

Available online at www.sciencedirect.com

Topology and its Applications 146-147 (2005) 21-50

Topology and its Applications

www.elsevier.com/locate/topol

Word representation of cords on a punctured plane $\stackrel{\text{\tiny{thetermat}}}{\to}$

Seiichi Kamada^{a,*}, Yukio Matsumoto^b

^a Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan ^b Graduate school of Mathematical sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8914, Japan

Received 13 November 2002; received in revised form 4 December 2002; accepted 4 December 2002

Dedicated to Professor Kunio Murasugi on his seventy second birthday

Abstract

In this paper a purely algebraic condition for a word in a free group to be representable by a simple curve on a punctured plane will be given.

As an application, an algorithm for simple closed curves on a punctured plane will be obtained. Our solution is different from any algorithm due to Reinhart [Ann. of Math. 75 (1962) 209], Zieschang [Math. Scand. 17 (1965) 17] or Chillingworth [Bull. London Math. Soc. 1 (1969) 310]. Although the study here will be confined to the case of a plane, similar arguments could be carried out on the 2-sphere. This research was motivated by monodromy problems appearing in Lefschetz fibrations and surface braids. See [Math. Proc. Cambridge Philos. Soc. 120 (1996) 237; Kamada, Braid and Knots Theory in Dimension Four, American Mathematical Society, 2002; Kamada and Matsumoto, in: Proceedings of the International Conference on Knot Theory "Knots in Hellas '98", World Scientific, 2000, p. 118; Kamada and Matsumoto, Enveloping monoidal quandles, Preprint, 2002; Matsumoto, in: S. Kojima et al. (Eds.), Proc. the 37th Taniguchi Sympos., World Scientific, 1996, p. 123]. © 2004 Elsevier B.V. All rights reserved.

MSC: primary 57Q35; secondary 57M99, 57R40

Keywords: Simple curve; Cord; Monodromy; Simple closed curve; Embedding; Homotopy

 ^{*} This research is supported by Grant-in-Aid for Scientific Research No. 13740046 and No. 12440013, JSPS.
 ^{*} Corresponding author.

E-mail addresses: kamada@math.sci.hiroshima-u.ac.jp (S. Kamada), yukiomat@ms.u-tokyo.ac.jp (Y. Matsumoto).

^{0166-8641/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2002.12.003

1. Introduction

Let *n* be a fixed integer ≥ 2 . Let \mathbb{R}^2 be the *xy*-plane, and let $P_n = \{p_1, \ldots, p_n\}$ be a set of *n* points on \mathbb{R}^2 . To make our argument explicit, we will assume that for each $k = 1, \ldots, n$, the point p_k is given by the following coordinates:

$$p_k = (k, 0).$$

An (i, j)-curve on (\mathbb{R}^2, P_n) is defined to be a continuous map

$$l:[0,1] \to \left(\mathbb{R}^2 - P_n\right) \cup \{p_i, p_j\} \tag{1}$$

satisfying $l(0) = p_i$, $l(1) = p_j$, where $i, j \in \{1, ..., n\}$ and $i \neq j$. Moreover, we assume that $l(t) = p_i$ if and only if t = 0 and that $l(t) = p_j$ if and only if t = 1.

If an (i, j)-curve l is simple (i.e., without self-intersections), it will be called an (i, j)cord, or simply a cord. Two cords l and l' are *isotopic* if they are ambiently isotopic to each other by an isotopy of \mathbb{R}^2 which fixes P_n pointwise.

For each $k \in \{1, ..., n\}$, let L_k be the half-line defined as follows:

$$L_k = \{(k, y) \mid y \leq 0\}.$$

The half-line L_k is parallel to the *y*-axis and has terminal point p_k . An (i, j)-curve l is said to be *transverse* to $\bigcup_k L_k$ if in a neighborhood of each intersection point $p \in l([0, 1]) \cap \bigcup_k L_k$, the curve l is extended to a smooth curve whose velocity vectors are non-zero and transverse to $\bigcup_k L_k$. An (i, j)-curve which is transverse to $\bigcup_k L_k$ will be simply called a *transverse* (i, j)-curve. From the definition it follows that the intersection of a transverse (i, j)-curve l and $\bigcup_k L_k$ consists of a finite number of points.

Let F_n be a free group with preferred generators

 $x_1, x_2, \ldots, x_n.$

(2)

Traversing a transverse (i, j)-curve l from l(0) to l(1) and reading the intersection points with $\bigcup_k L_k$ successively, we can associate with l a word W(l) in F_n . (We will sometimes say that W(l) is *represented* by l, or more simply, is the *reading* of l.) To be precise, in order to get W(l), we start from $l(0) = p_i$ but do not count the starting point p_i in W(l). Each time we meet an intersection point $p \in l \cap \bigcup_k L_k$ we read it as the generator x_k if at p the curve l crosses L_k in the positive direction with respect to the x-coordinate, and as the inverse x_k^{-1} if it crosses in the negative direction. Finally we arrive at the terminal point $l(1) = p_j$, but we do not count it to W(l). Thus if an (i, j)-curve does not intersect $\bigcup_k L_k$ except at the end points p_i, p_j , we associate with it the empty word 1.

For example, the reading of a (2, 6)-cord shown in Fig. 1 is

$$W = x_1^{-1} x_3 x_4 x_5 x_4^{-1}.$$

Any prescribed word in F_n can be representable by an (i, j)-curve with selfintersections, but not necessarily by an (i, j)-cord. We are interested in the problem of characterizing those words in F_n that are representable by (i, j)-cords.

The following theorem is our main result, and gives a solution to this problem.

Theorem 1. There exists an explicitly computable map

$$R_{ij}: F_n \to F_n$$

Fig. 1. A (2, 6)-cord.

such that (i) R_{ij} is a projection, namely $R_{ij} \circ R_{ij} = R_{ij}$ and (ii) a word W in F_n is representable by an (i, j)-cord if and only if

 $R_{ii}(W) = W.$

In other words, W is representable by an (i, j)-cord if and only if W belongs to the image of R_{ij} .

The map R_{ij} is a crossed anti-homomorphism twisted by an explicitly computable 'right representation'

$$D_{ij}: F_n \to \operatorname{Aut}(F_n).$$

The computations of R_{ij} and D_{ij} are purely algebraic, and even a computer could detect the representable words. See Section 6, particularly Theorem 36, Propositions 38, and 39.

In Section 7, we will apply Theorem 1 to obtain an algorithm to decide if a given word is representable by a simple closed curve on $\mathbb{R}^2 - P_n$. Our algorithm is considerably different from those of Reinhart [12], Zieschang [13] or Chillingworth [2]. See Theorem 41.

In the course of proving Theorem 1, we will have to study the relationship between the isotopy classes of cords and various cosets of the free group F_n . This will be discussed in Sections 2 and 3.

Theorem 1 will be proved in Sections 5 and 6. In fact, it is merely a statement putting together Lemmas 17, 18 and Theorem 36 proved in these sections.

In this paper, we will confine our investigation to a punctured plane (\mathbb{R}^2, P_n) for simplicity, but it could be carried out similarly on the punctured sphere (S^2, P_n) . We notice that if it is actually done, then in the special case where n = 6, we will have word representation of simple closed curves on a closed surface of genus 2 by taking a double branched covering of (S^2, P_6) . In this sense, potentially, our work is related to the study of double torus knots by Hill [4], and Hill and Murasugi [5].

Finally, we remark that an independent treatment of (2, 3)-cords on (\mathbb{R}^2, P_3) (if said in our terminology) is found in Section 2 of Jin and Kim [6] in a different formulation.

2. Isotopy classes of (i, ∞) -cords

We take an auxiliary point p_{∞} in $\mathbb{R}^2 - P_n$. To fix our idea, we assume that

 $p_{\infty} = (0, 1).$

A *cord* on $(\mathbb{R}^2, P_n \cup \{p_\infty\})$ is defined just as in Section 1, and the meaning of an (i, ∞) -cord will be clear. The number $i \in \{1, ..., n\}$ will be fixed throughout this section.

Let \mathcal{A}_i denote the set of all (ambient) isotopy classes of (i, ∞) -cords on $(\mathbb{R}^2, P_n \cup \{p_\infty\})$. Then a map

$$f_i: F_n \to \mathcal{A}_i \tag{3}$$

is defined as follows.

First identify F_n with the fundamental group $\pi_1(\mathbb{R}^2 - P_n, p_\infty)$.

By Theorem 1.4 of Birman's book [1], there is an injective homomorphism j_* of the latter group to the pure braid group with the 'base' $P_n \cup \{p_\infty\}$, $P(\mathbb{R}^2, P_n \cup \{p_\infty\})$:

$$j_*:\pi_1(\mathbb{R}^2 - P_n, p_\infty) \to P(\mathbb{R}^2, P_n \cup \{p_\infty\}).$$

$$\tag{4}$$

Given an element *b* of $P(\mathbb{R}^2, P_n \cup \{p_\infty\})$, there exists an isotopy $\{h_t\}_{0 \le t \le 1}$ of \mathbb{R}^2 onto itself such that $h_0 = \text{id}$ and $(h_t(P_n \cup \{p_\infty\}), t)_{0 \le t \le 1}$ represents the braid *b* in $\mathbb{R}^2 \times [0, 1]$. (See [1].) Let

$$\mathcal{M}(\mathbb{R}^2, P_n \cup \{p_\infty\})$$

denote the mapping class group of $(\mathbb{R}^2, P_n \cup \{p_\infty\})$ which fixes $P_n \cup \{p_\infty\}$ pointwise. By sending *b* to the final stage h_1 of the isotopy $\{h_t\}_{0 \le t \le 1}$, we have a natural map

$$d_*: P(\mathbb{R}^2, P_n \cup \{p_\infty\}) \to \mathcal{M}(\mathbb{R}^2, P_n \cup \{p_\infty\}).$$
⁽⁵⁾

Lemma 2. The composite

$$d_* \circ j_* : \pi_1 \big(\mathbb{R}^2 - P_n, p_\infty \big) \to \mathcal{M} \big(\mathbb{R}^2, P_n \cup \{ p_\infty \} \big)$$

is an injective homomorphism.

