be called an (i, j) cord, or simply a cord. Two cords l and l^{\prime} are isotopic if they are ambiently isotopic to each other by an isotopy of \mathbb{R}^{2} which fixes P_{n} pointwise.

For each $k \in\{1, \ldots, n\}$, let L_{k} be the half-line defined as follows:

$$
L_{k}=\{(k, y) \mid y \leqslant 0\} .
$$

The half-line L_{k} is parallel to the y-axis and has terminal point p_{k}. An (i, j)-curve l is said to be transverse to $\bigcup_{k} L_{k}$ if in a neighborhood of each intersection point $p \in l([0,1]) \cap \bigcup_{k} L_{k}$, the curve l is extended to a smooth curve whose velocity vectors are non-zero and transverse to $\bigcup_{k} L_{k}$. An (i, j)-curve which is transverse to $\bigcup_{k} L_{k}$ will be simply called a transverse (i, j)-curve. From the definition it follows that the intersection of a transverse (i, j)-curve l and $\bigcup_{k} L_{k}$ consists of a finite number of points.

Let F_{n} be a free group with preferred generators

$$
\begin{equation*}
x_{1}, x_{2}, \ldots, x_{n} . \tag{2}
\end{equation*}
$$

Traversing a transverse (i, j)-curve l from $l(0)$ to $l(1)$ and reading the intersection points with $\bigcup_{k} L_{k}$ successively, we can associate with l a word $W(l)$ in F_{n}. (We will sometimes say that $W(l)$ is represented by l, or more simply, is the reading of l.) To be precise, in order to get $W(l)$, we start from $l(0)=p_{i}$ but do not count the starting point p_{i} in $W(l)$. Each time we meet an intersection point $p \in l \cap \bigcup_{k} L_{k}$ we read it as the generator x_{k} if at p the curve l crosses L_{k} in the positive direction with respect to the x-coordinate, and as the inverse x_{k}^{-1} if it crosses in the negative direction. Finally we arrive at the terminal point $l(1)=p_{j}$, but we do not count it to $W(l)$. Thus if an (i, j)-curve does not intersect $\bigcup_{k} L_{k}$ except at the end points p_{i}, p_{j}, we associate with it the empty word 1.

For example, the reading of a $(2,6)$-cord shown in Fig. 1 is

$$
W=x_{1}^{-1} x_{3} x_{4} x_{5} x_{4}^{-1}
$$

Any prescribed word in F_{n} can be representable by an (i, j)-curve with selfintersections, but not necessarily by an (i, j)-cord. We are interested in the problem of characterizing those words in F_{n} that are representable by (i, j)-cords.

The following theorem is our main result, and gives a solution to this problem.
Theorem 1. There exists an explicitly computable map

$$
R_{i j}: F_{n} \rightarrow F_{n}
$$

Fig. 1. A (2, 6)-cord.
such that (i) $R_{i j}$ is a projection, namely $R_{i j} \circ R_{i j}=R_{i j}$ and (ii) a word W in F_{n} is representable by an (i, j)-cord if and only if

$$
R_{i j}(W)=W .
$$

In other words, W is representable by an (i, j)-cord if and only if W belongs to the image of $R_{i j}$.

The map $R_{i j}$ is a crossed anti-homomorphism twisted by an explicitly computable 'right representation'

$$
D_{i j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right) .
$$

The computations of $R_{i j}$ and $D_{i j}$ are purely algebraic, and even a computer could detect the representable words. See Section 6, particularly Theorem 36, Propositions 38, and 39.

In Section 7, we will apply Theorem 1 to obtain an algorithm to decide if a given word is representable by a simple closed curve on $\mathbb{R}^{2}-P_{n}$. Our algorithm is considerably different from those of Reinhart [12], Zieschang [13] or Chillingworth [2]. See Theorem 41.

In the course of proving Theorem 1, we will have to study the relationship between the isotopy classes of cords and various cosets of the free group F_{n}. This will be discussed in Sections 2 and 3.

Theorem 1 will be proved in Sections 5 and 6 . In fact, it is merely a statement putting together Lemmas 17, 18 and Theorem 36 proved in these sections.

In this paper, we will confine our investigation to a punctured plane $\left(\mathbb{R}^{2}, P_{n}\right)$ for simplicity, but it could be carried out similarly on the punctured sphere $\left(S^{2}, P_{n}\right)$. We notice that if it is actually done, then in the special case where $n=6$, we will have word representation of simple closed curves on a closed surface of genus 2 by taking a double branched covering of $\left(S^{2}, P_{6}\right)$. In this sense, potentially, our work is related to the study of double torus knots by Hill [4], and Hill and Murasugi [5].

Finally, we remark that an independent treatment of $(2,3)$-cords on $\left(\mathbb{R}^{2}, P_{3}\right)$ (if said in our terminology) is found in Section 2 of Jin and Kim [6] in a different formulation.

2. Isotopy classes of (i, ∞)-cords

We take an auxiliary point p_{∞} in $\mathbb{R}^{2}-P_{n}$. To fix our idea, we assume that

$$
p_{\infty}=(0,1) .
$$

A cord on $\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$ is defined just as in Section 1 , and the meaning of an (i, ∞) cord will be clear. The number $i \in\{1, \ldots, n\}$ will be fixed throughout this section.

Let \mathcal{A}_{i} denote the set of all (ambient) isotopy classes of (i, ∞)-cords on $\left(\mathbb{R}^{2}, P_{n} \cup\right.$ $\left\{p_{\infty}\right\}$). Then a map

$$
\begin{equation*}
f_{i}: F_{n} \rightarrow \mathcal{A}_{i} \tag{3}
\end{equation*}
$$

is defined as follows.
First identify F_{n} with the fundamental group $\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)$.
By Theorem 1.4 of Birman's book [1], there is an injective homomorphism j_{*} of the latter group to the pure braid group with the 'base' $P_{n} \cup\left\{p_{\infty}\right\}, P\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$:

$$
\begin{equation*}
j_{*}: \pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right) \rightarrow P\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right) . \tag{4}
\end{equation*}
$$

Given an element b of $P\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$, there exists an isotopy $\left\{h_{t}\right\}_{0 \leqslant t \leqslant 1}$ of \mathbb{R}^{2} onto itself such that $h_{0}=\mathrm{id}$ and $\left(h_{t}\left(P_{n} \cup\left\{p_{\infty}\right\}\right), t\right)_{0 \leqslant t \leqslant 1}$ represents the braid b in $\mathbb{R}^{2} \times[0,1]$. (See [1].) Let

$$
\mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)
$$

denote the mapping class group of $\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$ which fixes $P_{n} \cup\left\{p_{\infty}\right\}$ pointwise. By sending b to the final stage h_{1} of the isotopy $\left\{h_{t}\right\}_{0 \leqslant t \leqslant 1}$, we have a natural map

$$
\begin{equation*}
d_{*}: P\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right) \rightarrow \mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right) . \tag{5}
\end{equation*}
$$

Lemma 2. The composite

$$
d_{*} \circ j_{*}: \pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right) \rightarrow \mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)
$$

is an injective homomorphism.
Proof. By Lemma 4.2.1 in [1], $\operatorname{ker} d_{*} \subset \operatorname{Center}\left(P\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)\right.$. We are assuming $n \geqslant 2$, and the free group $\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)$ is centerless. Since j_{*} is injective, this centerlessness implies

$$
\begin{equation*}
j_{*}\left(\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)\right) \cap \operatorname{ker} d_{*}=\{1\} \tag{6}
\end{equation*}
$$

Now the injectivity $d_{*} \circ j_{*}$ follows from (6) and the injectivity of j_{*}.
By Lemma 2, $F_{n}=\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)$ is considered to be a subgroup of the mapping class group $\mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$, which turns out to be the subgroup of motions of p_{∞} in $\mathbb{R}^{2}-P_{n}($ Birman $[1, \mathrm{p} .10])$.

Now we are in a position to define the map

$$
\begin{equation*}
f_{i}: F_{n} \rightarrow \mathcal{A}_{i} \tag{7}
\end{equation*}
$$

Fig. 2. $\left(l_{i \infty}\right) x_{i}$ and $\left(l_{i \infty}\right) x_{i}^{2}$.

Take a word V from F_{n}. By the above remark, we can regard V as an element of $\mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$. Let $l_{i \infty}$ be a special (i, ∞)-cord which is a line segment joining p_{i} and p_{∞} :

$$
l_{i \infty}(t)=(1-t)(i, 0)+t(1,0), \quad 0 \leqslant t \leqslant 1
$$

For an (i, ∞)-cord l we denote by $[l]$ its isotopy class $\in \mathcal{A}_{i}$. Then $f_{i}(V)$ is defined to be the isotopy class of the image of $l_{i \infty}$ under the action of the mapping class V :

$$
\begin{equation*}
f_{i}(V):=\left[\left(l_{i \infty}\right) V\right] \tag{8}
\end{equation*}
$$

Here and in what follows, we will assume that $\mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$ acts on $\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$ from the right.

Let $C_{k}(k \in\{1, \ldots, n\})$ be a smooth simple closed curve on $\mathbb{R}^{2}-P_{n}$ which starts and ends at p_{∞}, and crosses L_{k} only once, transversely in the positive direction. We also assume that $C_{k} \cap L_{h}=\emptyset$ if $k \neq h$. Then as an element of the mapping class group $\mathcal{M}\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$, a generator x_{k} of F_{n} is the result of a motion whose support is within a sufficiently thin neighborhood of C_{k} and which moves the point p_{∞} along the curve C_{k}. Similarly, x_{k}^{-1} is the result of a motion along C_{k}^{-1}, namely along the same curve C_{k} but in the opposite direction.

When $k=i$, the action of x_{i} has a special property. For example, see Fig. 2, where two (i, ∞)-cords $\left(l_{i \infty}\right) x_{i}$ and $\left(l_{i \infty}\right) x_{i}^{2}$ are shown. Notice that these (i, ∞)-cords are isotopic to $l_{i \infty}$ by isotopies which rotate a neighborhood of p_{i} round the point p_{i}.

More generally,

$$
\left[\left(l_{i \infty}\right) x_{i}^{m}\right]=\left[l_{i \infty}\right] \in \mathcal{A}_{i}, \quad \forall m \in \mathbb{Z}
$$

Since, for $V, W \in F_{n}$,

$$
\begin{equation*}
\left[\left(l_{i \infty}\right) V W\right]=\left[\left(l_{i \infty}\right) V\right] W \tag{9}
\end{equation*}
$$

we have

$$
\left[\left(l_{i \infty}\right) x_{i}^{m} W\right]=\left[\left(l_{i \infty}\right) W\right]
$$

Thus we have the following:

Lemma 3. $f_{i}: F_{n} \rightarrow \mathcal{A}_{i}$ induces a map (denoted by f_{i} again)

$$
f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} \rightarrow \mathcal{A}_{i},
$$

where $\left\langle x_{i}\right\rangle \backslash F_{n}$ denotes the left cosets, in which $[V]=[W]$ if and only if $V=x_{i}^{m} W$ for some $m \in \mathbb{Z}$.

Next, we will define a homotopy set \mathcal{H}_{i}. We define an (i, ∞)-curve to be a continuous map (which may have self-intersections)

$$
l:[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}\right\}
$$

such that $l(t)=p_{i}$ if and only if $t=0$ and such that $l(t)=p_{\infty}$ if $t=1$. This definition of an (i, ∞)-curve differs slightly from that of an (i, j)-curve given in Section 1 in which $j \neq \infty$.

