The ratio of the longest cycle and longest path in semicomplete multipartite digraphs

Meike Tewes ${ }^{\text {a, * }}$, Lutz Volkmann ${ }^{\text {b }}$
${ }^{a}$ Institut für Theoretische Mathematik, TU Bergakademie Freiberg, 09596 Freiberg, Germany
${ }^{\mathrm{b}}$ Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Received 14 July 1999; revised 8 March 2000; accepted 7 August 2000

Abstract

A digraph obtained by replacing each edge of a complete n-partite graph by an arc or a pair of mutually opposite arcs is called a semicomplete n-partite digraph. We call $\alpha(D)=\max _{1 \leqslant i \leqslant n}\left\{\left|V_{i}\right|\right\}$ the independence number of the semicomplete n-partite digraph D, where $V_{1}, V_{2}, \ldots, V_{n}$ are the partite sets of D. Let p and c, respectively, denote the number of vertices in a longest directed path and the number of vertices in a longest directed cycle of a digraph D. Recently, Gutin and Yeo proved that $c \geqslant(p+1) / 2$ for every strongly connected semicomplete n-partite digraph D. In this paper we present for the special class of semicomplete n-partite digraphs D with connectivity $\kappa(D)=\alpha(D)-1 \geqslant 1$ the better bound

$$
c \geqslant \frac{\kappa(D)}{\kappa(D)+1}(p+1)
$$

In addition, we present examples which show that this bound is best possible. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Semicomplete multipartite digraphs; Paths; Cycles; Hamiltonian cycles

1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set of a digraph D is denoted by $V(D)$. An orientation of a complete n-partite graph is an n-partite or multipartite tournament. A digraph obtained by replacing each edge of a complete n-partite graph by an arc or a pair of mutually opposite arcs is called a semicomplete n-partite digraph or semicomplete multipartite digraph. If $x y$ is an arc of a digraph D, then we say that x dominates y, and if X and Y are two disjoint subsets of $V(D)$ such that every vertex of X dominates every vertex of Y, then we say that

[^0]X dominates Y, denoted by $X \rightarrow Y$. The out-neighborhood $N_{D}^{+}(x)$ of a vertex x is the set of vertices dominated by x, and the in-neighborhood $N_{D}^{-}(x)$ is the set of vertices dominating x. For a vertex set X of D, we define $N_{D}^{+}(X)=\bigcup_{x \in X} N_{D}^{+}(X)$, and $D[X]$ as the subdigraph induced by X. The numbers $d_{D}^{+}(x)=\left|N_{D}^{+}(x)\right|$ and $d_{D}^{-}(x)=\left|N_{D}^{-}(x)\right|$ are called outdegree and indegree of x, respectively. Let x be a vertex and S be a vertex set of D. By $d_{D}^{+}(x, S)$ and $d_{D}^{-}(x, S)$ we denote the number of arcs from x to S and from S to x, respectively. All cycles and paths mentioned here are directed cycles and directed paths. A cycle of length m is called an m-cycle. A cycle (path) of a digraph D is Hamiltonian if it includes all the vertices of D. If a digraph contains a Hamiltonian cycle, then we speak of a Hamiltonian digraph. A digraph D is called strongly connected or strong if, for each pair of vertices u and v, there is a path in D from u to v. A digraph D with at least $k+1$ vertices is k-connected if for any set A of at most $k-1$ vertices, the subdigraph $D-A$ is strong. The connectivity of D, denoted by $k=\kappa(D)$, is then defined to be the largest value of k for which D is k-connected. A 1 -factor of a digraph D is a spanning subdigraph consisting of disjoint cycles. If $V_{1}, V_{2}, \ldots, V_{n}$ are the partite sets of a semicomplete n-partite digraph, then $\alpha(D)=\max _{1 \leqslant i \leqslant n}\left\{\left|V_{i}\right|\right\}$ is called the independence number of D.

In the following, we denote by p the number of vertices in a longest directed path and by c the number of vertices in a longest directed cycle of a digraph D. For every strongly connected semicomplete n-partite digraph D, Gutin and Yeo [3] have proved recently that $c \geqslant(p+1) / 2$, which confirms a conjecture of the second author [7]. In this paper we present for the special class of semicomplete n-partite digraphs D with connectivity $\kappa(D)=\alpha(D)-1 \geqslant 1$ the better bound

$$
c \geqslant \frac{\kappa(D)}{\kappa(D)+1}(p+1) .
$$

Examples will show that this inequality is best possible. Both results show that the next conjecture of the second author [8] is valid for $\kappa(D)=1$ as well as for $\kappa(D)=\alpha(D)-1$.

Conjecture (Volkmann [8]). Let D be a strongly connected semicomplete multipartite digraph with $k(D)<\alpha(D)$. If p is the number of vertices in a longest path and c the number of vertices in a longest cycle in D, then $\kappa(D) p \leqslant(\kappa(D)+1) c-\kappa(D)$.

