
Labelled Transitions for Mobile Ambients
(As Synthesized via a Graphical Encoding)

Filippo Bonchi, Fabio Gadducci, Giacoma Valentina Monreale

Dipartimento di Informatica, Università di Pisa
largo Pontecorvo 3c, I-56127 Pisa, Italy

gadducci@di.unipi.it, fibonchi@di.unipi.it, vale@di.unipi.it

Abstract

The paper presents a case study on the synthesis of labelled transition systems (LTSs) for process calculi,
choosing as testbed Cardelli and Gordon’s Mobile Ambients (MAs). The proposal is based on a graphical
encoding: each process is mapped into a graph equipped with suitable interfaces, such that the denotation
is fully abstract with respect to the usual structural congruence. Graphs with interfaces are amenable to
the synthesis mechanism proposed by Ehrig and König and based on borrowed contexts (BCs), an instance
of relative pushouts, introduced by Leifer and Milner. The BC mechanism allows the effective construction
of a LTS that has graphs with interfaces as both states and labels, and such that the associated bisimilarity
is automatically a congruence. Our paper focuses on the analysis of a LTS over (processes as) graphs with
interfaces, as distilled by exploiting the graphical encoding of MAs. In particular, we use the LTS on graphs
to recover a suitable LTS directly defined over the structure of MAs processes.

Keywords: Labelled transition system, mobile ambients, borrowed contexts

1 Introduction

Among recently introduced process calculi, mobile ambients [7] (MAs) possibly

represents the most fruitful proposal so far. The analogy between ambients and

network domains, explicitly addressed since the beginning, and between ambients

and molecular environments, often exploited in system biology [21], made MAs a

centerpiece in recent applications and development of the process calculi paradigm.

It is then baffling that the calculus has been so resilient to the introduction of an

observational semantics, based on a labelled transition system (LTS). Indeed, after

Milner’s treatment of π-calculus [18], it is now customary to present the semantics of

a calculus with a reduction semantics, modulo a congruence equating those processes

which intuitively represent the same distributed system. As for the case of MAs,

the set of rules defining the original reduction semantics is rather complex. Indeed,

1 Research partially supported by the IST 2004-16004 SEnSOria.

Electronic Notes in Theoretical Computer Science 242 (2009) 73–98
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.014
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82018098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

the system evolution stating the exporting of a process P out of an ambient named

n is represented by the rule

m[n[out m.P |Q]|R] → n[P |Q]|m[R]

The rule needs to carry around the presence of processes Q and R, which denote

the context into which the actual instance of the rule has to be mapped into. In

general terms, the need of such a rich contextual information makes more difficult

to obtain a satisfying observational semantics. After the initial attempt by Cardelli

and Gordon [14], and an early proposal by Ferrari, Montanari and Tuosto [11]

exploiting a graphical encoding of processes, we are aware of the work by Merro

and Zappa-Nardelli [16] and, quite recently, by Rathke and Sobociński [23].

A series of papers recently addressed the need of synthesizing a LTS out of the

reduction semantics of e.g. a calculus. The most successful technique so far has

been proposed by Leifer and Milner with the so-called relative pushout (RPO) [15],

which captures in an abstract setting the intuitive notion of minimal context into

which a process has to be inserted, in order for allowing a reduction to occur.

However, proving that a calculus satisfies the requirements needed for applying

the RPOs technique is often quite a daunting task, due to the intricacies of the

structural congruence. A way out of the impasse is represented by looking for

graphical encodings of processes, such that process congruence is turned into graph

isomorphism. Graphs are amenable to the RPOs trappings, and once the processes

of a calculus have been encoded as graphs, a suitable LTS can be distilled. Indeed,

the main source of examples concerning RPOs have been bigraphs [19], a graphical

formalism introduced by Milner for specifying concurrent and distributed systems.

