
~) Pergamon
Computers Math. Applic. Vol. 29, No. 8, pp. 45-61, 1995

Copyright©1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898o1221/95 $9.50 + 0.00
0898-1221(95)00029-1

A Unified Algorithm for Finding
Maximum and Minimum Object Enclosing

Rectangles and Cuboids

S. C. NANDY AND B. B. BHATTACHARYA
Indian Statistical Institute, 203 B. T. Road

Calcutta - 700 035, India
bhargab~isical, ernet, in

(Received July 1993; accepted August 1993)

A b s t r a c t - - G i v e n a set of n points in R 2 bounded within a rectangular floor F, and a rectangular
plate P of specified size, we consider the following two problems: find an isothetic position of P
such that it encloses (i) maximum and (ii) minimum number of points, keeping P totally contained
within F. For both of these problems, a new algorithm based on interval tree data structure is
presented, which runs in O(n log n) time and consumes O(n) space. If polygonal objects of arbitrary
size and shape are distributed in R 2, the proposed algorithm can be tailored for locating the position
of the plate to enclose maximum or minimum number of objects with the same time and space com-
plexity. Finally, the algorithm is extended for identifying a cuboid, i.e., a rectangular parallelepiped
that encloses maximum number of polyhedral objects in R 3. Thus, the proposed technique serves
as a unified paradigm for solving a general class of enclosure problems encountered in computational
geometry and pattern recognition.

Keywords - -Com pu t a t i ona l geometry, Range searching, Interval tree, Algorithm, Complexity.

1. I N T R O D U C T I O N

Range searching problems of computa t iona l geometry have manifold applications to operat ions

research, da tabase management , pa t te rn recognition, robotics, VLSI layout design, to name a few.

Given a set of points distr ibuted randomly on a two-dimensional Euclidean plane (R2), various

range queries are often asked. Efficient algori thms based on range trees or Voronoi diagram,
can repor t the subset of points contained in a given rectangular region [1-3], or in a circle [4-6].

Chazelle et al. [4] and Lee [7] studied the problem of finding k-nearest neighbors in a set of n

points in ~2. Aggarwal et al. [8] proposed an algori thm for finding an isothetic rectangle tha t
encloses m a x i m u m number of red points bu t no black point on a floor. A new approach to range

searching called filtering search, was introduced by Chazelle [9] improving the t ime and space

complexi ty of all the aforesaid problems.

A related range searching problem of finding the position of circular disc of given radius en-
closing max imum number of points in ~2 was considered by Chazelle and Lee [10], and an O(n 2)

a lgor i thm was suggested. A similar problem was to find the position of a given isothetic rectan-
gle containing maximum number of points for which an O (n l o g 2 n) t ime and O(nlogn) space

a lgor i thm was reported [11]. Later, an O(nlogn) t ime algori thm was proposed [12] for finding
the m a x i m u m clique in the rectangle intersection graph, which can also be used for the above
m a x i m u m enclosure problem in a plane. In a d-dimensional space (d >_ 3), finding the m a x i m u m
clique in the hyper-rectangle intersection graph or equivalently, the max-enclosure problem, can
be solved in O(n d-l) t ime [13].

45

46 S.C. NANDY AND B. B. BHATTACHARYA

A slightly different form of range searching includes the classical maximal-empty-rectangle
(MER) problem amidst a set of points [8,14-16]. Chazelle et el. [15] and Aggarwal et al. [8] re-
ported the location of the largest isothetic MER in time O(n log 3 n) and O(n log 2 n), respectively.
In an interactive VLSI environment, one often requires MER's among a set of solid isothetic rec-
tangles or polygons instead of points [17]. More often than not, an empty rectangle of desired size
and shape (aspect ratio) is not available. This leads to the problem of locating a rectangle of given
area and aspect ratio that encloses minimum number of points or other rectilinear obstructions.

This paper outlines a unified algorithm based on the well-known line-sweep paradigm utilizing
an interval tree as the underlying data structure. This is applicable to both the problems of locat-
ing (i) the maximum- and (ii) the minimum-point enclosing rectangle of given dimension, amidst
a sea of n points in R 2. The time and space complexities are O(nlogn) and O(n), respectively.

The same algorithm works for finding the rectangle enclosing the maximum or minimum number
of arbitrary polygons. Finally, we consider the problem in a 3-D scenario: to position a rectan-
gular parallelepiped, i.e., a cuboid of given dimension, maximizing its containment in R 3. This
problem is of interest to computer graphics, and can be solved using our proposed plane-sweep
technique.

The paper is organized as follows. In Section 2, the maximum- and minimum-point containment
problems in R 2 are formulated and an optimal algorithm is designed. Section 3 outlines the
possible extensions of the above problems, where the points are replaced by rectangles or in
general, by simple polygons. Location of a cuboid enclosing maximum number of points or
objects in R 3, is presented in Section 4. Concluding remarks appear in Section 5.

2. P O I N T - C O N T A I N M E N T P R O B L E M

Let n points be distributed on a rectangular floor F, whose top-left corner is at (0, 0) and the
bottom-right corner is at (u, v). A rectangular plate P of size (a × ~3) is given, where a (< u) is
the length and 3(_< v) is the width of P. We now consider the following two problems:

P1. (Max-enclosure): find an isothetic position of P enclosing maximum number of points in F.

P2. (Min-enclosure): find an isothetic position of P enclosing minimum number of points such
that P is completely contained within F.

2.1. F o r m u l a t i o n

The enclosure-problem stated above can be mapped to geometric intersection problems. For
each point Pi E F, an isothetic rectangle of size (a × j3) is drawn, such that its top-left corner
coincides with p~. Lemmas stated below now follow easily.

