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We study the behavior of solutions to the stationary Stokes equations near
singular points. Employing the power series expansions of harmonic and bihar-
monic functions, we have local power series expansions of solutions near singular
points. Then we find the precise structures of homogeneous solutions near singular
points which appear in local power series expansions. From the structures of the
homogeneous solutions we characterize the fundamental solutions. Moreover, we
study the asymptotic behavior of solutions to Stokes and Navier�Stokes equations
under an assumption on directions of velocities. � 1999 Academic Press

1. INTRODUCTION

When the viscous fluid flows slowly, the effect of convection is negligible.
Thus the essential feature of viscous incompressible flow can be modeled by
Stokes equations instead of Navier�Stokes equations. In this note we study
the behavior of solutions to the stationary Stokes equations which have an
isolated singularity.

We assume that 0/Rn is a bounded domain and the singular point [0]
lies in 0. We also assume that u: 0"[0] � Rn is the velocity vector and
p: 0"[0] � R is the pressure. Moreover we assume that (u, p) are smooth
in 0"[0] and satisfy the Stokes equations

2u&{p=0, { } u=0

in 0"[0]. We observe that u is biharmonic and p is harmonic. Hence
considering the power series expansion of biharmonic functions, we can
decide the precise structures of solutions near singular points. The regular
part corresponds to homogeneous polynomial solutions to Stokes equa-
tions and the singular part consists of homogeneous solutions of negative
degree. We find the structure of homogeneous solutions of the fixed degree
and they form a finite dimensional vector space. Using the information of
structure we can construct systematically the celebrated Stokes example of
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a flow in the exterior of a ball moving at constant velocity through a
viscous fluid (see p. 239, Ch. 5 in [6]).

Once we know the precise structure of solutions near isolated singular
points, we can find a necessary and sufficient condition that a fundamental
solution satisfies. In the case of harmonic function we know that if u�c
for some c near a point x0 , then u(x)=v(x)+cN(x&x0) for a harmonic
function v across x0 and the fundamental solutions N(x&x0) to Laplace
equation. This is originally proved by Bôcher in 1903 (see [1]). We prove
an equivalent theorem for Stokes equations. We can say that if the velocity
vectors near the singular point have similar directions, then the solution is
a fundamental solution.

Suppose that the space dimension n is greater than or equal to 3. We
define the fundamental solutions with singularity at the origin by

V i
m(x)=

1
n&2

$mi

|x|n&2+
x ix j

|x|n

for i=1, ..., n and

Qm(x)=
2xm

|x|n

for m=1, 2, ..., n. When the dimension is 2, we define

V i
m(x)=

1
2

xmx i

|x|2 &
1
4

$mi&
1
2

$mi ln |x|

for i=1, 2 and

Qm(x)=
xm

|x| 2

for m=1, 2.
Define the ball Br(x0)=[x: |x&x0 |<r] and as usual double indices

mean summation up to n. The following theorem is a generalization of
Bôcher's theorem to the Stokes equations.

Theorem 1.1. Suppose (u, p) are solutions to Stokes equations in 0"[0].
We fix a constant L and define

EL=[e # Rn : e } u(x)>L for all x # B$(0)].

Then the interior of EL is nonempty for some L if and only if

u(x)=v(x)+ :
n

m=1

amVm(x)
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and

p(x)=q(x)+ :
n

m=1

amQm(x)

for some constants am , where (v, q) are smooth solutions of Stokes equations
in 0.

Here the assumption that EL has nonempty interior means that the
velocity vectors u are away to a certain fixed direction near singular point.

2. CHARACTERIZATION OF FUNDAMENTAL SOLUTIONS

The following power series expansion is essential.

Lemma 2.1. Let [0] # 0. Suppose that v is a smooth biharmonic function
in 0"[0]. Then, v can be written

v(x)=h(x)+|x|2 k(x)+|x|2 k1(x)+$2n(A } x) ln |x|,

where A is a constant vector, h(x) and k(x) are harmonic in 0"[0], the
power series expansions of h(x) and k(x) in terms of homogeneous harmonic
polynomials do not involves with ln and

k1(x)=c ln |x| for n=2

c |x|&2 ln |x| for n=4

0 for n{2, 4.

Suppose v is biharmonic in Rn"[0]. We let mk be the dimension of
spherical harmonics of degree k and denote [Skm : m=1, ..., mk] as the
orthonormal basis of spherical harmonics of degree k in L2(S n&1