Two (i, ∞)-curves l and l^{\prime} are said to be i-homotopic if there exists a homotopy

$$
H:[0,1] \times[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}\right\}
$$

satisfying
(i) $H(0, t)=l(t)$ and $H(1, t)=l^{\prime}(t), \forall t \in[0,1]$,
(ii) $H(s, t)=p_{i}$ if and only if $t=0$, and
(iii) $H(s, 1)=p_{\infty}, \forall s \in[0,1]$.

Notice the difference between the conditions (ii) and (iii); the "exit" of an i-homotopy is "closed" at p_{i}, while it is "open" at p_{∞}, which means that during the homotopy the interior of the curve is prohibited from going through p_{i} but is allowed through p_{∞}.

Let us define \mathcal{H}_{i} to be the set of all i-homotopy classes of (i, ∞)-curves. Clearly we have a natural map

$$
\begin{equation*}
g_{i}: \mathcal{A}_{i} \rightarrow \mathcal{H}_{i} \tag{10}
\end{equation*}
$$

Lemma 4. The map g_{i} is surjective.
Proof. Let l be an (i, ∞)-curve. Deforming l via i-homotopy, if necessary, we may assume that l is smooth and has a finite number of transverse self-intersections. Then we can push out these self-intersections successively through the end point p_{∞}. See Fig. 3. The resulting (i, ∞)-curve l^{\prime} is an (i, ∞)-cord and is i-homotopic to l. This proves the surjectivity of $g_{i}: \mathcal{A}_{i} \rightarrow \mathcal{H}_{i}$.

Finally we will define a map

$$
\begin{equation*}
h_{i}: \mathcal{H}_{i} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n} . \tag{11}
\end{equation*}
$$

Let $l:[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}\right\}$ be an (i, ∞)-curve. We can deform l by an i-homotopy to an (i, ∞)-curve l^{\prime} which is transverse to $\bigcup_{k} L_{k}$. Let $W\left(l^{\prime}\right) \in F_{n}$ be the reading of l^{\prime}. Then the map $h_{i}: \mathcal{H}_{i} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n}$ is defined to be the map sending the i-homotopy class of l to the coset of $W\left(l^{\prime}\right) \in\left\langle x_{i}\right\rangle \backslash F_{n}$.

Fig. 3. Pushing out the self-intersections through p_{∞}.

Lemma 5. The map

$$
h_{i}: \mathcal{H}_{i} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n}
$$

is well-defined.
Proof. Suppose l and l^{\prime} are transverse (i, ∞)-curves which are mutually i-homotopic. Then there exists an i-homotopy

$$
H:[0,1] \times[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}\right\}
$$

satisfying (i), (ii), (iii) above.
From these properties, if $\varepsilon>0$ is sufficiently small, it follows that
(a) the readings of restricted curves $l \mid[\varepsilon, 1]$ and $l^{\prime} \mid[\varepsilon, 1]$ with respect to $\bigcup_{k} L_{k}$ are the same as $W(l)$ and $W\left(l^{\prime}\right)$, respectively, and
(b) the curve $H_{\varepsilon}(s):=H(s, \varepsilon), 0 \leqslant s \leqslant 1$, is contained in a small neighborhood N of p_{i} such that $N \cap P_{n}=\left\{p_{i}\right\}$. (The curve H_{ε} does not touch the point p_{i}.)

Perturbing a small part of H within N, if necessary, we may assume that the curve H_{ε} is transverse to $\bigcup_{k} L_{k}$. Then the reading of the curve H_{ε} will be x_{i}^{m} for some $m \in \mathbb{Z}$.

Now define a loop $L(\tau), 0 \leqslant \tau \leqslant 1$, on $\mathbb{R}^{2}-P_{n}$ based at p_{∞} :

$$
L(\tau):= \begin{cases}l(1-3 \tau) & 0 \leqslant \tau \leqslant \frac{1}{3}-\frac{1}{3} \varepsilon, \\ H_{\varepsilon}((3 \tau+\varepsilon-1) /(1+2 \varepsilon)) & \frac{1}{3}-\frac{1}{3} \varepsilon \leqslant \tau \leqslant \frac{2}{3}+\frac{1}{3} \varepsilon, \\ l^{\prime}(3 \tau-2) & \frac{2}{3}+\frac{1}{3} \varepsilon \leqslant \tau \leqslant 1 .\end{cases}
$$

See Fig. 4.
It is obvious from (a) and (b) that the reading of the loop $L(\tau), 0 \leqslant \tau \leqslant 1$, is

$$
W(l)^{-1} x_{i}^{m} W\left(l^{\prime}\right) .
$$

Since $H([0,1] \times[\varepsilon, 1]) \subset \mathbb{R}^{2}-P_{n}$, the loop $L(\tau)$ shrinks in $\mathbb{R}^{2}-P_{n}$ to the base point p_{∞}. Therefore, in the group $F_{n}=\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)$, we have

$$
W(l)^{-1} x_{i}^{m} W\left(l^{\prime}\right)=1,
$$

Fig. 4. Homotopy H and loop $L(\tau)$.
in other words,

$$
[W(l)]=\left[W\left(l^{\prime}\right)\right] \in\left\langle x_{i}\right\rangle \backslash F_{n} .
$$

This proves Lemma 5.
Lemma 6. The map

$$
f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} \rightarrow \mathcal{A}_{i}
$$

is surjective.
Proof. Let l be any (i, ∞)-cord from \mathcal{A}_{i}, which may be assumed to be smooth and transverse to $\bigcup_{k} L_{k}$. We will prove Lemma 6 by induction on the number N of the intersection points between l and $\bigcup_{k} L_{k}$. If $N=1, l$ does not meet $\bigcup_{k} L_{k}$ except at the starting point p_{i}. It is easily seen that such a cord l is isotopic to the line segment $l_{i \infty}$. Thus in this case

$$
[l]=\left[l_{i \infty}\right]=f_{i}(1)
$$

and $[l]$ is in the image of f_{i}. See (8).
Suppose Lemma 6 has been proved if the intersection points are less than a given N. We will prove Lemma 6 when the number equals N. Let p be the intersection point between l and $\bigcup_{k} L_{k}$ that we meet last when traversing l from $l(0)$ to $l(1)$. Suppose the point p is on the half-line L_{k}. We first assume that at p the cord l crosses L_{k} in the positive direction.

Let C_{k} be the simple closed curve based at p_{∞}, introduced before Lemma 3. Then we may assume that C_{k} intersects L_{k} at the point p and that the part of C_{k} between p and p_{∞} is the same as the part of l between p and p_{∞}. Then consider the motion whose support is within a thin neighborhood of C_{k} and which carries p_{∞} round along C_{k}^{-1}. Apply this motion to l. Then p will be removed from the intersections, and l will be moved to an (i, ∞)-curve l^{\prime} having fewer intersection points with $\bigcup_{k} L_{k}$ than l.

Note that in \mathcal{A}_{i},

$$
\left[l^{\prime}\right]=\left[(l) x_{k}^{-1}\right] .
$$

By induction hypothesis, $\left[l^{\prime}\right]$ is in the image of f_{i}, and we can find a word $V \in F_{n}$ such that

$$
\left[l^{\prime}\right]=\left[\left(l_{i \infty}\right) V\right] .
$$

Fig. 5. $\left(l_{i \infty}\right) x_{k}$ and $\left(l_{i \infty}\right) x_{k}^{-1}$.
Thus

$$
\left[(l) x_{k}^{-1}\right]=\left[\left(l_{i \infty}\right) V\right] .
$$

In other words,

$$
[l]=\left[\left(l_{i \infty}\right) V x_{k}\right]=f_{i}\left(V x_{k}\right) .
$$

We have done in the case l crosses L_{k} at p in the positive direction. If it crosses in the negative direction, the argument is similar. This completes the proof of Lemma 6 .

Lemma 7. The composite

$$
h_{i} \circ g_{i} \circ f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n}
$$

is the identity.
Proof. We have only to prove that, for each $V \in F_{n}$, the reading of $\left(l_{i \infty}\right) V$ is the same as V in $\left\langle x_{i}\right\rangle \backslash F_{n}$. Choose an arbitrary word V and fix it. By Lemma 5, the reading of an (i, ∞) cord does not change if we deform it by (i, ∞)-isotopy, or more generally by i-homotopy. Thus we may assume that $\left(l_{i \infty}\right) V$ is transverse to $\bigcup_{k} L_{k}$.

Write the word V in a reduced form of length N :

$$
V=x_{v(1)}^{\epsilon(1)} x_{v(2)}^{\epsilon(2)} \cdots x_{v(N)}^{\epsilon(N)} .
$$

That is to say, in this expression, $\epsilon(m)= \pm 1, \nu(m) \in\{1,2, \ldots, n\}, m=1,2, \ldots, N$, and if $v(m)=\nu(m+1)$ for some m, then $\epsilon(m) \neq-\epsilon(m+1)$. If a word V has a reduced form of length N, this number N is called the reduced length of V. We will prove the lemma by induction on N.

First suppose $N=1$, and draw a transverse curve $\left(l_{i \infty}\right) x_{k}^{\epsilon}$. See Fig. 2 for the case $k=i$, and Fig. 5 for the case $k \neq i$. In the case $k=i$, we have seen that the reading of $\left(l_{i \infty}\right) x_{i}^{\epsilon}$ is 1 as an element of $\left\langle x_{i}\right\rangle \backslash F_{n}$. (Lemma 3.) In the case $k \neq i$, by Fig. 5, we see that the reading of $\left(l_{i \infty}\right) x_{k}^{\epsilon}$ is x_{k}^{ϵ}. Thus Lemma 7 is clear, if $N=1$.

To proceed further, let us make a definition. For a transverse (i, ∞)-cord l, its honest reading is defined to be the reading of the intersection points $l \cap \bigcup_{k} L_{k}$ without

Fig. 6. C_{k} intersects $\left(l_{i \infty}\right) U$.
canceling x_{k} and x_{k}^{-1} even if they appear successively in the course of traversing l. Thus a honest reading is not necessarily a reduced word.

Now suppose $N>1$ and that Lemma 6 has been proved for smaller length. Suppose the reduced word V of length N is written as

$$
V=U x_{k}^{\epsilon} \quad(\epsilon= \pm 1),
$$

where U is a reduced word of length $N-1(\geqslant 1)$. To draw the curve $\left(l_{i \infty}\right) V$, we apply the mapping class x_{k}^{ϵ} to the curve $\left(l_{i \infty}\right) U$. That is to say, we move $\left(l_{i \infty}\right) U$ by the motion of p_{∞} round along the curve C_{k}^{ϵ}. If C_{k} does not intersect $\left(l_{i \infty}\right) U$ except at p_{∞}, then the reading of $\left(l_{i \infty}\right) U x_{k}^{\epsilon}$ is easily seen to be $U x_{k}^{\epsilon}$. But some complication appears if C_{k} intersects $\left(l_{i \infty}\right) U$ at other points than the base point p_{∞}.

To see this, suppose $\epsilon=+1$, and suppose C_{k} intersects a part of $\left(l_{i \infty}\right) U$ once as indicated by Fig. 6, left. Then by performing the motion of p_{∞} along C_{k}, we have an $(i, \infty)-\operatorname{cord}\left(l_{i \infty}\right) U x_{k}$.