LEMMA 1. A set of isothetic rectangles satisfies Helly property [12], i.e., all the rectangles in
the set have a common nonempty intersection if" and only if every pair of rectangles are intersect-
ing. |

LEMMA 2. Consider k isothetic rectangles each of size (a x fl), and assume that they have a
common non-empty intersection region Q, which itself will be of rectangular shape. Let the
isothetic rectangle P of size (a x ~) be so placed that its bottom-right corner cbr lies in the
region Q. Then P encloses the top-left corner of each of the k rectangles. |

REMARK. Lemmata 1 and 2 suggest that if n isothetic rectangles each of size (c~ × t3) are drawn as
above corresponding to n given points, then problem P 1 reduces to locating Qmax, the common
intersection region of maximum number of rectangles. One solution of the maximum-enclosure
problem can now be found by coinciding the corner Cbr of P with the bottom-right corner of Q
If P is positioned like this, no part of P will go outside of F. Moreover, for every position of Cbr

A Unified A lgo r i t hm 47

J
Rectangle P enclosing maxinum
number of points

- - I , I

?
L~' , - J I % . . I I ~ I ,

I "-l-/c-- " "
I I

j F

Figure 1. Proof of L e m m a 1.

anywhere within Qm~x for which the plate P in contained in F, maximum enclosure is guaranteed.
This is illustrated in Figure 1.

These geometric intersection problems have the following graph-theoretic interpretation. The
intersection graph of a family of isothetic rectangles is known as a rectangle graph RG(V, E) [12].
Each node in V corresponds to a rectangle; two vertices are adjacent in RG if the rectangles
representing them are intersecting.

Let V ~ E V be a subset of nodes which constitute a maximum clique in RG. Let R ~ be the set
of rectangles denoting the nodes in W. If all rectangles are of equal size, then from Lemmas 1
and 2, it follows that

Q m a x : NRtER, Ri.
Thus, problem P 1 reduces to identifying the maximum clique of RG, or equivalently, the

common area Qmax formed by the elements of the maximum clique.

For the problem P2 , Qmin, which represents the common intersection region of minimum
number of rectangles, sometimes plays a similar role, but in addition, one needs to consider other
subtle factors. In this case, a position for the plate P within F may exist that does not enclose
any point at all. Furthermore, one should also ensure that a rectangle of size (a x/~) whose
bottom-right corner lies within Qmin, is contained completely within the floor F.

The fact that differentiates problem P 2 from P 1 is that Qmin may not correspond to a minimum
clique of RG. Figure 2 demonstrates that the desired position of P is not obtainable from the
intersection region corresponding to the minimum clique.

I ~ - - - - , ~,---- ~..F F ~
I ~--_'~_'~

I1', I I i~144 - , Rectanglc P cnclosing
1 " ~ 1 ~ 1 . 1 I - T I - L -;:I ~ I - -I~ ~mum number of points " ~

(a) M i n i m u m clique is of size 3 whereas the
solut ion rec tangle is empty.

F igure 2.

• 11° ,

I • 1 °

~--J

di] iI"
-I" °11

L ~ ---1 J •

I _ ~ m J

(b) M i n i m u m clique is of size 3 bu t t he so-
lut ion rec tangle encloses two points .

An O(n logn) algorithm for finding the maximum clique in a rectangle graph is reported
earlier [12], which can be used to solve the max-enclosure problem (P1). However, this algorithm

48 S .C . NANDY AND B. B. BHATTACHARYA

cannot readily be applied for solving the minimum-point enclosing problem (P2). Here, we
propose an alternative and easy-to-implement algorithm based on interval tree data structure [18].
This solves both problems in O(n log n) time and O(n) space. Next, the proposed algorithm is
extended to tackle the general enclosure problems, where polygonal objects are given instead of
points, or in a three-dimensional environment.

2.2. Bounds on the Number of Cliques

The result stated below gives an upper bound on the number of cliques in a rectangle graph.

THEOREM 1. The toted number of cliques in RG(V, E) can be at most O(n2), where n is the
number of vertices in the graph.

PrtOOF. Project the horizontal span of each rectangle on the X-axis. This creates a set of
n intervals. Consider the interval graph [19] corresponding to the above family of intervals. The
total number of (maximal) cliques in an interval graph is at most O(n). Similarly, the total
number of cliques in the interval graph formed by projecting vertical spans of the rectangles
on the Y-axis is O(n). Two rectangles intersect if and only if both their X- and Y-projections
intersect. Thus, there could be at most O(n 2) cliques in RG. |

We now give an instance where the actual bound is attained. Let n = 4k, for some k. Four
groups of rectangles are drawn as in Figure 3, each consisting of n/4 rectangles. It is now easy
to identify n2/16 cliques (shown as shaded regions).

group 1

group 2 1

I I - - ~ m m - - I
I l l

group 3

group 4

Figure 3. Example demonstration O(N 2) cliques.

2.3. The Proposed Method

The key idea behind the proposed method is to scan a horizontal sweep-line across the rectan-

gular floor F from its top to the bottom. Let (Xl, Yl), (x2, Y2),-. . , (Xn, Yn) be the n points given
on F. For each of these points (xi, Yi), an isothetic rectangle R~ of size (~ x/~) is drawn such that
its top-left corner coincides with the point. Successive positions of the sweep-line are determined
by y-coordinates of the points arranged in ascending order. The top and bottom sides of the
rectangles are processed in increasing order of their y-values as the sweep line progresses; ties,
if any, are resolved from left to right. This systematic processing of the rectangles is termed as
proper processing. A rectangle is said to be active if its top boundary has been processed by the
advancing sweep line, but whose bottom is not yet processed.

DEFINITION. Two intervals [a, b] and [c, d], a < b, c < d, a < c, are said to be disjoint if c > b;
they overlap if c < b < d. The interval [a, b] contains the interval [c, d] if a < c < d _< b. Two
intervals are intersecting if either they overlap or one contains the other.

DEFINITION. A window is an interval [a,b], 0 < a < b < u, such that

A Unified Algorithm 49

(i) a E S, b E S where S denotes the set {O,U, X l ,X2 , . . . , xn , x l +c~,x2 +(~ , . . . , xn + a } ;

(ii) the horizontal span of every active rectangle is either disjoint to or contains the interval
[a, b].

