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Abstract

A digraph obtained by replacing each edge of a complete n-partite graph by an arc or a pair of
mutually opposite arcs is called a semicomplete n-partite digraph. We call a(D) =max; <; < «{|Vi|}
the independence number of the semicomplete n-partite digraph D, where Vi, Va,...,V, are the
partite sets of D. Let p and ¢, respectively, denote the number of vertices in a longest directed
path and the number of vertices in a longest directed cycle of a digraph D. Recently, Gutin
and Yeo proved that ¢ > (p+ 1)/2 for every strongly connected semicomplete n-partite digraph
D. In this paper we present for the special class of semicomplete n-partite digraphs D with
connectivity k(D)=a(D) — 1 > 1 the better bound

k(D)
k(D) + 1

In addition, we present examples which show that this bound is best possible. () 2001 Elsevier
Science B.V. All rights reserved.

(p+1).

=
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1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set
of a digraph D is denoted by V(D). An orientation of a complete n-partite graph is an
n-partite or multipartite tournament. A digraph obtained by replacing each edge of a
complete n-partite graph by an arc or a pair of mutually opposite arcs is called a semi-
complete n-partite digraph or semicomplete multipartite digraph. If xy is an arc of a
digraph D, then we say that x dominates y, and if X and Y are two disjoint subsets
of V(D) such that every vertex of X dominates every vertex of Y, then we say that
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X dominates Y, denoted by X — Y. The out-neighborhood Nj(x) of a vertex x is the
set of vertices dominated by x, and the in-neighborhood N (x) is the set of vertices
dominating x. For a vertex set X of D, we define N (X)= ,cy Nj(X), and D[X]
as the subdigraph induced by X. The numbers d})(x) =|Nj(x)| and dj(x)= [N} (x)]
are called outdegree and indegree of x, respectively. Let x be a vertex and S be a
vertex set of D. By d};(x,S) and dj(x,S) we denote the number of arcs from x to
S and from S to x, respectively. All cycles and paths mentioned here are directed
cycles and directed paths. A cycle of length m is called an m-cycle. A cycle (path)
of a digraph D is Hamiltonian if it includes all the vertices of D. If a digraph con-
tains a Hamiltonian cycle, then we speak of a Hamiltonian digraph. A digraph D is
called strongly comnected or strong if, for each pair of vertices u and v, there is a
path in D from u to v. A digraph D with at least k + 1 vertices is k-connected if
for any set 4 of at most k& — 1 vertices, the subdigraph D — 4 is strong. The con-
nectivity of D, denoted by k=w(D), is then defined to be the largest value of k
for which D is k-connected. A 1-factor of a digraph D is a spanning subdigraph
consisting of disjoint cycles. If V,V5,...,V, are the partite sets of a semicomplete
n-partite digraph, then o(D)=max; <;<.{|Vi|} is called the independence number
of D.

In the following, we denote by p the number of vertices in a longest directed path
and by ¢ the number of vertices in a longest directed cycle of a digraph D. For every
strongly connected semicomplete n-partite digraph D, Gutin and Yeo [3] have proved
recently that ¢ > (p + 1)/2, which confirms a conjecture of the second author [7]. In
this paper we present for the special class of semicomplete n-partite digraphs D with
connectivity k(D)=a(D) — 1 = 1 the better bound

K(D)
k(D) +1

Examples will show that this inequality is best possible. Both results show that the next
conjecture of the second author [8] is valid for k(D) =1 as well as for k(D) =a(D)—1.

(p+1).

=

Conjecture (Volkmann [8]). Let D be a strongly connected semicomplete multipartite
digraph with k(D) <o(D). If p is the number of vertices in a longest path and ¢ the
number of vertices in a longest cycle in D, then k(D)p < (k(D) + 1)c — w(D).

It may be noted that Yeo [9] has proved in 1997 that a semicomplete multipartite
digraph D with x(D) > «(D) is even Hamiltonian and thus, we have p=c=|V(D)|
in this case.

2. Preliminary results

Theorem 2.1 (Bondy [1]). Each strongly connected semicomplete n-partite digraph
D contains an m-cycle for each m € {3,4,...,n}.
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Theorem 2.2 (Ayel (cf. [4])). If C is a longest cycle in a strongly connected semi-
complete multipartite digraph D, then D — V(C) contains no cycle.