1 ). Here
S n&1

R is the sphere of radius R in Rn. Hence taking power series expansion
of h and k at the origin we find

v(x)=v1(x)+|x|2v2(x)+ :
�

k=0

:
mk

m=1

akm |x|&k&n+2 Skm \ x
|x|+

+ :
�

k=0

:
mk

m=1

bkm |x|&k&n+4 Skm \ x
|x|+

+$2n(c1 ln |x|+(c2 } x) ln |x|+c3 |x|2 ln |x| )+$4n(c4 ln |x| ),

where v1 and v2 are harmonic in whole 0, and $ij is the Kronecker $-function.
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Now considering the power series expansions of harmonic functions
v1(x) and v2(x), we can write that for homogeneous harmonic polynomials
H i

jm(x)

v(x)= :
�

k=0

:
mk

m=1

H 1
km(x)+|x|2 H 2

(k&2)m

+ :
�

k=0

:
mk

m=1

|x|&k&n+2 \akmSkm \ x
|x|++b(k+2)m S(k+2)m \ x

|x|++
+ :

m0

m=1

b0m |x|&n+4 S0m \ x
|x|++ :

m1

m=1

b1m |x|&n+3 S1m \ x
|x|+

+$2n(c1 ln |x|+(c2 } x) ln |x|+c3 |x| 2 ln |x| )+$4nc4 ln |x|, (2.1)

where mk is the dimension of homogeneous harmonic polynomials of
degree k. We know that the spherical harmonics Sj (x�|x| ) can be written
Sj (x)=|x|& j Pj (x) for some homogeneous harmonic polynomial Pj (x) of
degree j. Therefore we have

:
�

k=0

:
mk

m=1

|x|&k&n+2 (akmSkm+b(k+2)mS (k+2)m)

= :
�

k=0

:
mk

m=1

|x|&2k&n ( |x| 2 P1
km+P2

(k+2)m),

where P j
km(x) are homogeneous harmonic polynomials of degree k.

If (u, p) are solutions to Stokes equations

2u&{p=0, { } u=0

in 0"[0], then u is biharmonic and p is harmonic in 0"[0]. Thus u has
a power series expansion of the form (2.1) and p has power series expan-
sion in terms of homogeneous harmonic polynomials near [0].

First we decide the structure of homogeneous polynomial solutions to
Stokes equations.

Lemma 2.2. Let k�2. Suppose v(x)=Pk(x) and q(x)=Pk&1(x) are
solutions to Stokes equations, where Pk(x) and Pk&1(x) are homogeneous
polynomials of degree k and k&1 respectively. Then v(x) and q(x) can be
written as
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v(x)=Hk(x)&
1

2(k&1)
|x| 2 {({ } Hk(x))

q(x)=&
n+k&2

k&1
{ } Hk(x)

for some homogeneous harmonic polynomial Hk(x) of degree k.

Proof. We do not make any specific notation for vector valued func-
tions and scalar valued functions. From Lemma 2.1 for the characterization
of biharmonic function, we know that

v(x)=Hk(x)+|x|2 Hk&2(x)

and

q(x)=Hk&1(x)

for some homogeneous harmonic polynomials Hk , Hk&1 and Hk&2 . Since
{ } v=0, we have

{ } Hk(x)+2x } Hk&2(x)+|x| 2 { } Hk&2(x)=0. (2.2)

On the other hand 2v={p implies

2nHk&2(x)+2(x } {) Hk&2(x)={Hk&1(x).

Since Hk&2 are homogeneous polynomial of degree k&2 we have

(x } {) Hk&2(x)=(k&2) Hk&2(x).

Hence we have

Hk&2(x)=
1

2(n+k&2)
{Hk&1(x).

Considering the above relation and (2.2) we get

{ } Hk(x)=&2x } Hk&2(x)&|x|2 { } Hk&2(x)

=&
1

n+k&2
x } {Hk&1(x)&

1
2(n+k&2)

|x|2 2Hk&2(x)

=&
k&1

n+k&2
Hk&1 .
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Therefore we have

Hk&1=&
n+k&2

k&1
{ } Hk and Hk&2(x)=&

1
2(k&1)

{({ } Hk)

and this completes the proof.

Recall that the dimension of the set of all homogeneous harmonic poly-
nomials is

\n+k&1
k +&\n+k&3

k&2 + .

Thus we have the following corollary.

Corollary 2.3. Let S(n, k)=[(vk(x), qk&1(x))], k�2 be the set of
all homogeneous polynomial solutions to Stokes equations in Rn of degree k
and k&1 respectively. Then the dimension of S(n, k) is n[( n+k&1

k )&
( n+k&3

k&2 )].

Now we decide the structure of singular homogeneous solutions.

Lemma 2.4. Let k�0. Suppose that

v(x)=|x|&2k&n Pk+2(x) and q(x)=|x| &2k&n Pk+1(x)

are solutions to Stokes equations for homogeneous polynomials Pk+2 and
Pk+1 with degree k+2 and k+1 respectively. Then we have

v(x)=|x|&2k&n+2 Hk(x)+
2k+n

2(k+n&1)
|x| &2k&n Wk(x)x

&
1

2(k+n&1)
|x|&2k&n+2 {Wk(x)

and

q(x)=
2k+n

k+n&1
|x|&2k&n Wk(x)

for some homogeneous harmonic polynomial Hk(x) of degree k, where we
defined Wk(x) by

Wk(x)=(2k+n&2) x } Hk(x)&|x| 2 { } Hk(x).