It is noteworthy that, should the reduction relation over graphs be defined using

the double pushout (DPO) approach [1], these graphs are amenable to the borrowed

context (BC) technique, developed by Ehrig and König, which offers an algorithmic

solution for calculating the minimal contexts enabling a graph transformation rule

So, the approach pursued in this and other papers [4,13] is quite straightforward:

for a given calculus, a graphical encoding (over standard graphs) is found such that

process congruence is preserved, and the reduction semantics is captured by a set

of graph transformation rules, specified using the DPO approach. A LTS for the

calculus is thus immediately distilled. Indeed, this is the way which allowed to derive

the unique successful application so far of the RPO technique to the set of recursive

processes of a calculus, still recovering the standard bisimulation congruence, even

if for admittedly one of simplest calculus available, namely, Milner’s CCS [17].

In this paper we exploit the graphical encoding for MAs, proposed in [12], to

distill a LTS on (processes encoded as) graphs. This LTS is then used to infer a set

of rules defined on the processes of the MAs calculus, and we compare it with the

alternative solutions proposed so far, discovering many similarities (thus confirming

the hints provided by the ingenuity of the researchers), yet with a few substantial

differences, as articulated in the concluding section. Since we are interested in LTS

defined over processes, we provide a comparison with the only two works presenting

a LTS on MAs processes, namely, those proposed in [16,23].

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9874

This paper is organized as follows. Section 2 briefly recalls the MAs calculus.

In Section 3 we introduce (typed hyper-)graphs and their extension with interfaces,

while Section 4 presents DPO rewriting on graphs with interfaces as well as the BC

technique for distilling a LTS. Then, in Section 5 we recall a graphical encoding for

MAs processes that has been introduced in [12]. A graph transformation system for

MAs that simulates process reduction is defined in Section 6. Section 7 presents a

LTS for graphs representing MAs processes, obtained by means of the BC synthesis

mechanism. Section 8 introduces a LTS defined over processes of the MAs calculus

and obtained from the LTS over graphs. Finally, Section 9 concludes the paper.

2 Mobile Ambients

This section shortly recalls the finite, communication-free fragment of mobile am-

bients [7], its structural equivalence and the associated reduction semantics.

Table 1 shows the syntax of the calculus. We assume a set N of names ranged

over by m,n, u, Besides the standard constructors, we included a set of process

variables X = {X,Y, . . .}, and a set of name variables V = {x, y, . . .}. Intuitively,

an extended process such as x[P]|X represents an underspecified process, where

either the process X or the name of the ambient x[−] can be further instantiated.

These are needed for the presentation of the LTS in Section 8.

P ::= 0, n[P],M.P, (νn)P,P1|P2,X, x[P] M ::= in n, out n, open n

Table 1
(Extended) Syntax of mobile ambients.

We use the standard definitions for the set of free names of a process P , denoted

by fn(P), and for α-convertibility, with respect to the restriction operators (νn).

We let P,Q,R, . . . range over the set P of pure processes, i.e., such that neither

process nor name variable is contained. While Pε, Qε, Rε, . . . range over the set Pε

of well-formed processes, i.e., such that no process or ambient variable occurs twice.

We also consider a family of substitutions, which may replace a process/name

variable with a pure process/name, respectively. Substitutions avoid name capture:

for a pure process P , the expression (νn)(νm)(X|x[0]){m/x,n[P] /X} corresponds to

the pure process (νp)(νq)(n[P]|m[0]), for names p, q �∈ {m} ∪ fnn[P].

The semantics of the calculus is given by means of a reduction relation and a

structural congruence, denoted by ≡, which is the least equivalence on pure pro-

cesses that satisfies the equations and the rules shown in Table 2. The congruence

relates processes which intuitively specify the same system, up-to a syntactical rear-

rangement of its components, and it is then used to define the operational semantics.