Proof. By Lemma 4.2.1 in [1], ker $d_* \subset \text{Center}(P(\mathbb{R}^2, P_n \cup \{p_\infty\}))$. We are assuming $n \ge 2$, and the free group $\pi_1(\mathbb{R}^2 - P_n, p_\infty)$ is centerless. Since j_* is injective, this centerlessness implies

$$j_*(\pi_1(\mathbb{R}^2 - P_n, p_\infty)) \cap \ker d_* = \{1\}.$$
 (6)

Now the injectivity $d_* \circ j_*$ follows from (6) and the injectivity of j_* . \Box

By Lemma 2, $F_n = \pi_1(\mathbb{R}^2 - P_n, p_\infty)$ is considered to be a subgroup of the mapping class group $\mathcal{M}(\mathbb{R}^2, P_n \cup \{p_\infty\})$, which turns out to be the subgroup of motions of p_∞ in $\mathbb{R}^2 - P_n$ (Birman [1, p. 10]).

Now we are in a position to define the map

$$f_i: F_n \to \mathcal{A}_i. \tag{7}$$

Fig. 2. $(l_{i\infty})x_i$ and $(l_{i\infty})x_i^2$.

Take a word V from F_n . By the above remark, we can regard V as an element of $\mathcal{M}(\mathbb{R}^2, P_n \cup \{p_\infty\})$. Let $l_{i\infty}$ be a special (i, ∞) -cord which is a line segment joining p_i and p_∞ :

$$l_{i\infty}(t) = (1-t)(i,0) + t(1,0), \quad 0 \le t \le 1.$$

For an (i, ∞) -cord l we denote by [l] its isotopy class $\in A_i$. Then $f_i(V)$ is defined to be the isotopy class of the image of $l_{i\infty}$ under the action of the mapping class V:

$$f_i(V) := |(l_{i\infty})V|. \tag{8}$$

Here and in what follows, we will assume that $\mathcal{M}(\mathbb{R}^2, P_n \cup \{p_\infty\})$ acts on $(\mathbb{R}^2, P_n \cup \{p_\infty\})$ from the *right*.

Let C_k $(k \in \{1, ..., n\})$ be a smooth simple closed curve on $\mathbb{R}^2 - P_n$ which starts and ends at p_{∞} , and crosses L_k only once, transversely in the positive direction. We also assume that $C_k \cap L_h = \emptyset$ if $k \neq h$. Then as an element of the mapping class group $\mathcal{M}(\mathbb{R}^2, P_n \cup \{p_{\infty}\})$, a generator x_k of F_n is the result of a motion whose support is within a sufficiently thin neighborhood of C_k and which moves the point p_{∞} along the curve C_k . Similarly, x_k^{-1} is the result of a motion along C_k^{-1} , namely along the same curve C_k but in the opposite direction.

When k = i, the action of x_i has a special property. For example, see Fig. 2, where two (i, ∞) -cords $(l_{i\infty})x_i$ and $(l_{i\infty})x_i^2$ are shown. Notice that these (i, ∞) -cords are isotopic to $l_{i\infty}$ by isotopies which rotate a neighborhood of p_i round the point p_i .

More generally,

$$[(l_{i\infty})x_i^m] = [l_{i\infty}] \in \mathcal{A}_i, \quad \forall m \in \mathbb{Z}.$$

Since, for $V, W \in F_n$,

$$\left[(l_{i\infty})VW\right] = \left[(l_{i\infty})V\right]W,\tag{9}$$

we have

$$\left[(l_{i\infty}) x_i^m W \right] = \left[(l_{i\infty}) W \right]$$

Thus we have the following:

Lemma 3. $f_i: F_n \to A_i$ induces a map (denoted by f_i again)

 $f_i:\langle x_i\rangle\backslash F_n\to \mathcal{A}_i,$

where $\langle x_i \rangle \setminus F_n$ denotes the left cosets, in which [V] = [W] if and only if $V = x_i^m W$ for some $m \in \mathbb{Z}$.

Next, we will define a homotopy set \mathcal{H}_i . We define an (i, ∞) -curve to be a continuous map (which may have self-intersections)

 $l:[0,1] \to \left(\mathbb{R}^2 - P_n\right) \cup \{p_i\}$

such that $l(t) = p_i$ if and only if t = 0 and such that $l(t) = p_{\infty}$ if t = 1. This definition of an (i, ∞) -curve differs slightly from that of an (i, j)-curve given in Section 1 in which $j \neq \infty$.

Two (i, ∞) -curves l and l' are said to be *i*-homotopic if there exists a homotopy

$$H:[0,1]\times[0,1]\to \left(\mathbb{R}^2-P_n\right)\cup\{p_i\}$$

satisfying

- (i) H(0, t) = l(t) and $H(1, t) = l'(t), \forall t \in [0, 1],$
- (ii) $H(s, t) = p_i$ if and only if t = 0, and

(iii) $H(s, 1) = p_{\infty}, \forall s \in [0, 1].$

Notice the difference between the conditions (ii) and (iii); the "exit" of an *i*-homotopy is "closed" at p_i , while it is "open" at p_{∞} , which means that during the homotopy the interior of the curve is prohibited from going through p_i but is allowed through p_{∞} .

Let us define \mathcal{H}_i to be the set of all *i*-homotopy classes of (i, ∞) -curves. Clearly we have a natural map

$$g_i: \mathcal{A}_i \to \mathcal{H}_i. \tag{10}$$

Lemma 4. The map g_i is surjective.

Proof. Let *l* be an (i, ∞) -curve. Deforming *l* via *i*-homotopy, if necessary, we may assume that *l* is smooth and has a finite number of transverse self-intersections. Then we can push out these self-intersections successively through the end point p_{∞} . See Fig. 3. The resulting (i, ∞) -curve *l'* is an (i, ∞) -cord and is *i*-homotopic to *l*. This proves the surjectivity of $g_i : A_i \to H_i$. \Box

Finally we will define a map

$$h_i: \mathcal{H}_i \to \langle x_i \rangle \backslash F_n. \tag{11}$$

Let $l:[0,1] \to (\mathbb{R}^2 - P_n) \cup \{p_i\}$ be an (i, ∞) -curve. We can deform l by an i-homotopy to an (i, ∞) -curve l' which is transverse to $\bigcup_k L_k$. Let $W(l') \in F_n$ be the reading of l'. Then the map $h_i: \mathcal{H}_i \to \langle x_i \rangle \setminus F_n$ is defined to be the map sending the i-homotopy class of l to the coset of $W(l') \in \langle x_i \rangle \setminus F_n$.

Fig. 3. Pushing out the self-intersections through p_{∞} .

Lemma 5. The map

 $h_i: \mathcal{H}_i \to \langle x_i \rangle \backslash F_n$

is well-defined.

Proof. Suppose *l* and *l'* are transverse (i, ∞) -curves which are mutually *i*-homotopic. Then there exists an *i*-homotopy

 $H:[0,1]\times[0,1]\to \left(\mathbb{R}^2-P_n\right)\cup\{p_i\}$

satisfying (i), (ii), (iii) above.

From these properties, if $\varepsilon > 0$ is sufficiently small, it follows that

- (a) the readings of restricted curves $l|[\varepsilon, 1]$ and $l'|[\varepsilon, 1]$ with respect to $\bigcup_k L_k$ are the same as W(l) and W(l'), respectively, and
- (b) the curve H_ε(s) := H(s, ε), 0 ≤ s ≤ 1, is contained in a small neighborhood N of p_i such that N ∩ P_n = {p_i}. (The curve H_ε does not touch the point p_i.)

Perturbing a small part of H within N, if necessary, we may assume that the curve H_{ε} is transverse to $\bigcup_k L_k$. Then the reading of the curve H_{ε} will be x_i^m for some $m \in \mathbb{Z}$. Now define a loop $L(\tau)$, $0 \le \tau \le 1$, on $\mathbb{R}^2 - P_n$ based at p_{∞} :

$$L(\tau) := \begin{cases} l(1-3\tau) & 0 \leqslant \tau \leqslant \frac{1}{3} - \frac{1}{3}\varepsilon, \\ H_{\varepsilon} \left((3\tau + \varepsilon - 1)/(1+2\varepsilon) \right) & \frac{1}{3} - \frac{1}{3}\varepsilon \leqslant \tau \leqslant \frac{2}{3} + \frac{1}{3}\varepsilon, \\ l'(3\tau - 2) & \frac{2}{3} + \frac{1}{3}\varepsilon \leqslant \tau \leqslant 1. \end{cases}$$

See Fig. 4.

It is obvious from (a) and (b) that the reading of the loop $L(\tau)$, $0 \le \tau \le 1$, is

 $W(l)^{-1}x_i^m W(l').$

Since $H([0,1] \times [\varepsilon,1]) \subset \mathbb{R}^2 - P_n$, the loop $L(\tau)$ shrinks in $\mathbb{R}^2 - P_n$ to the base point p_{∞} . Therefore, in the group $F_n = \pi_1(\mathbb{R}^2 - P_n, p_{\infty})$, we have

$$W(l)^{-1}x_i^m W(l') = 1,$$

Fig. 4. Homotopy *H* and loop $L(\tau)$.

in other words,

 $[W(l)] = [W(l')] \in \langle x_i \rangle \backslash F_n.$

This proves Lemma 5. \Box

Lemma 6. The map

$$f_i:\langle x_i\rangle\backslash F_n\to \mathcal{A}_i$$

is surjective.

Proof. Let *l* be any (i, ∞) -cord from A_i , which may be assumed to be smooth and transverse to $\bigcup_k L_k$. We will prove Lemma 6 by induction on the number *N* of the intersection points between *l* and $\bigcup_k L_k$. If N = 1, *l* does not meet $\bigcup_k L_k$ except at the starting point p_i . It is easily seen that such a cord *l* is isotopic to the line segment $l_{i\infty}$. Thus in this case

$$[l] = [l_{i\infty}] = f_i(1)$$

and [l] is in the image of f_i . See (8).

Suppose Lemma 6 has been proved if the intersection points are less than a given N. We will prove Lemma 6 when the number equals N. Let p be the intersection point between l and $\bigcup_k L_k$ that we meet *last* when traversing l from l(0) to l(1). Suppose the point p is on the half-line L_k . We first assume that at p the cord l crosses L_k in the positive direction.

Let C_k be the simple closed curve based at p_{∞} , introduced before Lemma 3. Then we may assume that C_k intersects L_k at the point p and that the part of C_k between p and p_{∞} is the same as the part of l between p and p_{∞} . Then consider the motion whose support is within a thin neighborhood of C_k and which carries p_{∞} round along C_k^{-1} . Apply this motion to l. Then p will be removed from the intersections, and l will be moved to an (i, ∞) -curve l' having fewer intersection points with $\bigcup_k L_k$ than l.

