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Abstract

In this paper a purely algebraic condition for a word in a free group to be representable by a simple
curve on a punctured plane will be given.
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sphere. This research was motivated by monodromy problems appearing in Lefschetz fibrations and
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Theory in Dimension Four, American Mathematical Society, 2002; Kamada and Matsumoto, in:
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1. Introduction

Let n be a fixed integet> 2. Let R? be thexy-plane, and letP, = {p1, ..., p.} be
a set ofn points onR2. To make our argument explicit, we will assume that for each
k=1,...,n,the pointp; is given by the following coordinates:

pr = (k,0).
An (i, j)-curveon (R?, P,) is defined to be a continuous map
1:[0,1] > (R* = P,) U{pi. pj} @)

satisfying/(0) = p;, (1) = pj, wherei, j € {1,...,n} andi # j. Moreover, we assume
thati () = p; ifand only ifr =0 and thai(r) = p; ifand only if r = 1.

If an (i, j)-curvel is simple (i.e., without self-intersections), it will be called @nj)-
cord, or simply acord. Two cordd and!’ areisotopicif they are ambiently isotopic to each
other by an isotopy oR? which fixesP, pointwise.

Foreachk € {1, ..., n}, let Ly be the half-line defined as follows:

Ly ={(k.y) | y<0}.

The half-line Ly is parallel to they-axis and has terminal point;. An (i, j)-curve
[ is said to betransverseto | J, Lk if in a neighborhood of each intersection point
p € 1([0, 1)) N |, Lk, the curvel is extended to a smooth curve whose velocity vectors
are non-zero and transversd_t L. An (i, j)-curve which is transverse tg, Lx will be
simply called aransverse(i, j)-curve. From the definition it follows that the intersection
of a transversé, j)-curvel and| J, Ly consists of a finite number of points.

Let F,, be a free group with preferred generators

X1,X2, ..., Xn. (2)

Traversing a transverge, j)-curvel from[(0) to /(1) and reading the intersection points
with [ J, L successively, we can associate witaword W (/) in F,. (We will sometimes
say thatW (/) is representedy /, or more simply, is theeadingof /.) To be precise, in
order to getW (1), we start from/(0) = p; but do not count the starting poipt in W (/).
Each time we meet an intersection pojnt [ N | J, Ly we read it as the generateoy if
at p the curvel crossed; in the positive direction with respect to thhecoordinate, and
as the invers;ek‘l if it crosses in the negative direction. Finally we arrive at the terminal
point/(1) = p;, but we do not count it td¥ (/). Thus if an(i, j)-curve does not intersect
Uk Lk except at the end poings, p;, we associate with it the empty word 1.

For example, the reading of(@, 6)-cord shown in Fig. 1 is

-1 -1
W = X1 “x3xax5x, "

Any prescribed word inF, can be representable by am, j)-curve with self-
intersections, but not necessarily by @nj)-cord. We are interested in the problem of
characterizing those words i, that are representable lgy j)-cords.

The following theorem is our main result, and gives a solution to this problem.

Theorem 1. There exists an explicitly computable map
Rij Fy — Fy
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Py [P\ By P;

-

Fig. 1. A (2, 6)-cord.

such that(i) R;; is a projection, namelyR;; o R;; = R;; and (i) a word W in F, is
representable by af, j)-cord if and only if

Rij(W)=W.

In other words,W is representable by a, j)-cord if and only if W belongs to the image
of R,’j.

The mapR;; is a crossed anti-hnomomorphism twisted by an explicitly computable ‘right
representation’

D;j: F, — Aut(Fy,).

The computations oR;; and D;; are purely algebraic, and even a computer could detect
the representable words. See Section &jqaarly Theorem 36, Propositions 38, and 39.

In Section 7, we will apply Theorem 1 to obtain an algorithm to decide if a given word is
representable by a simple closed curvé®dn- P,. Our algorithm is considerably different
from those of Reinhart [12], Zieschang [13] or Chillingworth [2]. See Theorem 41.

In the course of proving Theorem 1, we will have to study the relationship between the
isotopy classes of cords and various cosets of the free gfpuphis will be discussed in
Sections 2 and 3.

Theorem 1 will be proved in Sections 5 and 6. In fact, it is merely a statement putting
together Lemmas 17, 18 and Theorem 36 proved in these sections.

In this paper, we will confine our investigation to a punctured pléRé, P,) for
simplicity, but it could be carried out similarly on the punctured sphere P,). We
notice that if it is actually done, then in the special case whete6, we will have word
representation of simple closed curves on a closed surface of genus 2 by taking a double
branched covering afs2, Pg). In this sense, potentially, our work is related to the study of
double torus knots by Hill [4], and Hill and Murasugi [5].

Finally, we remark that an independent treatmen®oB)-cords on(R?, P3) (if said in
our terminology) is found in Section 2 of Jin and Kim [6] in a different formulation.
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2. Isotopy classesof (i, co)-cords

We take an auxiliary poinp., in R? — P,. To fix our idea, we assume that
P =(0,1).

A cordon (R?, P, U {pso}) is defined just as in Section 1, and the meaning ofiac)-
cord will be clear. The numbeére {1, ..., n} will be fixed throughout this section.

Let 4; denote the set of all (ambient) isotopy classesgiobo)-cords on(R?, P, U
{po}). Then amap

fiiFa— A 3

is defined as follows.

First identify F,, with the fundamental groupy(R? — Py, poo).

By Theorem 1.4 of Birman’s book [1], there is an injective homomorphisraf the
latter group to the pure braid group with the ‘ba®e’'u {pso}, P(R?, P, U {poo)):

Ji 1 (R2 = Py, poo) = P(R%, P, U {poo))- (4)

Given an elemenb of P(R?, P, U {pwo}), there exists an isotopyz, Jo<,<1 of R? onto
itself such thako =id and(h; (P, U {po}), o<1 represents the bratdin R? x [0, 1].
(See[1].) Let

M(R2, P, U {Poo})

denote the mapping class group@?, P, U { po}) Which fixesP, U {pso} pointwise. By
sendingp to the final stagé of the isotopy{%;}o</<1, We have a natural map

dx: P(R?, P, U {pac}) = M(R?, P, U {poo)). (5)

Lemma 2. The composite
dy 0 ju:m1(R? = Py, poo) = M(R?, P, U {poo})

is an injective homomorphism.

Proof. By Lemma 4.2.1 in [1], ke#, C CentetP(R?, P, U {pso}). We are assuming
n > 2, and the free groupr1(R? — P,, pso) is centerless. Sincg, is injective, this
centerlessness implies

Jie(71(R% = Py, poc)) Nkerd, = {1}. (6)

Now the injectivityd, o j, follows from (6) and the injectivity ofj,. O

By Lemma 2,F, = n11(R% — P,,, pso) is considered to be a subgroup of the mapping
class groupM (R?, P, U {pso}), which turns out to be the subgroup of motionspaf in
R? — P, (Birman [1, p. 10]).