Originally, Bondy and Ayel have presented their results under the stronger condition
that D is a multipartite tournament. For proofs concerning the more general case when
D is a semicomplete multipartite digraph, we refer the reader to Volkmann [7] (for
Theorem 2.1) and Gutin [2] (for Theorem 2.2).

Theorem 2.3 (Ore [5]). A digraph D contains a 1-factor if and only if |S| < [Nj(S)|
for every subset S C V(D).

Theorem 2.4 (Yeo [9]). Let D be a |q/2]-connected semicomplete multipartite
digraph such that «(D) < q. If D has a 1-factor, then D is Hamiltonian.

Theorem 2.5 (Yeo [9]). Let D be a k-connected semicomplete multipartite digraph,
and let X be an arbitrary set of vertices in D with at most k vertices from each
partite set. Then there exists a cycle C in D with X CV(C).

3. Main results

In 1997, Yeo [9] has proved that every semicomplete multipartite digraph D with the
property k(D) = a(D) is Hamiltonian. For a special class of semicomplete multipartite
digraphs D, we will show firstly that the weaker condition k(D) > a(D)—1 is sufficient
for D to be Hamiltonian.

Theorem 3.1. Let D be a semicomplete n-partite digraph with the partite sets Vi,
VooV such that \Vi|=|Va|=k+1 and |V3|+---+ V)| <k—1. If k(D)=k =1,
then D is Hamiltonian.

Proof. Let S be an arbitrary vertex set in D. In the first step of our proof we show
that [S| < [N7(S)).

Since D is k-connected, we have d}(x) >k for every x € V(D). Therefore, it
follows at once that |S| < |Nj(S)| for |S| < k.

In the case when |S| = 2k + 2, we have |S| = |V(D)| — (k— 1) and we deduce from
the hypothesis that D[S] is strong. Hence, we observe that S :Ng[s](S YC NS (S), and
thus we obtain the desired inequality |S| < |Nj(S)|.

If £+ 1<|S|<2k+ 1, then we distinguish two cases. First, we assume that
S contains at most k£ vertices from J; and at most k vertices from V,. Then, by
Theorem 2.5, there exists a cycle C in D with S C V(C). This immediately implies
S| < [N&(S)] < INp (S)-

In the remaining case we assume, without loss of generality, that SNV, = V). Since
IS| <2k + 1, it is clear that S NV, # V,. In addition, since |V3|+ -+ |V,| <k —1,
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we see that dj(x, 7)) =1 as well as d}(x, V1) > 1 for all vertices x € V. Now we
investigate two subcases.

If SNV, # 0, say v, € SN V,, then we choose a vertex v; € V7 CS§ such that
v, — vy, and we define S’ =S — {v;}. In view of Theorem 2.5, there exists a cycle C’
in D with S” C V(C"). In the case when vy € V(C’), it follows that S C V(C’), and we
are done as above. If v; & V(C’), then we have at least |S| — 1 out-neighbors of S on
the cycle C’ and in addition, the vertex v; as an out-neighbor of v, € S. Consequently,
we obtain |S| < [N5(S)].

In the remaining subcase when SNV, =0, we define R=S— V). Since d,(x,V;) > 1
for all x € V5, we see that V, CN;(S). If R=0 or d;,(y, V1) =1 for every vertex y
in R, we conclude that [S|=|R| + [Vi|=|R| + |V2| < [N5(S)|. Otherwise, there exists
a vertex u € R such that u— V|, and we also arrive at the desired inequality by
S| <2k +2= 1|+ V] < NG (S)).

Altogether, we have shown that S| < [N (S)| for an arbitrary set S C V(D), and
hence, according to Theorem 2.3, D contains a 1-factor. Thus, because of k(D)=k >
[(k + 1)/2], it follows from Theorem 2.4 that D is Hamiltonian. [J

Next, we present different examples which show that Theorem 3.1 is best possible.

Let A;,A4,,A5 be the partite sets of a 3-partite tournament H such that 4| = |4,]| =
k+1, and |43| =k — 1. If 4y —> A —> A3 — 4, then k(H)=k —1=a(H) — 2, but H
is not Hamiltonian, because the longest cycle of H has length 3(k — 1).