318 HI JUN CHOE



Proof. From Lemma 2.1 for the power series expansion of biharmonic
polynomials, we know that

v(x)=|x|&2k&n ( |x|2 Hk(x)+Hk+2(x))

and

q(x)=|x|&2k&n Hk+1(x)

for some homogeneous harmonic polynomials Hk , Hk+1 and Hk+2 of
degree k, k+1 and k+2 respectively. Thus from direct calculations

2v=(2 |x|&2k&n) Hk+2+2({ |x| &2k&n } {) Hk+2(x).

From homogeneity we know that

x } {Hk+2(x)=(k+2) Hk+2(x).

Hence we have

2v=&2(2k+n) |x|&2k&n&2 Hk+2(x)={q

and

Hk+2(x)=
1
2

Hk+1(x)x&
1

2(2k+n)
|x| 2 {Hk+1 . (2.3)

Also taking the divergence of v we have

(&2k&n+2) |x|&2k&n x } Hk(x)+|x|&2k&n+2 { } Hk(x)

+(&2k&n) |x|&2k&n&2 x } Hk+2(x)+|x| &2k&n { } Hk+2(x)=0

and

(&2k&n+2)x } Hk(x)+|x| 2 { } Hk(x)

=(2k+n)
x

|x|2 } Hk+2(x)&{ } Hk+2 .

On the other hand from (2.3)

x } Hk+2(x)=
1
2

|x|2 Hk+1(x)&
k+1

2(2k+n)
|x|2 Hk+1(x)

=
k+n&1
2(2k+n)

|x|2 Hk+1
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and apply the Laplacian to both sides

{ } Hk+2(x)=
(k+n&1)(n+2k+2)

2(2k+n)
Hk+1(x).

Thus we have

(&2k&n+2)x } Hk(x)+|x| 2 { } Hk=&
k+n&1

2k+n
Hk+1(x)

and solving for Hk+1 gives

Hk+1(x)=
(2k+n&2)(2k+n)

k+n&1
x } Hk(x)

&
2k+n

k+n&1
|x|2 { } Hk(x). (2.4)

From the expression of Hk+1 in terms of Hk we conclude that

q(x)=
2k+n

k+n&1
|x|&2k&n Wk(x).

Also plugging (2.4) to (2.3) we find that

Hk+2(x)=
(2k+n&2)(2k+n)

2(k+n&1)
(x } Hk(x)) x&

2k+n&2
2(k+n&1)

|x|2 { } Hk(x)x

&
2k+n&2

2(k+n&1)
|x|2 {(x } Hk(x))+

1
2(k+n&1)

|x| 4 {({ } Hk(x)).

We observe that

|x|2 {({ } Hk(x))={( |x|2 { } Hk(x))&2({ } Hk(x))x

and

Hk+2(x)=
2k+n

2(k+n&1)
((2k+n&2)(x } Hk(x))&|x| 2 { } Hk(x))x

&
1

2(k+n&1)
|x|2 {((2k+n&2)x } Hk&|x|2 ({ } Hk(x))).

Now recall that we defined

Wk(x)=(2k+n&2)x } Hk(x)x&|x| 2 { } Hk(x).
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Therefore we conclude that

Hk+2(x)=
2k+n

2(k+n&1)
Wk(x)x&

1
2(k+n&1)

{Wk(x).

From this we can express the velocity v in terms of Hk(x). This completes
the proof.

Now we study the structure of solutions according to dimensions. The
power series expansion of the solution to Stokes equations are different
from biharmonic functions, in fact, more restrictive. Also the series expan-
sion appears differently according to dimension. Indeed the cases n=2 and
4 are different from the other dimensions.

First we let n=4. Since the pressure p(x) is harmonic, no logarithmic
function is involved in the expansion and we have

p(x)= :
�

k=0

:
mk

m=1

Hkm(x)+ :
�

k=0

:
mk

m=1

|x| &2k&2 Jkm(x)

for some homogeneous harmonic polynomials Hkm(x) and Jkm(x) of degree
k. Moreover we know that

{( |x|&2k&2 Jkm(x))=o( |x|&2)

for all k�0. Since 2 ln |x|=c |x|&2 and 2u={p, we find that c4=0 in the
expression (2.1) of u. Since c4=0, there are no differences between the case
n=4 and the case n�3. Thus we assume n�3 and there is no term involv-
ing ln |x|. Now we consider the terms with the same growth of fundamental
solution. We assume that v(x)=|x|&n P2(x) and q(x)=|x|&n J1(x), which
appear in the power series expansion of u and p, are solutions to Stokes
equations, where P2(x) and J1(x) are homogeneous polynomials of degree
2 and 1 respectively. Therefore taking k=0 in Lemma 2.4, we have the
following corollary which is useful in deciding the structure of fundamental
solutions.

Corollary 2.5. Let n�3. Suppose that v(x)=|x|&n P2(x), q(x)=
|x|&n J1(x) are solutions to Stokes equations, then

v(x)=
1

|x|n (A } x)x+
1

n&2
1

|x| n&2 A
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and

q(x)=2
1

|x|n A } x

for some constant vector A.

Define Vm(x)=(V 1
m(x), V 2

m(x), ..., V n
m(x)) and Qm(x) by

V i
m(x)=

xmx i

|x|n +
$mi

n&2
1

|x|n&2

i=1, 2, ..., n and

Qm(x)=
2xm

|x|n .