EXAMPLE. Consider a sweep line at height h as in Figure 4. At this instant of time, four
rectangles are active. The interval [xl, x2] is a window, but [xl, x3] is not, as the latter intersects

the horizontal span Ix2, x2 + c~] of a currently active rectangle.

degree

0 Xz X.~ ~ X 4 Xl+O. X2+{X . . . U

Figure 4. A set of active rectangles at height h and the fundamental windows of different degrees.

REMARK. If k rectangles are active, the horizontal span of the floor F is part i t ioned into

(2k + 1) windows whose intervals are mutually-disjoint and collectively-exhaustive at tha t par-
ticular height. Furthermore, they are linearly ordered from x = 0 to x = u. Thus, the number of

windows at any instant of time, can be at most 2n + 1.

DEFINITION. A rectangle is said to contain a window [/?, r], if the interval [f, r] is contained within
the horizontal span of the rectangle. The current degree (~) of a window [6, r] is the number of

active rectangles containing the window.

The degrees of all windows for the above example are shown in Figure 4. From geometry of
isothetic rectangles, it is obvious that the degrees of two adjacent windows differ exactly by one.

2.3.1. G e n e r a t i o n a n d d i s a p p e a r a n c e o f w i n d o w s

The processing starts when the horizontal sweep line coincides with the top boundary of the
floor F. Subsequent positions of the sweep line are determined by y-coordinates of the top and
bo t tom sides of the rectangles R~, (i = 1, 2 , . . . , n) in ascending order, until it hits the bot tom
of F. For simplicity, we assume that no two points have the same x-coordinate. Also, assume

tha t none of the points appears on the boundary of F.

The set of windows is updated dynamically. Initially, we have only one window [0, u] corre-
sponding to the top of F. Let us denote the horizontal span of R~ by the interval Ii[6, 7"]. When
the sweep line hits the top(bot tom) of a rectangle Ri, the number of active rectangles increases

by one; the number of windows increases (decreases) exactly by two or one depending on whether

or not Ii is contained in [0, u].

Let R~ be a new rectangle whose top is currently under processing. The windows tha t are

disjoint to I~ will remain as they are, their degrees being unchanged.

Since all windows at any instant of t ime are mutually disjoint, the following two mutually-
exclusive and eollectively-ex,~austive cases might occur:

(i) if one or more windows are contained in Ii, then exactly two other windows must overlap
with I~. This happens because the set of windows is linearly ordered. The windows tha t are
contained, remain same but their degrees are increased by one. Each of the two overlapping
windows will be split into two smaller windows and their degrees are updated accordingly.

29:8-E

50 S.C. NANDY AND B. B. BHATTACHARYA

(ii) there exists a window Wj [a, b] which contains Ii. In this case, Wj disappears and three new
windows [a, g], [g, r] and Jr, b] are generated with degrees ~j, ~j + 1, 6j, respectively, where
~Sj is the degree of Wj.

Figure 5 illustrates the processing of the top of a rectangle.

I set of windows before processing the top of R

k:[:

I I I I I

0 a b c d e f u

Figure 5. Processing the top of rectangle Ri.

set of windows after processing the top of R
{ [0, a], [a, b], [b, c], [c, d], [d,e], [e, f], [f, u]}

When the bottom of Ri is processed, the count of active rectangles decreases by one. Two

adjacent windows that touch the vertical line x = g, one from the left and the other from the

right, are merged together to form a single window. Similarly, if r < u, two adjacent windows

that are separated by the line x = r, are merged together. Their degrees are adjusted accordingly.

2.3.2. Enc lo su re p r o b l e m s a n d the i r r e l a t ion to windows

Recall that problem P1, i.e., recognizing the rectangle enclosing maximum number of points,
boils down to locating the rectangular region Qmax. Let ~o, q] denote the interval representing
the horizontal span of Qmax. Now, the following lemma is immediate.

LEMMA 3. At some point of time during processing, the interval ~, q] will appear as a window.
Furthermore, it will have the maximum degree among all the windows generated while processing
the floor from top to bottom. II

Similarly, problem P2, i.e., identifying the rectangle that encloses minimum number of points,
can be solved by finding the window [g, r] which satisfies two criteria:

(i) the rectangle (c~,/3) whose bottom-right corner coincides with (r, y~), is contained within F,
and

(ii) the degree of the window [g, r] is minimum, where Yi denotes the y-coordinate of the next
position of the sweep line.

To summarize, problem P1 requires identification of the window having the maximum degree.
In problem P2, one needs to find a window with minimum degree that satisfies certain contain-
ment property. All this information about the windows can be handled very conveniently and
managed dynamically, using an interval tree as the underlying data structure.

2.4. D a t a S t r u c t u r e

Before describing our technique, we summarize some attributes of an interval tree which is
used here as a vehicle to guide our search.

An interval tree (T) is a leaf-oriented balanced binary search tree where the leaf nodes from
• I I . . . X r left to right hold distinct x-coordinates (x l, x2, , m}, m < 2n + 2, sorted in ascending order,

and Vi, 1 < i < m, x~ c S and lies within the interval [0, u], where S = {0, U, Xl,X2 ,xn,
Xl + c~, x2 + c~,.. . , xn + c~}. Each internal node w will have the following information:

A Unified Algorithm 51

X ! (i) Let T ' be a subtree of T with a set of leaf nodes {x~ ,x~ , . . . , m}. The root w of the

subtree T p has the discriminant

(Xl ~_ X[m/2]l + 1) d(w) = \ [m/2l
2

The discriminant value of a leaf node is assumed to be the x-coordinate at tached to it.

(ii) The left subtree of w is the interval tree with leaf nodes {x~, x~, . . t ., Xlm/2 j }, and the right
X t subtree is the interval tree with leaf nodes { [,~ /2J+1, ' " , x~}.

