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Abstract

A digraph obtained by replacing each edge of a complete n-partite graph by an arc or a pair of
mutually opposite arcs is called a semicomplete n-partite digraph. We call �(D)=max16 i6 n{|Vi|}
the independence number of the semicomplete n-partite digraph D, where V1; V2; : : : ; Vn are the
partite sets of D. Let p and c, respectively, denote the number of vertices in a longest directed
path and the number of vertices in a longest directed cycle of a digraph D. Recently, Gutin
and Yeo proved that c¿ (p+1)=2 for every strongly connected semicomplete n-partite digraph
D. In this paper we present for the special class of semicomplete n-partite digraphs D with
connectivity �(D)= �(D)− 1¿ 1 the better bound

c¿
�(D)

�(D) + 1
(p + 1):

In addition, we present examples which show that this bound is best possible. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Terminology and introduction

In this paper all digraphs are >nite without loops and multiple arcs. The vertex set
of a digraph D is denoted by V (D). An orientation of a complete n-partite graph is an
n-partite or multipartite tournament. A digraph obtained by replacing each edge of a
complete n-partite graph by an arc or a pair of mutually opposite arcs is called a semi-
complete n-partite digraph or semicomplete multipartite digraph. If xy is an arc of a
digraph D, then we say that x dominates y, and if X and Y are two disjoint subsets
of V (D) such that every vertex of X dominates every vertex of Y , then we say that

∗ Corresponding author.
E-mail addresses: tewes@math.tu-freiberg.de (M. Tewes), volkm@math2.rwth-aachen.de (L. Volkmann).

0012-365X/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(00)00338 -1



454 M. Tewes, L. Volkmann /Discrete Mathematics 231 (2001) 453–457

X dominates Y , denoted by X →Y . The out-neighborhood N+
D (x) of a vertex x is the

set of vertices dominated by x, and the in-neighborhood N−
D (x) is the set of vertices

dominating x. For a vertex set X of D, we de>ne N+
D (X )=

⋃
x∈X N+

D (X ), and D[X ]
as the subdigraph induced by X . The numbers d+

D(x)= |N+
D (x)| and d−

D (x)= |N−
D (x)|

are called outdegree and indegree of x, respectively. Let x be a vertex and S be a
vertex set of D. By d+

D(x; S) and d−
D (x; S) we denote the number of arcs from x to

S and from S to x, respectively. All cycles and paths mentioned here are directed
cycles and directed paths. A cycle of length m is called an m-cycle. A cycle (path)
of a digraph D is Hamiltonian if it includes all the vertices of D. If a digraph con-
tains a Hamiltonian cycle, then we speak of a Hamiltonian digraph. A digraph D is
called strongly connected or strong if, for each pair of vertices u and v, there is a
path in D from u to v. A digraph D with at least k + 1 vertices is k-connected if
for any set A of at most k − 1 vertices, the subdigraph D − A is strong. The con-
nectivity of D, denoted by k = �(D), is then de>ned to be the largest value of k
for which D is k-connected. A 1-factor of a digraph D is a spanning subdigraph
consisting of disjoint cycles. If V1; V2; : : : ; Vn are the partite sets of a semicomplete
n-partite digraph, then �(D)=max16 i6 n{|Vi|} is called the independence number
of D.
In the following, we denote by p the number of vertices in a longest directed path

and by c the number of vertices in a longest directed cycle of a digraph D. For every
strongly connected semicomplete n-partite digraph D, Gutin and Yeo [3] have proved
recently that c¿ (p + 1)=2, which con>rms a conjecture of the second author [7]. In
this paper we present for the special class of semicomplete n-partite digraphs D with
connectivity �(D)= �(D)− 1¿ 1 the better bound

c¿
�(D)

�(D) + 1
(p + 1):

Examples will show that this inequality is best possible. Both results show that the next
conjecture of the second author [8] is valid for �(D)= 1 as well as for �(D)= �(D)−1.

Conjecture (Volkmann [8]). Let D be a strongly connected semicomplete multipartite
digraph with �(D)¡�(D). If p is the number of vertices in a longest path and c the
number of vertices in a longest cycle in D, then �(D)p6 (�(D) + 1)c − �(D).

It may be noted that Yeo [9] has proved in 1997 that a semicomplete multipartite
digraph D with �(D)¿ �(D) is even Hamiltonian and thus, we have p= c= |V (D)|
in this case.

2. Preliminary results

Theorem 2.1 (Bondy [1]). Each strongly connected semicomplete n-partite digraph
D contains an m-cycle for each m ∈ {3; 4; : : : ; n}.
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Theorem 2.2 (Ayel (cf. [4])). If C is a longest cycle in a strongly connected semi-
complete multipartite digraph D; then D − V (C) contains no cycle.

