
~ )  Pergamon 
Computers Math. Applic. Vol. 29, No. 8, pp. 45-61, 1995 

Copyright©1995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0898o1221/95 $9.50 + 0.00 
0898-1221(95)00029-1 

A Unified Algorithm for Finding 
Maximum and Minimum Object Enclosing 

Rectangles and Cuboids 

S. C. NANDY AND B. B. BHATTACHARYA 
Indian Statistical Institute, 203 B. T. Road 

Calcutta - 700 035, India 
bhargab~isical, ernet, in 

(Received July 1993; accepted August 1993) 

A b s t r a c t - - G i v e n  a set of n points in R 2 bounded within a rectangular floor F, and a rectangular 
plate P of specified size, we consider the following two problems: find an isothetic position of P 
such that it encloses (i) maximum and (ii) minimum number of points, keeping P totally contained 
within F. For both of these problems, a new algorithm based on interval tree data structure is 
presented, which runs in O(n log n) time and consumes O(n) space. If polygonal objects of arbitrary 
size and shape are distributed in R 2, the proposed algorithm can be tailored for locating the position 
of the plate to enclose maximum or minimum number of objects with the same time and space com- 
plexity. Finally, the algorithm is extended for identifying a cuboid, i.e., a rectangular parallelepiped 
that encloses maximum number of polyhedral objects in R 3. Thus, the proposed technique serves 
as a unified paradigm for solving a general class of enclosure problems encountered in computational 
geometry and pattern recognition. 

Keywords - -Com pu t a t i ona l  geometry, Range searching, Interval tree, Algorithm, Complexity. 

1. I N T R O D U C T I O N  

Range searching problems of computa t iona l  geometry  have manifold applications to  operat ions  

research, da tabase  management ,  pa t te rn  recognition, robotics, VLSI layout design, to name a few. 

Given a set of points  distr ibuted randomly  on a two-dimensional Euclidean plane (R2), various 

range queries are often asked. Efficient algori thms based on range trees or Voronoi diagram, 
can repor t  the  subset of points contained in a given rectangular  region [1-3], or in a circle [4-6]. 

Chazelle et al. [4] and Lee [7] studied the problem of finding k-nearest  neighbors in a set of  n 

points  in ~2. Aggarwal  et al. [8] proposed an algori thm for finding an isothetic rectangle tha t  
encloses m a x i m u m  number  of  red points bu t  no black point  on a floor. A new approach  to range 

searching called filtering search, was introduced by Chazelle [9] improving the t ime and space 

complexi ty  of all the aforesaid problems. 

A related range searching problem of finding the position of circular disc of given radius en- 
closing max imum  number  of points in ~2 was considered by Chazelle and Lee [10], and an O(n  2) 

a lgor i thm was suggested. A similar problem was to  find the position of a given isothetic rectan- 
gle containing maximum number of points for which an O ( n l o g  2 n) t ime and O(nlogn) space 

a lgor i thm was reported [11]. Later,  an O(nlogn) t ime algori thm was proposed [12] for finding 
the m a x i m u m  clique in the rectangle intersection graph,  which can also be used for the above 
m a x i m u m  enclosure problem in a plane. In a d-dimensional space (d >_ 3), finding the m a x i m u m  
clique in the hyper-rectangle  intersection graph  or equivalently, the max-enclosure problem, can 
be solved in O(n d-l) t ime [13]. 
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A slightly different form of range searching includes the classical maximal-empty-rectangle 
(MER) problem amidst a set of points [8,14-16]. Chazelle et el. [15] and Aggarwal et al. [8] re- 
ported the location of the largest isothetic MER in time O(n log 3 n) and O(n log 2 n), respectively. 
In an interactive VLSI environment, one often requires MER's among a set of solid isothetic rec- 
tangles or polygons instead of points [17]. More often than not, an empty rectangle of desired size 
and shape (aspect ratio) is not available. This leads to the problem of locating a rectangle of given 
area and aspect ratio that encloses minimum number of points or other rectilinear obstructions. 

This paper outlines a unified algorithm based on the well-known line-sweep paradigm utilizing 
an interval tree as the underlying data structure. This is applicable to both the problems of locat- 
ing (i) the maximum- and (ii) the minimum-point enclosing rectangle of given dimension, amidst 
a sea of n points in R 2. The time and space complexities are O(nlogn)  and O(n), respectively. 

The same algorithm works for finding the rectangle enclosing the maximum or minimum number 
of arbitrary polygons. Finally, we consider the problem in a 3-D scenario: to position a rectan- 
gular parallelepiped, i.e., a cuboid of given dimension, maximizing its containment in R 3. This 
problem is of interest to computer graphics, and can be solved using our proposed plane-sweep 
technique. 

The paper is organized as follows. In Section 2, the maximum- and minimum-point containment 
problems in R 2 are formulated and an optimal algorithm is designed. Section 3 outlines the 
possible extensions of the above problems, where the points are replaced by rectangles or in 
general, by simple polygons. Location of a cuboid enclosing maximum number of points or 
objects in R 3, is presented in Section 4. Concluding remarks appear in Section 5. 

2. P O I N T - C O N T A I N M E N T  P R O B L E M  

Let n points be distributed on a rectangular floor F,  whose top-left corner is at (0, 0) and the 
bottom-right corner is at (u, v). A rectangular plate P of size (a × ~3) is given, where a ( <  u) is 
the length and 3(_< v) is the width of P. We now consider the following two problems: 

P1. (Max-enclosure): find an isothetic position of P enclosing maximum number of points in F.  