Note that in A_i ,

$$\left[l'\right] = \left[(l)x_k^{-1}\right].$$

By induction hypothesis, [l'] is in the image of f_i , and we can find a word $V \in F_n$ such that

 $[l'] = [(l_{i\infty})V].$

Thus

$$\left[(l)x_k^{-1}\right] = \left[(l_{i\infty})V\right].$$

In other words,

$$[l] = \left[(l_{i\infty}) V x_k \right] = f_i (V x_k).$$

We have done in the case l crosses L_k at p in the positive direction. If it crosses in the negative direction, the argument is similar. This completes the proof of Lemma 6.

Lemma 7. The composite

$$h_i \circ g_i \circ f_i : \langle x_i \rangle \backslash F_n \to \langle x_i \rangle \backslash F_n$$

is the identity.

Proof. We have only to prove that, for each $V \in F_n$, the reading of $(l_{i\infty})V$ is the same as V in $\langle x_i \rangle \setminus F_n$. Choose an arbitrary word V and fix it. By Lemma 5, the reading of an (i, ∞) cord does not change if we deform it by (i, ∞) -isotopy, or more generally by *i*-homotopy. Thus we may assume that $(l_{i\infty})V$ is transverse to $\bigcup_k L_k$.

Write the word V in a reduced form of length N:

$$V = x_{\nu(1)}^{\epsilon(1)} x_{\nu(2)}^{\epsilon(2)} \cdots x_{\nu(N)}^{\epsilon(N)}.$$

That is to say, in this expression, $\epsilon(m) = \pm 1, \nu(m) \in \{1, 2, \dots, n\}, m = 1, 2, \dots, N$, and if v(m) = v(m+1) for some m, then $\epsilon(m) \neq -\epsilon(m+1)$. If a word V has a reduced form of length N, this number N is called the *reduced length* of V. We will prove the lemma by induction on N.

First suppose N = 1, and draw a transverse curve $(l_{i\infty})x_k^{\epsilon}$. See Fig. 2 for the case k = i, and Fig. 5 for the case $k \neq i$. In the case k = i, we have seen that the reading of $(l_{i\infty})x_i^{\epsilon}$ is 1 as an element of $\langle x_i \rangle \setminus F_n$. (Lemma 3.) In the case $k \neq i$, by Fig. 5, we see that the reading of $(l_{i\infty})x_k^{\epsilon}$ is x_k^{ϵ} . Thus Lemma 7 is clear, if N = 1.

To proceed further, let us make a definition. For a transverse (i, ∞) -cord l, its *honest reading* is defined to be the reading of the intersection points $l \cap \bigcup_k L_k$ without

Fig. 6. C_k intersects $(l_{i\infty})U$.

canceling x_k and x_k^{-1} even if they appear successively in the course of traversing *l*. Thus a honest reading is not necessarily a reduced word.

Now suppose N > 1 and that Lemma 6 has been proved for smaller length. Suppose the reduced word V of length N is written as

$$V = U x_k^{\epsilon} \quad (\epsilon = \pm 1),$$

where U is a reduced word of length $N - 1 \ (\ge 1)$. To draw the curve $(l_{i\infty})V$, we apply the mapping class x_k^{ϵ} to the curve $(l_{i\infty})U$. That is to say, we move $(l_{i\infty})U$ by the motion of p_{∞} round along the curve C_k^{ϵ} . If C_k does not intersect $(l_{i\infty})U$ except at p_{∞} , then the reading of $(l_{i\infty})Ux_k^{\epsilon}$ is easily seen to be Ux_k^{ϵ} . But some complication appears if C_k intersects $(l_{i\infty})U$ at other points than the base point p_{∞} .

To see this, suppose $\epsilon = +1$, and suppose C_k intersects a part of $(l_{i\infty})U$ once as indicated by Fig. 6, left. Then by performing the motion of p_{∞} along C_k , we have an (i, ∞) -cord $(l_{i\infty})Ux_k$.

Let us compare the honest readings of the cords before and after this motion. By Fig. 6, right, we see that the honest reading of $(l_{i\infty})Ux_k$ is obtained from that of $(l_{i\infty})U$ by multiplying x_k from the right and inserting a canceling pair $x_k x_k^{-1}$ somewhere in the honest reading of $(l_{i\infty})U$. By induction hypothesis, the reading of $(l_{i\infty})U$ is equal to U in $\langle x_i \rangle \setminus F_n$. Thus from the above observation, the reading of $(l_{i\infty})Ux_k$ is equal to Ux_k in $\langle x_i \rangle \setminus F_n$.

The argument is the same if $\epsilon = -1$ and/or if C_k intersects $(l_{i\infty})U$ more than once.

This proves Lemma 7 for the word $V = Ux_k^{\epsilon}$ of reduced length N, completing the proof of Lemma 7. \Box

The following theorem is the main result of Section 2.

Theorem 8. The three maps

 $f_i: \langle x_i \rangle \backslash F_n \to \mathcal{A}_i,$ $g_i: \mathcal{A}_i \to \mathcal{H}_i, \quad and$ $h_i: \mathcal{H}_i \to \langle x_i \rangle \backslash F_n,$

are bijective.

Proof. The theorem is obvious from Lemmas 4, 6 and 7. \Box

3. Isotopy classes of (i, j)-cords

Take and fix any $i, j \in \{1, 2, ..., n\}$ $(i \neq j)$ throughout this section. Let A_{ij} be the set of all isotopy classes of (i, j)-cords on (\mathbb{R}^2, P_n) . First we will parameterize A_{ij} by certain double cosets of F_n .

Theorem 9. Let $N(x_j)$ be the normal subgroup of F_n generated by x_j . Then there exists a bijection

$$\tilde{f}_{ij}:\langle x_i\rangle\backslash F_n/N(x_j)\to \mathcal{A}_{ij}.$$

Proof. Let Q_{n-1} denote the set of n-1 points defined by

$$Q_{n-1} = P_n - \{p_j\}.$$
 (12)

Then obviously there is a homeomorphism

$$\left(\mathbb{R}^2, Q_{n-1} \cup \{p_\infty\}, p_\infty\right) \to \left(\mathbb{R}^2, P_n, p_j\right).$$
(13)

We will explicitly construct a homeomorphism (13).

Let $l_{j\infty}$ be the line segment joining p_j and p_{∞} (caution: not $l_{i\infty}$). Consider a motion within a sufficiently small neighborhood of $l_{j\infty}$ which moves p_{∞} to p_j along $l_{j\infty}$. Let φ_j (or simply φ , *j* being always understood) be the final stage of this motion. Then φ gives an explicit homeomorphism (13). Note that $\varphi(p_{\infty}) = p_j$ and φ fixes L_k ($k \neq j$) pointwise.

It is easy to see that φ maps an (i, ∞) -cord on $(\mathbb{R}^2, Q_{n-1} \cup \{p_\infty\})$ to an (i, j)-cord on (\mathbb{R}^2, P_n) . By letting $\mathcal{A}_i(Q_{n-1})$ denote the set of isotopy classes of (i, ∞) -cords on $(\mathbb{R}^2, Q_{n-1} \cup \{p_\infty\})$, we have the bijection

$$\varphi_* : \mathcal{A}_i(Q_{n-1}) \to \mathcal{A}_{ij}. \tag{14}$$

By Theorem 8, the map

$$f_i: \langle x_i \rangle \backslash G_{n-1} \to \mathcal{A}_i(Q_{n-1}) \tag{15}$$

is a bijection, where G_{n-1} denotes the free group generated by $\{x_1, x_2, ..., x_n\} - \{x_j\}$. This group G_{n-1} is canonically isomorphic to $F_n/N(x_j)$. Thus we have a bijection (denoted by f_i again)

$$f_i: \langle x_i \rangle \backslash F_n / N(x_j) \to \mathcal{A}_i(Q_{n-1}).$$
(16)

Combining (14) and (16), we have the required bijection

$$\tilde{f}_{ij} := \varphi_* \circ f_i : \langle x_i \rangle \backslash F_n / N(x_j) \to \mathcal{A}_{ij}.$$
⁽¹⁷⁾

This completes the proof of Theorem 9. \Box

Remark 10. We can likewise prove that there exists a bijection

 $\tilde{f}'_{ij}: N(x_i) \setminus F_n / \langle x_j \rangle \to \mathcal{A}_{ij}$

by exchanging the roles of $l_{i\infty}$ and $l_{j\infty}$ in the arguments.

We will give here a geometric interpretation of the bijection f_{ij} . For this, recall the simple closed curve C_k introduced before Lemma 3. Let C_k^j $(k \neq j)$ be the image of C_k under φ ; $C_k^j := \varphi(C_k)$. Since $\varphi(p_{\infty}) = p_j$, C_k^j is a simple closed curve on $\mathbb{R}^2 - Q_{n-1}$ based at p_j and which intersects L_k transversely in a point. Also let l_{ij} be the image $\varphi(l_{i\infty})$. Then l_{ij} is an (i, j)-cord which does not intersect $\bigcup_k L_k$ except at the end points.

The homeomorphism φ induces a homomorphism between the mapping class groups:

$$\mathcal{M}(\mathbb{R}^2, Q_{n-1} \cup \{p_\infty\}) \to \mathcal{M}(\mathbb{R}^2, P_n).$$
(18)

Denoting the image of V under this homomorphism by V^{φ} , we see that x_k^{φ} $(k \neq j)$ acts on (\mathbb{R}^2, P_n) as the result of the motion of p_j round along the simple closed curve C_k^j .

Proposition 11 (Geometric interpretation of \tilde{f}_{ij}). Let V be a word $(\in F_n)$ representing a coset $[V] \in \langle x_i \rangle \setminus F_n / N(x_j)$. We may assume that V does not contain x_j . Then $\tilde{f}_{ij}([V])$ is the isotopy class of the cord $(l_{ij})V^{\varphi}$.