Then we choose A as the m-the unit vector in Lemma 2.4 and hence we
have the following corollary.

Corollary 2.6. Let n�3. The set of all homogeneous solutions (v, q) of
degree &n+2 and &n+1 is n-dimensional vector space and [(Vm , Qm),
m=1, ..., n] is the basis.

Let n=2. Since the pressure p(x) is harmonic in 0"[0], we can write as

p(x)= :
�

k=0

:
mk

m=1

Hkm(x)+ :
�

k=1

:
mk

m=1

|x| &2k Jkm(x)+c4 ln |x| (2.5)

for some homogeneous harmonic polynomials Hkm and Jkm and some
constant c(see the book by Kellog [8]). Also we know that

2[c1 ln |x|+(c2 } x) ln |x|+c3 |x|2 ln |x| ]=4c3(1+ln |x| ).

Hence considering the order of growth of {p=2u as in the case n=4, we
conclude

c3=0

in the power series expansion (2.1) of u and (2.5) of p. From direct
computation we find

2(x ln |x| )&{(2 ln |x| )=0.

Consequently, if (c2 } x) ln |x| satisfies Stokes equations, we have

c2= 1
2c4I,
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where I is the identity matrix. But, { } (x ln |x| ){0 and

c2=0.

Now we decide the structure condition of the terms of the same growth to
fundamental solutions. From the order of growth

v(x)= :
m2

m=1

b2mS2m \ x
|x|++c1 ln |x|

=|x|&2 H2(x)+c1 ln |x|

q(x)=|x|&2 J1(x)

is a solution to Stokes equation, where H2(x) and J1(x) are homogeneous
harmonic polynomials of degree 2 and 1 respectively and c1 is a constant
vector. Now we find that from 2v={q

&
4

|x|4 H2(x)=&
2x
|x|4 J1(x)+|x|&2 {J1(x)

and

H2(x)= 1
2J1(x)x& 1

4 |x|2 {J1(x).

Since { } v=0, we see that

{ } H2(x) |x|&2&2H2(x) } x |x| &4+c1 } x |x| &2=0.

Hence we find that

c1 } x=2H2 } x |x|&2&{ } H2(x).

Now since J1(x) is a linear function, we can set J1(x)=A } x for some
constant vector A. Consequently we conclude that

H2(x)= 1
2 (A } x)x& 1

4 |x|2 A

and

c1=&1
2A.

Lemma 2.7. Let n=2. Suppose that v(x)=|x| &2 H2(x)+c1 ln |x| and
q(x)=|x|&2 J1(x) are solutions to Stokes equations, then

v(x)= 1
2 |x|&2 (A } x)x& 1

4A& 1
2 A ln |x|
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and

p(x)=|x|&2 A } x

for some constant vector A.

Define (Vm , Qm), m=1, 2 by

V i
m(x)=

1
2

xmx i

|x|2 &
1
4

$mi&
1
2

$mi ln |x|,

i=1, 2 and

Qm(x)=
xm

|x| 2 .

Corollary 2.8. Let n=2. Then, the set of all non-constant solutions
which are homogeneous degree 0, modulo constant vector, is 2-dimensional
vector space and [(Vm , Qm): m=1, 2] are the basis.

Now we can characterize the fundamental solutions. The theorem for
harmonic functions is known as Bôcher's theorem.

Theorem 2.9. Let n�2 and B$(0)/0. Suppose that (u, p) are solutions
to Stokes equations in 0"[0]. We fix L a constant and define

EL=[e # Rn : e } u(x)>L for all x # B$(0)].

Then the interior of EL is nonempty for some L if and only if (u, p) satisfy

u(x)=v(x)+ :
n

m=1

amVm(x)

and

p(x)=q(x)+ :
n

m=1

amQm(x)

for some constants am , m=1, ..., n, where (v, q) are solutions to Stokes
equations in whole domain 0.

Proof. For simplicity we assume n�3. The case n=2 follows under the
same argument with little modifications. Now we prove the sufficient part.
Suppose that u can written by

u(x)=v(x)+ :
n

m=1

amVm(x)
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for some smooth solution v in B$(0). We assume that (a1 , a2 , ..., an){0,
otherwise it holds trivially. We choose e=(a1 , a2 , ..., an), then

:
n

m=1

amVm } e=
1

|x|n&2 :
n

m=1

:
n

i=1

am ai \xmxi

|x| 2 +
$mi

n&2+>
|a|

(n&2) |x| n&2 .

Since v is bounded in B$(0), EL has nonempty interior for some fixed
constant L.