Now we are in a position to define the map

fi:Fn_>-Ai' (7)
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P, b

Fig. 2. (lico)x; and (ljoo)x2.

Take a wordV from F,. By the above remark, we can regavd as an element of
M(R?, P, U{pso}). Letl;s be a speciali, oo)-cord which is a line segment joining
andpeo:

lico@®)=(1—-1)(i,004+1(1,0), O0<r<1

For an(i, co)-cord! we denote hy!/] its isotopy class A;. Then f; (V) is defined to be
the isotopy class of the image b, under the action of the mapping clags

fiV) =[x V] (8)
Here and in what follows, we will assume thit (R2, P, U{pso}) acts on(R2, P, U{poo})
from theright.

Let Cx (k € {1,...,n}) be a smooth simple closed curve & — P, which starts
and ends alp.,, and crossed.; only once, transversely in the positive direction. We
also assume that, N L, =@ if k # h. Then as an element of the mapping class group
M(R?, P, U {pso}), a generatox; of F, is the result of a motion whose support is within
a sufficiently thin neighborhood @ and which moves the point,, along the curve’y.
Similarly, xk‘l is the result of a motion alonqk‘l, namely along the same cur@ but in
the opposite direction.

Whenk =i, the action ofx; has a special property. For example, see Fig. 2, where two
(i, o0)-cords(l;o0) x; and(ll-oo)xi2 are shown. Notice that thegg oco)-cords are isotopic to
lico by isotopies which rotate a neighborhoodmpfround the poing;.

More generally,

[Uio)x!"] =llicc] € Ai, Vm € L.
Since, forV, W € F,,

[Uic) VW] =[Ui) VW, 9)
we have

[Uico)x!" W] = [(icc) W].
Thus we have the following:
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Lemma3. f;: F, — A; induces a majdenoted byf; again)
Ji i xi)\Fp = A;,

where (x;)\ F, denotes the left cosets, in whigW] = [W] if and only if V = x" W for
somem € Z.

Next, we will define a homotopy sét;. We define ari, co)-curveto be a continuous
map (which may have self-intersections)

1:00,1] — (R? — P,) U {p;}

such that/ (1) = p; if and only if 1 = 0 and such that(t) = ps if £ = 1. This definition
of an (i, oo)-curve differs slightly from that of axy, j)-curve given in Section 1 in which
J # 00.

Two (i, oo)-curved and!’ are said to beé-homotopidf there exists a homotopy

H:[0,1] x [0, 1] — (R? — P,) U {p;}

satisfying

(i) HO,1)=I1(t) andH(1,t) =1'(t), Vt € [0, 1],
(i) H(s,t)=p;ifandonlyifr =0, and
(i) H(s,1) = poo, Vs €[0, 1].

Notice the difference between the conditions (ii) and (iii); the “exit” ofiamomotopy is
“closed” atp;, while itis “open” atp~,, which means that during the homotopy the interior
of the curve is prohibited from going through but is allowed throughy.

Let us defineH; to be the set of ali-homotopy classes df, co)-curves. Clearly we
have a natural map

&gi ZA,' — 'H,‘. (10)
Lemma 4. The majy; is surjective.

Proof. Letl be an(i, o0)-curve. Deformingd viai-homotopy, if necessary, we may assume
that!/ is smooth and has a finite number of transverse self-intersections. Then we can push
out these self-intersections successively through the end pginSee Fig. 3. The resulting

(i, 00)-curvel” is an (i, co)-cord and isi-homotopic tol. This proves the surjectivity of

gi Z.Ai —H;. O

Finally we will define a map

hi - H; — (x,-)\Fn. (11)

Let/: [0, 1] — (R?— P,) U{p;} be an(i, oo)-curve. We can deforrhby ani-homotopy to
an (i, oo)-curvel” which is transverse tpJ, L. Let W(I') € F,, be the reading of . Then
the maph; : H; — (x;)\ F, is defined to be the map sending thiomotopy class of to
the coset oW (I') € (x;)\ F.
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i i

Fig. 3. Pushing out the self-intersections throygh.

Lemma 5. The map
hi " Hi = (xi)\Fy
is well-defined.

Proof. Supposd and!’ are transversei, oo)-curves which are mutually-homotopic.
Then there exists arrthomotopy

H:[0,1] x [0, 1] — (R? — P,) U {p;}

satisfying (i), (ii), (iii) above.
From these properties, éf> 0 is sufficiently small, it follows that

(a) the readings of restricted curvéig, 1] and!’|[, 1] with respect td_J, Li are the same
asW () andW ("), respectively, and

(b) the curveH.(s) := H(s,¢), 0< s <1, is contained in a small neighborhood N gf
such thatv N P, = {p;}. (The curveH, does not touch the point;.)

Perturbing a small part off within N, if necessary, we may assume that the cutye
is transverse tg J, Lr. Then the reading of the curvé; will be x" for somem € Z.
Now define a loof.(r), 0< t < 1, onR? — P, based apuo:

1(1—37) 0<7<3—3e,
L(t):={ He((Br +&—1)/(1+ 2¢)) %—%e<r<%+%e,
I'(3t - 2) 2+le<r<l

See Fig. 4.
It is obvious from (a) and (b) that the reading of the Idog@), 0 <t <1,is

W) w(l').
Since H ([0, 1] x [, 1]) ¢ R%2 — P,, the loopL(t) shrinks inR? — P, to the base point
DPoo- Therefore, in the group;,, = 71(R2 — P, Poo), We have

W)W (') =1,
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(1,0) (1,1)

% (R-B)U{P;}

(0,0) (0.1)

Fig. 4. HomotopyH and loopL(t).

in other words,

(W] =[W(l')] € (xi)\ Fn.
This proves Lemma 5. O

Lemma 6. The map
fi i)\ Fn — A

is surjective.

Proof. Let I be any (i, co)-cord from A;, which may be assumed to be smooth and
transverse td_J, Ly. We will prove Lemma 6 by induction on the numbar of the
intersection points betwednand| J, L. If N =1, does not meel J, Ly except at the
starting pointp;. It is easily seen that such a cdris isotopic to the line segmeht,. Thus

in this case

1= [lioo]l = fi (D)

and[/] is in the image off;. See (8).

Suppose Lemma 6 has been proved if the intersection points are less than & given
will prove Lemma 6 when the number equalsLet p be the intersection point betweén
and J, L that we meelastwhen traversing from /(0) to /(1). Suppose the point is on
the half-lineL;. We first assume that at the cord/ crossed.; in the positive direction.

Let C, be the simple closed curve basedpas, introduced before Lemma 3. Then we
may assume that; intersectd.; at the pointp and that the part of ; betweenp andps
is the same as the part bbetweenp and p»,. Then consider the motion whose support
is within a thin neighborhood of’; and which carriep, round alongck_l. Apply this
motion tol. Then p will be removed from the intersections, ahavill be moved to an
(i, 00)-curvel’ having fewer intersection points with), L, than!.

Note that inA4;,

[T=[®x7].