Originally, Bondy and Ayel have presented their results under the stronger condition
that D is a multipartite tournament. For proofs concerning the more general case when
D is a semicomplete multipartite digraph, we refer the reader to Volkmann [7] (for
Theorem 2.1) and Gutin [2] (for Theorem 2.2).

Theorem 2.3 (Ore [5]). A digraph D contains a 1-factor if and only if |S|6 |N+
D (S)|

for every subset S ⊆V (D).

Theorem 2.4 (Yeo [9]). Let D be a �q=2	-connected semicomplete multipartite
digraph such that �(D)6 q. If D has a 1-factor; then D is Hamiltonian.

Theorem 2.5 (Yeo [9]). Let D be a k-connected semicomplete multipartite digraph;
and let X be an arbitrary set of vertices in D with at most k vertices from each
partite set. Then there exists a cycle C in D with X ⊆V (C).

3. Main results

In 1997, Yeo [9] has proved that every semicomplete multipartite digraph D with the
property �(D)¿ �(D) is Hamiltonian. For a special class of semicomplete multipartite
digraphs D, we will show >rstly that the weaker condition �(D)¿ �(D)−1 is suJcient
for D to be Hamiltonian.

Theorem 3.1. Let D be a semicomplete n-partite digraph with the partite sets V1;
V2; : : : ; Vn such that |V1|= |V2|= k +1 and |V3|+ · · ·+ |Vn|6 k − 1. If �(D)= k¿ 1;
then D is Hamiltonian.

Proof: Let S be an arbitrary vertex set in D. In the >rst step of our proof we show
that |S|6 |N+

D (S)|.
Since D is k-connected, we have d+

D(x)¿ k for every x ∈ V (D). Therefore, it
follows at once that |S|6 |N+

D (S)| for |S|6 k.
In the case when |S|¿ 2k +2, we have |S|¿ |V (D)|− (k − 1) and we deduce from

the hypothesis that D[S] is strong. Hence, we observe that S =N+
D[S](S)⊆N+

D (S), and
thus we obtain the desired inequality |S|6 |N+

D (S)|.
If k + 16 |S|6 2k + 1, then we distinguish two cases. First, we assume that

S contains at most k vertices from V1 and at most k vertices from V2. Then, by
Theorem 2.5, there exists a cycle C in D with S ⊆V (C). This immediately implies
|S|6 |N+

C (S)|6 |N+
D (S)|.

In the remaining case we assume, without loss of generality, that S ∩V1 =V1. Since
|S|6 2k + 1, it is clear that S ∩ V2 �= V2. In addition, since |V3|+ · · ·+ |Vn|6 k − 1,
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we see that d−
D (x; V1)¿ 1 as well as d+

D(x; V1)¿ 1 for all vertices x ∈ V2. Now we
investigate two subcases.
If S ∩ V2 �= ∅, say v2 ∈ S ∩ V2, then we choose a vertex v1 ∈ V1 ⊆ S such that

v2 → v1, and we de>ne S ′ = S −{v1}. In view of Theorem 2.5, there exists a cycle C′

in D with S ′ ⊆V (C′). In the case when v1 ∈ V (C′), it follows that S ⊆V (C′), and we
are done as above. If v1 �∈ V (C′), then we have at least |S| − 1 out-neighbors of S on
the cycle C′ and in addition, the vertex v1 as an out-neighbor of v2 ∈ S. Consequently,
we obtain |S|6 |N+

D (S)|.
In the remaining subcase when S∩V2 = ∅, we de>ne R= S−V1. Since d−

D (x; V1)¿ 1
for all x ∈ V2, we see that V2 ⊆N+

D (S). If R= ∅ or d−
D (y; V1)¿ 1 for every vertex y

in R, we conclude that |S|= |R|+ |V1|= |R|+ |V2|6 |N+
D (S)|. Otherwise, there exists

a vertex u ∈ R such that u→V1, and we also arrive at the desired inequality by
|S|¡2k + 2= |V1|+ |V2|6 |N+

D (S)|.
Altogether, we have shown that |S|6 |N+

D (S)| for an arbitrary set S ⊆V (D), and
hence, according to Theorem 2.3, D contains a 1-factor. Thus, because of �(D)= k¿
�(k + 1)=2	, it follows from Theorem 2.4 that D is Hamiltonian.