P2. (Min-enclosure): find an isothetic position of P enclosing minimum number of points such 
that  P is completely contained within F.  

2.1. F o r m u l a t i o n  

The enclosure-problem stated above can be mapped to geometric intersection problems. For 
each point Pi E F,  an isothetic rectangle of size (a × j3) is drawn, such that  its top-left corner 
coincides with p~. Lemmas stated below now follow easily. 

LEMMA 1. A set of isothetic rectangles satisfies Helly property [12], i.e., all the rectangles in 
the set have a common nonempty intersection if" and only if  every pair of rectangles are intersect- 
ing. | 

LEMMA 2. Consider k isothetic rectangles each of size (a x fl), and assume that they have a 
common non-empty intersection region Q, which itself will be of rectangular shape. Let  the 
isothetic rectangle P of size (a x ~) be so placed that its bottom-right corner cbr lies in the 
region Q. Then P encloses the top-left corner of each of the k rectangles. | 

REMARK. Lemmata 1 and 2 suggest that  if n isothetic rectangles each of size (c~ × t3) are drawn as 
above corresponding to n given points, then problem P 1  reduces to locating Qmax, the common 
intersection region of maximum number of rectangles. One solution of the maximum-enclosure 
problem can now be found by coinciding the corner Cbr of P with the bottom-right corner of Q . . . .  . 
If P is positioned like this, no part of P will go outside of F.  Moreover, for every position of Cbr 
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Figure  1. Proof  of L e m m a  1. 

anywhere within Qm~x for which the plate P in contained in F,  maximum enclosure is guaranteed. 
This is illustrated in Figure 1. 

These geometric intersection problems have the following graph-theoretic interpretation. The 
intersection graph of a family of isothetic rectangles is known as a rectangle graph RG(V, E) [12]. 
Each node in V corresponds to a rectangle; two vertices are adjacent in RG if the rectangles 
representing them are intersecting. 

Let V ~ E V be a subset of nodes which constitute a maximum clique in RG. Let R ~ be the set 
of rectangles denoting the nodes in W. If all rectangles are of equal size, then from Lemmas 1 
and 2, it follows that  

Q m a x  : NRtER, Ri. 
Thus, problem P 1  reduces to identifying the maximum clique of RG, or equivalently, the 

common area Qmax formed by the elements of the maximum clique. 

For the problem P2 ,  Qmin, which represents the common intersection region of minimum 
number of rectangles, sometimes plays a similar role, but in addition, one needs to consider other 
subtle factors. In this case, a position for the plate P within F may exist that  does not enclose 
any point at all. Furthermore, one should also ensure that  a rectangle of size (a x/~) whose 
bottom-right corner lies within Qmin, is contained completely within the floor F.  

The fact that  differentiates problem P 2  from P 1  is that  Qmin may not correspond to a minimum 
clique of RG. Figure 2 demonstrates that  the desired position of P is not obtainable from the 
intersection region corresponding to the minimum clique. 
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I ~--_'~_'~ 
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(a) M i n i m u m  clique is of size 3 whereas  the  
solut ion rec tangle  is empty.  

F igure  2. 
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(b) M i n i m u m  clique is of  size 3 bu t  t he  so- 
lut ion rec tangle  encloses two points .  

An O(n logn)  algorithm for finding the maximum clique in a rectangle graph is reported 
earlier [12], which can be used to solve the max-enclosure problem (P1).  However, this algorithm 
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cannot readily be applied for solving the minimum-point enclosing problem (P2).  Here, we 
propose an alternative and easy-to-implement algorithm based on interval tree data  structure [18]. 
This solves both problems in O(n log n) time and O(n) space. Next, the proposed algorithm is 
extended to tackle the general enclosure problems, where polygonal objects are given instead of 
points, or in a three-dimensional environment. 

2.2. Bounds  on the Number  of  Cliques 

The result stated below gives an upper bound on the number of cliques in a rectangle graph. 

THEOREM 1. The toted number of cliques in RG(V, E) can be at most O(n2), where n is the 
number of vertices in the graph. 

PrtOOF. Project  the horizontal span of each rectangle on the X-axis. This creates a set of 
n intervals. Consider the interval graph [19] corresponding to the above family of intervals. The 
total number of (maximal) cliques in an interval graph is at most O(n). Similarly, the total 
number of cliques in the interval graph formed by projecting vertical spans of the rectangles 
on the Y-axis is O(n). Two rectangles intersect if and only if both their X- and Y-projections 
intersect. Thus, there could be at most O(n 2) cliques in RG. | 

We now give an instance where the actual bound is attained. Let n = 4k, for some k. Four 
groups of rectangles are drawn as in Figure 3, each consisting of n/4 rectangles. It is now easy 
to identify n2/16 cliques (shown as shaded regions). 

group 1 

group 2 1  

I I - - ~ m m - -  I 
I l l  

group 3 

group 4 

Figure 3. Example demonstration O(N 2) cliques. 

2.3. The  Proposed Method 

The key idea behind the proposed method is to scan a horizontal sweep-line across the rectan- 

gular floor F from its top to the bottom. Let (Xl, Yl), (x2, Y2),-. . ,  (Xn, Yn) be the n points given 
on F.  For each of these points (xi, Yi), an isothetic rectangle R~ of size (~ x/~) is drawn such that  
its top-left corner coincides with the point. Successive positions of the sweep-line are determined 
by y-coordinates of the points arranged in ascending order. The top and bottom sides of the 
rectangles are processed in increasing order of their y-values as the sweep line progresses; ties, 
if any, are resolved from left to right. This systematic processing of the rectangles is termed as 
proper processing. A rectangle is said to be active if its top boundary has been processed by the 
advancing sweep line, but whose bottom is not yet processed. 