It may be noted that Yeo [9] has proved in 1997 that a semicomplete multipartite digraph D with $\kappa(D) \geqslant \alpha(D)$ is even Hamiltonian and thus, we have $p=c=|V(D)|$ in this case.

2. Preliminary results

Theorem 2.1 (Bondy [1]). Each strongly connected semicomplete n-partite digraph D contains an m-cycle for each $m \in\{3,4, \ldots, n\}$.

Theorem 2.2 (Ayel (cf. [4])). If C is a longest cycle in a strongly connected semicomplete multipartite digraph D, then $D-V(C)$ contains no cycle.

Originally, Bondy and Ayel have presented their results under the stronger condition that D is a multipartite tournament. For proofs concerning the more general case when D is a semicomplete multipartite digraph, we refer the reader to Volkmann [7] (for Theorem 2.1) and Gutin [2] (for Theorem 2.2).

Theorem 2.3 (Ore [5]). A digraph D contains a 1-factor if and only if $|S| \leqslant\left|N_{D}^{+}(S)\right|$ for every subset $S \subseteq V(D)$.

Theorem 2.4 (Yeo [9]). Let D be $a\lfloor q / 2\rfloor$-connected semicomplete multipartite digraph such that $\alpha(D) \leqslant q$. If D has a 1 -factor, then D is Hamiltonian.

Theorem 2.5 (Yeo [9]). Let D be a k-connected semicomplete multipartite digraph, and let X be an arbitrary set of vertices in D with at most k vertices from each partite set. Then there exists a cycle C in D with $X \subseteq V(C)$.

3. Main results

In 1997, Yeo [9] has proved that every semicomplete multipartite digraph D with the property $\kappa(D) \geqslant \alpha(D)$ is Hamiltonian. For a special class of semicomplete multipartite digraphs D, we will show firstly that the weaker condition $\kappa(D) \geqslant \alpha(D)-1$ is sufficient for D to be Hamiltonian.

Theorem 3.1. Let D be a semicomplete n-partite digraph with the partite sets V_{1}, V_{2}, \ldots, V_{n} such that $\left|V_{1}\right|=\left|V_{2}\right|=k+1$ and $\left|V_{3}\right|+\cdots+\left|V_{n}\right| \leqslant k-1$. If $\kappa(D)=k \geqslant 1$, then D is Hamiltonian.

Proof. Let S be an arbitrary vertex set in D. In the first step of our proof we show that $|S| \leqslant\left|N_{D}^{+}(S)\right|$.

Since D is k-connected, we have $d_{D}^{+}(x) \geqslant k$ for every $x \in V(D)$. Therefore, it follows at once that $|S| \leqslant\left|N_{D}^{+}(S)\right|$ for $|S| \leqslant k$.

In the case when $|S| \geqslant 2 k+2$, we have $|S| \geqslant|V(D)|-(k-1)$ and we deduce from the hypothesis that $D[S]$ is strong. Hence, we observe that $S=N_{D[S]}^{+}(S) \subseteq N_{D}^{+}(S)$, and thus we obtain the desired inequality $|S| \leqslant\left|N_{D}^{+}(S)\right|$.

If $k+1 \leqslant|S| \leqslant 2 k+1$, then we distinguish two cases. First, we assume that S contains at most k vertices from V_{1} and at most k vertices from V_{2}. Then, by Theorem 2.5, there exists a cycle C in D with $S \subseteq V(C)$. This immediately implies $|S| \leqslant\left|N_{C}^{+}(S)\right| \leqslant\left|N_{D}^{+}(S)\right|$.

In the remaining case we assume, without loss of generality, that $S \cap V_{1}=V_{1}$. Since $|S| \leqslant 2 k+1$, it is clear that $S \cap V_{2} \neq V_{2}$. In addition, since $\left|V_{3}\right|+\cdots+\left|V_{n}\right| \leqslant k-1$,
we see that $d_{D}^{-}\left(x, V_{1}\right) \geqslant 1$ as well as $d_{D}^{+}\left(x, V_{1}\right) \geqslant 1$ for all vertices $x \in V_{2}$. Now we investigate two subcases.

If $S \cap V_{2} \neq \emptyset$, say $v_{2} \in S \cap V_{2}$, then we choose a vertex $v_{1} \in V_{1} \subseteq S$ such that $v_{2} \rightarrow v_{1}$, and we define $S^{\prime}=S-\left\{v_{1}\right\}$. In view of Theorem 2.5 , there exists a cycle C^{\prime} in D with $S^{\prime} \subseteq V\left(C^{\prime}\right)$. In the case when $v_{1} \in V\left(C^{\prime}\right)$, it follows that $S \subseteq V\left(C^{\prime}\right)$, and we are done as above. If $v_{1} \notin V\left(C^{\prime}\right)$, then we have at least $|S|-1$ out-neighbors of S on the cycle C^{\prime} and in addition, the vertex v_{1} as an out-neighbor of $v_{2} \in S$. Consequently, we obtain $|S| \leqslant\left|N_{D}^{+}(S)\right|$.