(iii) A secondary list (w.L) of nodes with three fields L.g, L.r and L.h, sorted in increasing
order with respect to L.h, is attached to each node w of T in the form of a doubly-linked

list with an additional forward link from w to the last node in the list.

Once the skeletal interval tree T is created, it is used to manage the database of windows. As
the sweep line is moved, windows appear and disappear dynamically. When a new window [g, r]
appears, it is inserted in T. To do this, a top-down scan is made start ing from the root w of T
until it finds a node z satisfying the condition e < d(z) < r, for the first time. The window [g, r]

is a t tached to a node z which must be an internal node of T. This follows from the fact tha t the
left (g) and right (r) extremities of each window and the discriminants of all leaf nodes belong

to the set S; the discriminant values of all internal nodes are distinct from the members of the

set S. Thus, a unique node z with such a strict inequality can always be found. Similarly, when
a window disappears, it is deleted from the interval tree.

LEMMA 4. At any instant of time, the windows are associated to different internal nodes of the
interval tree, each node carrying at most one window.

PROOF. Prom the earlier discussion, it is clear that a window will be attached to a unique internal
node in T. A floor scenario tha t contributes m leaf nodes in the interval tree can cause at most
m - 1 windows at any instant; the number of internal nodes of T will also be m - 1. The windows

are mutually disjoint and linearly ordered. As the discriminant values of all internal nodes are

distinct from the members of the set S, the rest is obvious. |

To implement our algorithm, we need to associate the following secondary information with
each internal node z of the interval tree T:

(i) the w i n d o w associated to the node and its degree ;

(ii) a field m a x d e g r e e / m i n d e g r e e containing the max imum/min imum degree among all win-

dows in the subtree T r rooted at z;

(iii) a pointer t a r g e t pointing to the node whose associated window is of m a x i m u m / m i n i m u m

degree in the subtree T/; in the case of a tie,
(a) choose one arbitrarily for maximum enclosure problem and

(b) choose the rightmost minimum for minimum enclosure problem;

(iv) a field exce s s that is used to update degrees of the windows in T~;

(v) a pointer f a t h e r pointing to its predecessor node in T.

2.5. T h e m e o f t h e A l g o r i t h m

The processing starts inserting the window [0, u] corresponding to the top of the floor in T.
The m a x d e g r e e (m i n d e g r e e) and exces s fields of all internal nodes of T are set to zero. The
t a r g e t pointers axe set to null. The top and bot tom sides of all rectangles are then processed in

proper sequence as s tated earlier.
When the top (bot tom) of a rectangle Ri whose horizontal span is the interval !i[~,r], is

processed, windows appear (disappear). To determine this, one needs to find the set of windows

5 ̀) S . C . NANDY AND B. B. BHATTACHARYA

tha t intersect the interval It, r]. The interval tree T is traversed from the root to find the first
node v*, whose discriminant falls in the interval Ii[g, r]. Let FIN be the path from the root
to the node preceding v*. Let FL (FR) be the path from v* to the leaf node ~ (r) as shown in
Figure 6. Let T* denote the subtree rooted at v* and bounded by FL and FR, both inclusive. Let
Forest(T*) denote the forest whose components are subtrees of T* and whose roots are immediate
successors of nodes on FL or FR; in other words, Forest(T*) = T* \ (FL [J FR). The results stated
in the following theorem are used later in our algorithm.

\

Figure 6. Search paths in the interval tree.

THEOREM 2.

(i) The windows that intersect the interval Ii must be attached to the nodes in FIN, and the

nodes in T* ;
(ii) the windows (at most two) that overlap the interval Ii must be attached to the nodes lying

on the paths FIN, FL, or FR;
(iii) let z be any node in Forest(T*); then the window attached to z is contained in the interval I~,

and every window that is contained in I~, must be attached to some nodes o fT*;
(iv) if the interval Ii is contained in a window, it cannot intersect any other window at that

instant of time. The window that contains Ii must be attached to a node in FIN [3 v*. This
case can only arise while processing the top of a rectangle.

PROOF. Follows from the properties of an interval tree and the nature of windows. |

For processing the top or bot tom of each rectangle, one needs two passes. In the forward
pass, search begins from the root of T, and explores FIN, FL and FR. For each node in the
search path, the excess field (as observed in the earlier pass), is propagated down to its two
children, and then reset to zero. Concurrently, the insertion and deletion of windows, updat ing
of their degrees and excess fields, are accomplished in this pass. The backward pass starts
from the two leaf nodes of FL and FR, and continues until the root of T is reached. The final
updat ing of m a x d e g r e e / m i n d e g r e e and t a r g e t pointers is done in this pass, with subsequent
announcement of results.

A Unified Algorithm 53

Forward pass

Three cases may arise during the forward pass.

CASE 1. Let the window W[x, y] overlap with I~[g, r] such that x < g < y. Clearly, W will be
attached to a node on FIN or FL. Let the degree of W be 5. When the top of the rectangle R~
is processed, the window W is split into two windows [x, el and [~, y] with degrees 5 and 5 + 1,
respectively. Similarly, when W overlaps with Ii[g,r] such that g < y < r, then it must be
attached to some node on FIN or FR, and a similar action is taken. When the bot tom of a
rectangle is processed, at most two pairs of adjacent windows are obtained; one from the nodes

in FIN U ~'L and the other from a node in FIN U FR, whose common endpoints are g and r,
respectively. Each pair is merged to form a single window and inserted in the interval tree. The
degrees of the new windows are updated accordingly.

CASE 2. The window W[z, y] is contained in the interval Ii[g, r]. We go down along the search
path FL as well as FR to check this. In this case, the degree of W is increased (decreased) by one
as the top (bottom) of the rectangle is processed. Next, all windows present in Forest(T*) must
be contained in Ii[g, r] as observed earlier. The degrees of all such windows will be increased
(decreased) by one. This updating can be done collectively by incrementing (decrementing)
excess and maxdegree /mindegree fields of all roots of Forest(T*).