Proof. This is clear by the definition of f_i in Section 2 and the construction of f_{ij} given above. \Box

There is another geometric interpretation of \tilde{f}_{ij} which follows from Lemma 7 and Theorem 8. In fact, by Lemma 7 and Theorem 8, we have

$$f_i = g_i^{-1} \circ h_i^{-1} \colon \langle x_i \rangle \backslash F_n \to \mathcal{A}_i.$$
⁽¹⁹⁾

Thus,

$$\tilde{f}_{ij} = \varphi_* \circ f_i = \varphi_* \circ g_i^{-1} \circ h_i^{-1}.$$
⁽²⁰⁾

This gives the second interpretation of f_{ij} :

Proposition 12 (Second geometric interpretation of \tilde{f}_{ij}). Let $V \ (\in F_n)$ be a word representing a coset $[V] \in \langle x_i \rangle \setminus F_n / N(x_j)$. (This time V may contain x_j .) Draw a smooth (i, j)-curve l, with self-intersections in general, which is transverse to $\bigcup_k L_k$ and whose reading is V. We assume that the self-intersections of l are transverse and finite in number. By homotopy, push out all the self-intersections of l through the terminal point p_j successively. Let l' be the resulting (i, j)-cord. Then $\tilde{f}_{ij}([V])$ is the isotopy class of the cord l'.

The meaning of "homotopy" in Proposition 12 might be a little vague. Precisely speaking, it is the image of the *i*-homotopy in Section 2 under φ .

Proof of Proposition 12. From the proof of the surjectivity of $g_i : A_i \to H_i$ (Lemma 4), and the definition of $h_i : H_i \to \langle x_i \rangle \setminus F_n$, Proposition 12 follows immediately. \Box

Fig. 7 illustrates Proposition 12, which shows how to obtain a (1, 3)-cord in the isotopy class $\tilde{f}_{13}([x_2^2x_4])$, starting from a (1, 3)-curve whose reading is $x_2^2x_4$.

Fig. 7. (1, 3)-cord $\tilde{f}_{13}([x_2^2x_4])$.

In Fig. 7, the first (1, 3)-curve reads as $x_2^2 x_4$. Pushing out the intersection nearest to p_3 , through p_3 , we obtain the second curve. Its reading is $x_2^2 x_3 x_4$. Then pushing out the second intersection through p_3 , we obtain a (1, 3)-cord representing $\tilde{f}_{13}([x_2^2 x_4])$. The reading of the (1, 3)-cord is $x_2 x_3 x_4 x_3 x_4^{-1} x_3^{-1} x_2 x_3 x_4$. (Note that neglecting the generator x_3 in this final word, we recover the word $x_2^2 x_4$.) In this way, the process of pushing out the intersections may be regarded as a process of successively rewriting the words. Thus the process will sometimes be referred to as the *rewriting process*.

Remark 13. By (20), it follows that

 $\tilde{f}_{ij}^{-1} = h_i \circ g_i \circ \varphi_*^{-1}.$

Thus \tilde{f}_{ij}^{-1} is explicitly described as follows: Let *l* be an (i, j)-cord on (\mathbb{R}^2, P_n) . Make it transverse to $\bigcup_k L_k$. Let W(l) be the reading of *l* from $l(0) = p_i$ to $l(1) = p_j$. Then

$$\tilde{f}_{ii}^{-1}([l]) = \left[W(l)\right] \in \langle x_i \rangle \backslash F_n / N(x_j).$$
(21)

An implication of this equality is this: to determine the isotopy class of an (i, j)-cord l, we have only to know the reading of l modulo x_j .

4. Rewriting function R_{ij}

In this section, we will introduce a mapping $R_{ij}: F_n \to F_n$ which plays an important role in our investigation. We begin by defining the notion of (i, j)-homotopy of (i, j)-curves. Two (i, j)-curves l and l' are said to be (i, j)-homotopic if there exits a homotopy

$$H: [0, 1] \times [0, 1] \to (\mathbb{R}^2 - P_n) \cup \{p_i, p_j\}$$

satisfying

(i)
$$H(0, t) = l(t)$$
 and $H(1, t) = l'(t), \forall t \in [0, 1],$

- (ii) $H(s, t) = p_i$ if and only if t = 0, and
- (iii) $H(s, t) = p_j$ if and only if t = 1.

The conditions (ii) and (iii) say that both the "exits" of an (i, j)-homotopy are "closed" at p_i and p_j . (Cf. Section 2.)

Let \mathcal{H}_{ij} be the set of all (i, j)-homotopy classes of (i, j)-curves on (\mathbb{R}^2, P_n) .

Given an (i, j)-curve l, we make it transverse to $\bigcup_k L_k$. Let W(l) be the reading of l from p_i to p_j .

Lemma 14. The map

34

 $\tilde{h}_{ij}: \mathcal{H}_{ij} \to \langle x_i \rangle \backslash F_n / \langle x_j \rangle$

sending the (i, j)-homotopy class of an (i, j)-curve [l] to the double coset of its reading [W(l)] is well-defined and is bijective.

Caution: In this lemma, $\langle x_i \rangle \backslash F_n / \langle x_j \rangle$ is not $\langle x_i \rangle \backslash F_n / N(x_j)$; *V* and *W* belong to the same double coset in $\langle x_i \rangle \backslash F_n / \langle x_j \rangle$ if and only if $V = x_i^p W x_j^q$ for some $p, q \in \mathbb{Z}$.

Proof of Lemma 14. The well-definedness is proved by the (i, j)-homotopy version of the proof of Lemma 5.

The surjectivity of h_{ij} is easy, because given a word V one can draw an (i, j)-curve whose reading is the word V if the curve is allowed to have self-intersections.

We will prove the injectivity. Let *l* be an (i, j)-curve. We may assume that it is smooth and transverse to $\bigcup_k L_k$. Observe that by giving rotations to *l* round p_i , we can multiply any power of x_i from the left of the reading W(l) without changing the (i, j)-homotopy class of *l*. Similarly, we can multiply any power of x_i from the right of W(l).

Now suppose that we are given (i, j)-curves l and l' and that their readings belong to the same double coset $\in \langle x_i \rangle \backslash F_n / \langle x_j \rangle$. By the above observation, adjusting the power of x_i from the left and that of x_j from the right, we may assume that the readings W(l) and W(l') are exactly the same: $W(l) = W(l') \in F_n$.

Also we may assume that the tangent vectors of l and l' at p_i (and at p_j) are the same, or more strongly, that there exists a small number $\varepsilon > 0$ such that as continuous maps $[0, 1] \rightarrow \mathbb{R}^2$, l and l' coincide if restricted to $[0, \varepsilon]$ and $[1 - \varepsilon, 1]$:

 $l|[0,\varepsilon] = l'|[0,\varepsilon], \qquad l|[1-\varepsilon,1] = l'|[1-\varepsilon,1].$

Consider a loop *L* which starts at $l(\varepsilon)$, traverses *l*, arrives at $l(1 - \varepsilon) = l'(1 - \varepsilon)$, and returns to $l'(\varepsilon) = l(\varepsilon)$ along ${l'}^{-1}$. The loop *L* is completely contained in the punctured plane $\mathbb{R}^2 - P_n$, and its reading is $W(l)W(l')^{-1} = 1$. Since $\pi_1(\mathbb{R}^2 - P_n, l(\varepsilon)) \cong F_n$, *L* shrinks to a point in $\mathbb{R}^2 - P_n$. Making use of this homotopy, one can construct an (i, j)homotopy between *l* and *l'*. This proves the injectivity of \tilde{h}_{ij} . \Box

Since an (i, j)-cord is an (i, j)-curve, and isotopic (i, j)-cords are (i, j)-homotopic, there is a natural map

$$\tilde{g}_{ij}: \mathcal{A}_{ij} \to \mathcal{H}_{ij}$$
 (22)

Lemma 15 (Homotopy implies isotopy). \tilde{g}_{ij} is injective.

Proof. Suppose that (i, j)-cords l and l' are mutually (i, j)-homotopic. We will prove that they are isotopic. By Lemma 14, the readings W(l) and W(l') belong to the same double coset in $\langle x_i \rangle \backslash F_n / \langle x_j \rangle$, thus evidently to the same double coset in $\langle x_i \rangle \backslash F_n / N(x_j)$. Then by Theorem 9 and Remark 13, l and l' are isotopic. \Box

Composing the three maps \tilde{f}_{ij} , \tilde{g}_{ij} and \tilde{h}_{ij} , we have an injection denoted by

$$r_{ij}:\langle x_i\rangle \backslash F_n/N(x_j) \to \langle x_i\rangle \backslash F_n/\langle x_j\rangle.$$
⁽²³⁾

The value $r_{ij}([V])$ is the reading of the (i, j)-cord $\tilde{f}_{ij}([V])$.

The mapping r_{ij} is computed geometrically by the rewriting process (pushing out the intersections through p_j) as explained in Section 3. For example, by Fig. 7, the reading of the (1, 3)-cord $\tilde{f}_{13}([x_2^2x_4])$ is $x_2x_3x_4x_3x_4^{-1}x_3^{-1}x_2x_3x_4$. Thus we have

$$r_{13}([x_2^2x_4]) = [x_2x_3x_4x_3x_4^{-1}x_3^{-1}x_2x_3x_4] \in \langle x_i \rangle \backslash F_n / \langle x_j \rangle.$$
⁽²⁴⁾

This map r_{ij} can be lifted to a map

$$R_{ij}: F_n \to F_n \tag{25}$$

as follows: Take a word $V \in F_n$, consider its double coset $[V] \in \langle x_i \rangle \setminus F_n / N(x_j)$ and map it to $r_{ij}([V])$. Being an element of $\langle x_i \rangle \setminus F_n / \langle x_j \rangle$, $r_{ij}([V])$ has ambiguities of the left factor x_i^p and the right factor x_j^q . Adjust the exponents p (or q) to get a word W in F_n so that the total exponents of x_i (or x_j) in V and in W are equal. Here the *total exponent* of x_i in Vmeans the sum of the exponents of x_i appearing in the word V. Similarly for x_j .

Then we define

$$R_{ij}(V) = W. (26)$$

For example, if we want to get the R_{13} -image of the word $x_2^2 x_4$, in which the total exponent of x_1 (and x_3) is 0, we have to adjust the right-hand side of (24) so that the resulting word has also the total exponent 0 w.r.t. x_1 and x_3 . Thus we have

$$R_{13}(x_2^2 x_4) = x_2 x_3 x_4 x_3 x_4^{-1} x_3^{-1} x_2 x_3 x_4 x_3^{-2}.$$
(27)

We would like to call the map R_{ij} the *rewriting function*. Obviously the following diagram commutes:

The vertical arrows are natural projections.

In Section 6, we will give a formula to compute the rewriting function R_{ij} purely algebraically.

5. Some properties of R_{ij}

In this section, we give important properties of the rewriting function R_{ij} .