DEFINITION. Two intervals [a, b] and [c, d], a < b, c < d, a < c, are said to be disjoint if c > b; 
they overlap if c < b < d. The interval [a, b] contains the interval [c, d] if a < c < d _< b. Two 
intervals are intersecting if either they overlap or one contains the other. 

DEFINITION. A window is an interval [a,b], 0 < a < b < u, such that  
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(i) a E S, b E S where S denotes the set {O,U, X l ,X2 , . . . , xn , x l  +c~,x2 +(~ , . . . , xn  + a } ;  

(ii) the horizontal span of every active rectangle is either disjoint to or contains the interval 
[a, b]. 

EXAMPLE. Consider a sweep line at height h as in Figure 4. At this instant of time, four 
rectangles are active. The interval [xl, x2] is a window, but [xl, x3] is not, as the latter intersects 

the horizontal span Ix2, x2 + c~] of a currently active rectangle. 

degree 

0 Xz X.~ ~ X 4 Xl+O. X2+{X . . .  U 

Figure 4. A set of active rectangles at height h and the fundamental windows of different degrees. 

REMARK. If k rectangles are active, the horizontal span of the floor F is part i t ioned into 

(2k + 1) windows whose intervals are mutually-disjoint and collectively-exhaustive at tha t  par- 
ticular height. Furthermore,  they are linearly ordered from x = 0 to x = u. Thus, the number  of 

windows at any instant of time, can be at most 2n + 1. 

DEFINITION. A rectangle is said to contain a window [/?, r], if the interval [f, r] is contained within 
the horizontal span of the rectangle. The current degree (~) of a window [6, r] is the number  of 

active rectangles containing the window. 

The  degrees of all windows for the above example are shown in Figure 4. From geometry of 
isothetic rectangles, it is obvious that  the degrees of two adjacent windows differ exactly by one. 

2.3.1.  G e n e r a t i o n  a n d  d i s a p p e a r a n c e  o f  w i n d o w s  

The processing starts  when the horizontal sweep line coincides with the top boundary of the 
floor F.  Subsequent positions of the sweep line are determined by y-coordinates of the top and 
bo t tom sides of the rectangles R~, (i = 1, 2 , . . . ,  n) in ascending order, until it hits the bot tom 
of F.  For simplicity, we assume that  no two points have the same x-coordinate. Also, assume 

tha t  none of the points appears  on the boundary of F. 

The set of windows is updated dynamically. Initially, we have only one window [0, u] corre- 
sponding to the top of F.  Let us denote the horizontal span of R~ by the interval Ii[6, 7"]. When 
the sweep line hits the top(bot tom) of a rectangle Ri, the number of active rectangles increases 

by one; the number of windows increases (decreases) exactly by two or one depending on whether 

or not Ii is contained in [0, u]. 

Let R~ be a new rectangle whose top is currently under processing. The windows tha t  are 

disjoint to I~ will remain as they are, their degrees being unchanged. 

Since all windows at any instant of t ime are mutually disjoint, the following two mutually- 
exclusive and eollectively-ex,~austive cases might occur: 

(i) if one or more windows are contained in Ii, then exactly two other windows must overlap 
with I~. This happens because the set of windows is linearly ordered. The windows tha t  are 
contained, remain same but their degrees are increased by one. Each of the two overlapping 
windows will be split into two smaller windows and their degrees are updated accordingly. 

29:8-E 
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(ii) there exists a window Wj [a, b] which contains Ii. In this case, Wj disappears and three new 
windows [a, g], [g, r] and Jr, b] are generated with degrees ~j, ~j + 1, 6j, respectively, where 
~Sj is the degree of Wj. 

Figure 5 illustrates the processing of the top of a rectangle. 

I set of  windows before processing the top of R 

k:[ : 

I I I I I 

0 a b c  d e f  u 

Figure 5. Processing the top of rectangle Ri. 

set of  windows after processing the top of R 
{ [0, a], [a, b], [b, c], [c, d], [d,e], [e, f], [f, u]} 

When the bottom of Ri is processed, the count of active rectangles decreases by one. Two 

adjacent windows that touch the vertical line x = g, one from the left and the other from the 

right, are merged together to form a single window. Similarly, if r < u, two adjacent windows 

that are separated by the line x = r, are merged together. Their degrees are adjusted accordingly. 

2.3.2. Enc lo su re  p r o b l e m s  a n d  the i r  r e l a t ion  to  windows  

Recall that  problem P1, i.e., recognizing the rectangle enclosing maximum number of points, 
boils down to locating the rectangular region Qmax. Let ~o, q] denote the interval representing 
the horizontal span of Qmax. Now, the following lemma is immediate. 

LEMMA 3. At  some point of time during processing, the interval ~, q] will appear as a window. 
Furthermore, it will have the maximum degree among all the windows generated while processing 
the floor from top to bottom. II 

Similarly, problem P2,  i.e., identifying the rectangle that  encloses minimum number of points, 
can be solved by finding the window [g, r] which satisfies two criteria: 

(i) the rectangle (c~,/3) whose bottom-right corner coincides with (r, y~), is contained within F, 
and 

(ii) the degree of the window [g, r] is minimum, where Yi denotes the y-coordinate of the next 
position of the sweep line. 