CASE 3. The interval/~[g, r] is contained in the window W[x, y] attached to node z of FIN [_J v*.
This situation may arise while processing the top of a rectangle. In this case, W is split into three
parts [x, ~], [g, r] and Jr, y] with degrees 6, 5 + 1 and 5, respectively. It is easy to show that one
of them will be attached to z; the other two will be attached to two distinct nodes on FL [_J FR.

In the forward pass, the excess fields evaluated in the earlier pass are also propagated along the
search path F~N [.J FL~ FR down the tree. Let v be a node on FrN [.J FL [.J FR, whose successors
are Vl and v2. When v is processed, excess(v) is added to excess and m a x d e g r e e / m i n d e g r e e
fields of vl and v2. The degrees of windows attached to vl and v2, if any, are also incremented
by excess(v) , and then excess(v) is reset to zero.

Backward pass

Once a rectangle is processed in the forward pass, a backward pass is performed starting from
the two leaf nodes ~ and r on FL and FR, respectively, retracing the path up to the root of T
through the f a t h e r pointers. For each node v in FIN U EL U FR, the m a x d e g r e e / m i n d e g r e e
field and the t a r g e t pointer are updated by comparing those of its two children vl and v2.

Report ing the maximum-enclos ing rectangle

We use a global variable c u r r e n t - m a x i m u m that holds the window having the maximum
degree explored so far. To report the rectangle enclosing maximum number of points during
the forward pass while processing the bottom side of each rectangle, we do the following: locate
a node on the search path FIN U FLU FR whose m a x d e g r e e is maximum and find using the
t a r g e t pointer, the window W having the maximum d e g r e e just before updating. If the degree
of W exceeds the current maximum, then c u r r e n t - m a x i m u m is set to W; the y-coordinate
of the bot tom side of the concerned rectangle is also stored. After complete processing, the
window having the maximum degree will be identified; let it be [g, r] and the y-coordinate of the
bot tom of the concerned rectangle be y~. From Lemma 3, this window is contained in Qma×. The
bottom-right corner Cbr of the plate P is now positioned at (r, Yi). In this position, P will enclose
maximum number of points and lie totally within F (see Figure 1).

54 S. C . N A N D Y AND B . B . B H A T T A C H A R Y A

{%

~.-.'~....:~.:.:.~ .~.y.~..+....~.:.:. ~....:.~> ~....'..:~'~:.u~'.}:- .:~.

~::::,:~¥::::.<::

~i~ ~{i:}~i:~

Figure 7. Forbidden zone for the min-enclosure problem.

Reporting the minimum-enclosing rectangle

If the minimum-enclosing rectangle is to be reported, the m i n d e g r e e field is observed at the
time of processing top of each rectangle; if the corner Cbr of the plate P (~ x ~), is placed on
the rightmost point of such a window, it will enclose minimum number of points. As mentioned
earlier, if Cbr is placed in the minimum intersection region, some part of P may lie outside F. The
shaded region in Figure 7 is the forbidden zone for positioning cbr. Thus, the value of mindegree
is observed below the horizontal line y --/3. The windows to the left of the line x -- ~ are ignored,
and the left extremities of the windows that intersect the line x = ~ are set to c~. The rest of the
processing is similar to that of the maximum-enclosing rectangle problem; the only difference is
that the m i n d e g r e e field of a node is set by observing those of its two successors in the backward
pass. Ties, if any, are resolved by setting the target pointer to the rightmost window present
in the subtree T ~. One should stop processing when a window is obtained with d e g r e e zero,
otherwise continue until the floor of F is reached.

The algorithm is given in the Appendix.

2.6. C o m p l e x i t y Ana lys i s

Creation of the skeleton interval tree T requires O(n log n) time. Windows are attached to
the nodes of T dynamically, but at any instant of time, the number of windows present in T is
O(n). Hence, the space complexity of the problem is O(n). The processing of the top or bot tom
of a rectangle requires a forward and a backward traversal of nodes along the paths FIN, FL
and FR whose lengths are bounded by the depth of the interval tree. The updating of degrees
of all windows in the Forest(T*) is done collectively, and hence, can be accomplished in O(log n)
time. Thus, the time complexity of processing a rectangle is O(log n). The total time complexity
of processing all rectangles is O(n log n) for both the max- and min-enclosure problems.

3. O T H E R A P P L I C A T I O N S

3.1. R e c t a n g l e - C o n t a i n m e n t P r o b l e m

The algorithm described earlier for solving point-containment problems can now be easily
extended to the more general problem of maximizing/minimizing the rectangle-containment.
These problems often arise in VLSI module placement, where one has to locate a rectangle of
given size on the chip floor that is maximally or minimally congested. In other words, given a set
of nonoverlapping, isothetic rectangular blocks B1, B 2 , . . . , B~ of arbitrary size on a rectangular
floor F , one has to position an isothetic rectangular plate P of size (~ x ~) on the floor such that

(i) P completely encloses maximum number of blocks (max-enclosure);

(ii) P encloses (completely or partly) minimum number of blocks (min-enclosure).

The plate P should be totally contained within F as before.

A Unified Algorithm 55

3.1.1. T h e m e of the algorithm

If the dimension of any rectangular block B~ exceeds that of P, then P cannot accommodate B~.
So, we can simply disregard it for the max-enclosure problem.

Consider a block B~(a × b) whose top-left corner lie at the point p on the floor F (Figure 8a). Let
us now draw a rectangle of size (a × ~) isothetically, with its top-left corner at p. Let R~ denote
the shaded rectangular area, such that the two end points of its diagonal lie at the bottom-right
corners of B~ and the bigger rectangle. Clearly, P will enclose B~ completely, if and only if the
bottom-right corner of P lies in R~. The shaded area R~ is defined as the prime rectangle for the
block B~.

a

Bi

p

a

(a) (b)
Figure 8. Prime rectangles.