In the remaining subcase when $S \cap V_{2}=\emptyset$, we define $R=S-V_{1}$. Since $d_{D}^{-}\left(x, V_{1}\right) \geqslant 1$ for all $x \in V_{2}$, we see that $V_{2} \subseteq N_{D}^{+}(S)$. If $R=\emptyset$ or $d_{D}^{-}\left(y, V_{1}\right) \geqslant 1$ for every vertex y in R, we conclude that $|S|=|R|+\left|V_{1}\right|=|R|+\left|V_{2}\right| \leqslant\left|N_{D}^{+}(S)\right|$. Otherwise, there exists a vertex $u \in R$ such that $u \rightarrow V_{1}$, and we also arrive at the desired inequality by $|S|<2 k+2=\left|V_{1}\right|+\left|V_{2}\right| \leqslant\left|N_{D}^{+}(S)\right|$.

Altogether, we have shown that $|S| \leqslant\left|N_{D}^{+}(S)\right|$ for an arbitrary set $S \subseteq V(D)$, and hence, according to Theorem 2.3, D contains a 1-factor. Thus, because of $\kappa(D)=k \geqslant$ $\lfloor(k+1) / 2\rfloor$, it follows from Theorem 2.4 that D is Hamiltonian.

Next, we present different examples which show that Theorem 3.1 is best possible.
Let A_{1}, A_{2}, A_{3} be the partite sets of a 3-partite tournament H such that $\left|A_{1}\right|=\left|A_{2}\right|=$ $k+1$, and $\left|A_{3}\right|=k-1$. If $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{1}$, then $\kappa(H)=k-1=\alpha(H)-2$, but H is not Hamiltonian, because the longest cycle of H has length $3(k-1)$.
Let A_{1}, A_{2}, A_{3} be the partite sets of a 3-partite tournament T such that $\left|A_{1}\right|=\left|A_{2}\right|=$ $k+1$, and $\left|A_{3}\right|=k$. If $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{1}$, then $\kappa(H)=k=\alpha(H)-1$, but T is not Hamiltonian, because the longest cycle of T has length $3 k$.
Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the partite sets of a 4-partite tournament G such that $\left|A_{1}\right|=\left|A_{2}\right|=$ $\left|A_{3}\right|=k+1$, and $\left|A_{4}\right|=k-1$. In addition, let w be an arbitrary vertex of A_{2}. If $A_{1} \rightarrow\left(A_{2}-\{w\}\right) \rightarrow A_{3} \rightarrow\left(A_{4} \cup\{w\}\right) \rightarrow A_{1}, A_{1} \rightarrow A_{3}$, and $A_{2} \rightarrow A_{4}$, then $\kappa(G)=$ $k=\alpha(H)-1$, but G has no Hamiltonian cycle, because the longest cycle of G has length $4 k$.

Theorem 3.2. Let D be a semicomplete n-partite digraph with $\kappa(D)=\alpha(D)-1 \geqslant 1$. If p is the number of vertices in a longest path and c the number of vertices in a longest cycle in D, then $\kappa(D) p \leqslant(\kappa(D)+1) c-\kappa(D)$.

Proof. If $V_{1}, V_{2}, \ldots, V_{n}$ are the partite sets of D such that $\left|V_{1}\right|=\cdots=\left|V_{j}\right|>\left|V_{j+1}\right| \geqslant$ $\cdots \geqslant\left|V_{n}\right|$ with $1 \leqslant j \leqslant n$, then $\kappa=\kappa(D)=\left|V_{1}\right|-1$. According to Theorem 2.5, there exists a cycle C in D covering $V_{j+1} \cup \cdots \cup V_{n}$ and at least κ vertices of each partite set V_{1}, \ldots, V_{j}. Hence, $|V(C)| \geqslant|V(D)|-j$. Now we distinguish four cases.