To summarize, problem P1 requires identification of the window having the maximum degree. 
In problem P2,  one needs to find a window with minimum degree that  satisfies certain contain- 
ment property. All this information about the windows can be handled very conveniently and 
managed dynamically, using an interval tree as the underlying data structure. 

2.4. D a t a  S t r u c t u r e  

Before describing our technique, we summarize some attributes of an interval tree which is 
used here as a vehicle to guide our search. 

An interval tree (T) is a leaf-oriented balanced binary search tree where the leaf nodes from 
• I I . . .  X r left to right hold distinct x-coordinates (x l, x2, , m}, m < 2n + 2, sorted in ascending order, 

and Vi, 1 < i < m, x~ c S and lies within the interval [0, u], where S = {0, U, Xl,X2 . . . .  ,xn, 
Xl + c~, x2 + c~,.. . ,  xn + c~}. Each internal node w will have the following information: 
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X ! (i) Let T '  be a subtree of T with a set of leaf nodes {x~ ,x~ , . . . ,  m}. The root w of the 

subtree T p has the discriminant 

( Xl ~_ X[m/2]l + 1 )  d(w) = \ [m/2l 
2 

The discriminant value of a leaf node is assumed to be the x-coordinate at tached to it. 

(ii) The left subtree of w is the interval tree with leaf nodes {x~, x~, . .  t ., Xlm/2 j }, and the right 
X t subtree is the interval tree with leaf nodes { [ ,~ /2J+1, ' " ,  x~}.  

(iii) A secondary list (w.L) of nodes with three fields L.g, L.r and L.h, sorted in increasing 
order with respect to L.h, is attached to each node w of T in the form of a doubly-linked 

list with an additional forward link from w to the last node in the list. 

Once the skeletal interval tree T is created, it is used to manage the database of windows. As 
the sweep line is moved, windows appear  and disappear dynamically. When a new window [g, r] 
appears,  it is inserted in T. To do this, a top-down scan is made start ing from the root w of T 
until it finds a node z satisfying the condition e < d(z) < r, for the first time. The window [g, r] 

is a t tached to a node z which must be an internal node of T. This follows from the fact tha t  the 
left (g) and right (r) extremities of each window and the discriminants of all leaf nodes belong 

to the set S; the discriminant values of all internal nodes are distinct from the members  of the 

set S. Thus, a unique node z with such a strict inequality can always be found. Similarly, when 
a window disappears, it is deleted from the interval tree. 

LEMMA 4. At any instant of time, the windows are associated to different internal nodes of the 
interval tree, each node carrying at  most one window. 

PROOF. Prom the earlier discussion, it is clear that  a window will be attached to a unique internal 
node in T. A floor scenario tha t  contributes m leaf nodes in the interval tree can cause at most 
m - 1 windows at any instant; the number of internal nodes of T will also be m - 1. The windows 

are mutually disjoint and linearly ordered. As the discriminant values of all internal nodes are 

distinct from the members  of the set S, the rest is obvious. | 

To implement our algorithm, we need to associate the following secondary information with 
each internal node z of the interval tree T: 

(i) the w i n d o w  associated to the node and its degree ;  

(ii) a field m a x d e g r e e / m i n d e g r e e  containing the max imum/min imum degree among all win- 

dows in the subtree T r rooted at z; 

(iii) a pointer t a r g e t  pointing to the node whose associated window is of m a x i m u m / m i n i m u m  

degree in the subtree T/; in the case of a tie, 
(a) choose one arbitrarily for maximum enclosure problem and 

(b) choose the rightmost minimum for minimum enclosure problem; 

(iv) a field exce s s  that  is used to update  degrees of the windows in T~; 

(v) a pointer f a t h e r  pointing to its predecessor node in T. 

2.5. T h e m e  o f  t h e  A l g o r i t h m  

The processing starts  inserting the window [0, u] corresponding to the top of the floor in T. 
The m a x d e g r e e ( m i n d e g r e e )  and exces s  fields of all internal nodes of T are set to zero. The 
t a r g e t  pointers axe set to null. The top and bot tom sides of all rectangles are then processed in 

proper sequence as s tated earlier. 
When the top (bot tom) of a rectangle Ri whose horizontal span is the interval !i[~,r], is 

processed, windows appear  (disappear). To determine this, one needs to find the set of windows 
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tha t  intersect the interval It, r]. The interval tree T is traversed from the root to find the first 
node v*, whose discriminant falls in the interval Ii[g, r]. Let FIN be the path  from the root 
to the node preceding v*. Let FL (FR) be the path from v* to the leaf node ~ (r) as shown in 
Figure 6. Let T* denote the subtree rooted at v* and bounded by FL and FR, both inclusive. Let 
Forest(T*) denote the forest whose components are subtrees of T* and whose roots are immediate 
successors of nodes on FL or FR; in other words, Forest(T*) = T* \ (FL [J FR). The results stated 
in the following theorem are used later in our algorithm. 

\ 

Figure 6. Search paths in the interval tree. 

THEOREM 2. 

(i) The windows that intersect the interval Ii must be attached to the nodes in FIN, and the 

nodes in T* ; 
(ii) the windows (at most two) that overlap the interval Ii must be attached to the nodes lying 

on the paths FIN, FL, or FR; 
(iii) let z be any node in Forest(T*); then the window attached to z is contained in the interval I~, 

and every window that is contained in I~, must be attached to some nodes o fT*;  
(iv) if  the interval Ii is contained in a window, it cannot intersect any other window at that 

instant of time. The window that contains Ii must be attached to a node in FIN [3 v*. This 
case can only arise while processing the top of a rectangle. 

