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Abstract--In practice, processing times can be more accurately represented as intervals with the most 
probable completion time somewhere near the middle of the interval. A fuzzy number which is essentially 
a generalized interval can represent this processing time interval exactly and naturally. In this work, 
triangular and trapezoidal fuzzy numbers are used to represent those vague job processing times in job 
shop production systems. The job sequencing algorithms of Johnson and Ignall and Schrage are modified 
to accept fuzzy job processing times. Fuzzy makespans and fuzzy mean flow times are then calculated 
for greater decision-making information. Numerous examples are used to illustrate the approach. 

I N T R O D U C T I O N  

In the literature dealing with job sequencing problems, the processing time is assumed to be known 
exactly. However, in practical situations, this is seldom the case. In general, the processing time 
can only be estimated as within a certain interval. The particular characteristics of this processing 
time interval can be exactly represented by a fuzzy number. Thus, fuzzy set theory is ideally suited 
for solving job sequencing problems. 

One of the problems in using fuzzy set theory to solve job sequencing problems is that fuzzy 
numbers only form partial order and thus comparison of fuzzy numbers to obtain a total or linear 
order can be a problem. However, several effective comparison methods have been developed 
recently [1-4]. By the use of these ranking methods, the job sequencing problems with fuzzy 
processing times can be solved effectively. 

One of the advantages in using fuzzy numbers for job sequencing is that the processing time can 
be represented realistically and naturally there is no need to force the manager to give a precise 
single number. Furthermore, useful information is retained throughout the manipulation. This 
detailed information can be used by the decision maker for sensitivity analysis and other purposes. 

Prade [5, 6], Dubois and Prade [7] and Dumitru and Luban [8] have applied fuzzy set theory to 
the n job, M machine sequencing problem. Dubois and Prade incorporate fuzzy processing times 
into the deterministic scheduling algorithm developed by Erschler et al. [9]. The number of 
machines per operation per job and the earliest start time and latest finish times for each job remain 
deterministic, however. Furthermore, only some threshold values were used to perform the 
comparisons. The use of threshold values for comparing fuzzy numbers does not exactly 
correspond to the use of the extension principle. Dumitru and Luban [8] extended their job 
sequencing problem which was formulated as a mathematical programming problem [10] into a 
mathematical programming problem with fuzzy membership functions and fuzzy constraints. 

As can be seen, both of the above approaches are fairly limited in scope. In the present 
investigation, a very general approach based on the recent development in ranking fuzzy numbers 
is presented. 

F U Z Z Y  N U M B E R S  

In this work, only triangular fuzzy numbers (TFN) and trapezoidal fuzzy numbers (TrFN) are 
used to represent the fuzzy processing times. Although general fuzzy numbers can be used to 
represent this processing time, the increase in computational effort by the use of a general fuzzy 
number is tremendous. Furthermore, since the fuzzy processing time is only an approximate 
estimate, it is difficult, if not impossible, to estimate a general fuzzy number representation of this 
processing time. 

The TFN and TrFN will be represented by (a, b, c) and (a, b, c, d), respectively. The membership 
function is 1 or maximum at b for TFN and at b - c  for TrFN. This membership function becomes 
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zero at the two end points which are a and c for the TFN and a and d for the TrFN. These numbers 
are illustrated in Fig. 1, where p(x) is the membership function and x is the processing time. It 
should be emphasized that a fuzzy number is essentially a generalized “interval” used frequently 
in engineering applications. In fact, by the use of a-cuts, fuzzy numbers can be represented by a 
sequence of intervals. 

TFN can represent the estimated processing time naturally. For example, a manager may say 
that the processing time for Job A is generally b min. But, due to other factors which cannot be 
controlled, the processing time may be occasionally as slow as c min or as fast as a min. This result 
is naturally a TFN fuzzy number. TrFN allows more flexibility in this estimated processing time. 
Insteady of generally finishing Job A in b min, TrFN says that Job A is generally finished in 
b-c min. 

The manipulation of fuzzy numbers and the definition of a general fuzzy number are discussed 
in detail in the literature [l 13. For the present purpose, only the manipulations of TNF and TrFN 
are needed. 