By induction hypothesig]'] is in the image off;, and we can find a wor#f € F,, such
that

[1]=[Gix)V]
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i k i k

Fig. 5. (lio0)xk @nd (ljo0)xg -

Thus
[(Dx1] = [Uiso) V]

In other words,
]= [(lioo)vxk] = fi(Vxi).

We have done in the cagecrossesl; at p in the positive direction. If it crosses in the
negative direction, the argument is similar. This completes the proof of Lemma 6.

Lemma 7. The composite
hiogio fi i (xi)\Fn — (xi)\Fy
is the identity.

Proof. We have only to prove that, for eathe F,,, the reading ofl;») V is the same a¥
in (x;)\ F,,. Choose an arbitrary word and fix it. By Lemma 5, the reading of &h oco)-
cord does not change if we deform it by oo)-isotopy, or more generally bithomotopy.
Thus we may assume th@f,)V is transverse tg J, Ly.

Write the wordV in areduced fornof lengthV:

V=g
That is to say, in this expressiotgn) = +1,v(m) € {1,2,...,n}, m=1,2,..., N, and
if v(m) =v(m + 1) for somem, thene(m) # —e(m + 1). If aword V has a reduced form
of length NV, this numbemV is called theeduced lengtlof V. We will prove the lemma by
induction onN.

First supposeV = 1, and draw a transverse curiig,)x; . See Fig. 2 for the case=1,
and Fig. 5 for the caske # i. In the caseék =i, we have seen that the reading(ff.)x’
is 1 as an element dfy;)\ F,,. (Lemma 3.) In the cask # i, by Fig. 5, we see that the
reading of(/;o0)x is x;. Thus Lemma 7 is clear, iV = 1.

To proceed further, let us make a definition. For a transvéiseo)-cord [, its
honest readings defined to be the reading of the intersection poimts_J, Lx without
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P

(i )U

k

Fig. 6. Cy intersecty(/;0)U .

cancelingr; andx,; L even if they appear successively in the course of traveisifigus a
honest reading is not necessarily a reduced word.

Now suppos&V > 1 and that Lemma 6 has been proved for smaller length. Suppose the
reduced word/ of length N is written as

V=Ux; (e==1),

whereU is areduced word of lengtN — 1 (> 1). To draw the curvel;~)V, we apply the
mapping class; to the curvel/;»)U. Thatis to say, we mov@;~,)U by the motion ofp
round along the curve; . If C; does notintersedl;~,)U except aip, then the reading of
(lico)Ux{ is easily seen to b&x; . But some complication appeardif intersects/;)U
at other points than the base pojnt .

To see this, suppose= +1, and suppos€y intersects a part of/;c)U once as
indicated by Fig. 6, left. Then by performing the motion pf, along Cx, we have an
(i, 00)-cord (/;00) U x.

Let us compare the honest readings of the cords before and after this motion. By Fig. 6,
right, we see that the honest reading(hf,)Ux; is obtained from that ofl;oo)U by
multiplying x; from the right and inserting a canceling pac'y{xk‘l somewhere in the
honest reading ofl;»,)U. By induction hypothesis, the reading @f-)U is equal toU
in (x;)\ F,,. Thus from the above observation, the reading/@f) U x; is equal toU x; in
(X )\ Fy.

The argument is the samedf= —1 and/or ifCy intersectgl;o)U more than once.

This proves Lemma 7 for the woild = U x; of reduced lengtiv, completing the proof
ofLemma?. O

The following theorem is the main result of Section 2.

Theorem 8. The three maps
fi i \Fu > A;,
giAi—H;, and
hi *Hi = (xi)\ Fu,

are bijective.
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Proof. The theorem is obvious from Lemmas 4, 6 and T

3. Isotopy classesof (i, j)-cords

Take and fix any, j € {1,2,...,n} (i # j) throughout this section. Led;; be the set
of all isotopy classes df, j)-cords on(R2, P,). First we will parameterizet; ; by certain
double cosets of},.

Theorem 9. Let N(x;) be the normal subgroup g%, generated by ;. Then there exists a
bijection
fij G\ Fa /N (x)) > Ajj.

Proof. Let Q0,,—1 denote the set of — 1 points defined by

On-1= Py —{Pj}- (12)
Then obviously there is a homeomorphism
(sz Qn—lu{poo}7 pOO)_> (sz an p]) (13)

We will explicitly construct a homeomorphism (13).

Let!/; be the line segment joining; and p, (caution: not/;,). Consider a motion
within a sufficiently small neighborhood 6, which movesp,, to p; along/;. Letg;
(or simplye, j being always understood) be the final stage of this motion. Thrgines an
explicit homeomorphism (13). Note thalp.,) = p; ande fixes L (k # j) pointwise.

It is easy to see that maps an(i, co)-cord on(R?, 0,_1 U {ps}) to an (i, j)-cord
on (R?, P,). By letting A; (Q,_1) denote the set of isotopy classes(fco)-cords on
(R?, 0,—1 U {pso}), We have the bijection

@5t Ai (Qn-1) — Ajj. (14)
By Theorem 8, the map
fi 1 (xi)\Gn-1 — Ai (Qn-1) (15)

is a bijection, wher&,,_1 denotes the free group generatedby; xo, .. ., x,} — {x;}. This
groupG,_1 is canonically isomorphic t@&, /N (x;). Thus we have a bijection (denoted
by f; again)

Ji i (xi)\Fn/N(xj) = Ai(Qn-1). (16)
Combining (14) and (16), we have the required bijection
fij = eo fit i)\Fa/N(x)) = Ajj. (17

This completes the proof of Theorem 90

Remark 10. We can likewise prove that there exists a bijection
Sl i NGONF/(x)) = Aij
by exchanging the roles ¢, and!; in the arguments.
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We will give here a geometric interpretation of the bijectiﬁg]. For this, recall the
simple closed curve€y introduced before Lemma 3. Lel,{ (k # j) be the image o€y
underg; Cy := ¢(Cy). Sinceg(p) = pj, C{ is a simple closed curve dR? — Q,_1
based atp; and which intersectd, transversely in a point. Also lg; be the image
¢(liso). Theni;; is an(i, j)-cord which does not interselcd, L except at the end points.

The homeomorphism induces a homomorphism between the mapping class groups:

M(R?, Qn—1U {po}) = M(R?, P,). (18)

Denoting the image o¥ under this homomorphism by?, we see that,‘f (k #£ j) acts
on (R?, P,) as the result of the motion ¢f; round along the simple closed cur@%.

Proposition 11 (Geometric interpretation ofij). Let V be a word(e F,,) representing a
coset[V] e (x;)\F,/N(x;). We may assume th&t does not contain ;. Thenf,-j([V]) is
the isotopy class of the coid;)V?.