PROOF. Follows from the properties of an interval tree and the nature of windows. | 

For processing the top or bot tom of each rectangle, one needs two passes. In the forward 
pass, search begins from the root of T, and explores FIN, FL and FR. For each node in the 
search path, the excess  field (as observed in the earlier pass), is propagated down to its two 
children, and then reset to zero. Concurrently, the insertion and deletion of windows, updat ing 
of their degrees and excess  fields, are accomplished in this pass. The backward pass starts  
from the two leaf nodes of FL and FR, and continues until the root of T is reached. The final 
updat ing of m a x d e g r e e / m i n d e g r e e  and t a r g e t  pointers is done in this pass, with subsequent 
announcement of results. 
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Forward pass 

Three cases may arise during the forward pass. 

CASE 1. Let the window W[x, y] overlap with I~[g, r] such that  x < g < y. Clearly, W will be 
attached to a node on FIN or FL. Let the degree of W be 5. When the top of the rectangle R~ 
is processed, the window W is split into two windows [x, el and [~, y] with degrees 5 and 5 + 1, 
respectively. Similarly, when W overlaps with Ii[g,r] such that  g < y < r, then it must be 
attached to some node on FIN or FR, and a similar action is taken. When the bot tom of a 
rectangle is processed, at most two pairs of adjacent windows are obtained; one from the nodes 

in FIN U ~'L and the other from a node in FIN U FR, whose common endpoints are g and r, 
respectively. Each pair is merged to form a single window and inserted in the interval tree. The 
degrees of the new windows are updated accordingly. 

CASE 2. The window W[z, y] is contained in the interval Ii[g, r]. We go down along the search 
path FL as well as FR to check this. In this case, the degree of W is increased (decreased) by one 
as the top (bottom) of the rectangle is processed. Next, all windows present in Forest(T*) must 
be contained in Ii[g, r] as observed earlier. The degrees of all such windows will be increased 
(decreased) by one. This updating can be done collectively by incrementing (decrementing) 
excess  and maxdegree /mindegree  fields of all roots of Forest(T*). 

CASE 3. The interval/~[g, r] is contained in the window W[x, y] attached to node z of FIN [_J v*. 
This situation may arise while processing the top of a rectangle. In this case, W is split into three 
parts [x, ~], [g, r] and Jr, y] with degrees 6, 5 + 1 and 5, respectively. It is easy to show that  one 
of them will be attached to z; the other two will be attached to two distinct nodes on FL [_J FR. 

In the forward pass, the excess  fields evaluated in the earlier pass are also propagated along the 
search path F~N [.J FL~ FR down the tree. Let v be a node on FrN [.J FL [.J FR, whose successors 
are Vl and v2. When v is processed, excess(v)  is added to excess  and m a x d e g r e e / m i n d e g r e e  
fields of vl and v2. The degrees of windows attached to vl and v2, if any, are also incremented 
by excess(v) ,  and then excess(v)  is reset to zero. 

Backward pass 

Once a rectangle is processed in the forward pass, a backward pass is performed starting from 
the two leaf nodes ~ and r on FL and FR, respectively, retracing the path up to the root of T 
through the f a t h e r  pointers. For each node v in FIN U EL U FR, the m a x d e g r e e / m i n d e g r e e  
field and the t a r g e t  pointer are updated by comparing those of its two children vl and v2. 

Report ing  the maximum-enclos ing rectangle 

We use a global variable c u r r e n t - m a x i m u m  that  holds the window having the maximum 
degree explored so far. To report the rectangle enclosing maximum number of points during 
the forward pass while processing the bottom side of each rectangle, we do the following: locate 
a node on the search path FIN U FLU FR whose m a x d e g r e e  is maximum and find using the 
t a r g e t  pointer, the window W having the maximum d e g r e e  just before updating. If the degree 
of W exceeds the current maximum, then c u r r e n t - m a x i m u m  is set to W; the y-coordinate 
of the bot tom side of the concerned rectangle is also stored. After complete processing, the 
window having the maximum degree will be identified; let it be [g, r] and the y-coordinate of the 
bot tom of the concerned rectangle be y~. From Lemma 3, this window is contained in Qma×. The 
bottom-right corner Cbr of the plate P is now positioned at (r, Yi). In this position, P will enclose 
maximum number of points and lie totally within F (see Figure 1). 
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Figure 7. Forbidden zone for the min-enclosure problem. 

Reporting the minimum-enclosing rectangle 

If the minimum-enclosing rectangle is to be reported, the m i n d e g r e e  field is observed at the 
time of processing top of each rectangle; if the corner Cbr of the plate P ( ~  x ~), is placed on 
the rightmost point of such a window, it will enclose minimum number of points. As mentioned 
earlier, if Cbr is placed in the minimum intersection region, some part of P may lie outside F.  The 
shaded region in Figure 7 is the forbidden zone for positioning cbr. Thus, the value of mindegree 
is observed below the horizontal line y --/3. The windows to the left of the line x -- ~ are ignored, 
and the left extremities of the windows that  intersect the line x = ~ are set to c~. The rest of the 
processing is similar to that  of the maximum-enclosing rectangle problem; the only difference is 
that  the m i n d e g r e e  field of a node is set by observing those of its two successors in the backward 
pass. Ties, if any, are resolved by setting the target pointer to the rightmost window present 
in the subtree T ~. One should stop processing when a window is obtained with d e g r e e  zero, 
otherwise continue until the floor of F is reached. 