The reduction relation, denoted by →, describes the evolution of processes over

time: P → Q means that P reduces to Q, that is, P can execute a computational

step and it is transformed into Q. Table 3 shows the reduction rules.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 75

P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(νn)(νm)P ≡ (νm)(νn)P (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)

P ≡ Q ⇒ n[P] ≡ n[Q] (νn)m[P] ≡ m[(νn)P] if n �= m

P ≡ Q ⇒ M.P ≡ M.Q P |0 ≡ P

P ≡ Q ⇒ (νn)P ≡ (νn)Q (νn)M.P ≡ M.(νn)P if n /∈ fn(M)

P ≡ Q ⇒ P |R ≡ Q|R (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P)

Table 2
Structural congruence on pure processes.

n[in m.P |Q]|m[R] → m[n[P |Q]|R] P → Q ⇒ (νn)P → (νn)Q

m[n[out m.P |Q]|R] → n[P |Q]|m[R] P → Q ⇒ n[P] → n[Q]

open n.P |n[Q] → P |Q P → Q ⇒ P |R → Q|R

Table 3
Reduction relation on pure processes.

The reduction relation is closed with respect to structural congruence. Note

that our chosen congruence slightly differs from the standard one, since we drop the

axiom (νn)0 ≡ 0, and we add (νn)M.P ≡ M.(νn)P , allowing a restriction to enter

a capability. The reduction semantics does not substantially change. Indeed, the

equality induced by the latter axiom holds in the observational equivalence proposed

by Merro and Zappa Nardelli [16]. In particular, two processes that are structurally

congruent according to the axiom Cong-Res-Act are reduction barbed congruent.

3 Graphs and Their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension

with interfaces, referring to [8] for a more detailed introduction.

Definition 3.1 (graphs) A (hyper-)graph is a four-tuple 〈V,E, s, t〉 where V , E

are the sets of nodes and edges and s, t : E → V ∗ are the source and target functions.

A graph morphism is a pair of functions 〈fV , fE〉 preserving source and target.

The corresponding category is denoted by Graph. However, we often consider

typed graphs [9], i.e., graphs labelled over a structure that is itself a graph.

Definition 3.2 (typed graphs) Let T be a graph. A typed graph G over T is

a graph |G|, together with a graph morphism tG : |G| → T . A T-typed graph

morphism is a graph morphism f : |G1| → |G2| preserving the typing.

The category of graphs typed over T is denoted T -Graph.

Definition 3.3 (graphs with interfaces) Let J,K be typed graphs. A graph

with input interface J and output interface K is a triple G = 〈j,G, k〉, for G a

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9876

typed graph and j : J → G, k : K → G the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism

f : G ⇒ H is a typed graph morphism f : G → H between the underlying graphs

that preserves the input and output morphisms.

We let J
j
−→ G

k
← K denote a graph with interfaces J and K. 2 If the interfaces

J , K are discrete, i.e., they contain only nodes, we represent them by sets; if K is

the empty set, we often denote a graph with interfaces as a graph morphism J → G.

In order to define a process encoding, some (binary) operators on graphs with

discrete interfaces should be defined. Since we rely on the encoding presented in [12],

we refer the reader there for details, and to Appendix A for a quick survey.

4 On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (DPO) approach to the rewriting of

graphs with interfaces and its extension with borrowed contexts (BCs).

Definition 4.1 (graph production) A T -typed graph production is a span L
l

�

I
r

−→ R with l mono in T -Graph. A T -typed graph transformation system (GTS)

G is a pair 〈P, π〉 where P is a set of production names and π assigns each production

name to a T -typed production.

Definition 4.2 (derivation of graphs with interfaces)
Let J → G and J → H be two graphs with interfaces. Given

a production p : L � I −→ R, a match of p in G is a mono

m : L � G. A direct derivation from J → G to J → H via p

and m is a diagram as depicted in the right, where (1) and (2)

are pushouts and the bottom triangles commute. In this case

we write J → G =⇒ J → H.

L��
m
��

(1)

I
r ����l��

��

��
(2)

R

��

G C ������ H

J

������� k
�� �������

The morphism k : J → C which makes the left triangle commute is unique,

whenever it exists. If such a morphism does not exist, then the rewriting step is

not feasible. Moreover, note that the standard DPO derivations can be seen as a

special instance of these, obtained considering as interface J the empty graph.