Only makespan (M) and mean flow time (MFT) are used as the performance criteria in this work. 
The fuzzy makespan can be expressed as 

A = max C;, (1) 

where the symbol “ _ ” indicates fuzzy and ci is the fuzzy completion time of job i. The fuzzy mean 
flow time can be calculated as: 

where C& is the fuzzy waiting time and Pi is the fuzzy processing time for job i, n is the 
number of jobs to be processed, (+) indicates fuzzy addition, and (+)y=, indicates fuzzy 
summation. 

n JOBS, ONE WORKSTATION 

The simplest job sequencing problem is to route all jobs through a single identical workstation. 
The optimal sequence is defined as the sequence which minimizes MFT. It has been proven that 
the use of the shortest processing time (SPT) sequencing rule guarantees the optimal sequence. 

When the processing times are fuzzy, all that must be done is a comparison of the fuzzy 
processing times. Here, the Lee-Li [3] method is used. The following examples illustrate the 
approach: 

Example I Example 2 
TFN TrFN 

Job processing time processing time 

I (3,7,9) (3,4,& 9) 
2 (5.6, 8) (536, 778) 
3 (7,X, 9) (7,7.5,8,9) 
4 (4,5,8) (4,5,6,8) 

(a) (b) 
1 l- 

x 
Y 

3 -L.LL 9 3 

a b c cl b c d 

X X 

Fig. 1. (a) Triangular fuzzy number; (b) trapezoidal fuzzy number. 
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To use the Lee-Li method, the generalized mean value (GMVs) of the fuzzy numbers is first 
calculated. For a TFN with a uniform density the GMV is calculated as 

m(.4) = ~(a + b + c), (3) 

where/T represents the fuzzy number .4 and the GMV for a TrFN with a uniform density is 

fsX#,t (x ) dx 

m(A ) - fs#,t(x----~) d-~x , (4) 

where S represents the support of the fuzzy number and #,T(x) represents the membership function 
value of x in the support of fuzzy number ,4. 

The generalized mean values of the processing times of Examples 1 and 2 are: 

Job Example I Example 2 

1 6.3 6.0 
2 6.3 6.5 
3 8.0 7.9 
4 5.7 5.8 

Note that jobs 1 and 2 with triangular processing times have the same GMVs. To "break the 
tie," the spread, s(A), is calculated for each fuzzy number and the one with the smaller spread is 
judged the smaller. The calculation of the spread of a triangular fuzzy number with a uniform 
density function is: 

S ( A )  = ~ s a  2 + b 2 q- c 2 - ab - ac - be). (5) 

For jobs 1 and 2, Example 1, we have: 

s(J1) = 1.56, s(J2) = 0.39. 

Therefore, the smallest to the largest fuzzy numbers are 4, 2, 1, 3, and the corresponding job 
sequence with triangular processing times is 4, 2, 1, 3. 

If the spread of a trapezoidal fuzzy number with uniform density was of interest, it could be 
calculated by: 

=[fs x21~'t(x)dx 1 ~/2. L. d [m (A)] 2 (6) 

Note that the smallest to largest ranking of the jobs for the trapezoidal processing times yields 
a different sequence: 4, 1, 2, 3. 

Performance criteria 
The fuzzy makespans of the triangular and trapezoidal cases are simply the sum of all the fuzzy 

job processing times in the one workstation case and are 
Example 1: IVI = (19, 26, 34). 
Example 2: IVl = (19, 22.5, 29, 34). 

The fuzzy mean flow times or Mi~Ts are calculated using equation (2). For the triangular and 
trapezoidal fuzzy processing time cases, the MI~Ts are 

Example 1: Mi~T = (11, 15, 20.75). 
Example 2: M~'T = (10.5, 12.9, 17.5, 21). 