Let us compare the honest readings of the cords before and after this motion. By Fig. 6, right, we see that the honest reading of $\left(l_{i \infty}\right) U x_{k}$ is obtained from that of $\left(l_{i \infty}\right) U$ by multiplying x_{k} from the right and inserting a canceling pair $x_{k} x_{k}^{-1}$ somewhere in the honest reading of $\left(l_{i \infty}\right) U$. By induction hypothesis, the reading of $\left(l_{i \infty}\right) U$ is equal to U in $\left\langle x_{i}\right\rangle \backslash F_{n}$. Thus from the above observation, the reading of $\left(l_{i \infty}\right) U x_{k}$ is equal to $U x_{k}$ in $\left\langle x_{i}\right\rangle \backslash F_{n}$.

The argument is the same if $\epsilon=-1$ and/or if C_{k} intersects $\left(l_{i \infty}\right) U$ more than once.
This proves Lemma 7 for the word $V=U x_{k}^{\epsilon}$ of reduced length N, completing the proof of Lemma 7.

The following theorem is the main result of Section 2.

Theorem 8. The three maps

$$
\begin{aligned}
& f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} \rightarrow \mathcal{A}_{i}, \\
& g_{i}: \mathcal{A}_{i} \rightarrow \mathcal{H}_{i}, \quad \text { and } \\
& h_{i}: \mathcal{H}_{i} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n},
\end{aligned}
$$

are bijective.

Proof. The theorem is obvious from Lemmas 4, 6 and 7.

3. Isotopy classes of $(\boldsymbol{i}, \boldsymbol{j})$-cords

Take and fix any $i, j \in\{1,2, \ldots, n\}(i \neq j)$ throughout this section. Let $\mathcal{A}_{i j}$ be the set of all isotopy classes of (i, j)-cords on $\left(\mathbb{R}^{2}, P_{n}\right)$. First we will parameterize $\mathcal{A}_{i j}$ by certain double cosets of F_{n}.

Theorem 9. Let $N\left(x_{j}\right)$ be the normal subgroup of F_{n} generated by x_{j}. Then there exists a bijection

$$
\tilde{f}_{i j}:\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) \rightarrow \mathcal{A}_{i j}
$$

Proof. Let Q_{n-1} denote the set of $n-1$ points defined by

$$
\begin{equation*}
Q_{n-1}=P_{n}-\left\{p_{j}\right\} \tag{12}
\end{equation*}
$$

Then obviously there is a homeomorphism

$$
\begin{equation*}
\left(\mathbb{R}^{2}, Q_{n-1} \cup\left\{p_{\infty}\right\}, p_{\infty}\right) \rightarrow\left(\mathbb{R}^{2}, P_{n}, p_{j}\right) \tag{13}
\end{equation*}
$$

We will explicitly construct a homeomorphism (13).
Let $l_{j \infty}$ be the line segment joining p_{j} and p_{∞} (caution: not $l_{i \infty}$). Consider a motion within a sufficiently small neighborhood of $l_{j \infty}$ which moves p_{∞} to p_{j} along $l_{j \infty}$. Let φ_{j} (or simply φ, j being always understood) be the final stage of this motion. Then φ gives an explicit homeomorphism (13). Note that $\varphi\left(p_{\infty}\right)=p_{j}$ and φ fixes $L_{k}(k \neq j)$ pointwise.

It is easy to see that φ maps an (i, ∞)-cord on $\left(\mathbb{R}^{2}, Q_{n-1} \cup\left\{p_{\infty}\right\}\right)$ to an (i, j)-cord on $\left(\mathbb{R}^{2}, P_{n}\right)$. By letting $\mathcal{A}_{i}\left(Q_{n-1}\right)$ denote the set of isotopy classes of (i, ∞)-cords on $\left(\mathbb{R}^{2}, Q_{n-1} \cup\left\{p_{\infty}\right\}\right)$, we have the bijection

$$
\begin{equation*}
\varphi_{*}: \mathcal{A}_{i}\left(Q_{n-1}\right) \rightarrow \mathcal{A}_{i j} \tag{14}
\end{equation*}
$$

By Theorem 8, the map

$$
\begin{equation*}
f_{i}:\left\langle x_{i}\right\rangle \backslash G_{n-1} \rightarrow \mathcal{A}_{i}\left(Q_{n-1}\right) \tag{15}
\end{equation*}
$$

is a bijection, where G_{n-1} denotes the free group generated by $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}-\left\{x_{j}\right\}$. This group G_{n-1} is canonically isomorphic to $F_{n} / N\left(x_{j}\right)$. Thus we have a bijection (denoted by f_{i} again)

$$
\begin{equation*}
f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) \rightarrow \mathcal{A}_{i}\left(Q_{n-1}\right) \tag{16}
\end{equation*}
$$

Combining (14) and (16), we have the required bijection

$$
\begin{equation*}
\tilde{f}_{i j}:=\varphi_{*} \circ f_{i}:\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) \rightarrow \mathcal{A}_{i j} \tag{17}
\end{equation*}
$$

This completes the proof of Theorem 9.
Remark 10. We can likewise prove that there exists a bijection

$$
\tilde{f}_{i j}^{\prime}: N\left(x_{i}\right) \backslash F_{n} /\left\langle x_{j}\right\rangle \rightarrow \mathcal{A}_{i j}
$$

by exchanging the roles of $l_{i \infty}$ and $l_{j \infty}$ in the arguments.

We will give here a geometric interpretation of the bijection $\tilde{f}_{i j}$. For this, recall the simple closed curve C_{k} introduced before Lemma 3. Let $C_{k}^{j}(k \neq j)$ be the image of C_{k} under $\varphi ; C_{k}^{j}:=\varphi\left(C_{k}\right)$. Since $\varphi\left(p_{\infty}\right)=p_{j}, C_{k}^{j}$ is a simple closed curve on $\mathbb{R}^{2}-Q_{n-1}$ based at p_{j} and which intersects L_{k} transversely in a point. Also let $l_{i j}$ be the image $\varphi\left(l_{i \infty}\right)$. Then $l_{i j}$ is an (i, j)-cord which does not intersect $\bigcup_{k} L_{k}$ except at the end points.

The homeomorphism φ induces a homomorphism between the mapping class groups:

$$
\begin{equation*}
\mathcal{M}\left(\mathbb{R}^{2}, Q_{n-1} \cup\left\{p_{\infty}\right\}\right) \rightarrow \mathcal{M}\left(\mathbb{R}^{2}, P_{n}\right) \tag{18}
\end{equation*}
$$

Denoting the image of V under this homomorphism by V^{φ}, we see that $x_{k}^{\varphi}(k \neq j)$ acts on $\left(\mathbb{R}^{2}, P_{n}\right)$ as the result of the motion of p_{j} round along the simple closed curve C_{k}^{j}.

Proposition 11 (Geometric interpretation of $\left.\tilde{f}_{i j}\right)$. Let V be a word $\left(\in F_{n}\right)$ representing a coset $[V] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$. We may assume that V does not contain x_{j}. Then $\tilde{f}_{i j}([V])$ is the isotopy class of the cord $\left(l_{i j}\right) V^{\varphi}$.

Proof. This is clear by the definition of f_{i} in Section 2 and the construction of $\tilde{f}_{i j}$ given above.

There is another geometric interpretation of $\tilde{f}_{i j}$ which follows from Lemma 7 and Theorem 8. In fact, by Lemma 7 and Theorem 8, we have

$$
\begin{equation*}
f_{i}=g_{i}^{-1} \circ h_{i}^{-1}:\left\langle x_{i}\right\rangle \backslash F_{n} \rightarrow \mathcal{A}_{i} . \tag{19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\tilde{f}_{i j}=\varphi_{*} \circ f_{i}=\varphi_{*} \circ g_{i}^{-1} \circ h_{i}^{-1} . \tag{20}
\end{equation*}
$$

This gives the second interpretation of $\tilde{f}_{i j}$:
Proposition 12 (Second geometric interpretation of $\left.\tilde{f}_{i j}\right)$ Let $V\left(\in F_{n}\right)$ be a word representing a coset $[V] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$. (This time V may contain x_{j}.) Draw a smooth (i, j)-curve l, with self-intersections in general, which is transverse to $\bigcup_{k} L_{k}$ and whose reading is V. We assume that the self-intersections of l are transverse and finite in number. By homotopy, push out all the self-intersections of l through the terminal point p_{j} successively. Let l^{\prime} be the resulting (i, j)-cord. Then $\tilde{f}_{i j}([V])$ is the isotopy class of the cord l^{\prime}.

The meaning of "homotopy" in Proposition 12 might be a little vague. Precisely speaking, it is the image of the i-homotopy in Section 2 under φ.

Proof of Proposition 12. From the proof of the surjectivity of $g_{i}: \mathcal{A}_{i} \rightarrow \mathcal{H}_{i}$ (Lemma 4), and the definition of $h_{i}: \mathcal{H}_{i} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n}$, Proposition 12 follows immediately.

Fig. 7 illustrates Proposition 12, which shows how to obtain a (1,3)-cord in the isotopy class $\tilde{f}_{13}\left(\left[x_{2}^{2} x_{4}\right]\right)$, starting from a $(1,3)$-curve whose reading is $x_{2}^{2} x_{4}$.

Fig. 7. (1, 3)-cord $\tilde{f}_{13}\left(\left[x_{2}^{2} x_{4}\right]\right)$.
In Fig. 7, the first (1,3)-curve reads as $x_{2}^{2} x_{4}$. Pushing out the intersection nearest to p_{3}, through p_{3}, we obtain the second curve. Its reading is $x_{2}^{2} x_{3} x_{4}$. Then pushing out the second intersection through p_{3}, we obtain a (1,3)-cord representing $\tilde{f}_{13}\left(\left[x_{2}^{2} x_{4}\right]\right)$. The reading of the (1,3)-cord is $x_{2} x_{3} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{4}$. (Note that neglecting the generator x_{3} in this final word, we recover the word $x_{2}^{2} x_{4}$.) In this way, the process of pushing out the intersections may be regarded as a process of successively rewriting the words. Thus the process will sometimes be referred to as the rewriting process.

Remark 13. By (20), it follows that

$$
\tilde{f}_{i j}^{-1}=h_{i} \circ g_{i} \circ \varphi_{*}^{-1} .
$$

Thus $\tilde{f}_{i j}^{-1}$ is explicitly described as follows: Let l be an (i, j)-cord on $\left(\mathbb{R}^{2}, P_{n}\right)$. Make it transverse to $\bigcup_{k} L_{k}$. Let $W(l)$ be the reading of l from $l(0)=p_{i}$ to $l(1)=p_{j}$. Then

$$
\begin{equation*}
\tilde{f}_{i j}^{-1}([l])=[W(l)] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) . \tag{21}
\end{equation*}
$$

An implication of this equality is this: to determine the isotopy class of an (i, j)-cord l, we have only to know the reading of l modulo x_{j}.

4. Rewriting function $\boldsymbol{R}_{i j}$

In this section, we will introduce a mapping $R_{i j}: F_{n} \rightarrow F_{n}$ which plays an important role in our investigation. We begin by defining the notion of (i, j)-homotopy of (i, j) curves. Two (i, j)-curves l and l^{\prime} are said to be (i, j)-homotopic if there exits a homotopy

$$
H:[0,1] \times[0,1] \rightarrow\left(\mathbb{R}^{2}-P_{n}\right) \cup\left\{p_{i}, p_{j}\right\}
$$

satisfying
(i) $H(0, t)=l(t)$ and $H(1, t)=l^{\prime}(t), \forall t \in[0,1]$,
(ii) $H(s, t)=p_{i}$ if and only if $t=0$, and
(iii) $H(s, t)=p_{j}$ if and only if $t=1$.