Proof. This is clear by the definition of; in Section 2 and the construction ﬁl} given
above. O

There is another geometric interpretation f,aj which follows from Lemma 7 and
Theorem 8. In fact, by Lemma 7 and Theorem 8, we have

fi= gl._l o hi_ll (xi\F, — A;. (19)
Thus,
fl-j=<p*of,-=go*ogl._10hi_1. (20)

This gives the second interpretationf;)f:

Proposition 12 (Second geometric interpretation (;ffj). Let V (e F,) be a word
representing a cos¢V | e (x;)\ F, /N (x;). (This timeV may containt;.) Draw a smooth
(i, j)-curvel, with self-intersections in general, which is transversé fpL; and whose
reading is V. We assume that the self-intersections/ adre transverse and finite in
number. By homotopy, push out all the self-intersectioridtobugh the terminal poinp ;
successively. Let be the resulting, j)-cord. Thenf,-j([V]) is the isotopy class of the
cord?/’.

The meaning of “homotopy” in Propositiol2 might be a little vague. Precisely
speaking, it is the image of thehomotopy in Section 2 under.

Proof of Proposition 12. From the proof of the surjectivity of; : A; — H; (Lemma 4),
and the definition ofi; : H; — (x;)\ Fy, Proposition 12 follows immediately.O

Fig. 7 illustrates Proposition 12, which shows how to obta,&)-cord in the isotopy
class f13([x§x4]), starting from &1, 3)-curve whose reading is§x4.
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—~

2 3 4

Fig. 7. (1, 3)-cord f13([x3x4)).

In Fig. 7, the first(1, 3)-curve reads as§x4. Pushing out the intersection nearespto
throughps, we obtain the second curve. Its reading%sgm. Then pushing out the second
intersection throughps, we obtain a(1, 3)-cord representinjlg([x§x4]). The reading
of the (1, 3)-cord is xox3xaxax, Lx3 xoxaxa. (Note that neglecting the generatoy in
this final word, we recover the Worxi§x4.) In this way, the process of pushing out the
intersections may be regarded as a process of successively rewriting the words. Thus the
process will sometimes be referred to asrhariting process

Remark 13. By (20), it follows that
fi]flzh,- ogi O(p*_l.

Thusfijfl is explicitly described as follows: Létbe an(i, j)-cord on(R2, P,). Make it
transverse t¢ J, Li. Let W(/) be the reading of from/(0) = p; to /(1) = p;. Then

F7H) = [WO)] € i)\Fa/N (). o1

An implication of this equality is this: to determine the isotopy class afiap)-cord!, we
have only to know the reading 6imodulox;.

4. Rewriting function R;;

In this section, we will introduce a mappir®y; : F,, — F, which plays an important
role in our investigation. We begin by defining the notion(afj)-homotopy of(, j)-
curves. Twa(i, j)-curved and!’ are said to béi, j)-homotopidf there exits a homotopy

H:[0,1] x [0,1] — (R? - P,) U {p;, p;}
satisfying

(i) HO,1)=I1() andH(1,t) =1'(t), Vt € [0, 1],
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(i) H(s,t)=p;ifandonlyift =0, and
(i) H(s,t)=p;ifandonlyifr =1.

The conditions (ii) and (iii) say that both the “exits” of &h j)-homotopy are “closed”
at p; andp;. (Cf. Section 2.)

Let H;; be the set of alli, j)-homotopy classes d@f, j)-curves on(R?, P,).

Given an(i, j)-curvel, we make it transverse 1gJ, L. Let W(I) be the reading of
from p; to p;.

Lemma 14. The map
hij i Hij — (xi)\Fa/{x})

sending thg(, j)-homotopy class of afi, j)-curve[/] to the double coset of its reading
[W ()] is well-defined and is bijective.

Caution: In this lemma(x;)\ F, /(x;) is not (x;)\F,/N(x;); V and W belong to the
same double coset ify;)\ F,/(x;) if and only if V = x Wx{ for somep, g € Z.

Proof of Lemma 14. The well-definedness is proved by the j)-homotopy version of
the proof of Lemma 5.

The surjectivity ofh; ; is easy, because given a wovdone can draw aig, j)-curve
whose reading is the word if the curve is allowed to have self-intersections.

We will prove the injectivity. Let be an(i, j)-curve. We may assume that it is smooth
and transverse tpJ, Li. Observe that by giving rotations taround p;, we can multiply
any power ofx; from the left of the readingV (1) without changing thei, j)-homotopy
class ofl. Similarly, we can multiply any power of; from the right of W (7).

Now suppose that we are givéin j)-curves! and!’ and that their readings belong to
the same double coset(x;)\ F,,/(x ;). By the above observation, adjusting the power;of
from the left and that of ; from the right, we may assume that the readifg$) andw (')
are exactly the samé¥ (/) = W({') € F,.

Also we may assume that the tangent vectorsarid!’ at p; (and atp;) are the same,
or more strongly, that there exists a small number 0 such that as continuous maps
[0, 1] = R2, [ and!’ coincide if restricted td0, ¢] and[1 — &, 1]

1[0, e]1 =10, €], [1—¢,1]=0[1-¢,1].

Consider a loopl. which starts af(¢), traversed, arrives at/(1 — ¢) =1'(1 — ¢), and
returns tol’(s) = I(g) alongl/_l. The loopL is completely contained in the punctured
planeR2 — P,, and its reading iV ()W (")~ = 1. Sincer1(R? — P,,I(¢)) = F,, L
shrinks to a point ifR?2 — P,. Making use of this homotopy, one can constructan)-
homotopy betweehand!’. This proves the injectivity ofz,-j. O

Since an(i, j)-cord is an(i, j)-curve, and isotopigi, j)-cords are(i, j)-homotopic,
there is a natural map

gij:Aij—>H,-j (22)



S. Kamada, Y. Matsumoto / Topology and its Applications 146-147 (2005) 21-50 35

Lemma 15 (Homotopy implies isotopy)g;; is injective.

Proof. Suppose thati, j)-cords/ and!’ are mutually(i, j)-homotopic. We will prove that
they are isotopic. By Lemma 14, the readiigg/) and W (I') belong to the same double
coset in{x;)\ F,/{(x;), thus evidently to the same double cosetipn\ F,,/N (x;). Then by
Theorem 9 and Remark 1Band!’ are isotopic. O

Composing the three map%, &ij andfz,-j, we have an injection denoted by
rij )\ Fa /N (x}) = (xi)\Fa/(x). (23)

The valuer;; ([V]) is the reading of thei, j)-cordf,-j([V]).

The mapping;; is computed geometrically by the rewriting process (pushing out the
intersections through;) as explained in Section 3. For example, by Fig. 7, the reading of
the (1, 3)-cord f13([x%X4]) is xzx:gx;;x:;lexg_lxzx?,m. Thus we have

r1a([x3xa]) = [xoxaxaxax; txgtxoxaxa] € (xi)\Fu/(x;). (24)
This mapr;; can be lifted to a map
Rij:Fy— F, (25)

as follows: Take aword € F;,, consider its double cosgl' ] € (x;)\ F,,/N(x;) and map it
tor;; ([V]). Being an element af; )\ F, /(x;), ;; ([V]) has ambiguities of the left fact@f
and the right facto:xj.’. Adjust the exponentg (or ¢) to get a wordW in F,, so that the
total exponents of; (orx;) in V and inW are equal. Here thtal exponenbf x; in V
means the sum of the exponentspappearing in the word’. Similarly forx;.