The algorithm is given in the Appendix. 

2.6. C o m p l e x i t y  Ana lys i s  

Creation of the skeleton interval tree T requires O(n log n) time. Windows are attached to 
the nodes of T dynamically, but at any instant of time, the number of windows present in T is 
O(n). Hence, the space complexity of the problem is O(n). The processing of the top or bot tom 
of a rectangle requires a forward and a backward traversal of nodes along the paths FIN, FL 
and FR whose lengths are bounded by the depth of the interval tree. The updating of degrees 
of all windows in the Forest(T*) is done collectively, and hence, can be accomplished in O(log n) 
time. Thus, the time complexity of processing a rectangle is O(log n). The total time complexity 
of processing all rectangles is O(n log n) for both the max- and min-enclosure problems. 

3.  O T H E R  A P P L I C A T I O N S  

3.1. R e c t a n g l e - C o n t a i n m e n t  P r o b l e m  

The algorithm described earlier for solving point-containment problems can now be easily 
extended to the more general problem of maximizing/minimizing the rectangle-containment. 
These problems often arise in VLSI module placement, where one has to locate a rectangle of 
given size on the chip floor that  is maximally or minimally congested. In other words, given a set 
of nonoverlapping, isothetic rectangular blocks B1, B 2 , . . . ,  B~ of arbitrary size on a rectangular 
floor F ,  one has to position an isothetic rectangular plate P of size (~ x ~) on the floor such that  

(i) P completely encloses maximum number of blocks (max-enclosure); 

(ii) P encloses (completely or partly) minimum number of blocks (min-enclosure). 

The plate P should be totally contained within F as before. 
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3.1.1. T h e m e  of  the algorithm 

If the dimension of any rectangular block B~ exceeds that of P, then P cannot accommodate B~. 
So, we can simply disregard it for the max-enclosure problem. 

Consider a block B~(a × b) whose top-left corner lie at the point p on the floor F (Figure 8a). Let 
us now draw a rectangle of size (a × ~) isothetically, with its top-left corner at p. Let R~ denote 
the shaded rectangular area, such that the two end points of its diagonal lie at the bottom-right 
corners of B~ and the bigger rectangle. Clearly, P will enclose B~ completely, if and only if the 
bottom-right corner of P lies in R~. The shaded area R~ is defined as the prime rectangle for the 
block B~. 

a 

Bi 

p 

a 

(a) (b) 
Figure 8. Prime rectangles. 

For the min-enclosure problem, we define prime rectangles in a slightly different way. For each 
block Bi (a × b), the prime rectangle would be the isothetic rectangle Ri of size ((a + a) × (3 + b)), 
whose top-left corner coincides with that of B~. Clearly, P will intersect B~ if and only if the 
bottom-right corner of P lies in Ri as shown in Figure 8b. 

Once the prime rectangles for all blocks are drawn, the max- / min-enclosure problems become 
trivial. The max-enclosure problem can be solved by finding the maximum clique of the rectangle 
graph of the prime rectangles. To solve the min-enclosure problem, one has to locate a rectangular 
region where minimum number of prime rectangles intersect and a rectangle P of size (a × j3) 
can be drawn appropriately such that no part of P goes outside the floor F. Since construction 
of all prime rectangles takes O(n) time, the overall complexity for both the problems will still be 
O(n log n). 

3.2. Polygon-Containment  Problem 

The polygon-containment problem is the generalization of those discussed in the Section 3.1. 
Given n arbitrary polygons on the floor F, place a rectangular plate P isothetically such that 

(i) P encloses completely maximum number of polygons, or 

(ii) P intersects minimum number of polygons. 

The max-enclosure problem for polygons immediately reduces to the rectangle-containment 
problem. The plate P encloses a polygon if and only if P encloses the minimum isothetic rectangle 
that circumscribes the polygon. Hence, the time complexity of the max-enclosure problem will 
be O(N + n log n), where N is the total number of vertices of all the polygons. 

The min-enclosure problem for polygons as stated above, cannot be solved using the same 
technique. However, for isothetic polygons it can be solved by partitioning each polygon into 
disjoint rectangles, and then applying the following modified algorithm for solving the min- 
enclosure problem with rectangles in O(N log N) time. For general polygons, the location of P 
that encloses completely minimum number of polygons, can be solved easily in O(N + nlog n) 
time. 
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Modif ied min-enclosure  algori thm for isothetic  po lygons  

Split each isothetic polygon into a minimum number of disjoint rectangles. Rectangles corre- 
sponding to a particular polygon have the same identity. The prime rectangles are drawn for 
each component. In the min-enclosure algorithm, when the top of a rectangle R is processed the 
degree of a window is increased if the corresponding identity of the polygon has newly appeared 
on that  window. If more than one rectangle with the same identity as that  of R overlap on a 
particular window, the count is increased by one but its degree is not incremented. Similarly, 
when the bottom of a rectangle R is processed, the degree of a window is decreased by one 
only if no rectangle with the same identity as of R is present on that  window; otherwise the 
count corresponding to that  identity is decremented by one. The algorithm terminates with a 
window of overall minimum degree. The minimum number of disjoint rectangles covering an 
isothetic polygon is linear in the number of edges. Thus, the overall complexity of the algorithm 
is O(M log M),  where M is the total number of edges of all the polygons on the floor. 