The conditions (ii) and (iii) say that both the "exits" of an (i,j)-homotopy are "closed" at p_{i} and p_{j}. (Cf. Section 2.)

Let $\mathcal{H}_{i j}$ be the set of all (i, j)-homotopy classes of (i, j)-curves on $\left(\mathbb{R}^{2}, P_{n}\right)$.
Given an (i, j)-curve l, we make it transverse to $\bigcup_{k} L_{k}$. Let $W(l)$ be the reading of l from p_{i} to p_{j}.

Lemma 14. The map

$$
\tilde{h}_{i j}: \mathcal{H}_{i j} \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle
$$

sending the (i, j)-homotopy class of an (i, j)-curve $[l]$ to the double coset of its reading $[W(l)]$ is well-defined and is bijective.

Caution: In this lemma, $\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle$ is not $\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) ; V$ and W belong to the same double coset in $\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle$ if and only if $V=x_{i}^{p} W x_{j}^{q}$ for some $p, q \in \mathbb{Z}$.

Proof of Lemma 14. The well-definedness is proved by the (i, j)-homotopy version of the proof of Lemma 5.

The surjectivity of $\tilde{h}_{i j}$ is easy, because given a word V one can draw an (i, j)-curve whose reading is the word V if the curve is allowed to have self-intersections.

We will prove the injectivity. Let l be an (i, j)-curve. We may assume that it is smooth and transverse to $\bigcup_{k} L_{k}$. Observe that by giving rotations to l round p_{i}, we can multiply any power of x_{i} from the left of the reading $W(l)$ without changing the (i, j)-homotopy class of l. Similarly, we can multiply any power of x_{j} from the right of $W(l)$.

Now suppose that we are given (i, j)-curves l and l^{\prime} and that their readings belong to the same double coset $\in\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle$. By the above observation, adjusting the power of x_{i} from the left and that of x_{j} from the right, we may assume that the readings $W(l)$ and $W\left(l^{\prime}\right)$ are exactly the same: $W(l)=W\left(l^{\prime}\right) \in F_{n}$.

Also we may assume that the tangent vectors of l and l^{\prime} at p_{i} (and at p_{j}) are the same, or more strongly, that there exists a small number $\varepsilon>0$ such that as continuous maps $[0,1] \rightarrow \mathbb{R}^{2}, l$ and l^{\prime} coincide if restricted to $[0, \varepsilon]$ and $[1-\varepsilon, 1]$:

$$
l\left|[0, \varepsilon]=l^{\prime}\right|[0, \varepsilon], \quad l\left|[1-\varepsilon, 1]=l^{\prime}\right|[1-\varepsilon, 1]
$$

Consider a loop L which starts at $l(\varepsilon)$, traverses l, arrives at $l(1-\varepsilon)=l^{\prime}(1-\varepsilon)$, and returns to $l^{\prime}(\varepsilon)=l(\varepsilon)$ along $l^{\prime-1}$. The loop L is completely contained in the punctured plane $\mathbb{R}^{2}-P_{n}$, and its reading is $W(l) W\left(l^{\prime}\right)^{-1}=1$. Since $\pi_{1}\left(\mathbb{R}^{2}-P_{n}, l(\varepsilon)\right) \cong F_{n}, L$ shrinks to a point in $\mathbb{R}^{2}-P_{n}$. Making use of this homotopy, one can construct an (i, j) homotopy between l and l^{\prime}. This proves the injectivity of $\tilde{h}_{i j}$.

Since an (i, j)-cord is an (i, j)-curve, and isotopic (i, j)-cords are (i, j)-homotopic, there is a natural map

$$
\begin{equation*}
\tilde{g}_{i j}: \mathcal{A}_{i j} \rightarrow \mathcal{H}_{i j} \tag{22}
\end{equation*}
$$

Lemma 15 (Homotopy implies isotopy). $\tilde{g}_{i j}$ is injective.
Proof. Suppose that (i, j)-cords l and l^{\prime} are mutually (i, j)-homotopic. We will prove that they are isotopic. By Lemma 14, the readings $W(l)$ and $W\left(l^{\prime}\right)$ belong to the same double coset in $\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle$, thus evidently to the same double coset in $\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$. Then by Theorem 9 and Remark 13, l and l^{\prime} are isotopic.

Composing the three maps $\tilde{f}_{i j}, \tilde{g}_{i j}$ and $\tilde{h}_{i j}$, we have an injection denoted by

$$
\begin{equation*}
r_{i j}:\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right) \rightarrow\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle . \tag{23}
\end{equation*}
$$

The value $r_{i j}([V])$ is the reading of the (i, j)-cord $\tilde{f}_{i j}([V])$.
The mapping $r_{i j}$ is computed geometrically by the rewriting process (pushing out the intersections through p_{j}) as explained in Section 3. For example, by Fig. 7, the reading of the $(1,3)$-cord $\tilde{f}_{13}\left(\left[x_{2}^{2} x_{4}\right]\right)$ is $x_{2} x_{3} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{4}$. Thus we have

$$
\begin{equation*}
r_{13}\left(\left[x_{2}^{2} x_{4}\right]\right)=\left[x_{2} x_{3} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{4}\right] \in\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle . \tag{24}
\end{equation*}
$$

This map $r_{i j}$ can be lifted to a map

$$
\begin{equation*}
R_{i j}: F_{n} \rightarrow F_{n} \tag{25}
\end{equation*}
$$

as follows: Take a word $V \in F_{n}$, consider its double coset $[V] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$ and map it to $r_{i j}([V])$. Being an element of $\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle, r_{i j}([V])$ has ambiguities of the left factor x_{i}^{p} and the right factor x_{j}^{q}. Adjust the exponents p (or q) to get a word W in F_{n} so that the total exponents of x_{i} (or x_{j}) in V and in W are equal. Here the total exponent of x_{i} in V means the sum of the exponents of x_{i} appearing in the word V. Similarly for x_{j}.

Then we define

$$
\begin{equation*}
R_{i j}(V)=W . \tag{26}
\end{equation*}
$$

For example, if we want to get the R_{13}-image of the word $x_{2}^{2} x_{4}$, in which the total exponent of x_{1} (and x_{3}) is 0 , we have to adjust the right-hand side of (24) so that the resulting word has also the total exponent 0 w.r.t. x_{1} and x_{3}. Thus we have

$$
\begin{equation*}
R_{13}\left(x_{2}^{2} x_{4}\right)=x_{2} x_{3} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{4} x_{3}^{-2} \tag{27}
\end{equation*}
$$

We would like to call the map $R_{i j}$ the rewriting function.
Obviously the following diagram commutes:

The vertical arrows are natural projections.
In Section 6 , we will give a formula to compute the rewriting function $R_{i j}$ purely algebraically.

5. Some properties of $\boldsymbol{R}_{i j}$

In this section, we give important properties of the rewriting function $R_{i j}$.
Lemma 16. Let V and W be words in F_{n}. Then

$$
R_{i j}(V)=W,
$$

if and only if they satisfy the following conditions:
(i) $[V]=[W] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$,
(ii) $E_{i}(V)=E_{i}(W), E_{j}(V)=E_{j}(W)$, where $E_{k}(U)$ denotes the total exponent of x_{k} in the word U, and
(iii) W is the reading of an (i, j)-cord.

Proof. Suppose $R_{i j}(V)=W$. Since by definition $R_{i j}(V)$ is a lifted reading of the (i, j) cord $\tilde{f}_{i j}([V]), R_{i j}(V)$ and V belong to the same double coset $\in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$ by Remark 13. Thus (i) is satisfied. The conditions (ii) and (iii) are satisfied by the definition of $R_{i j}$. This proves the only if-part.

Conversely, suppose that V and W satisfy (i), (ii) and (iii). Let l be an (i, j)-cord such that $W=W(l)$. Such a cord l exists by condition (iii). Just as above, by Remark 13, $R_{i j}(V)$ and V belong to the same double coset $\in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$. By condition (i), V and W belong to the same double coset. Thus $\left[R_{i j}(V)\right]=[W] \in\left\langle x_{i}\right\rangle \backslash F_{n} / N\left(x_{j}\right)$. By Theorem 9 and Remark 13 again, the (i, j)-cords $\tilde{f}_{i j}([V])$ and l are isotopic. By Lemma 14, the readings $R_{i j}(V)$ and W of these isotopic cords coincide modulo left factor x_{i}^{p} and right factor x_{j}^{q}. But by the definition of $R_{i j}$ and condition (ii), we have $E_{i}\left(R_{i j}(V)\right)=E_{i}(V)=E_{i}(W)$ and $E_{j}\left(R_{i j}(V)\right)=E_{j}(V)=E_{j}(W)$. Thus $R_{i j}(V)=W$. The if-part is proved.

Lemma 17. A word V is the reading of an (i, j)-cord if and only if

$$
\begin{equation*}
R_{i j}(V)=V . \tag{29}
\end{equation*}
$$

Proof. Suppose V satisfies (29). Then $r_{i j}([V])=[V]$, and by the definition of $r_{i j},[V]$ is the reading of the (i, j)-cord $\tilde{f}_{i j}([V])$. By giving rotations to this cord round p_{i} and p_{j}, we may adjust that the actual reading of the cord is V. This proves the if-part.

Conversely, suppose V is the reading of an (i, j)-cord l, then applying Lemma 16, we have

$$
R_{i j}(V)=V
$$

This proves the only if-part.
Lemma 18. $R_{i j}$ is a projection, that is, it satisfies

$$
R_{i j} \circ R_{i j}=R_{i j} .
$$

Proof. For any word $W, R_{i j}(W)$ is a lifted reading of the isotopy class of (i, j)-cords $\tilde{f}_{i j}([W])$. Thus applying Lemma 17 to the word $V=R_{i j}(W)$, we have $R_{i j}\left(R_{i j}(W)\right)=$ $R_{i j}(W)$.

Lemma 19. For any $m \in \mathbb{Z}$, we have

$$
\left\{\begin{array}{l}
R_{i j}\left(V_{1} x_{j}^{m} V_{2}\right)=R_{i j}\left(V_{1} V_{2}\right) x_{j}^{m} \\
R_{i j}\left(x_{i}^{m} V\right)=x_{i}^{m} R_{i j}(V)
\end{array}\right.
$$

Proof. Since the words $V_{1} x_{j}^{m} V_{2}$ and $V_{1} V_{2}$ belong to the same double coset $\in\left\langle x_{i}\right\rangle \backslash F_{n} /$ $N\left(x_{j}\right)$, the commutative diagram (28) implies that the images $R_{i j}\left(V_{1} x_{j}^{m} V_{2}\right)$ and $R_{i j}\left(V_{1} V_{2}\right)$ differ only in the left x_{i} - and the right x_{j}-powers. However,

$$
\left\{\begin{array}{l}
E_{i}\left(V_{1} x_{j}^{m} V_{2}\right)=E_{i}\left(V_{1} V_{2}\right), \quad \text { and } \\
E_{j}\left(V_{1} x_{j}^{m} V_{2}\right)=E_{j}\left(V_{1} V_{2}\right)+m,
\end{array}\right.
$$

and we know that $R_{i j}(\cdot)$ preserves the total i - and j-exponents. Thus we have the first equality.