We prove the necessary part. Since EL has nonempty interior, we can
find a constant vector e and a small ball B=(e) centered at e such that
B=(e)/EL . Adding a constant vector to u we can assume L=0. We know
that u can be written as

u(x)=v(x)+ :
�

k=1

:
mk

m=1

|x|&k&n+2 _akm Skm \ x
|x|++b(k+2)mS (k+2)m \ x

|x|+&
+

1
|x|n (A } x)x+

1
(n&2) |x|n&2 A

and

p(x)=q(x)+ :
�

k=2

:
mk

m=1

|x|&k&n+2 ckmSkm \ x
|x|++2

1
|x| n A } x

for some constant vector A. Moreover (v, q) are solutions to Stokes equa-
tions in whole 0. Thus (v, q) are bounded in B$(0). Define |=x�|x|. Now
we choose = so small that e+=Sjl (|)/E0 . Recall S jl is an element of
orthonormal basis of spherical harmonics of degree j. Then we multiply
e+=Sjl (|) to u and integrate on sphere Sn&1

\ centered at the origin with
small radius \�$. Thus from the orthogonality and the fact that
�S 1

n&1 Sjl (|) d|=0 for j�1, we have

0�|
S \

n&1
u } (e+=Sjl) d_x=\n&1 |

S 1
n&1

u } (e+=S jl) d|

=\n&1 |
S 1

n&1
v } (e+=Sjl) d|+=(\& j+1ajl+\& j+3bjl),

where bjl=0 for j=0, 1 and 2. Hence if ajl {0, then we can choose \ very
small and =ajl<0. This contradicts to

0�|
S\

n&1
u } (e+=S jl) d_x
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for small \>0. Similarly we conclude that bjl=0. This implies akm=bkm

=0 for all k�1. Thus from the structure theorem we also have ckm=0.
Therefore

u(x)=v(x)+
1

|x|n (A } x)x+
1

(n&2) |x| n&2 A

and

p(x)=q(x)+2
A } x
|x| n

and this completes the proof.

3. EXTERIOR PROBLEMS FOR STOKES EQUATIONS

In this section we consider the exterior problems for Stokes equations.
Since we are interested in the behavior of solutions at infinity, we assume
that 0=Rn"B1(0).

We study the asymptotic behavior of solutions at infinity. We list a
lemma which describe the asymptotic growth of higher derivatives of
solutions. (See Lemma 1 in [3].) Define 0R=0 & BR .

Lemma 3.1. Suppose that u is a solution to Stokes equations and for
sufficiently large R

|
0R

|u| 2 |x|&s dx<K(R)

for some real number s. Then for any nonnegative integer k

|{k u(x)|=O( |x| s�2 K1�2( |x| )).

The following theorem shows the asymptotic behavior of solutions at
infinity.

Theorem 3.2. Let (u, p) be solutions to Stokes equations in 0. Suppose
that as |x| � �, u(x)=o( |x|m) for some nonnegative integer m. Then there
exist homogeneous polynomial solutions (H 1

k(x), H 2
k&1(x)) with nonnegative

degree 0�k�m0<m and homogeneous solutions (J 1
&k&n+2(x), J 2

&k&n+1(x))
with negative degree for k�0 to Stokes equations such that
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u(x)= :
m0

k=0

H 1
k(x)+ :

�

k=0

J 1
&k&n+2(x)

p(x)= :
m0

k=1

H 2
k&1(x)+ :

�

k=0

J 2
&k&n+1(x),

where c=0 if m�1. Moreover we have

} :
�

k=0

J 1
&k&n+2 }�c |x|&n+2, n�3

�c ln |x|, n=2

for some c for all x # 0 and

} :
�

k=0

J 2
&k&n+1(x) }�c |x| &n+1

for some c and for all x # 0.

Proof. The solutions in the annulus 0R can be represented by surface
potentials. We let |n be the surface area of unit sphere in Rn. First we list
the single layer and double layer surface potentials of the solutions of
Stokes equations:

uk(x)=V k
R(x, Tij (u))+W k

R(x, u)&V k
1(x, Tij (u))&W k

1(x, u)

=uk
R(x)&uk

1(x)

p(x)=ER(x, Tij (u))+FR(x, u)&E1(x, Tij (u))&F1(x, u)

= pR(x)& p1(x)

Tij (u)=&$ijp+\�ui

�x j
+

�u j

�xi+ ,

where

V k
R(x, u)=

1
2|n

|
SR
_ $ij

n&2
1

|x& y| n&2+
(x i& y i)(xj& yj)

|x& y| n & Tik(u)
yj

R
d_y

W k
R(x, u)=&

n
|n

|
SR

(x i& yi)(xj& y j)(xk& yk)
|x& y|n+2

y j

R
ui ( y) d_y

ER(x, T )=
1

|n
|

SR

xk& yk

|x& y|n Tkj (u)
y j

R
d_y

FR(x, u)=
2

|n
|

SR
_ $ ij

|x& y|n&n
(x i& yi)(x j& y j)

|x& y|n+2 & yj

R
ui ( y) d_y
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when n�3 and

V k
R(x, u)=&

1
4? |

SR
_$ij ln |x& y|&

(xi& yi)(xj& yj)
|x& y| 2 & Tik(u)

yj

R
d_y

Wk
R(x, u)=&

1
? |

SR

(xi& yi)(x j& y j)(xk& yk)
|x& y|4

yj

R
ui ( y) d_y

ER(x, T)=&
1

2? |
SR

xk& yk

|x& y| 2 Tkj (u)
yj

R
d_y

FR(x, u)=&
1
? |

SR
_ $ij

|x& y|2&2
(xi& yi)(xj& yj)