In these derivations, the left-hand side L of a production must occur completely

in G. In a borrowed context (BC) derivation the graph L might occur partially in

G, since the latter may interact with the environment through J in order to exactly

match L. Those BCs are the “smallest” extra contexts needed to obtain the image

of L in G. The mechanism was introduced in [10] in order to derive a LTS from

direct derivations, using BCs as labels. The following definition is lifted from [22],

extended by including morphisms that are not necessarily mono.

Definition 4.3 (rewriting with borrowed contexts) Given a production p :

L
l

� I
r

−→ R, a graph with interfaces J → G and a mono d : D � L, we say

2 With an abuse of terminology, we sometimes refer to the image of the input and output morphisms as
inputs and outputs, respectively. Thus, in the following we often refer implicitly to a graph with interfaces
as the representative of its isomorphism class, still using the same symbols to denote it and its components.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 77

that J → G reduces to K → H with transition label J � F � K via p and d

if there are graphs G+, C and additional morphisms such that the diagram below

commutes and the squares are either pushouts (PO) or pullbacks (PB). In this case

we write J → G
J�F�K
−−−−−→ K → H, also called rewriting step with borrowed context.

D

PO

��

��

�� ��L

PO

��

��

I

PO

���� ��
��

��

R��

��

G

PO

�� ��G+

PB

C���� ��H

J

��

�� ��F

��

K

��

����

��

Consider the diagram above. The upper left-hand square merges the left-hand

side L and the graph G to be rewritten according to a partial match G � D � L.

The resulting graph G+ contains a total match of L and can be rewritten as in the

standard DPO approach, producing the two remaining squares in the upper row.

The pushout in the lower row gives the borrowed context F which is missing in

order to obtain a total match of L, along with a morphism J � F indicating how

F should be pasted to G. Finally, the interface for the resulting graph H is obtained

by “intersecting” the borrowed context F and the graph C via a pullback.

Note that two pushout complements that are needed in Definition 4.3, namely

C and F , may not exist. In this case, the rewriting step is not feasible.

5 Graphical Encoding for Processes

This section shortly recalls a graphical encoding for MAs processes. After the

description a type graph (TM , depicted in Figure 1), the encoding is defined by

means of suitable operators on typed graphs with interfaces. This corresponds to

a variant of the usual construction of the tree for a term of an algebra: names are

interpreted as variables, so they are mapped to graph leaves and can be shared.

amb

�� ��
•

		

◦ �

��

��

�� go

act

 ����

Fig. 1. The type graph TM (for act ∈ {in, out, open}).

Intuitively, a node of type ◦ represents an ambient name, while a graph that has

as roots a pair of nodes 〈�, •〉 represents a process. More precisely, the node of type

� represents the activating point for reductions of the process represented by the

graph. We need two different types of node to model processes by graphs, because

each graph has to model both syntactical dependences between the operators of the

process and their activation dependences.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9878

go

�

�a �� �

��

��
��

�� ��

amb ��

• �� in

��

��

•

◦ ◦

•p �� •

��

�� amb

���������������� �� • �� out

��

��

•

◦m

��

�

Fig. 2. Graph encoding for the process (νn)(n[in m.0]|m[out m.0]).

Each edge of the type graph, except the go edge, simulates an operator of MAs.

Note that the act edge represents three edges, namely in, out and open. These edges

simulate the capabilities of the calculus, while the amb edge simulates the ambient

operator, and there are no edges to simulate the restriction operator and the parallel

composition. Finally, the go edge is a syntactical device for detecting the “entry”

point for the computation. We need it later to simulate MAs reduction semantics.

It allows to avoid the occurrence of a reduction underneath a act operator.

We remark that choosing a graph typed over TM means to consider graphs where

each node (edge) is labelled by a node (edge) of that type graph, and the incoming

and outcoming tentacles are preserved. We refer the reader to [12] for the formal

presentation of the encoding, or to Appendix B for a short recollection.