Lemma 16. Let V and W be words in F_n . Then

 $R_{ii}(V) = W,$

if and only if they satisfy the following conditions:

- (i) $[V] = [W] \in \langle x_i \rangle \backslash F_n / N(x_j),$
- (ii) $E_i(V) = E_i(W)$, $E_j(V) = E_j(W)$, where $E_k(U)$ denotes the total exponent of x_k in the word U, and
- (iii) W is the reading of an (i, j)-cord.

Proof. Suppose $R_{ij}(V) = W$. Since by definition $R_{ij}(V)$ is a lifted reading of the (i, j)cord $\tilde{f}_{ij}([V])$, $R_{ij}(V)$ and V belong to the same double coset $\in \langle x_i \rangle \backslash F_n / N(x_j)$ by
Remark 13. Thus (i) is satisfied. The conditions (ii) and (iii) are satisfied by the definition
of R_{ij} . This proves the *only if*-part.

Conversely, suppose that V and W satisfy (i), (ii) and (iii). Let l be an (i, j)-cord such that W = W(l). Such a cord l exists by condition (iii). Just as above, by Remark 13, $R_{ij}(V)$ and V belong to the same double coset $\in \langle x_i \rangle \setminus F_n/N(x_j)$. By condition (i), V and W belong to the same double coset. Thus $[R_{ij}(V)] = [W] \in \langle x_i \rangle \setminus F_n/N(x_j)$. By Theorem 9 and Remark 13 again, the (i, j)-cords $\tilde{f}_{ij}([V])$ and l are isotopic. By Lemma 14, the readings $R_{ij}(V)$ and W of these isotopic cords coincide modulo left factor x_i^p and right factor x_j^q . But by the definition of R_{ij} and condition (ii), we have $E_i(R_{ij}(V)) = E_i(V) = E_i(W)$ and $E_j(R_{ij}(V)) = E_j(V) = E_j(W)$. Thus $R_{ij}(V) = W$. The *if*-part is proved. \Box

Lemma 17. A word V is the reading of an (i, j)-cord if and only if

$$R_{ij}(V) = V. (29)$$

Proof. Suppose *V* satisfies (29). Then $r_{ij}([V]) = [V]$, and by the definition of r_{ij} , [*V*] is the reading of the (i, j)-cord $\tilde{f}_{ij}([V])$. By giving rotations to this cord round p_i and p_j , we may adjust that the actual reading of the cord is *V*. This proves the *if*-part.

Conversely, suppose V is the reading of an (i, j)-cord l, then applying Lemma 16, we have

$$R_{ij}(V) = V.$$

This proves the *only if*-part. \Box

Lemma 18. R_{ij} is a projection, that is, it satisfies

$$R_{ij} \circ R_{ij} = R_{ij}$$

Proof. For any word W, $R_{ij}(W)$ is a lifted reading of the isotopy class of (i, j)-cords $\tilde{f}_{ij}([W])$. Thus applying Lemma 17 to the word $V = R_{ij}(W)$, we have $R_{ij}(R_{ij}(W)) = R_{ij}(W)$. \Box

Lemma 19. For any $m \in \mathbb{Z}$, we have

$$\begin{bmatrix} R_{ij} \left(V_1 x_j^m V_2 \right) = R_{ij} \left(V_1 V_2 \right) x_j^m \\ R_{ij} \left(x_i^m V \right) = x_i^m R_{ij} \left(V \right).$$

Proof. Since the words $V_1 x_j^m V_2$ and $V_1 V_2$ belong to the same double coset $\in \langle x_i \rangle \setminus F_n / N(x_j)$, the commutative diagram (28) implies that the images $R_{ij}(V_1 x_j^m V_2)$ and $R_{ij}(V_1 V_2)$ differ only in the left x_i - and the right x_j -powers. However,

$$\begin{cases} E_i (V_1 x_j^m V_2) = E_i (V_1 V_2), & \text{and} \\ E_j (V_1 x_j^m V_2) = E_j (V_1 V_2) + m, \end{cases}$$

and we know that $R_{ij}(\cdot)$ preserves the total *i*- and *j*-exponents. Thus we have the first equality.

The second equality is proved similarly. \Box

6. Algebraic formula for R_{ij}

In this section, we will give a formula to compute $R_{ij}: F_n \to F_n$ purely algebraically.

As we remarked just before Proposition 11, $F_n/N(x_j)$ acts on (\mathbb{R}^2, P_n) from the right. More precisely, an element $x_k \in F_n(k \neq j)$, acts on (\mathbb{R}^2, P_n) as x_k^{φ} , which is the mapping class of the motion of p_j along the curve $C_k^j = \varphi(C_k)$. Incidentally, we also consider the case k = j, where taking Proposition 11 into account, we define the action of x_j^{φ} to be the trivial action on (\mathbb{R}^2, P_n) . Then the action of $F_n/N(x_j)$ lifts to the action of F_n on (\mathbb{R}^2, P_n) . We call this action the *j*-action of F_n to distinguish it from the action of F_n on $(\mathbb{R}^2, P_n \cup \{p_{\infty}\})$ introduced in Section 2.

Via the *j*-action, F_n acts on the (i, j)-homotopy set \mathcal{H}_{ij} . We would like to describe this action algebraically.

Recall that l_{kj} is the (k, j)-cord which does not intersect $\bigcup_h L_h$ except at the end points p_k, p_j .

Lemma 20. The action of x_k^{φ} ($k \neq j$) is nothing but the "360°-twist" along l_{kj} , namely, the mapping class whose support is contained in a disk neighborhood of the cord l_{kj} and which rotates the cord through 360° counterclockwise.

This lemma is easily seen by figures. (Cf. the proof of Lemma 4.1 of [9].)

The *j*-action of F_n is generated by x_k^{φ} , k = 1, ..., n. By Lemma 20, the action of x_k^{φ} $(k \neq j)$ is the "360°-twist" along the (k, j)-cord l_{kj} , and the action of x_j^{φ} is the identity. Thus if we assume that all the (k, j)-cord l_{kj} are contained in the domain $y < 1 - \varepsilon$ (or more safely in $y < \frac{1}{2}$) of the *xy*-plane, then we may assume that the *j*-action of F_n is

Fig. 8. The loop x_k .

trivial on the complementary region $y \ge 1 - \varepsilon$ (or $y \ge \frac{1}{2}$) in which $p_{\infty} = (0, 1)$ is. In the following arguments, we will always assume this *optimal condition* on the *j*-action of F_n .

Let us introduce some notations. Let α_i denote the line segment $l_{i\infty}$ considered to be an oriented simple curve from p_i to p_{∞} . Similarly let β_j denote the line segment $l_{j\infty}$ regarded as an oriented simple curve from p_{∞} to p_j . Thus the composition of these curves $\alpha_i \cdot \beta_j$ is isotopic to the cord l_{ij} .

The generator x_k of $\pi_1(\mathbb{R}^2 - P_n, p_\infty)$ is represented by the simple loop C_k . However, in studying the effect of the *j*-action of F_n , we prefer to C_k the following loop as the representative of x_k , namely, the loop which starts at p_∞ , going down along the line segment $l_{k\infty}$, arrives at a point near to p_k , then makes a small circle round p_k , and finally comes back to p_∞ along $l_{k\infty}$. (See Fig. 8.) We will also denote by x_k such a loop. Of course, the inverse x_k^{-1} is represented by the loop traversing x_k in the opposite direction.

Let V be a word $(\in F_n)$, and define an (i, j)-curve $L_{ij}(V)$ as follows:

$$L_{ij}(V) := \alpha_i \cdot x_{k(1)}^{\epsilon(1)} \cdots x_{k(N)}^{\epsilon(N)} \cdot \beta_j,$$
(30)

where $V = x_{k(1)}^{\epsilon(1)} \cdots x_{k(N)}^{\epsilon(N)}$, $\epsilon(m) \in \{+1, -1\}$ and $k(m) \in \{1, 2, ..., n\}$ for m = 1, ..., N. Every (i, j)-homotopy class has $L_{ij}(V)$ as its representative for some V. Note that the reading of this (i, j)-curve is V, and that by Lemma 14 $L_{ij}(V)$ and $L_{ij}(W)$ belong to the same (i, j)-homotopy class if and only if $[V] = [W] \in \langle x_i \rangle \setminus F_n / \langle x_j \rangle$.

We are now in a position to study the effect of the *j*-action of F_n on $L_{ij}(V)$. For notational convenience, we will denote the (right) *j*-action W^{φ} of a word $W \in F_n$ on (\mathbb{R}^2, P_n) by $(\cdot)T_W^j$, or understanding *j* being always fixed, simply by $(\cdot)T_W$.

Let us apply the *j*-action $(\cdot)T_W$ on the (i, j)-curve $L_{ij}(V)$ of (30). Then by the optimal condition on the *j*-action, we have

$$(L_{ij}(V))T_W = (\alpha_i)T_W \cdot (x_{k(1)}^{\epsilon(1)})T_W \cdots (x_{k(N)}^{\epsilon(N)})T_W \cdot (\beta_j)T_W$$
$$= (\alpha_i)T_W \cdot (V)T_W \cdot (\beta_j)T_W.$$
(31)

Thus we can study the action $(\cdot)T_W$ on α_i , V, and β_j , separately.

First consider $(\alpha_i)T_W$. This is an (i, ∞) -cord, and its *i*-homotopy class is represented by an (i, ∞) -curve of the form

$$\alpha_i \cdot W' \tag{32}$$

where W' is a certain product of the loops $x_k^{\epsilon} \in F_n$. By Theorem 8, the word W' is well-defined up to left multiplication of x_i^p , that is, only its coset $[W'] \in \langle x_i \rangle \setminus F_n$ is well-defined. To fix this ambiguity, we impose the condition that the total exponent of x_i in W' should be 0:

$$E_i(W') = 0. (33)$$

Then the ambiguity is removed and W' is well-defined as an element of F_n . Let us denote this W' by $A_i(W)$. The following equalities are considered to be the definition of $A_i(W) \in F_n$:

$$\begin{cases} (\alpha_i)T_W = \alpha_i \cdot A_i(W), \\ E_i(A_i(W)) = 0. \end{cases}$$
(34)

Similarly, the (∞, j) -cord $(\beta_j)T_W$ is *j*-homotopic to the (∞, j) -curve $W'' \cdot \beta_j$, and $W'' \in F_n$ is proved to be well-defined up to right multiplication of x_j^q . Imposing the condition $E_j(W'') = 0$, we can eliminate this ambiguity. Denoting the well-defined W'' by $B_j(W)$, we have the following equalities, which are considered to be the definition of $B_j(W) \in F_n$:

$$\begin{cases} (\beta_j)T_W = B_j(W) \cdot \beta_j, \\ E_j(B_j(W)) = 0. \end{cases}$$
(35)

The part $(V)T_W$ is easily understood, because T_W acts on $F_n(=\pi_1(\mathbb{R}^2 - P_n, p_\infty))$ as a group automorphism. Thus denoting this automorphism by $H_{j,W}: F_n \to F_n$, we have

$$(V)T_W = H_{j,W}(V).$$
 (36)

In these notations, (31) is rewritten as follows:

$$(L_{ij}(V))T_W = \alpha_i \cdot A_i(W) \cdot H_{j,W}(V) \cdot B_j(W) \cdot \beta_j.$$
(37)

To further analyze these mappings $A_i, B_j, H_{j,W}: F_n \to F_n$, we check the simplest cases.