|x& y|4 & yj

R
ui ( y) d_y

when n=2. From the growth condition we have

|
0R

|u| 2 |x|&2m&n&= dx�c

for all =>0 and for some c. Thus from Lemma 3.1 {ku(x)=o( |x|m+(n�2)+1)
for all k and p(x)=o( |x|m+(n�2)+1). Thus from the integral representation
we have

|{kVR(x)|, |{kWR(x)|�c(x) Rm+(n�2)+2&k

and for all k>m+2+(n�2) we have

lim
R � �

|{kVR(x)|=0 and lim
R � �

|{kWR(x)|=0.

Moreover since uR(x)=u(x)+u1(x) is independent of R, we find that
uR(x) is a polynomial. Then from the growth condition uR(x) is a polyno-
mial of degree m0<m. From the characterization of homogeneous solutions
we find the expression of homogeneous solutions of nonnegative degree.

From the definition of surface potential V1 and W1 we have

|u1(x)|�c |x|&n+2, n�3

�ln |x|, n=2

for some c and for all x # 0. Similarly we have a bound for p1 . It remains
to find a power series expansion of u1 and p1 in terms of homogeneous
solutions of negative degree. The expression of the part of negative degree
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can be obtained by Taylor series expansion of fundamental solution. We let
1ij be the fundamental tensor such that

1ij (x)=
$ij

n&2
1

|x| n&2+
x ix j

|x|n n�3

1ij (x)=&$ij ln |x|+
xix j

|x| 2 n=2.

Then since 1ij (x) is analytic for all large |x| , we can have for | y|=1 and
large |x|

1ij (x& y)=1ij (x)&{(1ij (x)) } ( y)+
1
2!

{2(1ij (x)) } (&y) } (&y)

+ } } } +
(&1)k

k!
{k(1ij) } y } y } } } } } y+O( |x|&n&k+1).

Therefore from the integral expression we have

V k
1(x)=1ij (x) |

S1

Tik(u) yj d_y&{(1ij (x)) |
S1

} yT ik(u) yj d_y

+ } } } +
(&1)k

k!
{k(1ij (x)) |

S1

} y } y } } } } } yT ik(u) yj d_y

+O( |x|&n&k+1).

Here we note that {k(1ij (x)) is homogeneous Stokes solution of degree
&n&k+2. Similarly we can express WR(x), ER(x) and FR(x) by Taylor
series expansions. Combining all these together we find the series expansion
in terms of homogeneous solutions.

The case m=1 in Theorem 3.2 has been considered by Chang and Finn
(see Theorem 1 in [3]).

Theorem 3.3. We fix a constant L and define

FL=[e # Rn : e } u(x)>L for all x # Rn"BR(0)].

Suppose u(x)=O( |x|m) for some nonnegative integer m. Then the interior of
FL is nonempty for some large R if and only if u is bounded when n�3 and
u=O(ln |x| ) when n=2.

Proof. First we assume n�3. The case n=2 follows under the same
argument with little modifications. The sufficient part is rather obvious.
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Indeed, if u is bounded in 0, then FL has nonempty interior for sufficiently
large negative number L.

We prove the necessary part. Suppose FL has nonempty interior such
that B$(e)/FL , where e is a constant vector. Adding a constant vector we
can assume L=0. Since u=O( |x|m), from Theorem 3.2 we know that u can
be written as

u(x)= :
m0

k=0

H 1
k(x)&u1(x)

p(x)= :
m0

k=1

H 2
k&1(x)& p1(x)

for some homogeneous polynomial solutions H 1
k and H 2

k of degree k. Also
u1(x)=O( |x| &n+2) and p1(x)=O( |x|&n+1). As we know, (H 1

k , H 2
k&1),

k=1, ..., m0 are homogeneous solutions and their structure is decided by

H 1
k(x)=:

j

ajk |x| k Sjk(|)+bj(k&2) |x|k Sj(k&2)(|),

where we defined |=x�|x|. Now we choose |=| so small that e+=Sjl (0)
/F0 , where S jl is the spherical harmonic. Then we multiply e+=Sjl (|),
l�1 to u and integrate on sphere S n&1

\ centered at the origin with large
radius \�1. Thus from the orthogonality and the fact that �S 1

n&1 S jl (|) d|
=0 for j�1,

0�|
S\

n&1
u } (e+=Sjl ) d_x=\n&1 |

S 1
n&1

u } (e+=Sjl ) d|

=\n&1 |
S 1

n&1
(H 1

0&u1) } (e+=Sjl) d|+=(\l+n&1ajl+\ l+n+1bjl).