For our purposes it then suffices to say that the encoding �P �go
Γ of a pure process

P , where Γ is a set of names such that fn(P) ⊆ Γ, is a graph with interfaces

({a, p} ∪ Γ, ∅), for a, p �∈ N . Our encoding is sound and complete with respect to

the structural congruence ≡, as stated by the proposition below.

Proposition 5.1 Let P,Q be pure processes and let Γ be a set of names, such that

fn(P) ∪ fn(Q) ⊆ Γ. Then, P ≡ Q if and only if �P �go
Γ = �Q�go

Γ .

Example 5.2 Consider the pure process P = (νn)(n[in m.0]|m[out m.0]). It is

a very simple process, which represents a restricted ambient n that can enter an

ambient m. Figures 2 depicts the graph encoding for the process above. The

leftmost edges, both labelled amb, have the same roots, into which the nodes of the

interface a and p are mapped. Those two edges represent the topmost operators of

the two parallel components of the process. The edge in represents the operator

in m that is inside the restricted ambient n, while the edge out represents the

operator out m that is inside the ambient m. These two last edges are linked to the

same root node � of their parent ambients. Intuitively, this means that they can be

involved in a reduction step, too, since the only edge labelled go is linked to that

same node. Note that the ambient name m is in the interface since it is free in P ,

instead the name n, which is bound, does not belong to the interface.

6 Graph Transformation for Mobile Ambients

This section presents a graph transformation system (GTS) that models the reduc-

tion semantics of the MAs calculus.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 79

go

�3a

�1a

��

��

��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

��

��
•4p

go

�3a

�1a

��

•2p •3p

◦n ◦m

•1p •4p

go

�
1a
3a

��

��

�� amb ��

•
2p
3p

◦n ◦m

•1p �� amb

��

��
•4p

��

Lin Iin Rin

go

�4a

�1a

��

 ��
�� amb ��

��

•2p �� amb ��

•3p �� out

��

��

•4p

•1p

��

◦n ◦m

go

�4a

�1a

��

•2p •3p •4p

•1p ◦n ◦m

go

�
1a
4a

��

�� amb ��

��

•2p amb ��

•
3p
4p

•1p

�� ��

◦n ◦m

Lout Iout Rout

go

�1a

��

��

��

amb ��

��
•2p

◦n

•1p

��

�� open

		

��

��
•3p

�3a

go

�1a

��

•2p

◦n

•1p •3p

�3a

go

�
1a
3a

��

◦n

1p•
2p
3p

Lopen Iopen Ropen

Fig. 3. The rewriting rules pin, pout and popen.

Figure 3 presents the rules of the GTS Ramb, which simulates the reduction

semantics → introduced in Section 2. The GTS Ramb contains just three rules,

namely pin, pout and popen. They simulate the three axioms of the reductions re-

lation. The action of the three rules is described by the node identifiers. These

identifiers are of course arbitrary: they correspond to the actual elements of the set

of nodes and are just used to characterize the span of functions.

It seems noteworthy that three rules 3 suffice for recasting the reduction seman-

tics of mobile ambients. That is possible for two reasons. First, the closure of

reduction with respect to contexts is obtained by the fact that graph morphisms

allow the embedding of a graph within a larger one. Second, no distinct instance of

the rules is needed, since graph isomorphism takes care of the closure with respect

to structural congruence, and interfaces of the renaming of free names.

3 Actually, five: since we consider mono matches, we need to assume an instance for the rules pin and pout,
where the nodes labelled n and m may actually be coalesced

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9880

Our encoding is sound and complete with respect to the reduction relation →,

as stated by the theorem below.

Theorem 6.1 (reductions vs. rewrites) Let P be a pure process, and let Γ be a

set of names, such that fn(P) ⊆ Γ. If P → Q, then Ramb entails a direct derivation

�P �go
Γ =⇒ �Q�go

Γ . Vive versa, if Ramb entails a direct derivation �P �go
Γ =⇒ G, then

there exists a pure process Q, such that P → Q and G = �Q�go
Γ .

The correspondence holds since a rule is applied only if there is a match that

covers a subgraph with the go operator on the top. This allows the occurrence of

reductions inside activated ambients, but not inside capabilities.