The second equality is proved similarly.

6. Algebraic formula for $\boldsymbol{R}_{i j}$

In this section, we will give a formula to compute $R_{i j}: F_{n} \rightarrow F_{n}$ purely algebraically.
As we remarked just before Proposition $11, F_{n} / N\left(x_{j}\right)$ acts on $\left(\mathbb{R}^{2}, P_{n}\right)$ from the right. More precisely, an element $x_{k} \in F_{n}(k \neq j)$, acts on $\left(\mathbb{R}^{2}, P_{n}\right)$ as x_{k}^{φ}, which is the mapping class of the motion of p_{j} along the curve $C_{k}^{j}=\varphi\left(C_{k}\right)$. Incidentally, we also consider the case $k=j$, where taking Proposition 11 into account, we define the action of x_{j}^{φ} to be the trivial action on $\left(\mathbb{R}^{2}, P_{n}\right)$. Then the action of $F_{n} / N\left(x_{j}\right)$ lifts to the action of F_{n} on $\left(\mathbb{R}^{2}, P_{n}\right)$. We call this action the j-action of F_{n} to distinguish it from the action of F_{n} on $\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{\infty}\right\}\right)$ introduced in Section 2.

Via the j-action, F_{n} acts on the (i, j)-homotopy set $\mathcal{H}_{i j}$. We would like to describe this action algebraically.

Recall that $l_{k j}$ is the (k, j)-cord which does not intersect $\bigcup_{h} L_{h}$ except at the end points p_{k}, p_{j}.

Lemma 20. The action of $x_{k}^{\varphi}(k \neq j)$ is nothing but the " 360°-twist" along $l_{k j}$, namely, the mapping class whose support is contained in a disk neighborhood of the cord $l_{k j}$ and which rotates the cord through 360° counterclockwise.

This lemma is easily seen by figures. (Cf. the proof of Lemma 4.1 of [9].)
The j-action of F_{n} is generated by $x_{k}^{\varphi}, k=1, \ldots, n$. By Lemma 20, the action of $x_{k}^{\varphi}(k \neq j)$ is the " 360°-twist" along the (k, j)-cord $l_{k j}$, and the action of x_{j}^{φ} is the identity. Thus if we assume that all the (k, j)-cord $l_{k j}$ are contained in the domain $y<1-\varepsilon$ (or more safely in $y<\frac{1}{2}$) of the $x y$-plane, then we may assume that the j-action of F_{n} is

Fig. 8. The loop x_{k}.
trivial on the complementary region $y \geqslant 1-\varepsilon\left(\right.$ or $\left.y \geqslant \frac{1}{2}\right)$ in which $p_{\infty}=(0,1)$ is. In the following arguments, we will always assume this optimal condition on the j-action of F_{n}.

Let us introduce some notations. Let α_{i} denote the line segment $l_{i \infty}$ considered to be an oriented simple curve from p_{i} to p_{∞}. Similarly let β_{j} denote the line segment $l_{j \infty}$ regarded as an oriented simple curve from p_{∞} to p_{j}. Thus the composition of these curves $\alpha_{i} \cdot \beta_{j}$ is isotopic to the cord $l_{i j}$.

The generator x_{k} of $\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)$ is represented by the simple loop C_{k}. However, in studying the effect of the j-action of F_{n}, we prefer to C_{k} the following loop as the representative of x_{k}, namely, the loop which starts at p_{∞}, going down along the line segment $l_{k \infty}$, arrives at a point near to p_{k}, then makes a small circle round p_{k}, and finally comes back to p_{∞} along $l_{k \infty}$. (See Fig. 8.) We will also denote by x_{k} such a loop. Of course, the inverse x_{k}^{-1} is represented by the loop traversing x_{k} in the opposite direction.

Let V be a word $\left(\in F_{n}\right)$, and define an (i, j)-curve $L_{i j}(V)$ as follows:

$$
\begin{equation*}
L_{i j}(V):=\alpha_{i} \cdot x_{k(1)}^{\epsilon(1)} \cdots x_{k(N)}^{\epsilon(N)} \cdot \beta_{j}, \tag{30}
\end{equation*}
$$

where $V=x_{k(1)}^{\epsilon(1)} \cdots x_{k(N)}^{\epsilon(N)}, \epsilon(m) \in\{+1,-1\}$ and $k(m) \in\{1,2, \ldots, n\}$ for $m=1, \ldots, N$. Every (i, j)-homotopy class has $L_{i j}(V)$ as its representative for some V. Note that the reading of this (i, j)-curve is V, and that by Lemma $14 L_{i j}(V)$ and $L_{i j}(W)$ belong to the same (i, j)-homotopy class if and only if $[V]=[W] \in\left\langle x_{i}\right\rangle \backslash F_{n} /\left\langle x_{j}\right\rangle$.

We are now in a position to study the effect of the j-action of F_{n} on $L_{i j}(V)$. For notational convenience, we will denote the (right) j-action W^{φ} of a word $W \in F_{n}$ on $\left(\mathbb{R}^{2}, P_{n}\right)$ by $(\cdot) T_{W}^{j}$, or understanding j being always fixed, simply by $(\cdot) T_{W}$.

Let us apply the j-action $(\cdot) T_{W}$ on the (i, j)-curve $L_{i j}(V)$ of (30). Then by the optimal condition on the j-action, we have

$$
\begin{align*}
\left(L_{i j}(V)\right) T_{W} & =\left(\alpha_{i}\right) T_{W} \cdot\left(x_{k(1)}^{\epsilon(1)}\right) T_{W} \cdots\left(x_{k(N)}^{\epsilon(N)}\right) T_{W} \cdot\left(\beta_{j}\right) T_{W} \\
& =\left(\alpha_{i}\right) T_{W} \cdot(V) T_{W} \cdot\left(\beta_{j}\right) T_{W} . \tag{31}
\end{align*}
$$

Thus we can study the action $(\cdot) T_{W}$ on α_{i}, V, and β_{j}, separately.

First consider $\left(\alpha_{i}\right) T_{W}$. This is an (i, ∞)-cord, and its i-homotopy class is represented by an (i, ∞)-curve of the form

$$
\begin{equation*}
\alpha_{i} \cdot W^{\prime} \tag{32}
\end{equation*}
$$

where W^{\prime} is a certain product of the loops $x_{k}^{\epsilon} \in F_{n}$. By Theorem 8, the word W^{\prime} is welldefined up to left multiplication of x_{i}^{p}, that is, only its $\operatorname{coset}\left[W^{\prime}\right] \in\left\langle x_{i}\right\rangle \backslash F_{n}$ is well-defined. To fix this ambiguity, we impose the condition that the total exponent of x_{i} in W^{\prime} should be 0 :

$$
\begin{equation*}
E_{i}\left(W^{\prime}\right)=0 . \tag{33}
\end{equation*}
$$

Then the ambiguity is removed and W^{\prime} is well-defined as an element of F_{n}. Let us denote this W^{\prime} by $A_{i}(W)$. The following equalities are considered to be the definition of $A_{i}(W) \in F_{n}$:

$$
\left\{\begin{array}{l}
\left(\alpha_{i}\right) T_{W}=\alpha_{i} \cdot A_{i}(W), \tag{34}\\
E_{i}\left(A_{i}(W)\right)=0
\end{array}\right.
$$

Similarly, the (∞, j)-cord $\left(\beta_{j}\right) T_{W}$ is j-homotopic to the (∞, j)-curve $W^{\prime \prime} \cdot \beta_{j}$, and $W^{\prime \prime} \in F_{n}$ is proved to be well-defined up to right multiplication of x_{j}^{q}. Imposing the condition $E_{j}\left(W^{\prime \prime}\right)=0$, we can eliminate this ambiguity. Denoting the well-defined $W^{\prime \prime}$ by $B_{j}(W)$, we have the following equalities, which are considered to be the definition of $B_{j}(W) \in F_{n}$:

$$
\left\{\begin{array}{l}
\left(\beta_{j}\right) T_{W}=B_{j}(W) \cdot \beta_{j}, \tag{35}\\
E_{j}\left(B_{j}(W)\right)=0 .
\end{array}\right.
$$

The part $(V) T_{W}$ is easily understood, because T_{W} acts on $F_{n}\left(=\pi_{1}\left(\mathbb{R}^{2}-P_{n}, p_{\infty}\right)\right)$ as a group automorphism. Thus denoting this automorphism by $H_{j, W}: F_{n} \rightarrow F_{n}$, we have

$$
\begin{equation*}
(V) T_{W}=H_{j, W}(V) \tag{36}
\end{equation*}
$$

In these notations, (31) is rewritten as follows:

$$
\begin{equation*}
\left(L_{i j}(V)\right) T_{W}=\alpha_{i} \cdot A_{i}(W) \cdot H_{j, W}(V) \cdot B_{j}(W) \cdot \beta_{j} . \tag{37}
\end{equation*}
$$

To further analyze these mappings $A_{i}, B_{j}, H_{j, W}: F_{n} \rightarrow F_{n}$, we check the simplest cases.

Lemma 21. If $i<j$, then

$$
\begin{align*}
& A_{i}\left(x_{k}\right)= \begin{cases}x_{j} x_{k} x_{j}^{-1} x_{k}^{-1} & k<i, \\
x_{i} x_{j}^{-1} x_{i}^{-1} & k=i, \\
1 & k>i,\end{cases} \tag{38}\\
& A_{i}\left(x_{k}^{-1}\right)= \begin{cases}x_{k}^{-1} x_{j}^{-1} x_{k} x_{j} & k<i, \\
x_{j} & k=i, \\
1 & k>i .\end{cases} \tag{39}
\end{align*}
$$

If $i>j$, then

Fig. 9. The cords $\left(\alpha_{i}\right) x_{k}^{\varphi}=\alpha_{i} \cdot A_{i}\left(x_{k}\right), k<i<j$.

$$
\begin{align*}
& A_{i}\left(x_{k}\right)= \begin{cases}1 & k<i, \\
x_{j}^{-1} & k=i, \\
x_{k} x_{j} x_{k}^{-1} x_{j}^{-1} & k>i,\end{cases} \tag{40}\\
& A_{i}\left(x_{k}^{-1}\right)= \begin{cases}1 & k<i, \\
x_{i}^{-1} x_{j} x_{i} & k=i, \\
x_{j}^{-1} x_{k}^{-1} x_{j} x_{k} & k>i,\end{cases} \tag{41}
\end{align*}
$$

Proof. To prove (38), we apply the j-action x_{k}^{φ} to the (i, ∞)-cord α_{i}. By Lemma 20, the resulting cords are as shown in Fig. 9. We can easily prove (38) by reading the intersections of the cords and $\bigcup_{h} L_{h}$. Notice that in the right hand side of the second equality of (38), we multiply x_{i} artificially to meet the requirement (34) on the total exponent of x_{i}. Other equalities (39), (40) and (41) are proved similarly.

By the same method, we can prove the following lemma (x_{j}^{-1} in the third equality of (42) and x_{j} in the first of (43) are "artificially" multiplied to meet the condition (35)).