If the problem were solved in a deterministic fashion using the modes (or b values) of the 
triangular fuzzy processing times, the optimal job sequence would again be 4, 2, 1, 3 with a 
makespan of 26 and a MFT of 15. In the triangular processing time case, what is gained by using 
the fuzzy number representation is the range of values for lVl and MI~T which are truly fuzzy 
numbers if the processing times are fuzzy. The decision-maker now knows the spread of the/~I 
and MFT, whereas it was assumed away and lost in the deterministic simplification. Furthermore, 



34 C .S .  MCCAHON and E. S. LEE 

in the trapezoidal processing time case, there is no deterministic approximation--the fuzzy method 
must be used. 

n JOBS, TWO WORKSTATIONS 

In this situation, the optimal sequence is defined as the sequence which minimizes the makespan 
of the n jobs. Johnson's algorithm [12] has been used with great success to find the optimal sequence 
when the processing times are deterministic. A fuzzified version of this algorithm is used to solve 
two examples. The first example is represented by triangular fuzzy numbers: 

Job Wl W2 

I (3,4,6) (8, I1, 12) 
2 (3, 7, 10) (6, 7, 8) 
3 (1,3, 5) (6, 10, 14) 
4 (8, 12, 15) (6, 8, 9) 
5 (lO, 11, 15) (5, io, 12) 
6 (7,9,13) (10, 13, 15) 

The GMVs of Lee-Li's method for each fuzzy processing time, assuming uniform distributions, 
are calculated as: 

Job WI W2 

1 4.3 10.3 
2 6.7 7.0 
3 3.0 10.0 
4 11.7 7.7 
5 12.0 9.0 
6 9.7 12.7 

Using these GMVs, with Johnson's algorithm yields the job sequence of 3, 1, 2, 6, 5, 4. 

Performance criteria 

The MFT is a bit more complicated to 
or waiting time between workstations 
subtraction. 

q,~ = Ck2 ( - )C,,, (7) 

where ( - )  represents fuzzy subtraction. (~k2 is the fuzzy completion time of job k at workstation 
2, CiJ is the fuzzy conpletion time of job i at workstation 1, job k proceeds job i in the sequence, 
and all jobs pass through workstation 1 first, Note that 

C,, = ¢,,(+)A,. (8) 

The fuzzy queue time before workstations 1 or q. .  is simple the fuzzy finish time of the previous 
job or 

qil = (~kl" (9 )  

The fuzzy completion time at workstation 2, C~2, for each job is the sum of both waiting times 
and both processing times 

2 
~,~ = ( + ) [¢~ ( + )p,j] (l  0) 

j = l  

the MFT is then 

calculate in the two workstation cases because the queue 
1 and 2 must be calculated for each job using fuzzy 

Table 1 lists all the waiting, processing and completion times for each of the six jobs in the 
example. Since a negative waiting is unrealistic, the negative portion of this fuzzy number is deleted. 
However, this leaves a non-triangular fuzzy number. This will cause subsequent waiting time fuzzy 
numbers to degenerate into many-pieced membership functions, and make subsequent calculations 
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Table 1. Fuzzy parameters of the two workstation Example 1 
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Job q,l Pn ~n ql2 Pa Ca 
3 0 (1, 3, 5) (I, 3, 5) 0 (6, 10, 14) (7, 13, 19) 
I (I,3,5) (3,4,6) (4,7,11) (0,6, 15) (8, I1, 12) (12,24,38) 
2 (I, 3, 5) (3, 7, 10) (7, 14, 21) (0, 10, 31) (6, 7, 8) (13, 31, 60) 
6 (7, 14,21) (7,9, 13) (14,23,34) (0,8,46) (I0, 13, 15) (24, 44, 95) 
5 (14,23, 34) (10, 11, 15) (24,34,49) (0, 10,71) (5, 10, 12) (29, 54, 132) 
4 (24, 34, 49) (8, 12, 15) (32, 46, 64) (0, 8, 100) (6, 8, 9) (38, 62, 173) 

unwieldly. Therefore, the non-triangular fuzzy waiting time is modified to a triangular fuzzy waiting 
time as shown in Table 1. 

The M~T can now be determined as: 

M~'T = [!.~l)C,21/n =(20.5,38,86.2). 