Next, we present diLerent examples which show that Theorem 3.1 is best possible.
Let A1; A2; A3 be the partite sets of a 3-partite tournament H such that |A1|= |A2|=

k + 1, and |A3|= k − 1. If A1 →A2 →A3 →A1, then �(H)= k − 1= �(H)− 2, but H
is not Hamiltonian, because the longest cycle of H has length 3(k − 1).
Let A1; A2; A3 be the partite sets of a 3-partite tournament T such that |A1|= |A2|=

k + 1, and |A3|= k. If A1 →A2 →A3 →A1, then �(H)= k = �(H) − 1, but T is not
Hamiltonian, because the longest cycle of T has length 3k.
Let A1; A2; A3; A4 be the partite sets of a 4-partite tournament G such that |A1|= |A2|=

|A3|= k + 1, and |A4|= k − 1. In addition, let w be an arbitrary vertex of A2.
If A1 → (A2 − {w})→A3 → (A4 ∪ {w})→A1, A1 →A3, and A2 →A4, then �(G)=
k = �(H) − 1, but G has no Hamiltonian cycle, because the longest cycle of G has
length 4k.

Theorem 3.2. Let D be a semicomplete n-partite digraph with �(D)= �(D)− 1¿ 1.
If p is the number of vertices in a longest path and c the number of vertices in a
longest cycle in D; then �(D)p6 (�(D) + 1)c − �(D).

Proof: If V1; V2; : : : ; Vn are the partite sets of D such that |V1|= · · · = |Vj|¿|Vj+1|¿
· · · ¿ |Vn| with 16 j6 n; then �= �(D)= |V1| − 1. According to Theorem 2.5, there
exists a cycle C in D covering Vj+1 ∪ · · · ∪ Vn and at least � vertices of each partite
set V1; : : : ; Vj. Hence, |V (C)|¿ |V (D)| − j. Now we distinguish four cases.
Case 1. Let |V (C)|¿ |V (D)|−j+1. Since |V (C)|¿ �j, we obtain the desired result

as follows.

�p 6 �|V (D)|6 �(|V (C)|+ j − 1)= �|V (C)|+ �j − �;

6 �|V (C)|+ |V (C)| − �=(� + 1)|V (C)| − �6 (� + 1)c − �:
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Case 2. Let |V (C)|= |V (D)|− j and |Vj+1|+ · · ·+ |Vn|¿ �. Since |V (C)|¿ �j+�,
we obtain the desired bound as follows:

�p 6 �|V (D)|= �(|V (C)|+ j)= �|V (C)|+ �j;

6 �|V (C)|+ |V (C)| − �6 (� + 1)c − �:

Case 3. Let |V (C)|= |V (D)| − j, |Vj+1|+ · · ·+ |Vn|6 � − 1, and j¿ 3. Then, the
subdigraph D′ =D − (Vj+1 ∪ · · · ∪ Vn) is strong, and by Theorem 2.1, D′ contains
a 3-cycle x1x2x3x1. Assume without loss of generality, that xi ∈ Vi for i=1; 2; 3. In
addition, let xi ∈ Vi for 46 i6 j be arbitrarily chosen. Then, in view of Theorem 2.5,
the vertex set X =(V1−{x1})∪· · ·∪(Vj−{xj})∪Vj+1∪· · ·∪Vn is contained in a cycle
C1, i.e., X ⊆V (C1). Clearly, |V (C1)|¿ |X |= |V (D)| − j. If |V (C1)|¿ |V (D)| − j+1,
then, analogously to Case 1, we are done. However, if |V (C1)|= |V (D)|−j, then, since
the subdigraph D−V (C1) contains the 3-cycle x1x2x3x1, it follows from Theorem 2.2,
that there exists a longer cycle in D, and analogously to Case 1, we are done.
Case 4. Let |V (C)|= |V (D)| − j, |Vj+1|+ · · ·+ |Vn|6 �− 1, and j6 2. Since j=1

is not possible, it remains the case j=2. But then, it follows from Theorem 3.1 that
D is Hamiltonian, and this yields the desired result.

The next example will show that the bound given in Theorem 3.2 is sharp.
Let A1; A2; : : : ; An be the partite sets of an n-partite tournament H such that n¿ 3,

|A1|= |A2|= · · · = |An−1|= k+1, and |An|= k. If Ai →Aj for 16 i¡j6 n−1, Ai →An

for 26 i6 n, and An →A1, then �(H)= k = �(H) − 1, c= nk, and p= nk + n − 1.
Consequently, �(H)p= k(nk + n− 1)= (�(H) + 1)c− �(H), and therefore equality in
the bound of Theorem 3.2.
The same example with |An|= q for 16 q6 k, shows that the conjecture mentioned

in Section 1 would be best possible. Finally, it may be noted that the second author
[6] has observed in 1999 that every semicomplete n-partite digraph D, which ful>lls
the condition �(D)= �(D)− 1 of Theorem 3.2, has a Hamiltonian path.
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