Lemma 22.

$$
\begin{align*}
& B_{j}\left(x_{k}\right)= \begin{cases}x_{k} & k<j, \\
1 & k=j, \\
x_{j} x_{k} x_{j}^{-1} & k>j,\end{cases} \tag{42}\\
& B_{j}\left(x_{k}^{-1}\right)= \begin{cases}x_{j}^{-1} x_{k}^{-1} x_{j} & k<j, \\
1 & k=j, \\
x_{k}^{-1} & k>j .\end{cases} \tag{43}
\end{align*}
$$

Proof. Fig. 10 shows, in the case $k<j$, how β_{j} changes when it is acted on by x_{k}^{φ}. This proves the first equality of (42). Other cases are obtained by similar figures.

Lemma 23. Let \in denote +1 or -1 .
If $k<j$, then

Fig. 10. The cord $\left(\beta_{j}\right) x_{k}^{\varphi}=B_{j}\left(x_{k}\right) \cdot \beta_{j}, k<j$.

$$
\begin{align*}
& H_{j, x_{k}}\left(x_{l}^{\epsilon}\right)= \begin{cases}x_{l}^{\epsilon} & l<k \text { or } l>j, \\
x_{k} x_{j} x_{k}^{\epsilon} x_{j}^{-1} x_{k}^{-1} & l=k, \\
x_{k} x_{j} x_{k}^{-1} x_{j}^{-1} x_{l}^{\epsilon} x_{j} x_{k} x_{j}^{-1} x_{k}^{-1} & k<l<j, \\
x_{k} x_{j}^{\epsilon} x_{k}^{-1} & l=j,\end{cases} \tag{44}\\
& H_{j, x_{k}^{-1}}\left(x_{l}^{\epsilon}\right)= \begin{cases}x_{l}^{\epsilon} & l<k \text { or } l>j, \\
x_{j}^{-1} x_{k}^{\epsilon} x_{j} & l=k, \\
x_{j}^{-1} x_{k}^{-1} x_{j} x_{k} x_{l}^{\epsilon} x_{k}^{-1} x_{j}^{-1} x_{k} x_{j} & k<l<j, \\
x_{j}^{-1} x_{k}^{-1} x_{j}^{\epsilon} x_{k} x_{j} & l=j\end{cases} \tag{45}
\end{align*}
$$

If $k>j$, then

$$
\begin{align*}
& H_{j, x_{k}}\left(x_{l}^{\epsilon}\right)= \begin{cases}x_{l}^{\epsilon} & l<j \text { or } l>k, \\
x_{j} x_{k} x_{j}^{\epsilon} x_{k}^{-1} x_{j}^{-1} & l=j, \\
x_{j} x_{k} x_{j}^{-1} x_{k}^{-1} x_{l}^{\epsilon} x_{k} x_{j} x_{k}^{-1} x_{j}^{-1} & j<l<k, \\
x_{j} x_{k}^{\epsilon} x_{j}^{-1} & l=k,\end{cases} \tag{46}\\
& H_{j, x_{k}^{-1}}\left(x_{l}^{\epsilon}\right)= \begin{cases}x_{l}^{\epsilon} & l<j \text { or } l>k, \\
x_{k}^{-1} x_{j}^{\epsilon} x_{k} & l=j, \\
x_{k}^{-1} x_{j}^{-1} x_{k} x_{j} x_{l}^{\epsilon} x_{j}^{-1} x_{k}^{-1} x_{j} x_{k} & j<l<k, \\
x_{k}^{-1} x_{j}^{-1} x_{k}^{\epsilon} x_{j} x_{k} & l=k .\end{cases} \tag{47}
\end{align*}
$$

If $k=j$, then

$$
\begin{equation*}
H_{j, x_{j}}\left(x_{l}\right)=H_{j, x_{j}^{-1}}\left(x_{l}\right)=x_{l} . \tag{48}
\end{equation*}
$$

Proof. Fig. 11 shows, in the case $k<l<j$, how the loop x_{l}^{ϵ} changes when it is acted on by x_{k}^{φ}. The third equality of (44) follows from this figure. Other cases are proved similarly.

Lemma 24. We have

$$
\left\{\begin{array}{l}
H_{j, W_{1} W_{2}}(V)=H_{j, W_{2}}\left(H_{j, W_{1}}(V)\right), \tag{49}\\
H_{j, W}\left(V_{1} V_{2}\right)=H_{j, W}\left(V_{1}\right) H_{j, W}\left(V_{2}\right)
\end{array}\right.
$$

Fig. 11. The loop $\left(x_{l}^{\epsilon}\right) x_{k}^{\varphi}, k<l<j$.
and

$$
\left\{\begin{array}{l}
E_{i}\left(H_{j, W}(V)\right)=E_{i}(V), \tag{50}\\
E_{j}\left(H_{j, W}(V)\right)=E_{j}(V) .
\end{array}\right.
$$

Proof. The equalities (49) follow from the definition of $H_{j, W}$ in (36) and the fact that T_{W} acts on F_{n} (from the right) as a group automorphism. By Lemma 23, we see that, for $W=x_{k}^{ \pm 1}, H_{j, x_{k}}$ and $H_{j, x_{k}^{-1}}$ preserve the total exponents $E_{i}(\cdot)$ and $E_{j}(\cdot)$. The general statement (50) follows from this special case and (49).

We express (49) by saying that $H_{j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)\left(W \mapsto H_{j, W}(\cdot)\right)$ is a right representation of F_{n} to $\operatorname{Aut}\left(F_{n}\right)$.

Lemma 25.

$$
\begin{equation*}
A_{i}\left(W_{1} W_{2}\right)=A_{i}\left(W_{2}\right) H_{j, W_{2}}\left(A_{i}\left(W_{1}\right)\right) . \tag{51}
\end{equation*}
$$

Proof. By (34) and (36),

$$
\begin{aligned}
\alpha_{i} \cdot A_{i}\left(W_{1} W_{2}\right) & =\left(\alpha_{i}\right) T_{W_{1} W_{2}}=\left(\left(\alpha_{i}\right) T_{W_{1}}\right) T_{W_{2}} \\
& =\left(\alpha_{i} \cdot A_{i}\left(W_{1}\right)\right) T_{W_{2}} \\
& =\left(\alpha_{i}\right) T_{W_{2}} \cdot\left(A_{i}\left(W_{1}\right)\right) T_{W_{2}} \\
& =\alpha_{i} \cdot A_{i}\left(W_{2}\right) H_{j, W_{2}}\left(A_{i}\left(W_{1}\right)\right) .
\end{aligned}
$$

On the other hand, by (50) and (34),

$$
E_{i}\left(A_{i}\left(W_{2}\right) H_{j, W_{2}}\left(A_{i}\left(W_{1}\right)\right)\right)=E_{i}\left(A_{i}\left(W_{2}\right)\right)+E_{i}\left(A_{i}\left(W_{1}\right)\right)=0 .
$$

Thus by the definition (34) of $A_{i}(\cdot)$, we have the lemma.
We express (51) by saying that $A_{i}: F_{n} \rightarrow F_{n}$ is a crossed anti-homomorphism twisted by the right representation $H_{j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$.

Lemma 26.

$$
E_{j}\left(A_{i}(W)\right)=-E_{i}(W) .
$$

Proof. For $W=x_{k}^{ \pm 1}$, this follows from Lemma 21. General cases are proved by induction on the word length of W and Lemmas 24 (50) and 25.

Lemma 27.

$$
\begin{equation*}
B_{j}\left(W_{1} W_{2}\right)=H_{j, W_{2}}\left(B_{j}\left(W_{1}\right)\right) B_{j}\left(W_{2}\right) . \tag{52}
\end{equation*}
$$

Proof. By (35) and (36),

$$
\begin{aligned}
B_{j}\left(W_{1} W_{2}\right) \cdot \beta_{j} & =\left(\beta_{j}\right) T_{W_{1} W_{2}}=\left(\left(\beta_{j}\right) T_{W_{1}}\right) T_{W_{2}} \\
& =\left(B_{j}\left(W_{1}\right) \cdot \beta_{j}\right) T_{W_{2}} \\
& =\left(B_{j}\left(W_{1}\right)\right) T_{W_{2}} \cdot\left(\beta_{j}\right) T_{W_{2}} \\
& =H_{j, W_{2}}\left(B_{j}\left(W_{1}\right)\right) B_{j}\left(W_{2}\right) \cdot \beta_{j} .
\end{aligned}
$$

On the other hand, by (50) and (35),

$$
E_{j}\left(H_{j, W_{2}}\left(B_{j}\left(W_{1}\right)\right) B_{j}\left(W_{2}\right)\right)=E_{j}\left(B_{j}\left(W_{1}\right)\right)+E_{j}\left(B_{j}\left(W_{2}\right)\right)=0 .
$$

Thus by the definition (35) of $B_{j}(\cdot)$, we have the lemma.
We express (52) by saying that $B_{j}: F_{n} \rightarrow F_{n}$ is a crossed homomorphism twisted by the right representation $H_{j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$.

Lemma 28.

$$
E_{i}\left(B_{j}(W)\right)=E_{i}(W) .
$$

Proof. For $W=x_{k}^{ \pm 1}$, this follows from Lemma 22. General cases are proved by induction on the word length of W and Lemmas 24 (50) and 27.

Lemma 29. For any words V and W, we have

$$
\begin{equation*}
\left[H_{j, W}(V)\right]=[V] \in F_{n} / N\left(x_{j}\right) . \tag{53}
\end{equation*}
$$

Proof. For $W=x_{k}^{ \pm 1}, V=x_{l}^{ \pm 1}$, this holds by Lemma 23. General cases are proved using (49).

Lemma 30. For any word W, we have

$$
\begin{equation*}
\left[A_{i}(W)\right]=1 \in F_{n} / N\left(x_{j}\right) . \tag{54}
\end{equation*}
$$

Proof. For $W=x_{k}^{ \pm 1}$, this holds by Lemma 21. For a general W, (54) is proved by induction on the word length of W, using Lemmas 25 and 29.

Lemma 31. For any word W, we have

$$
\begin{equation*}
\left[B_{j}(W)\right]=[W] \in F_{n} / N\left(x_{j}\right) . \tag{55}
\end{equation*}
$$

Proof. For $W=x_{k}^{ \pm 1}$, this holds by Lemma 22. For a general W, (55) is proved by induction on the word length of W, using Lemmas 27 and 29.

The following lemma is rather technical, but it will be useful in calculating the rewriting function $R_{i j}$.

Lemma 32. For any words V, W, and for any integer m, we have

$$
\begin{align*}
& A_{i}(W) H_{j, W}\left(x_{i}^{m} V\right)=x_{i}^{m} A_{i}(W) H_{j, W}(V) \tag{56}\\
& H_{j, W}\left(V x_{j}^{m}\right) B_{j}(W)=H_{j, W}(V) B_{j}(W) x_{j}^{m} \tag{57}
\end{align*}
$$

Proof. By (34) and (36), we have the following equality (in the sense of i-homotopy) of (i, ∞)-curves:

$$
\begin{align*}
\alpha_{i} \cdot A_{i}(W) \cdot H_{j, W}\left(x_{i}^{m} V\right) & =\left(\alpha_{i}\right) T_{W} \cdot\left(x_{i}^{m} V\right) T_{W} \\
& =\left(\alpha_{i} \cdot x_{i}^{m} V\right) T_{W} \tag{58}
\end{align*}
$$

Rotating the (i, ∞)-curve round p_{i}, we have

$$
\alpha_{i} \cdot x_{i}^{m} V=\alpha_{i} \cdot V
$$

Substituting this into (58), we have

$$
\begin{aligned}
\alpha_{i} \cdot A_{i}(W) \cdot H_{j, W}\left(x_{i}^{m} V\right) & =\left(\alpha_{i} \cdot V\right) T_{W} \\
& =\alpha_{i} \cdot A_{i}(W) \cdot H_{j, W}(V)
\end{aligned}
$$

Thus by Theorem 8 the words $A_{i}(W) H_{j, W}\left(x_{i}^{m} V\right)$ and $A_{i}(W) H_{j, W}(V)$ coincide up to the left multiplication of x_{i}^{p} for some p.