The fuzzy makespan is the mfix of all the fuzzy completion times. In this example it is simply 
the fuzzy completion time of job 4 or (38, 62, 173). 

The deterministic solution of this example problem using the means (or b values) of the fuzzy 
processing times yields the sequence: 3, 1, 2, 6, 5, 4 with an M of 62 and an MFT of 38. Note that 
this M and MFT exactly corresponds to the modes of 19I and Mi~T. What the fuzzy formulation 
contributes is how the spreads of the processing times affect the spread of the solution outputs. 
Note how wide the 1VI spread is. The manager can now understand how long the makespan can 
potentially be, and plan accordingly. 

Trapezoidal example 
The second six job, two workstation example has trapezoidal fuzzy processing times, as listed 

below: 

Job W1 W2 

1 (3,4,5,6) (8,9,10.12) 
2 (3,4, 7, 10) (6,7,7.5,8) 
3 (1, 2, 3, 5) (6, 8, 10, 14) 
4 (8, 12, 13, 15) (6,7,8,9) 
5 (10, I1, 14, 15) (5,9, 10, 12) 
6 (7,9,10,13) (10, 12, 14, 15) 

The corresponding GMVs, assuming uniform distributions, are: 

Job Wl W2 

1 4.5 9.80 
2 6.0 7.1 
3 2.8 9.6 
4 11.9 7.5 
5 12.5 9.0 
6 9.81 12.7 

Using these generalized mean values in Johnson's algorithm yields the job sequence of 
3, 1, 2, 6, 5, 4. Note that this is the same sequence found as in the triangular case, but this is 
coincidental. Using equations (7)-(9), the fuzzy waiting, processing and completion times for each 
of the jobs in the sequence 3, 1, 2, 6, 5, 4 are calculated and listed in Table 2. Negative portions 
of the fuzzy numbers are deleted, as before. The fuzzy makespan of this sequence is: 

if4 = mfix (~,~) = (38, 49, 94.5, 173). 
i 

Table 2. Fuzzy parameters of the two workstation Example 2 

Job Or* ,~,~ ¢~n Oa PQ ~a 
3 0 (I, 2, 3, 5) (1, 2, 3, 5) 0 (6, 8, 10, 14) (7, lO, 13, 19) 
I 0 ,2 ,3 ,5 )  (3,4,5,6) (4,6,8,11) (0,2,7,15) (8,9,10,12) (12,17,25,38) 
2 (4,6,8, l l)  (3,4,7, I0) (7, 10, 15, 21) (0, 2, 15, 31) (6,7,7.5,8) (13,19,37.5,60) 
6 (7,10,15,21) (7, 9, IO, 13) (14,19,25,34) (0,0,18.5,46) (10,12,14,15) (24,31,57.5,95) 
5 (14, 19, 25, 34) (10, I1, 14, 15) (24,30,34,49) (0,0,27.5,71) (5, 9, IO, 12) (29,39,76.5,132) 
4 (24,30,39,49) (8, 12, 13, 15) (32,42,52,62) (0,0,34.5,100) (6,7,8,9) (38,49,94.5,173) 
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The M~T can now be determined by averaging the workstation 2 completion times: 

Mi~T = I ( ~  )C,~1/6 = (20.5, 26.8, 50.7,86.2). 

In the trapezoidal case, unlike the triangular case, a deterministic approximation cannot be used, 
so the analyst must use the fuzzified method, and the fuzzy makespan and M~T can be calculated 
for further decision making. 

n J O B S ,  T H R E E  W O R K S T A T I O N S  

Ignall and Schrage's branch and bound algorithm [13] for a general three workstation flow shop 
problem will be used. The problem is represented using a tree structure where each node is a partial 
sequence. To determine the best partial sequence node from which to branch, the lower bounds 
(LB) of the makespans of all the partial sequence nodes re calculated, and the node with the lowest 
lower bound of the makespan is then selected. The process is continued until the sequence with 
the least lower bound is found. To fuzzify this algorithm by using fuzzy processing times, all of 
the lower bounds must be expressed as fuzzy numbers, and any comparison must use a fuzzy 
number comparison method. The Lee-Li method will be used. 