Then we define

Rij(V)=W. (26)

For example, if we want to get thR;13-image of the wordx%x4, in which the total
exponent ofx1 (andx3) is 0, we have to adjust the right-hand side of (24) so that the
resulting word has also the total exponent 0 watandxsz. Thus we have

2 -1 -1 -2
R13(X2X4)=sz3X4X3X4 X3 TX2X3X4X5 " 27)

We would like to call the mag;; therewriting function
Obviously the following diagram commutes:

R;j
F,————F,

(28)
O\NFn/N () —Ls (xi )\ Fo /()

The vertical arrows are natural projections.
In Section 6, we will give a formula to compute the rewriting functigy purely
algebraically.
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5. Some propertiesof R;;
In this section, we give important properties of the rewriting funciign

Lemma 16. Let V and W be words inF;,. Then
Rij(V)=W,

if and only if they satisfy the following conditians

() [VI=I[W]e€ (xi)\Fn/N(x;),
(i) E;(V)=E;(W), E;(V)=E;(W), whereE,(U) denotes the total exponentgfin
the wordU, and
(i) W is the reading of ant, j)-cord.

Proof. Supposer;; (V) = W. Since by definitiorR;; (V) is a lifted reading of thei, ;)-
cord f,-j([V]), R;;(V) and V belong to the same double coset(x;)\F,/N(x;) by
Remark 13. Thus (i) is satisfied. The conditions (ii) and (iii) are satisfied by the definition
of R;;. This proves thenly if-part.

Conversely, suppose thiatand W satisfy (i), (ii) and (iii). Let/ be an(i, j)-cord such
that W = W (). Such a cord exists by condition (iii). Just as above, by Remark 13,
R;;(V) and V belong to the same double coset(x;)\F,/N(x;). By condition (i),

V and W belong to the same double coset. TH®; (V)] = [W] € (x;)\F,/N(x;).
By Theorem 9 and Remark 13 again, thej)—cordsﬁ-j([V]) and!/ are isotopic. By
Lemma 14, the reading®;;(V) and W of these isotopic cords coincide modulo left
factorxl.” and right factorx?. But by the definition ofR;; and condition (ii), we have
Ei(Rij(V)) = Ei{(V)=E;(W) andE;(R;;(V)) = E;j(V) = E;j(W). ThusR;; (V) = W.
Theif -part is proved. O

Lemma 17. A wordV is the reading of arii, j)-cord if and only if

Rij(V)=V. (29)
Proof. SupposeV satisfies (29). Then; ([V]) = [V], and by the definition of;;, [V] is
the reading of thei, j)-cord f,-j([V]). By giving rotations to this cord roung; andp;,
we may adjust that the actual reading of the cord ig his proves théf -part.

Conversely, supposE is the reading of arii, j)-cord/, then applying Lemma 16, we
have

Rij(V)=V.

This proves thenly if-part. O

Lemma 18. R;; is a projection, that is, it satisfies

Rij o Rij = R,‘j.
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Proof. For any wordW, R;;(W) is a lifted reading of the isotopy class @f j)-cords
f,-j([W]). Thus applying Lemma 17 to the wold = R;; (W), we haveR;;(R;;(W)) =
Rij(W). O

Lemma 19. For anym € Z, we have
Rij(Vix'V2) = Rij (V1Va)x ',
R,-j(xlmV) =xlmRij(V).

Proof. Since the wordsle;" V> and V1V, belong to the same double cosetx;)\ F,/
N (x;), the commutative diagram (28) implies that the ima@gsle;" Vo) andR;; (V1V2)
differ only in the leftx; - and the rightx ;-powers. However,

Ei(Vix]'V2) = Ei(V1V2), and
Ej(Vix"'V2) = Ej(V1V2) +m,

and we know thatR;; (-) preserves the totdl and j-exponents. Thus we have the first
equality.
The second equality is proved similarlyc

6. Algebraicformulafor R;;

In this section, we will give a formula to compulg; : F, — F, purely algebraically.
As we remarked just before Proposition H/N(xzj) acts on(R?, P,) from the right.
More precisely, an elemenj. € F,, (k # j), acts on(R<, P,) an,‘f, which is the mapping

class of the motion op; along the curveC,{ = ¢(Cy). Incidentally, we also consider the
casek = j, where taking Proposition 11 intaccount, we define the action mf to be

the trivial action on(R2, P,). Then the action ofF,, /N (x;) lifts to the action ofF, on
(R?, P,). We call this action thg-actionof F, to distinguish it from the action of, on
(R2, P, U{poso}) introduced in Section 2.

Via the j-action,F,, acts on thei, j)-homotopy set;;. We would like to describe this
action algebraically.

Recall that; is the(k, j)-cord which does not interselcy,, L, except at the end points

Lemma 20. The action ofx,f7 (k # j) is nothing but the 360°-twist” along /;;, namely,
the mapping class whose support is contained in a disk neighborhood of thé cart
which rotates the cord througB6(® counterclockwise.

This lemma is easily seen by figures. (Cf. the proof of Lemma 4.1 of [9].)

The j-action of F,, is generated byc,‘f, k=1,...,n. By Lemma 20, the action of
xf{’ (k # j) is the “360-twist” along the(k, j)-cord/y;, and the action of;‘.’ is the identity.
Thus if we assume that all th&, j)-cord/y; are contained in the domain< 1 — ¢ (or
more safely iny < %) of the xy-plane, then we may assume that thaction of F,, is
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k

Fig. 8. The loopxg.

trivial on the complementary region>1—¢ (ory > %) in which ps, = (0, 1) is. In the
following arguments, we will always assume tbjgtimal conditioron the j-action of F,,.

Let us introduce some notations. Letdenote the line segmeht, considered to be
an oriented simple curve from; to p... Similarly let 8; denote the line segmenty,
regarded as an oriented simple curve frpga to p;. Thus the composition of these curves
«; - B; is isotopic to the cord;.

The generatox; of 71(R? — P,, pso) is represented by the simple lo6k. However,
in studying the effect of thg-action of F,,, we prefer toCy the following loop as the
representative ok;, namely, the loop which starts at., going down along the line
segment; o, arrives at a point near toy, then makes a small circle roungq, and finally
comes back t alongli. (See Fig. 8.) We will also denote by, such a loop. Of
course, the invers;@:1 is represented by the loop traversingin the opposite direction.

Let V be a word € F;,), and define aiti, j)-curveL;; (V) as follows:

Lij(V) =0 -x3) X - Bis (30)
whereV = x{(1) ---x(n), €0m) € (+1, —1} andk(m) € {(1.2.....n} for m=1,....N.
Every (i, j)-homotopy class has;; (V) as its representative for somé Note that the
reading of thig(i, j)-curve isV, and that by Lemma 14,; (V) andL;; (W) belong to the
same(i, j)-homotopy class if and only V] = [W] € (x;)\ F,/(x;).