4 .  M A X - E N C L O S U R E  P R O B L E M  I N  3 - D  S P A C E  

Let a set of n points be distributed in a three-dimensional space and a rectangular box of 
specified size (length, breadth and height) be given. Our objective is to find the position of the 
box that  encloses maximum number of points. The problem is a straightforward generalization 
of the two-dimensional max-enclosure problem with applications to clustering problem of pattern 
recognition, operations research, 3-D graphics etc. The algorithm for finding maximum clique 
in a hyper-rectangle intersection graph [13] can be used to solve this problem in O(n 2) time. In 
this section, we extend our plane-sweep technique based on interval trees to tackle this problem. 
This algorithm gives a better average-case performance. 

DEFINITION. A cuboid (rectangular parallelepiped) is a three-dimensional box bounded by six 
rectangular faces parallel to the appropriate coordinate axes. The corners of a cuboid C are 
represented by C (i'j'k), where i = top(t) or bottom(b),  j = north(n) or south(s) and k = east(e) 
or west(w). 

Assume that  a set of n points be distributed in the 3-D space and let II denote the given cuboid 
of size (a x/3 × 7). For each point i, 1 <_ i < n, we draw a cuboid Ci of size (a × fl × V) such 

(t n w)  that  the corner C~ ' ' coincides with i. As in the 2-D case, the desired position of 1-i enclosing 
maximum number of points can be found by identifying the maximum clique of the intersection 
graph of the cuboids C~(1 < i _< n). Furthermore, the intersection region of a clique has the 
shape of a cuboid. 

4.1. M e t h o d  

Our algorithm works in two phases. First we take the projections of all cuboids Ci, 1 < i < n on 
the XY-plane, and obtain a set of identical rectangles each of size (a x/~), as shown in Figure 9a. 
Then we find the set R* of all maximal cliques of the rectangle intersection graph RG, by suitably 
modifying our earlier max-enclosure algorithm. Each clique in R* denotes an intersection region, 
from which we choose a representative point Pi (see Figure 9b). Thus, we get a set of points 
S = (P1, P 2 , . . . ,  P~), on the XY-plane, where A is the cardinality of the set R*. 

In second phase, we determine the position of the given cuboid H so that  it encloses maximum 
number of points. This is equivalent to choosing a point (xi, Yi, z~) such that  (xi, Yi) E S, and is 
enclosed by the largest number of C~'s. We find such a point by constructing a 2-D tree [20] on 
the set of points P and then using plane-sweep technique. 

A 2-D tree with nodes corresponding to points in S can be constructed as follows. The root 
of the tree corresponds to the median of S with respect to x-coordinates of P l , P 2 , . . . , p ~  and 
will have two children. The line (parallel to the y-axis) that  passes through the median and 
partitions the set S into two equal halves, is called the discriminant line. Each of the two sets 
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(a) Projections of cuboids on the XY-plane. 
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is then subdivided into two equal-sized sets by a discriminant line parallel to the x-axis. This 
process is continued till all the sets become singletons or empty (see Figure 10). In addition, each 
node of the 2-D tree contains the following fields. 

(i) x- and y-coordinates of the point Prn that lies on the discriminant line; 

(ii) deg ree  of the point p,~ (indicating the number of euboids enclosing Pm at a particular 
instant of time during the sweep of the XY-plane); initially, all degrees are set to zero; 

(iii) m a x d e g r e e  containing the maximum degree among all nodes in the subtree rooted at Pm; 

(iv) a pointer t a r g e t  pointing to the node having maximum degree in the subtree rooted at Pro; 

(v) an excess  field, which is used to update degrees of all points in the subtree rooted at Pm 
(analogous to the excess  field of the nodes in interval tree discussed earlier); 

(vi) a pointer f a t h e r  pointing to its predecessor node. 

We now implement the downward sweep of the XY-plane (see Figure 11). Successive positions 
of the plane are determined by z-coordinates of top and bottom sides of the cuboids in nonin- 
creasing order. Each time the top (bottom) of a cuboid is processed, the search initiates from 
the root of the 2-D tree with the corresponding query rectangle Ri. By using the 2-D tree, one 
can now determine the points S ~ in S that  are enclosed within Ri. When a top (bottom) side 
is processed, degrees of all points in S I are increased (decreased) by one. This updating can be 
made collectively (without explicitly reporting each member of S ~, and updating their degrees 
individually), by using the excess  field as described in the 2-D case. The point whose degree is 
currently maximum, can be obtained using m a x d e g r e e  and t a r g e t  fields. The processing stops 
when the sweeping plane reaches the floor. We then observe the point (x~, y~) E S, whose degree 
is maximum, and by noting the z-coordinate (zi) where it is attained. The cuboid FI enclosing 
maximum number of points can now be determined by coinciding the corner II (b,s'e) with the 
point (xi, y~, z0. 

4.2. C o m p l e x i t y  

All maximal cliques of the rectangle graph RG formed by projections of the cuboids on the 
XY-plane, can be obtained in O(A + n log n) time by modifying our algorithm slightly. The 2-D 
tree consisting of A representative points can be constructed in O(A log A) time and in O(A) space. 
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Figure 10. Downward sweep of the XY-plane and updating of degrees of the representative points. 
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Figure 11. Downward sweep of the XY-plane and updating of degrees of the representative points. 