To calculate the fuzzy lower bound on the fuzzy makespan of all schedules beginning with the 
sequence S,, use 

L B ( S r )  = m a x  

"TVv'I(S~)(+) (+)p~ (+)  min (if,2 (+)P,3), 
Sr Sr 

T~v'2(S,)(+) (+)/~,2(+) min (if,3), (12) 
Sr Sr 

T~,r¢3(S~) (+) (+)Pi3, 
Sr 

where Pu is the fuzzy processing time of job i at workstation j; s~ is the set of (n - r) jobs not yet 
assigned; and T'~r¢I(S~), T@2(Sr) and T'¢~¢3(S~) are the fuzzy times at which workstations 1, 2 and 
3, respectively, complete processing of the last job in the sequence St. It is assumed all the jobs 
pass through workstation 1 first and workstation 3 last. After finding the fuzzy lower bounds for 
the nodes, branch from the node with the lowest fuzzy lower bound. Create a new node for every 
job not yet scheduled. The fuzzy lower bounds of these new nodes are calculated using equation 
(12). The process continues until all the jobs have been scheduled into the sequence. 

An illustrative example with triangular processing times is the following four job, three 
workstation scheduling problem: 

Job Wl W2 W3 

I (12, 14, 15) (5, 6, 8) (10, 15, 16) 
2 (3, 8, 9) (10, 11, 12) (1,4, 5) 
3 (9,10,15) (12,13,15) (16,17,20) 
4 (14, 16, 19) (12, 15, 18) (4, 5, 6) 

The first level of fuzzy lower bounds using equation (12) are calculated as 

r (12, 14, 15)(+)(26, 34, 43)(+)mini(11, 15, 17), (28, 30, 35), (16, 20, 24)] 

L~(1) = max-~ (17, 20, 23)(+)(34, 39, 45)(+)min[(1, 4, 5), (16, 17, 20), (4, 5, 6)] 
/ 
I,(27, 35, 39)(+)(21, 26, 31). 

Using the Lee-Li method for finding the discrete minimum, the generalized mean values are 
calculated, and the fuzzy number with the smallest generalized mean value is deemed smallest. 
Continuing, 

L~(1) = max[(49, 63, 75), (52, 63, 73), (48, 61, 70)] = (52, 63, 73), 
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because 

similarly, 

m[(49, 63, 75)] = 62.3, m[(52, 63, 73)] = 62.7, m[(48, 61, 70)] = 59.7, 

LB(2) = max[(53, 68, 82), (46, 58, 68), (44, 60, 68)] = (53, 68, 82), 

LB(3) = max[(49, 63, 75), (49, 59, 73), (52, 64, 77)] = (52, 64, 77), 

L~(4) = max[(49, 63, 75), (54, 65, 77), (57, 72, 84)] = (57, 72, 84). 

Now, to determine which node to branch from, the minimum of L~(1), L~(2), Li~(3) and L~(4) 
must be chosen. Calculating the generalized mean values of each of these fuzzy numbers yields: 

m[LB(1)] = ~(52 + 63 + 73) = 62.7, m[LB(2)] = 1(53 + 68 + 82) = 67.7, 

m[LB(3)] = ½(52 + 64 + 77) = 64.3, m[L~(4)] = ~(57 + 72 + 84) = 71.0 

Therefore sequences starting with job 1, since it has the lowest generalized mean value, will be 
investigated further. New T~¢I(S,), TVV2(Sr) and T~rV3(Sr) must be calculated: 

s, 

(1, 2) (I, 3) (1,4) 
"I'll(St) (15, 22, 24) (21, 24, 30) (26, 30, 34) 
T~2(S,) (25, 33, 36) (33, 37, 45) (38, 45, 52) 
T~3(S,) (28, 39, 44) (49, 54, 65) (42, 50, 58) 

The fuzzy lower bounds for these nodes are 

LB(1, 2) = max[(54, 68, 82), (53, 66, 75), (58, 61, 80)] = (54, 68, 82), 

L~(1, 3) = max[(49, 63, 75), (56, 67, 80), (54, 63, 76)] = (56, 67, 80), 

L~(1, 4) = max[(49, 63, 75), (61, 73, 84), (59, 71, 83)] = (61, 73, 84). 