We are now in a position to study the effect of thection of F, on L;;(V). For
notational convenience, we will denote the (rightaction W¥ of a word W € F,, on
(R2, P,) by (-\)T¥,, or understanding being always fixed, simply bg) Ty .

Let us apply thej-action(-)Tw on the(i, j)-curveL;; (V) of (30). Then by the optimal
condition on thej-action, we have

(Lij(V))Tw = (i) Tw - (XZ(%))TW B (XZ((j\\,/)))TW ~(B)Tw
= (a)Tw - (V)Tw - (B)Tw. (31)

Thus we can study the actign7w onc;, V, andg;, separately.
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First considenw;)Tw. This is an(i, co)-cord, and its-homotopy class is represented
by an(i, oo)-curve of the form

o - W/ (32)

whereW’ is a certain product of the loopg € F,. By Theorem 8, the wordV’ is well-
defined up to left multiplication ofi”, thatis, only its cos€iW’] € (x;)\ F,, is well-defined.
To fix this ambiguity, we impose the condition that the total exponent af W’ should
be O:

Ei(W)=0. (33)

Then the ambiguity is removed ar@’ is well-defined as an element &,. Let us
denote thisW’ by A;(W). The following equalities are considered to be the definition
of A;(W) € F,:

{ (ap)Tw =aj - Aj(W),

Ei(A;(W)) =0. (34)

Similarly, the (oo, j)-cord (8;)Tw is j-homotopic to the(oco, j)-curve W” - 8;, and
W” € F, is proved to be well-defined up to right multiplication mf. Imposing the

condition E;(W”) = 0, we can eliminate this ambiguity. Denoting the well-defir&d
by B; (W), we have the following equalities, which are considered to be the definition of
Bj(W) € Fy:

{ B)Tw = Bj(W)-B;,

E;j(B;j(W))=0. (35)

The part(V)Ty is easily understood, becauBg acts onF, (= 71(R% — P,, ps)) @s a
group automorphism. Thus denoting this automorphismy : F,, — F,, we have
(V)Tw =Hjw (V). (36)
In these notations, (31) is rewritten as follows:
(Lij(V))Tw = - Ai(W) - Hj,w(V) - Bj(W) - Bj. (37)

To further analyze these mappinds, B;, H; w : F, — F,, we check the simplest
cases.

Lemma?2l.If i < j, then

11 .
XXX ;X k<1,

Aj(x) = x,-xj_lxl._l k=i, (38)
1 k>1i,
. xk_lxj_lxkxj k<1,
A7) =1 x; k=i, (39)
1 k>1i.

Ifi > j, then
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Fig. 9. The cordse;)x! = a; - A; (xi), k <i < j.

k<1,
Ay ={ % k=i, (40)
xkxjxk_lxj_l k>1,
1 k<1,
Ay =5 k=i, (41)

-1 -1 .
X; X XXk k>1i.

Proof. To prove (38), we apply thge’-actionx,‘ﬁ7 to the (i, co)-corde; . By Lemma 20, the
resulting cords are as shown in Fig. 9. We can easily prove (38) by reading the intersections
of the cords and J, L;,. Notice that in the right hand side of the second equality of (38),
we multiply x; artificially to meet the requirement (34) on the total exponent;0Dther
equalities (39), (40) and (41) are proved similarlya

By the same method, we can prove the following Iemm‘l(in the third equality
of (42) andx; in the first of (43) are “artificially multiplied to meet the condition (35)).

Lemma 22.
Xk k<],
Bi(xx)=11 L k= (42)
xjxkxj_ k> j,
. xj_ xk_lxj k< j,
Bi(x;)=1{1 ) k=j, (43)
X k> j.

Proof. Fig. 10 shows, in the cage< j, how 8; changes when it is acted on bﬁ. This
proves the first equality of (42). Other cases are obtained by similar figures.

Lemma 23. Lete denote+1 or —1.
If k < j, then
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P
Fig. 10. The cord8)x{ = B (x) - B;, k < j.
xi I<korl>j,
xkxjxljxj_lxk_l =k,
H~ . x€ = _ _ _ _ . 44
o () XEX X 1lexijxklexkl k<lI<j, (44)
e, .—1 — 3
XXX =},
xf l<korl>j,
-1 €. . _
. (xe) X7 UXEX] =k, 45)
- = _ _ _ _ .
Joxm\ X;Txy 1xjxkxka 1xj xxj k<l<j,
-1 -1 ¢ X _ 3
XX XXX l=j.
If k > j, then
xp l<jorl>k,
e.—1 -1 _
X XXX X =],
H' xé = _ _ _ _ . 46
i (37) XXX 1xk lexkxjxk lxj j<Il<k, (46)
-1
xjxljxj =k,
x; l<jorl>k,
xk_lx;xk =7,
H. _1(xf)= 1 1 — . 47
J:xg ( 1) X lxj xkxjxij 1xk 1xjxk Jj<l<k, (47
-1 -1
XX XX jXk l=k.
If k= j, then
Hjx;(x)) = Hj,xj—l(m) =x. (48)

Proof. Fig. 11 shows, in the case< ! < j, how the loopx; changes when it is acted
on by x,‘f. The third equality of (44) follows from this figure. Other cases are proved
similarly. O

Lemma 24. We have
{ Hjwwy (V) = Hjwy(Hjwy (V)),

(49)
Hjw(ViV2) = H; w(V1) Hj w(V2)
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Fig. 11. The loopxf)xf, k <1 < j.

and

{E,- (Hj,w(V))=Ei(V), (50)

Ej(Hjw(V))=E;(V).

Proof. The equalities (49) follow from the definition af; w in (36) and the fact that
Tw acts onF, (from the right) as a group automorphism. By Lemma 23, we see that,
for w = xkﬂ, H;,, and Hj i preserve the total exponenfs(-) andE;(-). The general

statement (50) follows from this special case and (49).

We express (49) by saying tha;:F, — Aut(F,) (W — H;w()) is a right
representatiorof F, to Aut(F;,).
Lemma 25.
A;(WiW2) = A; (W) Hj w, (A; (W1)). (51)
Proof. By (34) and (36),
ai - Ai(WiW2) = (i) Twyw, = (@) Twy) Tw,
= (ai - Ai(W1)) Tw,

= (i) Tw, - (Ai (WD) Tw,
=a; - Ai(W2)Hj w, (Ai (W1)).

On the other hand, by (50) and (34),
Ei(Ai(W2)Hj w,(Ai(W1))) = Ei(Ai(W2)) + Ei (A;(W1)) =0.
Thus by the definition (34) of; (-), we have the lemma. O

We express (51) by saying that : F, — F, is acrossed anti-homomorphistwisted
by the right representatioH; : F,, — Aut(F;,).

Lemma 26.