For the min-enclosure problem, we define prime rectangles in a slightly different way. For each
block Bi (a × b), the prime rectangle would be the isothetic rectangle Ri of size ((a + a) × (3 + b)),
whose top-left corner coincides with that of B~. Clearly, P will intersect B~ if and only if the
bottom-right corner of P lies in Ri as shown in Figure 8b.

Once the prime rectangles for all blocks are drawn, the max- / min-enclosure problems become
trivial. The max-enclosure problem can be solved by finding the maximum clique of the rectangle
graph of the prime rectangles. To solve the min-enclosure problem, one has to locate a rectangular
region where minimum number of prime rectangles intersect and a rectangle P of size (a × j3)
can be drawn appropriately such that no part of P goes outside the floor F. Since construction
of all prime rectangles takes O(n) time, the overall complexity for both the problems will still be
O(n log n).

3.2. Polygon-Containment Problem

The polygon-containment problem is the generalization of those discussed in the Section 3.1.
Given n arbitrary polygons on the floor F, place a rectangular plate P isothetically such that

(i) P encloses completely maximum number of polygons, or

(ii) P intersects minimum number of polygons.

The max-enclosure problem for polygons immediately reduces to the rectangle-containment
problem. The plate P encloses a polygon if and only if P encloses the minimum isothetic rectangle
that circumscribes the polygon. Hence, the time complexity of the max-enclosure problem will
be O(N + n log n), where N is the total number of vertices of all the polygons.

The min-enclosure problem for polygons as stated above, cannot be solved using the same
technique. However, for isothetic polygons it can be solved by partitioning each polygon into
disjoint rectangles, and then applying the following modified algorithm for solving the min-
enclosure problem with rectangles in O(N log N) time. For general polygons, the location of P
that encloses completely minimum number of polygons, can be solved easily in O(N + nlog n)
time.

56 S . C . NANDY AND B. B. BHATTACHARYA

Modif ied min-enclosure algori thm for isothetic po lygons

Split each isothetic polygon into a minimum number of disjoint rectangles. Rectangles corre-
sponding to a particular polygon have the same identity. The prime rectangles are drawn for
each component. In the min-enclosure algorithm, when the top of a rectangle R is processed the
degree of a window is increased if the corresponding identity of the polygon has newly appeared
on that window. If more than one rectangle with the same identity as that of R overlap on a
particular window, the count is increased by one but its degree is not incremented. Similarly,
when the bottom of a rectangle R is processed, the degree of a window is decreased by one
only if no rectangle with the same identity as of R is present on that window; otherwise the
count corresponding to that identity is decremented by one. The algorithm terminates with a
window of overall minimum degree. The minimum number of disjoint rectangles covering an
isothetic polygon is linear in the number of edges. Thus, the overall complexity of the algorithm
is O(M log M), where M is the total number of edges of all the polygons on the floor.

4 . M A X - E N C L O S U R E P R O B L E M I N 3 - D S P A C E

Let a set of n points be distributed in a three-dimensional space and a rectangular box of
specified size (length, breadth and height) be given. Our objective is to find the position of the
box that encloses maximum number of points. The problem is a straightforward generalization
of the two-dimensional max-enclosure problem with applications to clustering problem of pattern
recognition, operations research, 3-D graphics etc. The algorithm for finding maximum clique
in a hyper-rectangle intersection graph [13] can be used to solve this problem in O(n 2) time. In
this section, we extend our plane-sweep technique based on interval trees to tackle this problem.
This algorithm gives a better average-case performance.

DEFINITION. A cuboid (rectangular parallelepiped) is a three-dimensional box bounded by six
rectangular faces parallel to the appropriate coordinate axes. The corners of a cuboid C are
represented by C (i'j'k), where i = top(t) or bottom(b), j = north(n) or south(s) and k = east(e)
or west(w).

Assume that a set of n points be distributed in the 3-D space and let II denote the given cuboid
of size (a x/3 × 7). For each point i, 1 <_ i < n, we draw a cuboid Ci of size (a × fl × V) such

(t n w) that the corner C~ ' ' coincides with i. As in the 2-D case, the desired position of 1-i enclosing
maximum number of points can be found by identifying the maximum clique of the intersection
graph of the cuboids C~(1 < i _< n). Furthermore, the intersection region of a clique has the
shape of a cuboid.

4.1. M e t h o d

Our algorithm works in two phases. First we take the projections of all cuboids Ci, 1 < i < n on
the XY-plane, and obtain a set of identical rectangles each of size (a x/~), as shown in Figure 9a.
Then we find the set R* of all maximal cliques of the rectangle intersection graph RG, by suitably
modifying our earlier max-enclosure algorithm. Each clique in R* denotes an intersection region,
from which we choose a representative point Pi (see Figure 9b). Thus, we get a set of points
S = (P1, P 2 , . . . , P~), on the XY-plane, where A is the cardinality of the set R*.

In second phase, we determine the position of the given cuboid H so that it encloses maximum
number of points. This is equivalent to choosing a point (xi, Yi, z~) such that (xi, Yi) E S, and is
enclosed by the largest number of C~'s. We find such a point by constructing a 2-D tree [20] on
the set of points P and then using plane-sweep technique.

A 2-D tree with nodes corresponding to points in S can be constructed as follows. The root
of the tree corresponds to the median of S with respect to x-coordinates of P l , P 2 , . . . , p ~ and
will have two children. The line (parallel to the y-axis) that passes through the median and
partitions the set S into two equal halves, is called the discriminant line. Each of the two sets

A Unified Algorithm 57

Z

*hi P i/, I.U ',
I oin, , ' , ' i

(a) Projections of cuboids on the XY-plane.

Figure 9.

j XY-plane

(b) Any point in the maximal-
intersection region of projected rec-
tangles.

is then subdivided into two equal-sized sets by a discriminant line parallel to the x-axis. This
process is continued till all the sets become singletons or empty (see Figure 10). In addition, each
node of the 2-D tree contains the following fields.