7 The Synthesized Transition System

In this section we apply the BC synthesis mechanism to Ramb in order to obtain

a LTS for graphs representing MAs processes. We first show some examples of

rewriting steps with BCs, then we use some pruning techniques (proposed in [4]) in

order to obtain a simpler presentation of the derived LTS. This presentation is then

used in the next section in order to define a LTS directly over MAs.

7.1 Examples of borrowed transitions

This section shows the application of the BC synthesis mechanism to the graphical

encoding of a process. Let us consider the graph J � G = �P �go
{m}, where P =

(νn)(n[in m.0]|m[out m.0]). In the following we discuss the possible transitions with

source J � G that are induced by the rule pin : Lin � Iin → Rin of Ramb. Since

for each pair of monos G � D � Lin a labelled transition might exist, we proceed

by showing the transitions generated by such pairs.

First of all, take as D the left-hand side Lin and note that there is only one map

into the graph G. The transition generated by this choice is depicted in Figure 8.

The graph G+ is the same as G. Now C and H are constructed as in a standard DPO

rewriting step. When taking D as the whole left-hand side, J � G needs no context

for the reaction and thus the label of this transition is the identity context, i.e., two

isomorphisms into the discrete graphs with three nodes {p, a,m}. 4 Intuitively, this

corresponds to an internal transition over processes, labelled with τ .

Now we take as D the subgraph of Lin representing an ambient with a capability

in inside it. Note that also in this case there is only one possible map into the graph

G. The resulting transition is shown in Figure 9. The graph G+ is the graph G in

parallel with the graph representing an ambient m, thus intuitively it represents the

process (νn)(n[in m.0]|m[out m.0]|m[X]) for some process variable X. The graph

J � G, in order to reach the graph G+, has to borrow from the environment the

context J � F � K that represents the syntactic context −|m[X]. Note that

in the resulting interface K there is a process node •4p pointing to the process

node of F occurring inside the ambient m. This process node in K represents the

4 Or, equivalently, to the value of the expression idp ⊗ ida ⊗ idm, as defined in Appendix B.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 81

process variable X, as further detailed in Appendix E. The graphs C and H are then

constructed as in the standard DPO approach. Intuitively, K → H represents the

process m[out m.0]|m[n[0]|X], where X is the same process variable occurring in the

label J � F � K. This can be understood by observing that the process node •4p

of K points both to a node of H and to a node of F . Summarizing, this transition

moves the ambient n into an ambient m that is provided by the environment.

Another possible D is the subgraph of Lin consisting of the ambient depicted in

the lower part of Lin. In this case, there are two possible maps into the graph G:

the map into the subgraph of G representing the ambient m, and the map into the

subgraph of G representing the restricted ambient n.

In the first case, we obtain the transition shown in Figure 10. The graph G+

is the graph G in parallel with the graph representing a fresh ambient name w

having inside a capability in m . Intuitively, it represents the extended process

(νn)(n[in m.0]|m[out m.0]|w[in m.X2|X1]) for some process variables X1,X2. In

order to reach G+, the graph J � G has to borrow from the environment the

context J � F � K representing the syntactic context −|w[in m.X2|X1]. As in

the above case X1 and X2 are process variables, since in the interface K there

are the process nodes •2p and •3p . The graphs C and H are obtained by a

standard DPO derivation. The graph K → H represents the extended process

(νn)(n[in m.0]|m[out m.0|w[X2|X1]]). Summarizing, this transition represents an

ambient w from the environment entering inside the ambient m of the process P .

In the second case no transition is possible. Indeed the graph G+ is the whole

graph G in parallel with a fresh ambient w having inside a capability in n, but the

pushout complement of J � G � G+ does not exist, because n is restricted and

thus it does not belong to the interface J . Intuitively, this means that no ambient

from the environment can enter inside a restricted sibling ambient n.

In order to perform a complete analysis, we should consider all the pairs of

monos G � D � Lin: we can avoid to check the others pairs not considered above

by exploiting the pruning techniques presented in the next subsection.