E;(Ai(W)) = —E;(W).
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Proof. Forw = xkﬂ, this follows from Lemma 21. General cases are proved by induction
on the word length of¥ and Lemmas 24 (50) and 250
Lemma 27.
Bj(W1iW2) = Hj w,(B;(W1))B;(W2). (52)
Proof. By (35) and (36),
Bj(WiW2) - Bj = (B)) Twyw, = ((B)) Tw:) Tw,
= (Bj(W1) - B;) Tw,
= (Bj(W1)Tw, - (B)) Tw,
= Hj w,(B;(W1)B;(W2) - B;.
On the other hand, by (50) and (35),
E;j(Hjwy(Bj(W1))Bj(W2)) = E;(B;j(W1)) + E;(B;(W2)) =0.
Thus by the definition (35) oB; (), we have the lemma. O
We express (52) by saying tha} : F,, — F, is acrossed homomorphistwisted by the
right representatiod; : F,, — Aut(Fy,).
Lemma 28.
Ei(Bj(W)) = E;(W).
Proof. Forw = xkﬂ, this follows from Lemma 22. General cases are proved by induction
on the word length of¥ and Lemmas 24 (50) and 270
Lemma 29. For any wordsV and W, we have
[Hjw(V)]=[V]e F\/N(x)). (53)
Proof. For W = xkﬂ, V = xlﬂ, this holds by Lemma 23. General cases are proved
using (49). O
Lemma 30. For any wordW, we have
[Ai(W)] =1€ F,/N(x)). (54)
Proof. For W = x,fl, this holds by Lemma 21. For a genefdl, (54) is proved by
induction on the word length d¥, using Lemmas 25 and 29.0
Lemma 31. For any wordW, we have
[B;(W)] =[W] € F/N(x)). (55)
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Proof. For W = xkﬂ, this holds by Lemma 22. For a genefdl, (55) is proved by
induction on the word length d¥, using Lemmas 27 and 290

The following lemma is rather technical, but it will be useful in calculating the rewriting
functionR;;.

Lemma 32. For any wordsV, W, and for any integem, we have
Ai(W)H; w (x"V) =xI"Ai(W)H w(V), (56)
Hj,W(Vx?’)Bj(W):Hj,W(V)Bj(W)x;”. (57)
Proof. By (34) and (36), we have the following equality (in the sensé-bbmotopy) of
(i, c0)-curves:
ai - Ai(W) - Hjw(x["V) = () Tw - (x]"V)Tw
= (e - x"V)Tw. (58)
Rotating the(i, oo)-curve roundp;, we have
o - x'V=q;-V.
Substituting this into (58), we have
ai - Ai(W) - Hjw(x"V) = (i - V)Tw
=a;-Ai(W) - Hjw(V).

Thus by Theorem 8 the words; (W) H; w (x]" V) andA; (W) H; w (V) coincide up to the
left multiplication ofx/” for somep.
By (34) and (50) ,

Ei(AiW)Hjw(x["V))=m+ E;j(V)
=F; (xl-mAi(W)ngw(V)).

Therefore A;(W)H; w (x]"V) =x"A;(W)H; w (V). This proves (56).
The equality (57) is proved similarly usingo, j)-curves. O

Now we are ready to study the rewriting functi® : F, — F,.
Proposition 33. For any wordV, we have

Rij (V)= A;(V)B;(V)x ™Y, (59)
whereg¢ (V) is defined by (V) = E; (V) + E; (V).

Proof. We will check the three conditions in Lemma 16 on the right-hand side of (59).
First, condition (i). In fact, as equality in the quotient gratiy N (x;), we have

[Ai(V)B;(V)x? ] = [A (W) ][B; (V)] = V1.
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Here we used Lemmas 30 and 31.
Next we will check condition (ii):
E; (A,-(V)Bj(V)xj’(V)) =E;(V) by (34)andLemma 28
and
E; (A,-(V)Bj(V)xj’(V))
=—E;(V)+¢(V)=E;(V) by (35)andLemma 26.

Finally we will prove thatA,-(V)Bj(V)x?(V) is the reading of ar(, j)-cord (condi-
tion (iii)). As a special case of (37) we have

(Lij(D)Ty =« - Ai(V) - Bj(V) - B;.
The left-hand side.;; (1) Ty is nothing but(/;;) V¥, and this is ar(i, j)-cord. Therefore,
A;(V)B;(V) is the reading of aii, j)-cord. Henc%i(V)Bj(V)xf(V) is also.

Now the three conditions on the WorA[(V)Bj(V)X?(V) are verified. Thus by
Lemma 16 we have the proposition

Remark 34. Recall thatR;;(V) is a lifted reading of the(i, j)-cord f,-j([V]). By

Proposition 11,f,-j([V]) is the isotopy class of/;;)V¥¢. In view of this, the result of
Proposition 33 is quite natural.

We want an inductive formula to compugg; :
Rij(ViV2) = A;(V1V2) B; (V1 V)x 1"
= Ai(Va) Hj v, (Ai (VD)) H v, (B} (V1)) B, (Vo)x TV F0(72
= A (VD) H,v, (4: (VD) B (VD)x] ) B; (Vo)x 7
= Ai(V2)Hj v, (Rij (V1)) B; (V)x 2. (60)

Note that we applied Lemma 32 to get the third equality.
By (60), we have

Rij (Vo) Rij(ViVa) = x; Y2 B (Vo) 4y (Vo) ™!
X Ai(V2)Hj v, (Rij (VD) B} (Va)x "2
=x; Y2 B (Vo) H, v, (Rij (VD) B (Va)x V2. (61)
For any wordW, define a mappin®;; w : F, — F, by setting
Dijw(V)=x; " B (W) H; w (V) B;(W)x ™. (62)
Then (61) is rewritten as

Rij(V1V2) = Rij(V2) Dij,v, (Rij (V1)). (63)
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Proposition 35.

{ Dijw(ViV2) = Dijw (V1) Dij w (V2),

64
Dijwiw, (V) = Djjw, (Dijw, (V). 64)

Proof. The first equality is easily seen by the definition (62)@f w(-). The second
equality is proved as follows:

Dijwiw, (V) = x;¢(W1W2)Bj(Wle)_lHj,wlwz(V)Bj(Wle)x;’(Wlwz)

n - - -1

= PO By (W) T Hwy (B (W) ™ Hjw, (Hiwa (V)
x Hj, WZ(Bj(Wl))Bj(W2)x?(W1)+¢(W2)

— xj—¢(W2)Bj(W2)_1
X Hj w, (xj_d)(WﬂBj(Wl)_lHj, Wl(V)Bj(Wl)x?(Wl))
x Bj(Wa)xf "

= Dij,wy (Dij, w1 (V). O

This proposition claims thab;; : F, — Aut(F,) (W — D;; w(-)) is a right representa-

tion of F,, to Aut(F},).
Now we have arrived at our main theorem of this section:

Theorem 36. The rewriting functionR;;: F, — F, is a crossed anti-homomorphism
twisted by the right representatiddy;; : F, — Aut(F,);

Rij (V1V2) = R;j(V2) Djj v, (Rij (V1)).
This theorem is obvious from (63) and Proposition 35.