Let Ay,A,43 be the partite sets of a 3-partite tournament 7 such that [4;| = |4,]| =
k+ 1, and |[43|=k. If 41 > A, — A3 — A4, then k(H)=k=a(H) — 1, but T is not
Hamiltonian, because the longest cycle of T has length 3k.

Let Ay, A, A3, A4 be the partite sets of a 4-partite tournament G such that |4,| = |42]| =
|[As|=k + 1, and |44]=k — 1. In addition, let w be an arbitrary vertex of A4,.
If 41 —(4; — {W})—>A3 — (A4 U {W})—>A1, Ay — A3, and Ay — Ay, then k(G)=
k=o(H)— 1, but G has no Hamiltonian cycle, because the longest cycle of G has
length 4k.

Theorem 3.2. Let D be a semicomplete n-partite digraph with k(D)=o(D)—1 > 1.
If p is the number of vertices in a longest path and ¢ the number of vertices in a
longest cycle in D, then k(D)p < (k(D)+ 1)c — k(D).

Proof. If V1, V>,...,V, are the partite sets of D such that |Vy|=--- =|V;|>|Vjy| =
<o 2 |V, with 1 < j < n, then k=x(D)=|V| — 1. According to Theorem 2.5, there
exists a cycle C in D covering V41 U--- UV, and at least x vertices of each partite
set Vi,...,V;. Hence, |[V(C)| > |V(D)| — j. Now we distinguish four cases.

Case 1. Let |V(C)| = |V(D)|—j+1. Since |V(C)| = kj, we obtain the desired result
as follows.

kp < V(D) < k([V(C)[ 4/ — D=V (O) + 1) -,

<
< k[V(O) + V(O —x=(x+ DV(C) —x < (x+ 1) — k.



M. Tewes, L. Volkmann/ Discrete Mathematics 231 (2001) 453—457 457

Case 2. Let |[V(C)|=|V(D)|—j and |V;11|+---+|Va| = k. Since |[V(C)| > kj +x,
we obtain the desired bound as follows:

kp < k[V(D) =x([V(C)| + /) =x[V(C)| + Kj,
< kV(O)|+|V(O) —k < (k+ 1) — k.

Case 3. Let |V(C)|=|V(D)| — j, |[Vjs1| + -+ |Va| <k —1, and j > 3. Then, the
subdigraph D'=D — (V41 U --- U V,) is strong, and by Theorem 2.1, D’ contains
a 3-cycle xixpx3x;. Assume without loss of generality, that x; € V; for i=1,2,3. In
addition, let x; € V; for 4 <i < j be arbitrarily chosen. Then, in view of Theorem 2.5,
the vertex set X = (V' —{x; })U---U(V;—{x;})UV;;1U---UV, is contained in a cycle
Cy, ie, X CV(Cy). Clearly, |[V(C))| = |X|=|V(D)|—j. If [V(C))| = V(D) —j+1,
then, analogously to Case 1, we are done. However, if |V(C;)| =|V(D)|—/, then, since
the subdigraph D — V'(C}) contains the 3-cycle x;xyx3x;, it follows from Theorem 2.2,
that there exists a longer cycle in D, and analogously to Case 1, we are done.

Case 4. Let |V(C)| = V(D) —Jj, |Vis1|+---+|Val <x—1, and j < 2. Since j=1
is not possible, it remains the case j=2. But then, it follows from Theorem 3.1 that
D is Hamiltonian, and this yields the desired result. [

The next example will show that the bound given in Theorem 3.2 is sharp.

Let 41,4,,...,4, be the partite sets of an n-partite tournament A such that n > 3,
41| = 42| = -+ =|dp—1|=k+1,and |4,|=k. If 4; = 4; for | <i<j<n—1,4,—4,
for 2<i<mn, and 4, — Ay, then k(H)=k=o(H) — 1, c=nk, and p=nk +n — 1.
Consequently, k(H)p=k(nk+n—1)=(x(H)+ 1)c — k(H), and therefore equality in
the bound of Theorem 3.2.

The same example with |4,| =¢ for 1 < g < k, shows that the conjecture mentioned
in Section 1 would be best possible. Finally, it may be noted that the second author
[6] has observed in 1999 that every semicomplete n-partite digraph D, which fulfills
the condition x(D)=oa(D) — 1 of Theorem 3.2, has a Hamiltonian path.
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