(i) x- and y-coordinates of the point Prn that lies on the discriminant line;

(ii) deg ree of the point p,~ (indicating the number of euboids enclosing Pm at a particular
instant of time during the sweep of the XY-plane); initially, all degrees are set to zero;

(iii) m a x d e g r e e containing the maximum degree among all nodes in the subtree rooted at Pm;

(iv) a pointer t a r g e t pointing to the node having maximum degree in the subtree rooted at Pro;

(v) an excess field, which is used to update degrees of all points in the subtree rooted at Pm
(analogous to the excess field of the nodes in interval tree discussed earlier);

(vi) a pointer f a t h e r pointing to its predecessor node.

We now implement the downward sweep of the XY-plane (see Figure 11). Successive positions
of the plane are determined by z-coordinates of top and bottom sides of the cuboids in nonin-
creasing order. Each time the top (bottom) of a cuboid is processed, the search initiates from
the root of the 2-D tree with the corresponding query rectangle Ri. By using the 2-D tree, one
can now determine the points S ~ in S that are enclosed within Ri. When a top (bottom) side
is processed, degrees of all points in S I are increased (decreased) by one. This updating can be
made collectively (without explicitly reporting each member of S ~, and updating their degrees
individually), by using the excess field as described in the 2-D case. The point whose degree is
currently maximum, can be obtained using m a x d e g r e e and t a r g e t fields. The processing stops
when the sweeping plane reaches the floor. We then observe the point (x~, y~) E S, whose degree
is maximum, and by noting the z-coordinate (zi) where it is attained. The cuboid FI enclosing
maximum number of points can now be determined by coinciding the corner II (b,s'e) with the
point (xi, y~, z0.

4.2. C o m p l e x i t y

All maximal cliques of the rectangle graph RG formed by projections of the cuboids on the
XY-plane, can be obtained in O(A + n log n) time by modifying our algorithm slightly. The 2-D
tree consisting of A representative points can be constructed in O(A log A) time and in O(A) space.

58 S .C . NANDY AND B. B. BHATTACHARYA

discriminant line (median)
/

I P' i p4 I
"P2 I ,p+ I I

- - * - I ' - I I
I I "m I
I "Pll I I "P~
i L~rt__ -
'l'p,o I

P14 "m I I I .
I I d,p.
I I I

(a) (b)

Figure 10. Downward sweep of the XY-plane and updating of degrees of the representative points.

downward sweep of the XY-planc

L 1pl
i P2 I Ps i[P.~

L ,L lp

lp4 l
/ ~P7

Pl 2 ~

Pt3 jp

Figure 11. Downward sweep of the XY-plane and updating of degrees of the representative points.

A Unified Algorithm 59

For processing the top and bot tom face of a cuboid, the search initiates from the root of the
2-D tree. At any node pj on the search path, the discriminant line may or may not intersect the
query rectangle. In the former case, the query rectangle is split into two components, which in
turn, will serve as query rectangles of the two children of pj. In the latter case, the search is
directed to the appropriate child of pj. The search with the current face will terminate when each
of the components of the face is either bounded by exactly four discriminant lines, or reaches a
leaf node. Given a query rectangle, the complexity of such a traversal in a 2-D tree having
leaves is O(v~) . Hence, the total time complexity of the algorithm is O(~ log ~ + nx/~) where

may be O(n 2) in the worst case (Theorem 1). Empirical evidence however, shows that A is
subquadratic in most cases.

5. C O N C L U S I O N

To summarize, this chapter demonstrates a new, unified and easy-to-implement method of
finding maximum- and minimum-point enclosing rectangle in a 2-D plane, in O(n log n) time and
O(n) space. The technique is based on the classical line-sweep paradigm and implemented using
an interval tree as the underlying data structure. The method can easily be extended for solving
the max- or min-enclosure problems amidst a set of rectangular or in general, polygonal obstacles
in a plane. The max-enclosure problem in the 3-D case can also be formulated in this framework,
and an algorithm based on plane-sweep technique is presented. The method works amidst a set
of points, cuboids or polyhedral objects of arbitrary shapes. For the min-enclosure problem in a
3-D environment, an O(n 2) algorithm can be developed similarly. These enclosure problems have
various applications to pattern recognition, VLSI design automation and computer graphics.

A P P E N D I X 7.1

A L G O R I T H M : O P T I M A L - E N C L O S U R E
Input : A set of points distributed in R 2 and a given rectangular plate P of size (a,/3).
Output: The position of the bottom-right corner of P satisfying optimality of the

objective function.
begin

Let R = {R1, R2 , . . . Rn} be the set of isothetic rectangles of size (~, ~) where Ri is
drawn positioning its top-left corner at the i-th point;
Construct a skeleton interval tree (T) with the x-coordinates of the left and
right boundaries of all members in R;
Insert the interval corresponding to the roof of the floor in T with degree zero;
/* Process top and bot tom boundaries of the rectangles in R in proper sequence. */
For each boundary do
Let Ii be the current boundary with horizontal interval [g, r] at height h
beg in

FIN := set of nodes from root to a node v* (fork node) such that 1 < d(v*) < r;
FL := set of nodes from on the path from v* to g;
FR := set of nodes from on the path from v* to r;
i f I is a top boundary then
begin

if problem = rain-enclosure then SET-MIN-DEGRE;

for each node v E FIN do PROCESS-FIN(V);

for each node v E FL do PROCESS-FL(V);

for each node v E FR do PROCESS-FR(v);

end;

if I is a bottom boundary then

60 S . C . NANDY AND B. B. BHATTACHARYA

beg in
f o r each node v • .FIN do PROCESS-FIN(V);
f o r each node v • FL do PROCESS-FL(V);
f o r each node v • FR do Pa0CESS-FR(v);
i f problem = max-enclosure then SET-MAX-DEGRE;

end;
traverse from leaf nodes a and b to the root along the search path to find
the window with maximum degree and to set the max or mindegree fields
and t a r g e t pointers of all the nodes along the search path;

end;
end;