Remark 37. For Theorem 36R;; very much resembles in algebraic nature ghimverse
I: F, — F, studied in [3].

Using Theorem 36 together with the followimgtial formulae, we can compute®;;
purely algebraically. To state theitial formulae, we introduce the notation
sgni, j, k) (65)

which takes the valug-1 or —1 according as the permutation @f j, k) into its natural
order is of even type or of odd type, wheigj, k are distinct integers. For example, if
i < j<k,thensgi, j,k)=1,andifj <i <k, then sgii, j, k) = —1.

Proposition 38 (Initial formula, 1). Lete be+1 or —1. Then we have
X k=iorj,
Rij(xf) = | % SQN. j. k) = —e. (66)

xjx,ixj_e sgni, j, k) =e.
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Proof. By Proposition 33, we have

Rij (xf) = Ai (x) By ()27

Suppose =1 andi < j <k. Then

Ai(xp) =1 by Lemma 21 (38)
Bj(xx)=xx;x7 by Lemma 22 (42)
¢ (xx) =

The formula holds in this case. Other cases are proved similarly.

Proposition 39 (Initial formulae, Il).Lete be+1 or —1.

X; s=1,
X; s=7,

Dijxg (xs) = x; xj xsxjxl sgn(, j,s) = —«, (67)
x] x xsxexj sgni, j,s) =€,

Dij,x§ (x5) = xj_exsx; (68)

If i, j, k are distinct, then

XJ N =j9
)c;xk)cj_E s =k, 6
l] Xk (xs) xk—éxsx; Sgr(],k,s)Z —e, ( )

(xjxk_exj_e)xs (x;x,ij_e) sgn(j, k,s) =e.

Proof. By the definition (62) ofD;; (-), we have

¢(Xk) ¢(X,§)

B (xk) Hj xe (xs)Bj(x ( E)

Suppose = +1 and consider the case< j <k <s. Then we have

l] xg e (xg) =

¢ (xx) =0,
Bj(x;) =x;xx; " by Lemma 22 (42)
Hj o (x5) = X by Lemma 23 (44)

Thus
Dij x, (x5) = xjxk_lxj_lxsxjxkxj_l
This proves the fourth equality of (69). Other cases are proved similarly.
For example, let us calculaf;; (xsz) under the assumptian< s < j. By (66),
Rij (x5) = x5.
By (63) and (69),
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Rij(x ( ) Rij(x5) Dij x, (le (xs))
= x5 Dij x, (xs)
= xsxjxsx-_l.

We obtaink;; (x ) = XgXjXsX ; Linthe casé <s < j.
Another concrete example is this (use the above resultindti, j = 3, s = 2):

R13(x§x4) = R13(X4)013,x4(R13(x§))
= (x3x4x3_l)013,x4 (x2x3x2x3_1)

= (X3X4x3_ l) (X3x4_ lx3_ 1))62()(3)64)(3_ 1))63()(3)64_ lx3_ 1))62()(3)64)(3_ 1)x3_ 1
= xzx:;mx?,x;lxg 1)62)(3)64)63_ 2,

The final result coincides with (27) which was obtained diagrammatically.

Remark 40. For any wordW, define a mappingN),-j,W . F, — F, by setting
Dijw (V)= A;(W)Hj.w (V) A; (W)™, (70)

ThenD;; : F, — AUt(F,) (W > D;;.w (-)) is a right representation @, to Aut(F,). By
a similar argument to the proof of (63), we can prove

Rl](V1V2) l] Vz(Rl](Vl))le(VZ) (71)

Thus R;; is not only a crossed anti-homomorphism twisted Iy, but also acrossed
homomorphisnwisted byD,J We do not know which is the natural formulation, but the
initial formulae for D;; are a bit more complicated than those fay.

7. Application to simple closed curves

Let C be an oriented simple closed curve on the punctured f#&ne P,,. Deforming
C by homotopy, we may assume that it is smooth and transvetsk fo.. By taking and
fixing a starting pointsg on C, thereadingof (C, so) is well-defined as an element &f,.
We denote this reading bW (C, so). (Note that the staring point should be taken from
C — U, Lk.) The reading¥ (C, so) depends only on the homotopy classtofixing so.

If we take different starting point on C, the readingV (C, s1) is a cyclic conjugation
of W(C, sg). Here two wordW and W’ arecyclically conjugateo each other, itW is a
productVy V7 in a certain way, andV’ is written asW’ = V, V1.

Let ¢! denote the same curv€ but with the opposite orientation. Obviously,
W(C™1, s0)=W(C,s0) L.

Theorem 41. A word V € F,, is the reading of a simple closed curve on the punctured
planeR? — P, if and only if V or V~1is cyclically conjugate to a word’’ which satisfies

Ronra(V)=V". (72)
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Fig. 12. Simple closed cur€ =1U1g ;1.

C
‘ —
0

n+l1 0 n+1

Fig. 13. Cutting open the loog to a(0, n + 1)-cord.

The free groupF,, was generated byxi, ..., x,}. If we define F,;.2 to be the free
group generated bixo, x1, ..., x,, x,+1}, thenF, is naturally identified with a subgroup
of F,42. In (72), the wordV’ € F, is acted on by the rewriting functioRo ,+1: Fy+2 —
F,,+2 under this natural identification.

Proof of Theorem 41. In the argument below, we may assume that the pgigendp,,+1
are given by the coordinates

(—N,0) and(N, 0) € R?

respectively with sufficiently large numbat > 0.

Suppose thaV or V1 is cyclically conjugate to a wordt” which satisfies (72). Then
by Lemma 17,V’ is the reading of &0, n + 1)-cord [ on (R?, P, U {po, pnt1}). The
reading of thig0, n + 1)-cord (i.e.,V’) does not contaimg nor x,+1. Thus the cord does
not intersectLg or L, 11 except at the end points. Then these popysand p,,1 can be
connected by a “large semi-circlg’,+1 so thatC :=1 U lp ,+1 is a Simple closed curve
in RZ2 — P,. (See Fig. 12.) The wordl’ is the reading ofC, po), andV is the reading of
(C, s0) or (C~1, sp) with some starting poingy on C. This proves théf -part.

Conversely, suppose is the reading of an oriented simple closed curve with a starting
point (C, sg). Let s1 be the highest point (or one of the highest pointsfofvith respect
to the y-coordinate. Then we can “cut open” the logpat this points; to obtain a
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(0,n + 1)-cord!. (See Fig. 13.) The reading (/) coincides with the reading aiC, s1)
or of (C~1, 51), and is cyclically conjugate t& or V1. By Lemma 17, W (!) satisfies

Ron1(W()) = W().
This proves thenly if-part, completing the proof of Theorem 410

This research was motivated by monodromy problems appearing in Lefschetz fibrations
and surface braids. See [7-11].
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