Hence if bjl {0, then we choose \ very large and =bjl<0. This contradicts
to

0�|
S\

n&1
u } (e+=S jl ) d_x

for all \>0. Similarly we conclude that ajl=0 for all l�1. Hence we get
ajl=0 for all l�1 and bjl=0 for all l�0. Therefore

u(x)=c0&u1(x) and p(x)=&p1(x)

and this completes the proof.
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Now we discuss the celebrated Stokes example. When n=3, Stokes
derived in 1851 a remarkable explicit solution (Il , Jl) given by

I i
l(x)=

3
4

xix l

|x| 3 \ 1
|x| 2&1++\1&

3
4 |x|

&
1

4 |x| 3+ $il

(3.1)

Jl (x)=&
3
2

xl

|x| 3

for each l=1, 2, 3. (See p. 239, Ch. 5 in [6].) We note Il=0 on the unit
sphere and lim |x| � � Il (x)=el , el is the l th unit vector. Now we show this
Stokes solution is a direct consequence of Lemma 2.4 and Corollary 2.5.
Indeed we assume n=3 in Lemma 2.4. We choose the homogeneous
harmonic vector valued function H2(x) by

H2(x)= 1
4 (2x2

1&x2
2&x2

3 , 3x1x2 , 3x1x3)t.

From Lemma 2.4 we find that

(U1(x), P1(x))=(|x|&5 H2(x), 0)

are solutions to Stokes equations. Taking the fundamental solution
(V1(x), Q1(x)) in Corollary 2.6, we find that

(I1(x), J1(x))=(U1(x), P1(x))+ 3
4 (V1(x), Q1(x))+(e1 , 0)

are the Stokes example, where (V1 , Q1) are the fundamental solutions
defined in Corollary 2.6.

When the dimension is 2 and u=0 on �B1(0),

lim sup
|x| � �

|u(x)|=� or u(x)=0.

This is known as Stokes paradox and investigated in great detail by many
authors. Here we show that when the dimension is 3, the Stokes examples
characterize completely the solutions satisfying the boundary conditions
that u=0 on �0. The following theorem can be considered as Stokes
paradox for three dimension.

Theorem 3.4. Let n=3. Suppose that (u, p) are solutions to Stokes
equations in 0 and u=0 on S 2

1 and bounded. Then u is in the span of the
Stokes examples [Il , l=1, 2, 3] which are defined in (3.1).

Proof. Since u is bounded, we find that from Theorem 3.2

u(x)=C0&V1(x)&W1(x).
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Since u=0 on S 2
1 , V1(x)=0. Hence W1(x)=C0&u(x) and W1(x)=C0 for

x # S 2
1 and

lim
|x| � �

W1(x)=0.

Then :i (x)=I i
l(x)C l

0 satisfies that : i (x)=0 for all x # S 2
1 and

lim
|x| � 0

:i (x)=$ilC l
0=C i

0 .

We let ;(x)=W1(x)&C0+:(x), then ;(x)=0 on S 2
1 and

lim
|x| � �

;(x)=0.

From the uniqueness of Finn and Noll (see [5]) we conclude that

;(x)=0 for all x # 0

and ;(x)=0 for all x. Therefore u(x)=:(x) and completes the proof.

4. EXTERIOR PROBLEMS FOR NAVIER�STOKES EQUATIONS

In this section we study the behavior of solutions to Navier�Stokes equa-
tions for exterior domain in R3. For simplicity we assume 0=R3 "B1(0).
We define a homogeneous Sobolev space H0(0) by completion of C �

0 (0)
under the seminorm &,&=�0 |{u|2 dx and H 0

_(0) by the set of all solenoidal
vector field in H0(0). We list a Poincare type inequality suggested by Finn.
(See Corollary 2.2 in [4].) Define 0R=R3"BR(0).

Lemma 4.1. Let ,(x) be a continuous function and have a generalized
first derivative in 0R. Let x=0 or |x|�2R. Then there is a constant vector
,0 such that

|
0 R

|,( y)&,0 |
|x& y| 2 dy�K |

0R
|{,( y)|2 dy,

where K=3+2 - 2<6. Moreover if , # H0(0R), then ,0=0.

The following lemma is useful in studying asymptotic behavior of solutions.
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Lemma 4.2. Suppose that , # H0(0). Then for any given =0 there exists
R0 such that for all |x|>R0

|
0

|,( y)|2

|x& y|2 dy�=0 .

Proof. Let =>0. Then we can find a large number R such that

|
0R

|{,( y)| 2 dy<=.

From Lemma 4.1 we have that for |x|�2R

|
0 R

|,( y)| 2

|x& y|2 dy�6 |
0R

|{,( y)|2 dy�6=.

If |x|�2R�- =, then for sufficiently small = we have | y|2�|x& y|2�= for all
y # BR . Hence we get

|
BR"B1

|,( y)|
|x& y|2 dy�= |

BR"B1

|,( y)|
| y|2 dy

�6= |
0

|{,( y)|2 dy.

Since = is chosen arbitrarily and �0 |{,( y)|2 dy is bounded, we complete
the proof.