When comparing all the nodes at this stage, note that node 3 now has the lowest lower bound at 
(52, 64, 77). Therefore, all sequences starting with 3 must be investigated, and so on, through the 
algorithm. 

The entire tree network is illustrated in Fig. 2. The GMVs supporting this figure are listed in 
Table 3. The sequence which yields the lowest lower bound for the entire makespan is 3, 4, 1, 2 with 
a fuzzy lower bound for the fuzzy makespan of (51,66, 81). When the problem is solved 
deterministically with the means of the fuzzy numbers as the deterministic inputs, the results are 
identical: optimal sequence of 3, 4, 1, 2 with a deterministic makespan of 66 units. However, when 

L'B(1)=(52,63,73) LB(2)=(53,68,821 LB(31=(52,64,77) LB(4)=(57,72,84) 

LB(1,21 = LB(1,3)= LB(1,4) = L'B (3,1) = LB(3,2) = LB (5,41 = 
(54,56,82) (56,67,80) (61,73,64) (52,64,77) (54,68,82) ( 50 ,65 ,79 )  

LB (3,1,2)= LB (5,1,41= LB (5,4,11= LB (3,4,2) = 
(54~68,821 (58,70,84) (51,66,81) (60,73,88) 

Fig. 2. Fuzzy branch and bound solution for the four job, three machine example. 
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Table 3. Corresponding GMVs illus- 
trated in Fig. 2 

GMV 

First level 
Li](1) 62.7t 
L~(2) 67.7 
L~(3) 64.3 
L~(4) 71.0 

Second level 
L~(1, 2) 68.0 
L~(1.3) 67.7 
L~(1,4) 72.7 

Lfl(3, 1) 64.3t 
L~(3, 2) 68.0 
L~(3, 4) 64.7+ + 

Third level 
Li~(3, 1,2) 68.0 
L~(3, 1,4) 70.7 

L~(3, 4, 1) 66.0 
t~(3, 4, 2) 73.6 

Solution = (3, 4, 1,2) 

tlnitially branched from this node. 
~:Later branched from this node. 

the times are fuzzy, the fuzzy makespan must be calculated as the maximum of the job completion 
times (7i3 or 

IVI = mfix (C,3), (13) 
I 

where each C,3, for the three workstation case, is calculated as 

3 
C/3 = ( + )  (q,j(+)/~)" (14) 

j = l  

To calculate the fuzzy waiting time for workstation 3, we must use 

0,3 = Ck3 ( - )C,2,  (15) 

where Ck3 is the fuzzy completion time of  job k at workstation 3; C~z is the fuzzy completion time 
of  job i at workstation 2; job k precedes job i and any negative portion of  a fuzzy number is deleted. 
Table 4 lists all the fuzzy waiting, processing and completion times for each job by workstation. 

Performance criteria 
As can be seen in Fig. 3, the fuzzy makespan assuming the sequence of  3, 4, 1, 2, is 

x 50 
50 ~< x ~< 52.4, 

12 12'  

u~(x)= 
x 49 

52.4 < x ~< 66, 
17 17'  

x 207 
- ] ~  + 141 '  66 < x  ~<207. 

Note, this is non-triangular because m~x C3i forms a non-triangular membership function. 
If the Mi~T is of  interest, it can be calculated as 

M~'T = (43.8, 53.5, 118.5) 

Table 4. Fuzzy parameters of the three workstation Example 1 

Job ~,, .0il ~iL q,~ /~a t~,~ t~,~ P~3 ~,3 
3 0 (9, 10, 15) (9, 10, 15) 0 (12, 13, 15) (21,23, 30) 0 (16, 17, 20) (37, 40, 50) 
4 (9,10,15) (14,16,19) (23,26,24) (0,0,7) (12,15,18) (35,41,59) (0,0,15) (4,5,6) (39,46,80) 
I (23,26,34) (12, 14, 15) (35,40,49) (0, 1,24) (5,6,8) (40,47, 81) (0,0,40) (10,15,16) (50,62,137) 
2 (35,40,49) (3,8,9) (38,48,58) (0,0,43) (10,11,12) (48,59,113) (0,3,89) (I,4,5) (49,66,207) 
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v 
:k 