Procedure PROCESS-FIN(V)
begin

propagate excess(v) to the left and right children of v and set excess(v) to 0;
let W[x, y] be the window associated to node v with degree 5;
i f x < ~ < y then split Ix, y] into Ix, ~] and [~, y] with degrees 5 and 5+1 respectively;
i f x < r < y then split [x, y] into [x, r] and [r, y] with degrees 6+1 and 5 respectively;
i f [~, r] • [x, y] then split [x, y] into Ix, g], [g, r] and [r, y] with degrees 5, 5+1 and 5

respectively;
end;

Procedure PROCESS-FL (v)
beg in

propagate excess(v) to the left and right children of v and set excess(v) to 0;
let W[x, y] be the window associated to node v with degree 5;
i f Ix, Y] • [~,r] then
begin

if [g, r] corresponds to the top boundary then increase degree(v) by I;
if [g, r] corresponds to the bottom boundary then decrease degree(v) by I;

end;
i f Ix, y] overlaps [~, r] then split Ix, y] into Ix, ~] and [g, y] with degrees 5 and 5+1

respectively;
i f search path proceeds to the left of v then add (subtract) 1 to (from) the

maxdegree and excess field of its right child depending
on whether [g, r] is a top (bottom) boundary;

end;

Procedure PROCESS-FR(v)
beg in

Similar to processing nodes in FL;
end;
Procedure SET-MIN-DEGREE
beg in

/* let current-minimum contains the minimum degree up to the current
instant of time.
(Pz, py) is a point having minimum degree */

for all nodes on the search path (in FIN, FL and FR) check the mindegree fields;
i f (mindegree < min) then
begin

obtain the window [a, b] having minimum degree using t a r g e t pointer;

A Unified Algorithm 61

i f (b < c~ or h < fl) /* check bounda ry condi t ions*/

t h e n exit e l s e rain := mindegree; (Px,Py) := (b, h);
end;

end;

P r o c e d u r e SET-MAX-DEGREE

begin
t h e p r o c e d u r e is i den t i ca l to S E T - M I N - D E G R E E ; be fo re s e t t i n g (Px,Py) ,

t h e b o u n d a r y c o n d i t i o n s need no t be checked;

end;

R E F E R E N C E S

1. J.L. Bentley and J.H. Friedman, Data structure for range searching, Computing Surveys II, 397-409 (1979).
2. J. Bentley and H.A. Maurer, Efficient worst case data structure for range searching, Acta Informatica 13,

155-168 (1980).
3. G.S. Leuker, A data structure for orthogonal range queries, In Proc. of the 19 th Annual IEEE Symp. on

Foundation of Computer Science, pp. 28-34, (1978).
4. B. Chazelle, R. Cole, F.P. Preparata and C.K. Yap, New upper bounds for neighbor searching, Tech. Rep.

CS-84-11, Brown University, Providence, RI, (1984).
5. B. Chazelle, An improved algorithm for fixed-radius neighbor problem, Information Processing Letters 16,

193-198 (1983).
6. B. Chazelle and H. Edelsbrunner, Optimal solutions for a class of point retrieval problems, Journal of

Symbolic Computations 1, 47-56 (1985).
7. D.T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Transactions on Computers C-31,

478-487 (1982).
8. A. Aggarwal and S. Suri, Fast algorithm for computing the largest empty rectangle, In Proc. 3 rd Annual

A C M Symposium on Computational Geometry, pp. 278-290, (1987).
9. B. Chazelle, Filtering search: A new approach to query-answering, S I A M Journal on Computing 15, 703-724

(1986).
10. B.M. Chazelle and D.T. Lee, On circle placement problem, Computing 36, 1-16 (1986).
11. D.T. Lee and F.P. Preparata, An improved algorithm for the rectangle enclosure problem, Journal of Algo-

rithms 3, 218-224 (1982).
12. H. Imai and T. Asano, Finding the connected components and maximum clique of an intersection graph of

rectangles in the plane, Journal of Algorithms 4, 310-323 (1983).
13. D.T. Lee, Maximum clique problem of rectangle graphs, In Advances in Computing Research, (Edited by

F.P. Preparata), pp. 91-107, JAI Press, (1983).
14. A. Naamacl, D.T. Lee and W.L. Hsu, On the maximum empty rectangle problem, Discrete Applied Mathe-

matics 8, 267-277 (1984).
15. B. Chazelle, R.L. Drysdale and D.T. Lee, Computing the largest empty rectangle, S I A M Journal of Com-

puting 15, 300-315 (1986).
16. M. Orlowski, A new algorithm for the largest empty rectangle problem, Algorithmica 5, 65-73 (1990).
17. S.C. Nandy, B.B. Bhattacharya and S. Ray, Efficient algorithms for identifying all maximal isothetic empty

rectangles in VLSI layout design, In Proc. F S T ~4 TCS - 10, Lecture Notes in Computer Science, Vol. 437,
pp. 255-269, Springer-Verlag, (1990).

18. F.P. Preparata and M.L. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York,
(1985).

19. M.C. Columbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, (1980).
20. J.L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the

A C M 18, 509-517 (1975).
21. H. Edelsbrunner, Dynamic data structure for orthogonal intersection queries, Rep. F59, Tech. Univ. Graz,

Institute for Informationsverarbeitung, (1980).
22. A. Asano, M. Sato and T. Ohtsuki, Computational geometric algorithms, In Layout Design and Verification,

Advances in CAD for VLSL (Edited by T. Ohtsuki), Vol. 4, pp. 295-347, North Holland, (1986).
23. S.C. Nandy, Studies on some geometric algorithms with applications to VLSI, Ph.D. Thesis, Calcutta Uni-

versity, (1994).
24. D.T. Lee and C.K. Wont, Worst-case analysis for region and partial region searches in multidimensional

binary search trees and balanced quad trees, Acta Informatiea 9, 23-29 (1977).