By (34) and (50),

$$
\begin{aligned}
E_{i}\left(A_{i}(W) H_{j, W}\left(x_{i}^{m} V\right)\right) & =m+E_{i}(V) \\
& =E_{i}\left(x_{i}^{m} A_{i}(W) H_{j, W}(V)\right)
\end{aligned}
$$

Therefore, $A_{i}(W) H_{j, W}\left(x_{i}^{m} V\right)=x_{i}^{m} A_{i}(W) H_{j, W}(V)$. This proves (56).
The equality (57) is proved similarly using (∞, j)-curves.

Now we are ready to study the rewriting function $R_{i j}: F_{n} \rightarrow F_{n}$.
Proposition 33. For any word V, we have

$$
\begin{equation*}
R_{i j}(V)=A_{i}(V) B_{j}(V) x_{j}^{\phi(V)} \tag{59}
\end{equation*}
$$

where $\phi(V)$ is defined by $\phi(V)=E_{i}(V)+E_{j}(V)$.
Proof. We will check the three conditions in Lemma 16 on the right-hand side of (59).
First, condition (i). In fact, as equality in the quotient group $F_{n} / N\left(x_{j}\right)$, we have

$$
\left[A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}\right]=\left[A_{i}(V)\right]\left[B_{j}(V)\right]=[V] .
$$

Here we used Lemmas 30 and 31.
Next we will check condition (ii):

$$
E_{i}\left(A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}\right)=E_{i}(V) \quad \text { by }(34) \text { and Lemma } 28
$$

and

$$
\begin{aligned}
& E_{j}\left(A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}\right) \\
& \quad=-E_{i}(V)+\phi(V)=E_{j}(V) \quad \text { by }(35) \text { and Lemma } 26
\end{aligned}
$$

Finally we will prove that $A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}$ is the reading of an (i, j)-cord (condition (iii)). As a special case of (37) we have

$$
\left(L_{i j}(1)\right) T_{V}=\alpha_{i} \cdot A_{i}(V) \cdot B_{j}(V) \cdot \beta_{j}
$$

The left-hand side $L_{i j}(1) T_{V}$ is nothing but $\left(l_{i j}\right) V^{\varphi}$, and this is an (i, j)-cord. Therefore, $A_{i}(V) B_{j}(V)$ is the reading of an (i, j)-cord. Hence $A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}$ is also.

Now the three conditions on the word $A_{i}(V) B_{j}(V) x_{j}^{\phi(V)}$ are verified. Thus by Lemma 16 we have the proposition.

Remark 34. Recall that $R_{i j}(V)$ is a lifted reading of the (i, j)-cord $\tilde{f}_{i j}([V])$. By Proposition 11, $\tilde{f}_{i j}([V])$ is the isotopy class of $\left(l_{i j}\right) V^{\varphi}$. In view of this, the result of Proposition 33 is quite natural.

We want an inductive formula to compute $R_{i j}$:

$$
\begin{align*}
R_{i j}\left(V_{1} V_{2}\right) & =A_{i}\left(V_{1} V_{2}\right) B_{j}\left(V_{1} V_{2}\right) x_{j}^{\phi\left(V_{1} V_{2}\right)} \\
& =A_{i}\left(V_{2}\right) H_{j, V_{2}}\left(A_{i}\left(V_{1}\right)\right) H_{j, V_{2}}\left(B_{j}\left(V_{1}\right)\right) B_{j}\left(V_{2}\right) x_{j}^{\phi\left(V_{1}\right)+\phi\left(V_{2}\right)} \\
& =A_{i}\left(V_{2}\right) H_{j, V_{2}}\left(A_{i}\left(V_{1}\right) B_{j}\left(V_{1}\right) x_{j}^{\phi\left(V_{1}\right)}\right) B_{j}\left(V_{2}\right) x_{j}^{\phi\left(V_{2}\right)} \\
& =A_{i}\left(V_{2}\right) H_{j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right) B_{j}\left(V_{2}\right) x_{j}^{\phi\left(V_{2}\right)} . \tag{60}
\end{align*}
$$

Note that we applied Lemma 32 to get the third equality.
By (60), we have

$$
\begin{align*}
R_{i j}\left(V_{2}\right)^{-1} R_{i j}\left(V_{1} V_{2}\right)= & x_{j}^{-\phi\left(V_{2}\right)} B_{j}\left(V_{2}\right)^{-1} A_{i}\left(V_{2}\right)^{-1} \\
& \times A_{i}\left(V_{2}\right) H_{j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right) B_{j}\left(V_{2}\right) x_{j}^{\phi\left(V_{2}\right)} \\
= & x_{j}^{-\phi\left(V_{2}\right)} B_{j}\left(V_{2}\right)^{-1} H_{j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right) B_{j}\left(V_{2}\right) x_{j}^{\phi\left(V_{2}\right)} \tag{61}
\end{align*}
$$

For any word W, define a mapping $D_{i j, W}: F_{n} \rightarrow F_{n}$ by setting

$$
\begin{equation*}
D_{i j, W}(V)=x_{j}^{-\phi(W)} B_{j}(W)^{-1} H_{j, W}(V) B_{j}(W) x_{j}^{\phi(W)} \tag{62}
\end{equation*}
$$

Then (61) is rewritten as

$$
\begin{equation*}
R_{i j}\left(V_{1} V_{2}\right)=R_{i j}\left(V_{2}\right) D_{i j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right) \tag{63}
\end{equation*}
$$

Proposition 35.

$$
\left\{\begin{array}{l}
D_{i j, W}\left(V_{1} V_{2}\right)=D_{i j, W}\left(V_{1}\right) D_{i j, W}\left(V_{2}\right), \tag{64}\\
D_{i j, W_{1} W_{2}}(V)=D_{i j, W_{2}}\left(D_{i j, W_{1}}(V)\right) .
\end{array}\right.
$$

Proof. The first equality is easily seen by the definition (62) of $D_{i j, W}(\cdot)$. The second equality is proved as follows:

$$
\begin{aligned}
D_{i j, W_{1} W_{2}}(V)= & x_{j}^{-\phi\left(W_{1} W_{2}\right)} B_{j}\left(W_{1} W_{2}\right)^{-1} H_{j, W_{1} W_{2}}(V) B_{j}\left(W_{1} W_{2}\right) x_{j}^{\phi\left(W_{1} W_{2}\right)} \\
= & x_{j}^{-\phi\left(W_{1}\right)-\phi\left(W_{2}\right)} B_{j}\left(W_{2}\right)^{-1} H_{j, W_{2}}\left(B_{j}\left(W_{1}\right)\right)^{-1} H_{j, W_{2}}\left(H_{j, W_{1}}(V)\right) \\
& \times H_{j, W_{2}}\left(B_{j}\left(W_{1}\right)\right) B_{j}\left(W_{2}\right) x_{j}^{\phi\left(W_{1}\right)+\phi\left(W_{2}\right)}= \\
= & x_{j}^{-\phi\left(W_{2}\right)} B_{j}\left(W_{2}\right)^{-1} \\
& \times H_{j, W_{2}}\left(x_{j}^{-\phi\left(W_{1}\right)} B_{j}\left(W_{1}\right)^{-1} H_{j, W_{1}}(V) B_{j}\left(W_{1}\right) x_{j}^{\phi\left(W_{1}\right)}\right) \\
& \times B_{j}\left(W_{2}\right) x_{j}^{\phi\left(W_{2}\right)} \\
= & D_{i j, W_{2}}\left(D_{i j, W_{1}}(V)\right) .
\end{aligned}
$$

This proposition claims that $D_{i j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)\left(W \mapsto D_{i j, W}(\cdot)\right)$ is a right representation of F_{n} to $\operatorname{Aut}\left(F_{n}\right)$.

Now we have arrived at our main theorem of this section:
Theorem 36. The rewriting function $R_{i j}: F_{n} \rightarrow F_{n}$ is a crossed anti-homomorphism twisted by the right representation $D_{i j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$;

$$
R_{i j}\left(V_{1} V_{2}\right)=R_{i j}\left(V_{2}\right) D_{i j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right)
$$

This theorem is obvious from (63) and Proposition 35.
Remark 37. For Theorem 36, $R_{i j}$ very much resembles in algebraic nature the q-inverse $I: F_{n} \rightarrow F_{n}$ studied in [3].

Using Theorem 36 together with the following initial formulae, we can compute $R_{i j}$ purely algebraically. To state the initial formulae, we introduce the notation

$$
\begin{equation*}
\operatorname{sgn}(i, j, k) \tag{65}
\end{equation*}
$$

which takes the value +1 or -1 according as the permutation of (i, j, k) into its natural order is of even type or of odd type, where i, j, k are distinct integers. For example, if $i<j<k$, then $\operatorname{sgn}(i, j, k)=1$, and if $j<i<k$, then $\operatorname{sgn}(i, j, k)=-1$.

Proposition 38 (Initial formula, I). Let ϵ be +1 or -1 . Then we have

$$
R_{i j}\left(x_{k}^{\epsilon}\right)= \begin{cases}x_{k}^{\epsilon} & k=i \text { or } j, \tag{66}\\ x_{k}^{\epsilon} & \operatorname{sgn}(i, j, k)=-\epsilon, \\ x_{j}^{\epsilon} x_{k}^{\epsilon} x_{j}^{-\epsilon} & \operatorname{sgn}(i, j, k)=\epsilon\end{cases}
$$

Proof. By Proposition 33, we have

$$
R_{i j}\left(x_{k}^{\epsilon}\right)=A_{i}\left(x_{k}^{\epsilon}\right) B_{j}\left(x_{k}^{\epsilon}\right) x_{j}^{\phi\left(x_{k}^{\epsilon}\right)}
$$

Suppose $\epsilon=1$ and $i<j<k$. Then

$$
\begin{cases}A_{i}\left(x_{k}\right)=1 & \text { by Lemma } 21(38), \\ B_{j}\left(x_{k}\right)=x_{j} x_{k} x_{j}^{-1} & \text { by Lemma } 22(42), \\ \phi\left(x_{k}\right)=0 & \end{cases}
$$

The formula holds in this case. Other cases are proved similarly.
Proposition 39 (Initial formulae, II). Let ϵ be +1 or -1 .

$$
\begin{align*}
D_{i j, x_{i}^{\epsilon}}\left(x_{s}\right) & = \begin{cases}x_{i} & s=i, \\
x_{j} & s=j, \\
x_{i}^{-\epsilon} x_{j}^{-\epsilon} x_{s} x_{j}^{\epsilon} x_{i}^{\epsilon} & \operatorname{sgn}(i, j, s)=-\epsilon, \\
x_{j}^{-\epsilon} x_{i}^{-\epsilon} x_{s} x_{i}^{\epsilon} x_{j}^{\epsilon} & \operatorname{sgn}(i, j, s)=\epsilon,\end{cases} \tag{67}\\
D_{i j, x_{j}^{\epsilon}}\left(x_{s}\right) & =x_{j}^{-\epsilon} x_{s} x_{j}^{\epsilon} . \tag{68}
\end{align*}
$$