1.0 

0.2 

~ d l  

. . . .  d 2  

- ~ , , .~ .  . . . .  J 3  

- lii, i \ ",,. 
o "t p ~ f "~'~' ~ 

40  80 ~ 20 160 200 

X 

Fig. 3. Determination of the fuzzy makespan. 

What the triangular decision maker gains by using the fuzzified procedure is an understanding 
of how fuzzy the makespan is, along with how fuzzy the job MFTs are, and can plan accordingly. 

Trapezoidal example 
An illustrative example with trapezoidal processing times is a variant of the previous example. 

The fuzzy times are listed below: 

Job W 1 W2 W3 

1 (12,13,14,15) (5,6,7,8) (10,11,15,16) 
2 (3,4,8,9) (10,11,11.5,12) (1,2,3,5) 
3 (9,10,11,15) (12,13,14,15) (16,17,18,20) 
4 (14,16,18,19) (12,15,16,18) (4,4.5,5,6) 

Figure 4 illustrates the entire tree network with node lower bounds for this problem. The 
generalized mean values for the nodes in Fig. 4 are listed in Table 5. The fuzzy lower bound for 
the fuzzy makespan is (51, 60, 70, 81) for the sequence 3, 4, 1, 2. The fuzzy makespan assuming the 
sequence of 3, 4, 1, 2 is 

m , ( x )  = 

x 50 
12 12' 

50 ~< x ~< 52.4, 

x 49 
17 17' 

52.4 < x ~< 66, 

x 207 
- - - i ~ + l - ~ - ,  66<x~<207. 

The value for Mi~T is 

Mi~T = (43.8, 53.5, 118.5). 

Table 6 summarizes the fuzzy waiting, processing and completion times of the jobs in sequence 
3, 4, 1, 2. The fuzzy makespan is then 

#~(x) = m~x 6"i3 = (49, 56, 102.5,207). 
i 

The Mi~T is found by averaging the workstation 3 completion times: 

1/ MI~T = C,3 4 = (43.8, 49.4, 68.9, 118.5). 
.= 

CONCLUSIONS 

The job sequencing algorithms of Johnson and Ignall and Schrage were modified to accept two 
types of fuzzy job processing times: triangular and trapezoidal. The resultant job sequences were 
non-fuzzy, but the performance criteria of makespan and mean flow time were fuzzy using these 
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modified algori thms.  The  fuzzy pe r fo rmance  criteria could then be interpreted using possibility 
theory and /o r  fuzzy integrals. 

In some cases, if the fuzzy processing times can be represented using t r iangular  fuzzy numbers ,  
the op t imal  sequence and means  o f  the fuzzy makespan  and fuzzy mean  flow time can be 
determined by using a deterministic approx imat ion .  This approx ima t ion  is made  by using the 
modes  (b values) o f  the t r iangular  processing, times as deterministic with the non-modif ied  (or 
original) sequencing algori thm. The  p rob lem with using this approx ima t ion  is that  the fuzzy 
m akespan  and mean  flow time must  be calculated anyway if fur ther  sensitivity analysis using 
possibility theory and /or  fuzzy integrals is desired. I f  t rapezoidal  fuzzy numbers  are used, then the 
fuzzified me thod  must  be used. 

In summary ,  by keeping the fuzziness th roughout  the analysis procedure,  the decision make r  
keeps intact in format ion  useful for  subsequent  sensitivity analysis o f  the pe r fo rmance  criteria. I f  
the input  job  processing times are truly fuzzy, then they should be modeled as fuzzy to obta in  fuzzy 
results. Approx ima t ions  can be used, but  only in special cases, and without  the comprehens ive  
results obta ined f rom the fuzzy procedure.  
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