Definition 4.3. A field u(x) # L2(0) is said to be a generalized solution
to Navier�Stokes equations if

|
0

u } 2, dx+|
0

uiu j, j
xi

dx=0

for all , # C 1
0(0 � R3) with { } ,=0 and

|
0

u } {, dx=0

for all , # C �
0 (0).
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From the local regularity and boundary regularity theory we can assume
that u # H 0

_(0) is smooth in 0. Now from integration by parts we have
potential expression such that for R>|x|>1

uk(x)=W k
R(x)+V k

R(x)+Y k
R&W k

1&V k
1(x)&Y k

1(x)+Zk
R, 1(x)

p(x)=FR(x)+ER(x)+GR(x)&F1(x)&E1(x)&G1(x)+HR, 1(x),

where Vr , Wr , Er , Fr are defined in the proof of Theorem 3.2 and

Y k
R(x)=|

SR

Kkj (x& y) ui ( y) u j ( y)
yi

R
d_y

GR(x)=
1

|3
|

SR

Kj (x& y)
yi

R
ui ( y) u j ( y) d_y

Zk
R, 1=&

1
2|3

|
BR"B1

_$jk(x i& y i)
|x& y|3 &

$ij (xk& yk)
|x& y|3 &

$ki (xj& yj)
|x& y|3

+3
(xi& yi)(xj& yj)(xk& yk)

|x& y| 5 & ui ( y) u j ( y) dy

HR, 1=&c3 |
BR"B1

_ $ij

|x& y| 3&n
(xi& yi)(xj& yj)

|x& y|5 & ui ( y) u j ( y) dy,

where Kij and Kj are fundamental tensors for velocity and pressure.

Theorem 4.4. Let n=3. Suppose u # H 0
_(0) is a solution to Navier�Stokes

equations and FL is nonempty for some L, then

lim
R � �

VR+WR+YR=0.

for all x # 0 and hence u(x)=&W1(x)&V1(x)&Y1(x)+Z�, 1(x).

Proof. Since {u # L2(0), we find that u # L6(0) and p # L3(0). On the
other hand from the local regularity theory we know that (u, p) are smooth
in each compact subset of 0. Now we fix x # 0 and |x|<R0 �2. Thus we
have from Ho� lder inequality

|
�

R0
\1

\ |
S\

|{u( y)| d_y+
2

d\�c |
�

R0
|

S\

|{u|2 d_y d\�c &{u&2
0

and

|
�

R0
\ 1

\43 |
S\

| p( y)| d_y+
3

d\�c |
�

R0
|

S\

| p( y)| 3 d_y d\�c &{u&6
0
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for some c. Hence we conclude that

lim inf
R � �

1
Rk |

SR

|{u( y)|+| p( y)| d_y=0 (4.1)

for all k� 4
3 . Considering the fact that u # L6(0), we can obtain

lim inf
R � �

1
Rk |

SR

|u( y)| d_y=0 (4.2)

for all k� 5
3 . Similarly we have

lim inf
R � �

1
Rk |

SR

|u( y)|2 d_y (4.3)

for all k� 4
3 .

From the definition of surface potential VR we have

|{kVR(x, u)|�c |
SR
}{k

x

1
|x& y| } ( |{u( y)|+| p( y)| ) dy

�
c

Rk+1 |
SR

|{u( y)|+| p( y)| d_y

for R>R0 and from (4.1) we get that for k�1

lim inf
R � �

{kVR(x)=0.

Also from (4.2) and (4.3) we have that

lim inf
R � �

{kWR(x)=0 and lim inf
R � �

{k YR(x)=0

for all k�0. Therefore we have for some sequence Rj � �

lim
Rj � �

|{k(VRj
+WRj

+YRj
(x))|=0

for k�1 and J(x)=limRj � � VRj
(x)+WRj

(x)+YRj
(X) is a polynomial.

Moreover since VR+WR+YR is a solution to Stokes equations, we find
that J(x) is a polynomial solution to Stokes equations and satisfies the
characterization lemma (see Lemma 2.2).

The volume potential ZR, 1 can be estimated by

|ZR, 1(x)|�c |
BR"B1

|u( y)|2

|x& y|2 dy

335ON SOLUTIONS TO STOKES EQUATIONS



and hence from Lemma 4.2 we find that ZR, 1(x) goes to zero uniformly as
|x| and R go to infinity, that is, for any given = there exists R0 such that
if R0<|x|<R, then

lim
|x| � �

ZR, 1(x)==.

Since FL has nonempty interior, we can find a constant vector and a
small ball B$(e)/FL . We multiply e+=Sjl (|) # B$(0) to u and integrate on
unit sphere. Thus we get

0�|
S\

u } (e+=Sjl) d_x=\2 |
S1

u } (e+=Sjl) d|

=\2 |
S1

(VR+WR+YR) } (e+=Sjl ) d|

+\2 |
S1

(V1+W1+Y1&ZR, 1) } (e+=Sjl) d|.

Since (V1+W1+Y1)(x)=O( |x|&1) and ZR, 1(x) goes to zero uniformly as
|x| and R go to infinity, we have

\2 |
S1

(V1+W1+Y1&ZR, 1) } (e+=) d|=o(\2).

Therefore sending R to infinity at (4.5) we conclude that J(x) is a constant
vector C0 . If this is the case, from the assumption that u # H 0 the constant
vector C0 should be zero. This completes the proof.
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