If i, j, k are distinct, then

$$
D_{i j, x_{k}^{\epsilon}}\left(x_{s}\right)= \begin{cases}x_{j} & s=j, \tag{69}\\ x_{j}^{\epsilon} x_{k} x_{j}^{-\epsilon} & s=k, \\ x_{k}^{-\epsilon} x_{s} x_{k}^{\epsilon} & \operatorname{sgn}(j, k, s)=-\epsilon, \\ \left(x_{j}^{\epsilon} x_{k}^{-\epsilon} x_{j}^{-\epsilon}\right) x_{s}\left(x_{j}^{\epsilon} x_{k}^{\epsilon} x_{j}^{-\epsilon}\right) & \operatorname{sgn}(j, k, s)=\epsilon\end{cases}
$$

Proof. By the definition (62) of $D_{i j}(\cdot)$, we have

$$
D_{i j, x_{k}^{\epsilon}}\left(x_{s}\right)=x_{j}^{-\phi\left(x_{k}^{\epsilon}\right)} B_{j}\left(x_{k}^{\epsilon}\right)^{-1} H_{j, x_{k}^{\epsilon}}\left(x_{s}\right) B_{j}\left(x_{k}^{\epsilon}\right) x_{j}^{\phi\left(x_{k}^{\epsilon}\right)}
$$

Suppose $\epsilon=+1$ and consider the case $i<j<k<s$. Then we have

$$
\begin{cases}\phi\left(x_{k}\right)=0, & \\ B_{j}\left(x_{k}\right)=x_{j} x_{k} x_{j}^{-1} & \text { by Lemma } 22(42), \\ H_{j, x_{k}}\left(x_{s}\right)=x_{s} & \text { by Lemma } 23(44) .\end{cases}
$$

Thus

$$
D_{i j, x_{k}}\left(x_{s}\right)=x_{j} x_{k}^{-1} x_{j}^{-1} x_{s} x_{j} x_{k} x_{j}^{-1} .
$$

This proves the fourth equality of (69). Other cases are proved similarly.
For example, let us calculate $R_{i j}\left(x_{s}^{2}\right)$ under the assumption $i<s<j$. By (66),

$$
R_{i j}\left(x_{s}\right)=x_{s}
$$

By (63) and (69),

$$
\begin{aligned}
R_{i j}\left(x_{s}^{2}\right) & =R_{i j}\left(x_{s}\right) D_{i j, x_{s}}\left(R_{i j}\left(x_{s}\right)\right) \\
& =x_{s} D_{i j, x_{s}}\left(x_{s}\right) \\
& =x_{s} x_{j} x_{s} x_{j}^{-1} .
\end{aligned}
$$

We obtain $R_{i j}\left(x_{s}^{2}\right)=x_{s} x_{j} x_{s} x_{j}^{-1}$ in the case $i<s<j$.
Another concrete example is this (use the above result with $i=1, j=3, s=2$):

$$
\begin{aligned}
R_{13}\left(x_{2}^{2} x_{4}\right) & =R_{13}\left(x_{4}\right) D_{13, x_{4}}\left(R_{13}\left(x_{2}^{2}\right)\right) \\
& =\left(x_{3} x_{4} x_{3}^{-1}\right) D_{13, x_{4}}\left(x_{2} x_{3} x_{2} x_{3}^{-1}\right) \\
& =\left(x_{3} x_{4} x_{3}^{-1}\right)\left(x_{3} x_{4}^{-1} x_{3}^{-1}\right) x_{2}\left(x_{3} x_{4} x_{3}^{-1}\right) x_{3}\left(x_{3} x_{4}^{-1} x_{3}^{-1}\right) x_{2}\left(x_{3} x_{4} x_{3}^{-1}\right) x_{3}^{-1} \\
& =x_{2} x_{3} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{4} x_{3}^{-2}
\end{aligned}
$$

The final result coincides with (27) which was obtained diagrammatically.
Remark 40. For any word W, define a mapping $\widetilde{D}_{i j, W}: F_{n} \rightarrow F_{n}$ by setting

$$
\begin{equation*}
\widetilde{D}_{i j, W}(V)=A_{i}(W) H_{j, W}(V) A_{i}(W)^{-1} \tag{70}
\end{equation*}
$$

Then $\widetilde{D}_{i j}: F_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)\left(W \mapsto \widetilde{D}_{i j, W}(\cdot)\right)$ is a right representation of F_{n} to $\operatorname{Aut}\left(F_{n}\right)$. By a similar argument to the proof of (63), we can prove

$$
\begin{equation*}
R_{i j}\left(V_{1} V_{2}\right)=\widetilde{D}_{i j, V_{2}}\left(R_{i j}\left(V_{1}\right)\right) R_{i j}\left(V_{2}\right) \tag{71}
\end{equation*}
$$

Thus $R_{i j}$ is not only a crossed anti-homomorphism twisted by $D_{i j}$, but also a crossed homomorphism twisted by $\widetilde{D}_{i j}$. We do not know which is the natural formulation, but the initial formulae for $\widetilde{D}_{i j}$ are a bit more complicated than those for $D_{i j}$.

7. Application to simple closed curves

Let C be an oriented simple closed curve on the punctured plane $\mathbb{R}^{2}-P_{n}$. Deforming C by homotopy, we may assume that it is smooth and transverse to $\bigcup_{k} L_{k}$. By taking and fixing a starting point s_{0} on C, the reading of $\left(C, s_{0}\right)$ is well-defined as an element of F_{n}. We denote this reading by $W\left(C, s_{0}\right)$. (Note that the staring point should be taken from $C-\bigcup_{k} L_{k}$.) The reading $W\left(C, s_{0}\right)$ depends only on the homotopy class of C fixing s_{0}.

If we take different starting point s_{1} on C, the reading $W\left(C, s_{1}\right)$ is a cyclic conjugation of $W\left(C, s_{0}\right)$. Here two word W and W^{\prime} are cyclically conjugate to each other, if W is a product $V_{1} V_{2}$ in a certain way, and W^{\prime} is written as $W^{\prime}=V_{2} V_{1}$.

Let C^{-1} denote the same curve C but with the opposite orientation. Obviously, $W\left(C^{-1}, s_{0}\right)=W\left(C, s_{0}\right)^{-1}$ 。

Theorem 41. A word $V \in F_{n}$ is the reading of a simple closed curve on the punctured plane $\mathbb{R}^{2}-P_{n}$ if and only if V or V^{-1} is cyclically conjugate to a word V^{\prime} which satisfies

$$
\begin{equation*}
R_{0, n+1}\left(V^{\prime}\right)=V^{\prime} \tag{72}
\end{equation*}
$$

Fig. 12. Simple closed curve $C=l \cup l_{0, n+1}$.

Fig. 13. Cutting open the loop C to a $(0, n+1)$-cord.
The free group F_{n} was generated by $\left\{x_{1}, \ldots, x_{n}\right\}$. If we define F_{n+2} to be the free group generated by $\left\{x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right\}$, then F_{n} is naturally identified with a subgroup of F_{n+2}. In (72), the word $V^{\prime} \in F_{n}$ is acted on by the rewriting function $R_{0, n+1}: F_{n+2} \rightarrow$ F_{n+2} under this natural identification.

Proof of Theorem 41. In the argument below, we may assume that the points p_{0} and p_{n+1} are given by the coordinates

$$
(-N, 0) \text { and }(N, 0) \in \mathbb{R}^{2}
$$

respectively with sufficiently large number $N>0$.
Suppose that V or V^{-1} is cyclically conjugate to a word V^{\prime} which satisfies (72). Then by Lemma 17, V^{\prime} is the reading of a $(0, n+1)$-cord l on $\left(\mathbb{R}^{2}, P_{n} \cup\left\{p_{0}, p_{n+1}\right\}\right)$. The reading of this $(0, n+1)$-cord (i.e., $\left.V^{\prime}\right)$ does not contain x_{0} nor x_{n+1}. Thus the cord l does not intersect L_{0} or L_{n+1} except at the end points. Then these points p_{0} and p_{n+1} can be connected by a "large semi-circle" $l_{0, n+1}$ so that $C:=l \cup l_{0, n+1}$ is a simple closed curve in $\mathbb{R}^{2}-P_{n}$. (See Fig. 12.) The word V^{\prime} is the reading of $\left(C, p_{0}\right)$, and V is the reading of $\left(C, s_{0}\right)$ or $\left(C^{-1}, s_{0}\right)$ with some starting point s_{0} on C. This proves the if-part.

Conversely, suppose V is the reading of an oriented simple closed curve with a starting point (C, s_{0}). Let s_{1} be the highest point (or one of the highest points) of C with respect to the y-coordinate. Then we can "cut open" the loop C at this point s_{1} to obtain a
$(0, n+1)$-cord l. (See Fig. 13.) The reading $W(l)$ coincides with the reading of $\left(C, s_{1}\right)$ or of (C^{-1}, s_{1}), and is cyclically conjugate to V or V^{-1}. By Lemma 17, $W(l)$ satisfies

$$
R_{0, n+1}(W(l))=W(l)
$$

This proves the only if-part, completing the proof of Theorem 41.
This research was motivated by monodromy problems appearing in Lefschetz fibrations and surface braids. See [7-11].

References

[1] J.S. Birman, Braids, Links, and Mapping Class Groups, in: Ann. of Math. Stud., vol. 82, Princeton University Press, Princeton, NJ, 1974.
[2] D.R.J. Chillingworth, Simple closed curves on surfaces, Bull. London Math. Soc. 1 (1969) 310-314.
[3] K. Habiro, S. Kamada, Y. Matsumoto, K. Yoshikawa, Algebraic formulae for the q-inverse in a free group, J. Math. Sci. Univ. Tokyo 8 (2001) 721-734.
[4] P. Hill, On double-torus knots (I), Preprint, 1999.
[5] P. Hill, K. Murasugi, On double-torus knots (II), Preprint, 1999.
[6] G.T. Jin, H. Kim, Planar laces, Preprint, 2002.
[7] S. Kamada, On the braid monodromies of non-simple braided surfaces, Math. Proc. Cambridge Philos. Soc. 120 (1996) 237-245.
[8] S. Kamada, Braid and Knot Theory in Dimension Four, in: Surveys and Monographs, American Mathematical Society, Providence, RI, 2002.
[9] S. Kamada, Y. Matsumoto, Certain racks associated with the braid groups, in: Proceedings of the International Conference on Knot Theory "Knots in Hellas '98", World Scientific, Singapore, 2000, pp. 118130.
[10] S. Kamada, Y. Matsumoto, Enveloping monoidal quandles, Preprint, 2002.
[11] Y. Matsumoto, Lefschetz fibrations of genus two-A topological approach, in: S. Kojima, et al. (Eds.), Proc. the 37th Taniguchi Sympos., World Scientific, Singapore, 1996, pp. 123-148.
[12] B.L. Reinhart, Algorithms for Jordan curves on compact surfaces, Ann. of Math. 75 (1962) 209-222.
[13] H. Zieschang, Algorithmen für einfache kurven auf flächen, Math. Scand. 17 (1965) 17-40.

[^0]: This research is supported by Grant-in-Aid for Scientific Research No. 13740046 and No. 12440013, JSPS.

 * Corresponding author. E-mail addresses: kamada@math.sci.hiroshima-u.ac.jp (S. Kamada), yukiomat@ms.u-tokyo.ac.jp (Y. Matsumoto).