Lemma 21. If i < j, then

$$A_{i}(x_{k}) = \begin{cases} x_{j}x_{k}x_{j}^{-1}x_{k}^{-1} & k < i, \\ x_{i}x_{j}^{-1}x_{i}^{-1} & k = i, \\ 1 & k > i, \end{cases}$$
(38)

$$A_{i}(x_{k}^{-1}) = \begin{cases} k & j & k \neq i, \\ x_{j} & k = i, \\ 1 & k > i. \end{cases}$$
(39)

If i > j, then

Fig. 9. The cords $(\alpha_i) x_k^{\varphi} = \alpha_i \cdot A_i(x_k), \ k < i < j$.

$$A_{i}(x_{k}) = \begin{cases} 1 & k < i, \\ x_{j}^{-1} & k = i, \\ x_{k}x_{j}x_{k}^{-1}x_{j}^{-1} & k > i, \end{cases}$$

$$A_{i}(x_{k}^{-1}) = \begin{cases} 1 & k < i, \\ x_{i}^{-1}x_{j}x_{i} & k = i, \\ x_{j}^{-1}x_{k}^{-1}x_{j}x_{k} & k > i. \end{cases}$$
(40)

Proof. To prove (38), we apply the *j*-action x_k^{φ} to the (i, ∞) -cord α_i . By Lemma 20, the resulting cords are as shown in Fig. 9. We can easily prove (38) by reading the intersections of the cords and $\bigcup_h L_h$. Notice that in the right hand side of the second equality of (38), we multiply x_i artificially to meet the requirement (34) on the total exponent of x_i . Other equalities (39), (40) and (41) are proved similarly. \Box

By the same method, we can prove the following lemma (x_j^{-1}) in the third equality of (42) and x_j in the first of (43) are "artificially" multiplied to meet the condition (35)).

Lemma 22.

$$B_{j}(x_{k}) = \begin{cases} x_{k} & k < j, \\ 1 & k = j, \\ x_{j}x_{k}x_{j}^{-1} & k > j, \end{cases}$$

$$B_{j}(x_{k}^{-1}) = \begin{cases} x_{j}^{-1}x_{k}^{-1}x_{j} & k < j, \\ 1 & k = j, \\ x_{k}^{-1} & k > j. \end{cases}$$
(42)

Proof. Fig. 10 shows, in the case k < j, how β_j changes when it is acted on by x_k^{φ} . This proves the first equality of (42). Other cases are obtained by similar figures. \Box

Lemma 23. Let ϵ denote +1 or -1. If k < j, then

Fig. 10. The cord $(\beta_j) x_k^{\varphi} = B_j(x_k) \cdot \beta_j, \ k < j.$

$$H_{j,x_{k}}(x_{l}^{\epsilon}) = \begin{cases} x_{l}^{\epsilon} & l < k \text{ or } l > j, \\ x_{k}x_{j}x_{k}^{\epsilon}x_{j}^{-1}x_{k}^{-1} & l = k, \\ x_{k}x_{j}x_{k}^{-1}x_{j}^{-1}x_{l}^{\epsilon}x_{j}x_{k}x_{j}^{-1}x_{k}^{-1} & k < l < j, \\ x_{k}x_{j}^{\epsilon}x_{k}^{-1} & l = j, \end{cases}$$

$$H_{j,x_{k}^{-1}}(x_{l}^{\epsilon}) = \begin{cases} x_{l}^{\epsilon} & l < k \text{ or } l > j, \\ x_{j}^{-1}x_{k}^{\epsilon}x_{j} & l = k, \\ x_{j}^{-1}x_{k}^{-1}x_{j}x_{k}x_{l}^{\epsilon}x_{k}^{-1}x_{j}^{-1}x_{k}x_{j} & k < l < j, \\ x_{j}^{-1}x_{k}^{-1}x_{j}^{\epsilon}x_{k}x_{j} & l = k, \end{cases}$$

$$(45)$$

If k > j, then

$$H_{j,x_{k}}(x_{l}^{\epsilon}) = \begin{cases} x_{l}^{\epsilon} & l < j \text{ or } l > k, \\ x_{j}x_{k}x_{j}^{\epsilon}x_{k}^{-1}x_{j}^{-1} & l = j, \\ x_{j}x_{k}x_{j}^{-1}x_{k}^{-1}x_{l}^{\epsilon}x_{k}x_{j}x_{k}^{-1}x_{j}^{-1} & j < l < k, \\ x_{j}x_{k}^{\epsilon}x_{j}^{-1} & l = k, \end{cases}$$

$$H_{j,x_{k}^{-1}}(x_{l}^{\epsilon}) = \begin{cases} x_{l}^{\epsilon} & l < j \text{ or } l > k, \\ x_{k}^{-1}x_{j}^{\epsilon}x_{k} & l = j, \\ x_{k}^{-1}x_{j}^{-1}x_{k}x_{j}x_{l}^{\epsilon}x_{j}^{-1}x_{k}^{-1}x_{j}x_{k} & j < l < k, \\ x_{k}^{-1}x_{j}^{-1}x_{k}^{\epsilon}x_{j}x_{k} & l = k. \end{cases}$$

$$(46)$$

If k = j, then

$$H_{j,x_j}(x_l) = H_{j,x_j^{-1}}(x_l) = x_l.$$
(48)

Proof. Fig. 11 shows, in the case k < l < j, how the loop x_l^{ϵ} changes when it is acted on by x_k^{φ} . The third equality of (44) follows from this figure. Other cases are proved similarly. \Box

Lemma 24. We have

$$\begin{cases} H_{j,W_1W_2}(V) = H_{j,W_2}(H_{j,W_1}(V)), \\ H_{j,W}(V_1V_2) = H_{j,W}(V_1)H_{j,W}(V_2) \end{cases}$$
(49)

Fig. 11. The loop $(x_l^{\epsilon})x_k^{\varphi}$, k < l < j.

and

$$\begin{cases} E_i(H_{j,W}(V)) = E_i(V), \\ E_j(H_{j,W}(V)) = E_j(V). \end{cases}$$
(50)

Proof. The equalities (49) follow from the definition of $H_{j,W}$ in (36) and the fact that T_W acts on F_n (from the right) as a group automorphism. By Lemma 23, we see that, for $W = x_k^{\pm 1}$, H_{j,x_k} and $H_{j,x_k^{-1}}$ preserve the total exponents $E_i(\cdot)$ and $E_j(\cdot)$. The general statement (50) follows from this special case and (49). \Box

We express (49) by saying that $H_j: F_n \to \operatorname{Aut}(F_n)$ $(W \mapsto H_{j,W}(\cdot))$ is a right representation of F_n to $\operatorname{Aut}(F_n)$.

Lemma 25.

$$A_i(W_1W_2) = A_i(W_2)H_{j,W_2}(A_i(W_1)).$$
(51)

Proof. By (34) and (36),

$$\begin{aligned} \alpha_i \cdot A_i(W_1 W_2) &= (\alpha_i) T_{W_1 W_2} = ((\alpha_i) T_{W_1}) T_{W_2} \\ &= (\alpha_i \cdot A_i(W_1)) T_{W_2} \\ &= (\alpha_i) T_{W_2} \cdot (A_i(W_1)) T_{W_2} \\ &= \alpha_i \cdot A_i(W_2) H_{i,W_2} (A_i(W_1)). \end{aligned}$$

On the other hand, by (50) and (34),

$$E_i(A_i(W_2)H_{j,W_2}(A_i(W_1))) = E_i(A_i(W_2)) + E_i(A_i(W_1)) = 0.$$

Thus by the definition (34) of $A_i(\cdot)$, we have the lemma. \Box

We express (51) by saying that $A_i: F_n \to F_n$ is a *crossed anti-homomorphism* twisted by the right representation $H_j: F_n \to \text{Aut}(F_n)$.

Lemma 26.

$$E_i(A_i(W)) = -E_i(W).$$

Proof. For $W = x_k^{\pm 1}$, this follows from Lemma 21. General cases are proved by induction on the word length of *W* and Lemmas 24 (50) and 25. \Box

Lemma 27.

$$B_{j}(W_{1}W_{2}) = H_{j,W_{2}}(B_{j}(W_{1}))B_{j}(W_{2}).$$
(52)

Proof. By (35) and (36),

$$B_{j}(W_{1}W_{2}) \cdot \beta_{j} = (\beta_{j})T_{W_{1}W_{2}} = ((\beta_{j})T_{W_{1}})T_{W_{2}}$$

= $(B_{j}(W_{1}) \cdot \beta_{j})T_{W_{2}}$
= $(B_{j}(W_{1}))T_{W_{2}} \cdot (\beta_{j})T_{W_{2}}$
= $H_{j,W_{2}}(B_{j}(W_{1}))B_{j}(W_{2}) \cdot \beta_{j}.$

On the other hand, by (50) and (35),

$$E_{j}(H_{j,W_{2}}(B_{j}(W_{1}))B_{j}(W_{2})) = E_{j}(B_{j}(W_{1})) + E_{j}(B_{j}(W_{2})) = 0.$$

Thus by the definition (35) of $B_i(\cdot)$, we have the lemma. \Box

We express (52) by saying that $B_j: F_n \to F_n$ is a *crossed homomorphism* twisted by the right representation $H_j: F_n \to \text{Aut}(F_n)$.

Lemma 28.