7.2 Reducing the borrowing

In order to know all the possible transitions originating from a graph with interfaces

J � G, all the subgraphs D’s of Lin, Lout and Lopen should be analyzed. To shorten

this long and tedious procedure, we use the two pruning techniques presented in [4].

The first one is based on the observation that those items of a left-hand side L

that are not in D have to be glued to G through J . Let us consider a node n of D

corresponding to a node n′ in L, such that n′ is the source or the target of some

edge e that does not occur in D. Since the edge e is in L but not in D, it must be

added to G through J , and thus n, called boundary node, must be also in J .

The notion of boundary nodes is formally captured by the categorical notion of

initial pushout (defined in the Appendix C). Since our category has initial pushouts,

the previous discussion is formalized by the lemma below.

Lemma 7.1 ([4]) A graph with interfaces J → G can perform a BC rewriting step

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9882

JD

��

��

(1)

��FD

��

D �� ��
��

(2)

��

PO

L

PO

��

��

I

PO

��

��

���� ��R��

��

G

PO

�� ��G+

PB

C���� ��H

J

��

�� ��F

��

K����

�� ��

Fig. 4. The BC construction together with commuting squares (1) (the initial pushout of D � L) and (2).

in Ramb if and only if there exist

• a mono D � L (where L is the left hand side of some production in Ramb),

• a mono D � G,

• a morphism JD → J (where JD is the initial pushout of D � L) such that square

(2) in Figure 4 commutes.

This corollary allows to heavily prune the space of possible D’s. As for graphs

corresponding to the encoding of processes, we can exclude all those D’s having a

continuation process node (any node depicted by • that is not the root) as boundary

node, observing that the only process node in the interface J is the root node.

A further pruning —partially based on proof techniques presented in [10]— is

performed by excluding all those D’s which generate a BC transition that is not

relevant for the bisimilarity. In general terms, we may exclude all the D’s that

contain only nodes, since those D’s can be embedded in every graph (with the same

interface) generating the same transitions. Moreover, concerning our case study,

those transitions generated by a D having the root node without the edge labelled

go are also not relevant. In fact, a graph can perform a BC transition using such a D

if and only if it can perform a transition using the same D with a go edge outgoing

from the root. Note indeed that the resulting states of these two transitions only

differ for the number of go edges attached to the root: the state resulting after the

first transition has two go’s, the state resulting after the second transition only one.

These states are bisimilar, since the number of go’s does not change the behavior.

The two pruning techniques presented above allow us to only consider the partial

matches D shown in Figures 5, E.1 and E.2.

7.3 Minimal transitions

In Section 7.2 we restricted the space of possible D’s to those in Figures 5, E.1 and

E.2. However reasoning on the synthesized LTS is still hard (this is usually the case

when working with derived LTSs, as pointed out in [2] and [3], where the authors

state that an SOS presentation of the synthesized LTS would be desirable). In order

to simplify this reasoning, we introduce a set of minimal transitions that allow us

to derive all and only the transitions of the (pruned) synthesized LTS.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 83

Inspired by Lemma 7.1, providing necessary and sufficient conditions for per-

forming a transition, we consider the graphs JD → D for all those D’s that have

not been pruned in Section 7.2 and JD containing only the boundary nodes of D.

The minimal transitions have the following shape

D

PO

��

��

�� ��L

PO

��

��

I

PO

���� ��
��

��

R��

��

D

PO

�� ��L

PB

I���� ��R

JD

��

�� ��FD

��

KD

��

����

		

where the leftmost square in the lower row is an initial pushout.

Figures 5, E.1 and E.2 concisely represent these transitions, showing for each of

these the starting graph D, the label JD � FD � KD, and the resulting graph R.

All the transitions originated from a graph J � G (representing a process) can be

characterized by exploiting these minimal transitions. By Lemma 7.1, we can state

that J � G can perform a BC rewriting step in Ramb if and only if there exist a

mono D � G, for some D of the minimal transitions, and a morphism JD → J

such that square (2) in Figure 4 commutes.