Case 1. Let $|V(C)| \geqslant|V(D)|-j+1$. Since $|V(C)| \geqslant \kappa j$, we obtain the desired result as follows.

$$
\begin{aligned}
\kappa p & \leqslant \kappa|V(D)| \leqslant \kappa(|V(C)|+j-1)=\kappa|V(C)|+\kappa j-\kappa, \\
& \leqslant \kappa|V(C)|+|V(C)|-\kappa=(\kappa+1)|V(C)|-\kappa \leqslant(\kappa+1) c-\kappa .
\end{aligned}
$$

Case 2. Let $|V(C)|=|V(D)|-j$ and $\left|V_{j+1}\right|+\cdots+\left|V_{n}\right| \geqslant \kappa$. Since $|V(C)| \geqslant \kappa j+\kappa$, we obtain the desired bound as follows:

$$
\begin{aligned}
\kappa p & \leqslant \kappa|V(D)|=\kappa(|V(C)|+j)=\kappa|V(C)|+\kappa j, \\
& \leqslant \kappa|V(C)|+|V(C)|-\kappa \leqslant(\kappa+1) c-\kappa .
\end{aligned}
$$

Case 3. Let $|V(C)|=|V(D)|-j,\left|V_{j+1}\right|+\cdots+\left|V_{n}\right| \leqslant \kappa-1$, and $j \geqslant 3$. Then, the subdigraph $D^{\prime}=D-\left(V_{j+1} \cup \cdots \cup V_{n}\right)$ is strong, and by Theorem 2.1, D^{\prime} contains a 3-cycle $x_{1} x_{2} x_{3} x_{1}$. Assume without loss of generality, that $x_{i} \in V_{i}$ for $i=1,2,3$. In addition, let $x_{i} \in V_{i}$ for $4 \leqslant i \leqslant j$ be arbitrarily chosen. Then, in view of Theorem 2.5, the vertex set $X=\left(V_{1}-\left\{x_{1}\right\}\right) \cup \cdots \cup\left(V_{j}-\left\{x_{j}\right\}\right) \cup V_{j+1} \cup \cdots \cup V_{n}$ is contained in a cycle C_{1}, i.e., $X \subseteq V\left(C_{1}\right)$. Clearly, $\left|V\left(C_{1}\right)\right| \geqslant|X|=|V(D)|-j$. If $\left|V\left(C_{1}\right)\right| \geqslant|V(D)|-j+1$, then, analogously to Case 1, we are done. However, if $\left|V\left(C_{1}\right)\right|=|V(D)|-j$, then, since the subdigraph $D-V\left(C_{1}\right)$ contains the 3-cycle $x_{1} x_{2} x_{3} x_{1}$, it follows from Theorem 2.2, that there exists a longer cycle in D, and analogously to Case 1 , we are done.

Case 4. Let $|V(C)|=|V(D)|-j,\left|V_{j+1}\right|+\cdots+\left|V_{n}\right| \leqslant \kappa-1$, and $j \leqslant 2$. Since $j=1$ is not possible, it remains the case $j=2$. But then, it follows from Theorem 3.1 that D is Hamiltonian, and this yields the desired result.

The next example will show that the bound given in Theorem 3.2 is sharp.
Let $A_{1}, A_{2}, \ldots, A_{n}$ be the partite sets of an n-partite tournament H such that $n \geqslant 3$, $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{n-1}\right|=k+1$, and $\left|A_{n}\right|=k$. If $A_{i} \rightarrow A_{j}$ for $1 \leqslant i<j \leqslant n-1, A_{i} \rightarrow A_{n}$ for $2 \leqslant i \leqslant n$, and $A_{n} \rightarrow A_{1}$, then $\kappa(H)=k=\alpha(H)-1, c=n k$, and $p=n k+n-1$. Consequently, $\kappa(H) p=k(n k+n-1)=(\kappa(H)+1) c-\kappa(H)$, and therefore equality in the bound of Theorem 3.2.

The same example with $\left|A_{n}\right|=q$ for $1 \leqslant q \leqslant k$, shows that the conjecture mentioned in Section 1 would be best possible. Finally, it may be noted that the second author [6] has observed in 1999 that every semicomplete n-partite digraph D, which fulfills the condition $\kappa(D)=\alpha(D)-1$ of Theorem 3.2, has a Hamiltonian path.

References

[1] J.A. Bondy, Disconnected orientation and a conjecture of Las Vergnas, J. London Math. Soc. 14 (1976) 277-282.
[2] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems, and algorithms: a survey, J. Graph Theory 19 (1995) 481-505.
[3] G. Gutin, A. Yeo, Solution of a conjecture of Volkmann on the number of vertices in longest paths and cycles of strong semicomplete multipartite digraphs, Graphs Combin., to appear.
[4] B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981) 145-157.
[5] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962) 160.
[6] L. Volkmann, Longest paths in semicomplete multipartite tournaments, Discrete Math. 199 (1999) 279-284.
[7] L. Volkmann, Spanning multipartite tournaments of semicomplete multipartite digraphs, Ars Combin., to appear.
[8] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math., submitted for publication.
[9] A. Yeo, One-diregular subgraphs in semicomplete multipartite digraphs, J. Graph Theory 24 (1997) 175-185.

[^0]: * Corresponding author.

 E-mail addresses: tewes@math.tu-freiberg.de (M. Tewes), volkm@math2.rwth-aachen.de (L. Volkmann).