 $E_i(B_j(W)) = E_i(W).$

Proof. For $W = x_k^{\pm 1}$, this follows from Lemma 22. General cases are proved by induction on the word length of *W* and Lemmas 24 (50) and 27. \Box

Lemma 29. For any words V and W, we have

$$\left[H_{j,W}(V)\right] = \left[V\right] \in F_n/N(x_j). \tag{53}$$

Proof. For $W = x_k^{\pm 1}$, $V = x_l^{\pm 1}$, this holds by Lemma 23. General cases are proved using (49). \Box

Lemma 30. For any word W, we have

$$\left[A_i(W)\right] = 1 \in F_n/N(x_j).$$
⁽⁵⁴⁾

Proof. For $W = x_k^{\pm 1}$, this holds by Lemma 21. For a general W, (54) is proved by induction on the word length of W, using Lemmas 25 and 29. \Box

Lemma 31. For any word W, we have

$$\begin{bmatrix} B_j(W) \end{bmatrix} = \begin{bmatrix} W \end{bmatrix} \in F_n / N(x_j).$$
⁽⁵⁵⁾

Proof. For $W = x_k^{\pm 1}$, this holds by Lemma 22. For a general W, (55) is proved by induction on the word length of W, using Lemmas 27 and 29. \Box

The following lemma is rather technical, but it will be useful in calculating the rewriting function R_{ij} .

Lemma 32. For any words V, W, and for any integer m, we have

$$A_{i}(W)H_{j,W}(x_{i}^{m}V) = x_{i}^{m}A_{i}(W)H_{j,W}(V),$$
(56)

$$H_{j,W}(Vx_j^m)B_j(W) = H_{j,W}(V)B_j(W)x_j^m.$$
(57)

Proof. By (34) and (36), we have the following equality (in the sense of *i*-homotopy) of (i, ∞) -curves:

$$\alpha_i \cdot A_i(W) \cdot H_{j,W}(x_i^m V) = (\alpha_i) T_W \cdot (x_i^m V) T_W$$
$$= (\alpha_i \cdot x_i^m V) T_W.$$
(58)

Rotating the (i, ∞) -curve round p_i , we have

 $\alpha_i \cdot x_i^m V = \alpha_i \cdot V.$

Substituting this into (58), we have

$$\alpha_i \cdot A_i(W) \cdot H_{j,W}(x_i^m V) = (\alpha_i \cdot V)T_W$$
$$= \alpha_i \cdot A_i(W) \cdot H_{j,W}(V).$$

Thus by Theorem 8 the words $A_i(W)H_{j,W}(x_i^m V)$ and $A_i(W)H_{j,W}(V)$ coincide up to the left multiplication of x_i^p for some p.

By (34) and (50),

$$E_i(A_i(W)H_{j,W}(x_i^m V)) = m + E_i(V)$$

= $E_i(x_i^m A_i(W)H_{j,W}(V)).$

Therefore, $A_i(W)H_{j,W}(x_i^m V) = x_i^m A_i(W)H_{j,W}(V)$. This proves (56). The equality (57) is proved similarly using (∞, j) -curves. \Box

Now we are ready to study the rewriting function $R_{ij}: F_n \to F_n$.

Proposition 33. For any word V, we have

$$R_{ij}(V) = A_i(V)B_j(V)x_j^{\phi(V)},$$
(59)

where $\phi(V)$ is defined by $\phi(V) = E_i(V) + E_i(V)$.

Proof. We will check the three conditions in Lemma 16 on the right-hand side of (59). First, condition (i). In fact, as equality in the quotient group $F_n/N(x_j)$, we have

$$\left[A_i(V)B_j(V)x_j^{\phi(V)}\right] = \left[A_i(V)\right]\left[B_j(V)\right] = [V].$$

Here we used Lemmas 30 and 31.

Next we will check condition (ii):

$$E_i(A_i(V)B_j(V)x_j^{\phi(V)}) = E_i(V) \text{ by (34) and Lemma 28}$$

and

$$E_j \left(A_i(V) B_j(V) x_j^{\phi(V)} \right)$$

= $-E_i(V) + \phi(V) = E_j(V)$ by (35) and Lemma 26

Finally we will prove that $A_i(V)B_j(V)x_j^{\phi(V)}$ is the reading of an (i, j)-cord (condition (iii)). As a special case of (37) we have

$$(L_{ij}(1))T_V = \alpha_i \cdot A_i(V) \cdot B_j(V) \cdot \beta_j.$$

The left-hand side $L_{ij}(1)T_V$ is nothing but $(l_{ij})V^{\varphi}$, and this is an (i, j)-cord. Therefore, $A_i(V)B_j(V)$ is the reading of an (i, j)-cord. Hence $A_i(V)B_j(V)x_j^{\phi(V)}$ is also.

Now the three conditions on the word $A_i(V)B_j(V)x_j^{\phi(V)}$ are verified. Thus by Lemma 16 we have the proposition. \Box

Remark 34. Recall that $R_{ij}(V)$ is a lifted reading of the (i, j)-cord $\tilde{f}_{ij}([V])$. By Proposition 11, $\tilde{f}_{ij}([V])$ is the isotopy class of $(l_{ij})V^{\varphi}$. In view of this, the result of Proposition 33 is quite natural.

We want an inductive formula to compute R_{ij} :

$$R_{ij}(V_1V_2) = A_i(V_1V_2)B_j(V_1V_2)x_j^{\phi(V_1V_2)}$$

$$= A_i(V_2)H_{j,V_2}(A_i(V_1))H_{j,V_2}(B_j(V_1))B_j(V_2)x_j^{\phi(V_1)+\phi(V_2)}$$

$$= A_i(V_2)H_{j,V_2}(A_i(V_1)B_j(V_1)x_j^{\phi(V_1)})B_j(V_2)x_j^{\phi(V_2)}$$

$$= A_i(V_2)H_{j,V_2}(R_{ij}(V_1))B_j(V_2)x_j^{\phi(V_2)}.$$
(60)

Note that we applied Lemma 32 to get the third equality.

By (60), we have

$$R_{ij}(V_2)^{-1}R_{ij}(V_1V_2) = x_j^{-\phi(V_2)}B_j(V_2)^{-1}A_i(V_2)^{-1} \times A_i(V_2)H_{j,V_2}(R_{ij}(V_1))B_j(V_2)x_j^{\phi(V_2)} = x_j^{-\phi(V_2)}B_j(V_2)^{-1}H_{j,V_2}(R_{ij}(V_1))B_j(V_2)x_j^{\phi(V_2)}.$$
(61)

For any word W, define a mapping $D_{ij,W}: F_n \to F_n$ by setting

$$D_{ij,W}(V) = x_j^{-\phi(W)} B_j(W)^{-1} H_{j,W}(V) B_j(W) x_j^{\phi(W)}.$$
(62)

Then (61) is rewritten as

$$R_{ij}(V_1V_2) = R_{ij}(V_2)D_{ij,V_2}(R_{ij}(V_1)).$$
(63)

Proposition 35.

$$\begin{cases} D_{ij,W}(V_1V_2) = D_{ij,W}(V_1)D_{ij,W}(V_2), \\ D_{ij,W_1W_2}(V) = D_{ij,W_2}(D_{ij,W_1}(V)). \end{cases}$$
(64)

Proof. The first equality is easily seen by the definition (62) of $D_{ij,W}(\cdot)$. The second equality is proved as follows:

$$\begin{split} D_{ij,W_1W_2}(V) &= x_j^{-\phi(W_1W_2)} B_j(W_1W_2)^{-1} H_{j,W_1W_2}(V) B_j(W_1W_2) x_j^{\phi(W_1W_2)} \\ &= x_j^{-\phi(W_1) - \phi(W_2)} B_j(W_2)^{-1} H_{j,W_2} \Big(B_j(W_1) \Big)^{-1} H_{j,W_2} \Big(H_{j,W_1}(V) \Big) \\ &\times H_{j,W_2} \Big(B_j(W_1) \Big) B_j(W_2) x_j^{\phi(W_1) + \phi(W_2)} \\ &= x_j^{-\phi(W_2)} B_j(W_2)^{-1} \\ &\times H_{j,W_2} \Big(x_j^{-\phi(W_1)} B_j(W_1)^{-1} H_{j,W_1}(V) B_j(W_1) x_j^{\phi(W_1)} \Big) \\ &\times B_j(W_2) x_j^{\phi(W_2)} \\ &= D_{ij,W_2} \Big(D_{ij,W_1}(V) \Big). \quad \Box \end{split}$$

This proposition claims that $D_{ij}: F_n \to \operatorname{Aut}(F_n) \ (W \mapsto D_{ij,W}(\cdot))$ is a right representation of F_n to $\operatorname{Aut}(F_n)$.

Now we have arrived at our main theorem of this section:

Theorem 36. The rewriting function $R_{ij}: F_n \to F_n$ is a crossed anti-homomorphism twisted by the right representation $D_{ij}: F_n \to \operatorname{Aut}(F_n)$;

$$R_{ij}(V_1V_2) = R_{ij}(V_2)D_{ij,V_2}(R_{ij}(V_1)).$$

This theorem is obvious from (63) and Proposition 35.

Remark 37. For Theorem 36, R_{ij} very much resembles in algebraic nature the *q*-inverse $I: F_n \rightarrow F_n$ studied in [3].

Using Theorem 36 together with the following *initial formulae*, we can compute R_{ij} purely algebraically. To state the initial formulae, we introduce the notation

 $\operatorname{sgn}(i, j, k)$ (65)

which takes the value +1 or -1 according as the permutation of (i, j, k) into its natural order is of even type or of odd type, where i, j, k are distinct integers. For example, if i < j < k, then sgn(i, j, k) = 1, and if j < i < k, then sgn(i, j, k) = -1.