A Unified Algorithm 59 

For processing the top and bot tom face of a cuboid, the search initiates from the root of the 
2-D tree. At any node pj on the search path, the discriminant line may or may not intersect the 
query rectangle. In the former case, the query rectangle is split into two components, which in 
turn, will serve as query rectangles of the two children of pj. In the latter case, the search is 
directed to the appropriate child of pj. The search with the current face will terminate when each 
of the components of the face is either bounded by exactly four discriminant lines, or reaches a 
leaf node. Given a query rectangle, the complexity of such a traversal in a 2-D tree having 
leaves is O(v~) .  Hence, the total time complexity of the algorithm is O(~ log ~ + nx/~) where 

may be O(n 2) in the worst case (Theorem 1). Empirical evidence however, shows that  A is 
subquadratic in most cases. 

5. C O N C L U S I O N  

To summarize, this chapter demonstrates a new, unified and easy-to-implement method of 
finding maximum- and minimum-point enclosing rectangle in a 2-D plane, in O(n log n) time and 
O(n) space. The technique is based on the classical line-sweep paradigm and implemented using 
an interval tree as the underlying data  structure. The method can easily be extended for solving 
the max- or min-enclosure problems amidst a set of rectangular or in general, polygonal obstacles 
in a plane. The max-enclosure problem in the 3-D case can also be formulated in this framework, 
and an algorithm based on plane-sweep technique is presented. The method works amidst a set 
of points, cuboids or polyhedral objects of arbitrary shapes. For the min-enclosure problem in a 
3-D environment, an O(n 2) algorithm can be developed similarly. These enclosure problems have 
various applications to pattern recognition, VLSI design automation and computer graphics. 

A P P E N D I X  7.1 

A L G O R I T H M  : O P T I M A L - E N C L O S U R E  
Input  : A set of points distributed in R 2 and a given rectangular plate P of size (a,/3). 
Output:  The position of the bottom-right corner of P satisfying optimality of the 

objective function. 
begin 

Let R = {R1, R2 , . . .  Rn} be the set of isothetic rectangles of size (~, ~) where Ri is 
drawn positioning its top-left corner at the i-th point; 
Construct  a skeleton interval tree (T) with the x-coordinates of the left and 
right boundaries of all members in R; 
Insert the interval corresponding to the roof of the floor in T with degree zero; 
/* Process top and bot tom boundaries of the rectangles in R in proper sequence. */  
For each boundary do 
Let Ii be the current boundary with horizontal interval [g, r] at height h 
beg in  

FIN := set of nodes from root to a node v* (fork node) such that  1 < d(v*) < r; 
FL := set of nodes from on the path from v* to g; 
FR := set of nodes from on the path from v* to r; 
i f  I is a top boundary then  
begin 

if problem = rain-enclosure then SET-MIN-DEGRE; 

for each node v E FIN do PROCESS-FIN(V); 

for each node v E FL do PROCESS-FL(V); 

for each node v E FR do PROCESS-FR(v); 

end; 

if I is a bottom boundary then 
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beg in  
f o r  each node v • .FIN do PROCESS-FIN(V); 
f o r  each node v • FL do PROCESS-FL(V); 
f o r  each node v • FR do Pa0CESS-FR(v); 
i f  problem = max-enclosure then SET-MAX-DEGRE; 

end; 
traverse from leaf nodes a and b to the root along the search path to find 
the window with maximum degree and to set the max or mindegree fields 
and t a r g e t  pointers of all the nodes along the search path; 

end; 
end; 

Procedure PROCESS-FIN(V) 
begin 

propagate excess(v)  to the left and right children of v and set excess(v)  to 0; 
let W[x, y] be the window associated to node v with degree  5; 
i f  x < ~ < y then split Ix, y] into Ix, ~] and [~, y] with degrees  5 and 5+1 respectively; 
i f  x < r < y then split [x, y] into [x, r] and [r, y] with degrees  6+1 and 5 respectively; 
i f  [~, r] • [x, y] then split [x, y] into Ix, g], [g, r] and [r, y] with degrees  5, 5+1 and 5 

respectively; 
end; 

Procedure PROCESS-FL (v) 
beg in  

propagate excess(v)  to the left and right children of v and set excess(v)  to 0; 
let W[x, y] be the window associated to node v with degree  5; 
i f  Ix, Y] • [~,r] then 
begin 

if [g, r] corresponds to the top boundary then increase degree(v) by I; 
if [g, r] corresponds to the bottom boundary then decrease degree(v) by I; 

end; 
i f  Ix, y] overlaps [~, r] then split Ix, y] into Ix, ~] and [g, y] with degrees  5 and 5+1 

respectively; 
i f  search path proceeds to the left of v then add (subtract) 1 to (from) the 

maxdegree and excess  field of its right child depending 
on whether [g, r] is a top (bottom) boundary; 

end; 

Procedure PROCESS-FR( v ) 
beg in  

Similar to processing nodes in FL; 
end; 
Procedure SET-MIN-DEGREE 
beg in  

/* let current-minimum contains the minimum degree up to the current 
instant of time. 
(Pz, py) is a point having minimum degree */ 

for all nodes on the search path (in FIN, FL and FR) check the mindegree fields; 
i f  (mindegree < min) then 
begin 

obtain the window [a, b] having minimum degree using t a r g e t  pointer; 
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i f  (b < c~ or h < fl) /*  check bounda ry  condi t ions*/  

t h e n  exit  e l s e  rain := mindegree; (Px,Py) := (b, h); 
end;  

end;  

P r o c e d u r e  SET-MAX-DEGREE 

begin 
t h e  p r o c e d u r e  is i den t i ca l  to  S E T - M I N - D E G R E E ;  be fo re  s e t t i n g  (Px,Py) ,  

t h e  b o u n d a r y  c o n d i t i o n s  need  no t  be  checked;  

end; 
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