Proposition 38 (Initial formula, I). Let ϵ be +1 or -1. Then we have

$$R_{ij}(x_k^{\epsilon}) = \begin{cases} x_k^{\epsilon} & k = i \text{ or } j, \\ x_k^{\epsilon} & \operatorname{sgn}(i, j, k) = -\epsilon, \\ x_j^{\epsilon} x_k^{\epsilon} x_j^{-\epsilon} & \operatorname{sgn}(i, j, k) = \epsilon. \end{cases}$$
(66)

Proof. By Proposition 33, we have

$$R_{ij}(x_k^{\epsilon}) = A_i(x_k^{\epsilon})B_j(x_k^{\epsilon})x_j^{\phi(x_k^{\epsilon})}.$$

Suppose $\epsilon = 1$ and i < j < k. Then

$$\begin{cases}
A_i(x_k) = 1 & \text{by Lemma 21 (38),} \\
B_j(x_k) = x_j x_k x_j^{-1} & \text{by Lemma 22 (42),} \\
\phi(x_k) = 0.
\end{cases}$$

The formula holds in this case. Other cases are proved similarly. \Box

Proposition 39 (Initial formulae, II). Let ϵ be +1 or -1.

$$D_{ij,x_i^{\epsilon}}(x_s) = \begin{cases} x_i & s = i, \\ x_j & s = j, \\ x_i^{-\epsilon} x_j^{-\epsilon} x_s x_j^{\epsilon} x_i^{\epsilon} & \operatorname{sgn}(i, j, s) = -\epsilon, \\ x_j^{-\epsilon} x_i^{-\epsilon} x_s x_i^{\epsilon} x_j^{\epsilon} & \operatorname{sgn}(i, j, s) = \epsilon, \end{cases}$$
(67)

$$D_{ij,x_j^{\epsilon}}(x_s) = x_j^{-\epsilon} x_s x_j^{\epsilon}.$$
(68)

If i, j, k are distinct, then

$$D_{ij,x_k^{\epsilon}}(x_s) = \begin{cases} x_j & s = j, \\ x_j^{\epsilon} x_k x_j^{-\epsilon} & s = k, \\ x_k^{-\epsilon} x_s x_k^{\epsilon} & \text{sgn}(j,k,s) = -\epsilon, \\ (x_j^{\epsilon} x_k^{-\epsilon} x_j^{-\epsilon}) x_s (x_j^{\epsilon} x_k^{\epsilon} x_j^{-\epsilon}) & \text{sgn}(j,k,s) = \epsilon. \end{cases}$$
(69)

Proof. By the definition (62) of $D_{ij}(\cdot)$, we have

$$D_{ij,x_k^{\epsilon}}(x_s) = x_j^{-\phi(x_k^{\epsilon})} B_j(x_k^{\epsilon})^{-1} H_{j,x_k^{\epsilon}}(x_s) B_j(x_k^{\epsilon}) x_j^{\phi(x_k^{\epsilon})}.$$

Suppose $\epsilon = +1$ and consider the case i < j < k < s. Then we have

$$\begin{cases} \phi(x_k) = 0, \\ B_j(x_k) = x_j x_k x_j^{-1} & \text{by Lemma 22 (42),} \\ H_{j,x_k}(x_s) = x_s & \text{by Lemma 23 (44).} \end{cases}$$

Thus

$$D_{ij,x_k}(x_s) = x_j x_k^{-1} x_j^{-1} x_s x_j x_k x_j^{-1}.$$

This proves the fourth equality of (69). Other cases are proved similarly. \Box

For example, let us calculate $R_{ij}(x_s^2)$ under the assumption i < s < j. By (66),

$$R_{ij}(x_s) = x_s.$$

By (63) and (69),

$$R_{ij}(x_s^2) = R_{ij}(x_s) D_{ij,x_s}(R_{ij}(x_s))$$
$$= x_s D_{ij,x_s}(x_s)$$
$$= x_s x_j x_s x_i^{-1}.$$

We obtain $R_{ij}(x_s^2) = x_s x_j x_s x_j^{-1}$ in the case i < s < j. Another concrete example is this (use the above result with i = 1, j = 3, s = 2):

$$R_{13}(x_2^2x_4) = R_{13}(x_4)D_{13,x_4}(R_{13}(x_2^2))$$

= $(x_3x_4x_3^{-1})D_{13,x_4}(x_2x_3x_2x_3^{-1})$
= $(x_3x_4x_3^{-1})(x_3x_4^{-1}x_3^{-1})x_2(x_3x_4x_3^{-1})x_3(x_3x_4^{-1}x_3^{-1})x_2(x_3x_4x_3^{-1})x_3^{-1})$
= $x_2x_3x_4x_3x_4^{-1}x_3^{-1}x_2x_3x_4x_3^{-2}.$

The final result coincides with (27) which was obtained diagrammatically.

Remark 40. For any word W, define a mapping $\widetilde{D}_{ii,W}: F_n \to F_n$ by setting

$$\widetilde{D}_{ij,W}(V) = A_i(W)H_{j,W}(V)A_i(W)^{-1}.$$
(70)

Then $\widetilde{D}_{ij}: F_n \to \operatorname{Aut}(F_n)$ ($W \mapsto \widetilde{D}_{ij,W}(\cdot)$) is a right representation of F_n to $\operatorname{Aut}(F_n)$. By a similar argument to the proof of (63), we can prove

$$R_{ij}(V_1V_2) = D_{ij,V_2}(R_{ij}(V_1))R_{ij}(V_2).$$
(71)

Thus R_{ij} is not only a crossed anti-homomorphism twisted by D_{ij} , but also a *crossed* homomorphism twisted by \tilde{D}_{ij} . We do not know which is the natural formulation, but the initial formulae for \tilde{D}_{ij} are a bit more complicated than those for D_{ij} .

7. Application to simple closed curves

Let *C* be an oriented simple closed curve on the punctured plane $\mathbb{R}^2 - P_n$. Deforming *C* by homotopy, we may assume that it is smooth and transverse to $\bigcup_k L_k$. By taking and fixing a *starting point* s_0 on *C*, the *reading* of (C, s_0) is well-defined as an element of F_n . We denote this reading by $W(C, s_0)$. (Note that the staring point should be taken from $C - \bigcup_k L_k$.) The reading $W(C, s_0)$ depends only on the homotopy class of *C* fixing s_0 .

If we take different starting point s_1 on C, the reading $W(C, s_1)$ is a cyclic conjugation of $W(C, s_0)$. Here two word W and W' are cyclically conjugate to each other, if W is a product V_1V_2 in a certain way, and W' is written as $W' = V_2V_1$.

Let C^{-1} denote the same curve C but with the opposite orientation. Obviously, $W(C^{-1}, s_0) = W(C, s_0)^{-1}$.

Theorem 41. A word $V \in F_n$ is the reading of a simple closed curve on the punctured plane $\mathbb{R}^2 - P_n$ if and only if V or V^{-1} is cyclically conjugate to a word V' which satisfies

$$R_{0,n+1}(V') = V'. (72)$$

Fig. 12. Simple closed curve $C = l \cup l_{0,n+1}$.

Fig. 13. Cutting open the loop C to a (0, n + 1)-cord.

The free group F_n was generated by $\{x_1, \ldots, x_n\}$. If we define F_{n+2} to be the free group generated by $\{x_0, x_1, \ldots, x_n, x_{n+1}\}$, then F_n is naturally identified with a subgroup of F_{n+2} . In (72), the word $V' \in F_n$ is acted on by the rewriting function $R_{0,n+1}: F_{n+2} \rightarrow F_{n+2}$ under this natural identification.

Proof of Theorem 41. In the argument below, we may assume that the points p_0 and p_{n+1} are given by the coordinates

$$(-N, 0)$$
 and $(N, 0) \in \mathbb{R}^2$

respectively with sufficiently large number N > 0.

Suppose that *V* or V^{-1} is cyclically conjugate to a word *V'* which satisfies (72). Then by Lemma 17, *V'* is the reading of a (0, n + 1)-cord *l* on $(\mathbb{R}^2, P_n \cup \{p_0, p_{n+1}\})$. The reading of this (0, n + 1)-cord (i.e., *V'*) does not contain x_0 nor x_{n+1} . Thus the cord *l* does not intersect L_0 or L_{n+1} except at the end points. Then these points p_0 and p_{n+1} can be connected by a "large semi-circle" $l_{0,n+1}$ so that $C := l \cup l_{0,n+1}$ is a simple closed curve in $\mathbb{R}^2 - P_n$. (See Fig. 12.) The word *V'* is the reading of (C, p_0) , and *V* is the reading of (C, s_0) or (C^{-1}, s_0) with some starting point s_0 on *C*. This proves the *if*-part.

Conversely, suppose V is the reading of an oriented simple closed curve with a starting point (C, s_0) . Let s_1 be the highest point (or one of the highest points) of C with respect to the y-coordinate. Then we can "cut open" the loop C at this point s_1 to obtain a

(0, n + 1)-cord *l*. (See Fig. 13.) The reading W(l) coincides with the reading of (C, s_1) or of (C^{-1}, s_1) , and is cyclically conjugate to *V* or V^{-1} . By Lemma 17, W(l) satisfies

$$R_{0,n+1}(W(l)) = W(l).$$

This proves the *only if* -part, completing the proof of Theorem 41. \Box

This research was motivated by monodromy problems appearing in Lefschetz fibrations and surface braids. See [7–11].

References

- J.S. Birman, Braids, Links, and Mapping Class Groups, in: Ann. of Math. Stud., vol. 82, Princeton University Press, Princeton, NJ, 1974.
- [2] D.R.J. Chillingworth, Simple closed curves on surfaces, Bull. London Math. Soc. 1 (1969) 310-314.
- [3] K. Habiro, S. Kamada, Y. Matsumoto, K. Yoshikawa, Algebraic formulae for the *q*-inverse in a free group, J. Math. Sci. Univ. Tokyo 8 (2001) 721–734.
- [4] P. Hill, On double-torus knots (I), Preprint, 1999.
- [5] P. Hill, K. Murasugi, On double-torus knots (II), Preprint, 1999.
- [6] G.T. Jin, H. Kim, Planar laces, Preprint, 2002.
- [7] S. Kamada, On the braid monodromies of non-simple braided surfaces, Math. Proc. Cambridge Philos. Soc. 120 (1996) 237–245.
- [8] S. Kamada, Braid and Knot Theory in Dimension Four, in: Surveys and Monographs, American Mathematical Society, Providence, RI, 2002.
- [9] S. Kamada, Y. Matsumoto, Certain racks associated with the braid groups, in: Proceedings of the International Conference on Knot Theory "Knots in Hellas '98", World Scientific, Singapore, 2000, pp. 118– 130.
- [10] S. Kamada, Y. Matsumoto, Enveloping monoidal quandles, Preprint, 2002.
- [11] Y. Matsumoto, Lefschetz fibrations of genus two—A topological approach, in: S. Kojima, et al. (Eds.), Proc. the 37th Taniguchi Sympos., World Scientific, Singapore, 1996, pp. 123–148.
- [12] B.L. Reinhart, Algorithms for Jordan curves on compact surfaces, Ann. of Math. 75 (1962) 209-222.
- [13] H. Zieschang, Algorithmen für einfache kurven auf flächen, Math. Scand. 17 (1965) 17-40.