The label of the rewriting step can be obtained from the label of the minimal

transition. First of all note that the interface J contains all the nodes of JD (as

suggested by the morphism JD → J) and all the name nodes ◦ representing the

free names of the modeled process (as expected by our encoding). Then the graph

F only contains the whole graph FD and all the nodes of J (indeed, as shown in

Proposition 2.5 of [4], F can be obtained as the pushout of JD → FD and JD → J).

Moreover, it is easy to prove that K is a discrete graph containing all and only the

nodes of F , or more concretely, K consists of the nodes of J and KD.

Finally, the resulting graph H is obtained by replacing in the graph G the

subgraph D with R (as shown in Proposition 2.5 of [4], it can be computed in a

DPO step of D � D∩ I → R, where D∩ I is the pullbacks of D � L and I � L).

As an example, consider the BC rewriting step shown in Figure 8. It is derivable

by the minimal transition for Din4 (shown in Figure E.1). First of all note that there

exist Din4 → G and ∅ → J such that the square (2) in Figure 4 commutes. Now, F

is equal to J , since it consists of the composition of FDin4
(i.e., ∅) and J . The new

interface K is equal to F , since it contains all and only the nodes of J and KDin4

(i.e., ∅). The arriving state H is obtained simply by replacing Din4 with Rin.

8 A New LTS for Mobile Ambients

This section presents a LTS directly defined over MAs processes. The inference

rules describing this LTS are obtained from the transitions of the LTS on graphs

presented in Section 7.3. The labels of the transitions are unary contexts, i.e., terms

of the extended syntax with a hole −. The formal definition of our LTS is presented

in Figures 6 and 7.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9884

D � JD � FD � KD→ R

go

�1a

��

��

◦n

•1p �� open

��

��

•3p

�3a

�1a

◦n

•1p

�1a �� amb ��

•2p

◦n

•1p

�� �1a •2p

◦n

•1p

go

�1a
3a

��

◦n

1p•
2p
3p

Dopen1 � JDopen1
� FDopen1

� KDopen1
→ Ropen

go

�1a

��

�� amb ��

•2p

◦n

•1p

��
�1a

◦n

•1p

�1a

��

◦n

•1p �� open

��

��

��
•3p

�3a

�1a

◦n

•1p •3p

�3a

go

�1a
3a

��

◦n

1p•
2p
3p

Dopen2 � JDopen2
� FDopen2

� KDopen2
→ Ropen

go

�1a

��

��

��

amb ��

•2p

◦n

•1p

��

�� open

��

��

•3p

�3a

go

�1a
3a

��

◦n

1p•
2p
3p

Dopen3 � ∅ � ∅ � ∅ → Ropen

Fig. 5. The minimal transitions generated by the rule popen.

8.1 The labelled rules on processes...

The rules in Figure 6 represent the τ -actions modeling internal computations. Note

that the labels of the transitions are contexts composed of just a hole −, while the

resulting states are processes over MAs standard syntax. The rule InTau enables

an ambient n to enter a sibling ambient m. The rule OutTau enables an ambient n

to get out of its parent ambient m. Finally, the rule OpenTau models the opening

of an ambient n. These three rules exactly derive the same transition relation of the

reduction relation over MAs, thus they could be replaced with the rules in Table 3.

The rules in Figure 7 model the interactions of a process with its environment.

Note that both labels and resulting states contain process and name variables.

We define a LTS for processes over the standard syntax of mobile ambients by

instantiating all the variables of the labels and of the resulting states. Formally, we

say that P
l
−→ Q (for l and Q pure processes) if and only if P

lε−→ Qε and there exists

a substitution σ such that Qεσ ≡ Q and lεσ ≡ l.

The rule Open models the opening of an ambient provided by the environment.

In particular, it enables a process P with a capability open n.P1 at top level, for

n ∈ fn(P), to interact with a context providing an ambient n that contains inside

it some process X1. The resulting state is the process over the extended syntax

(νA)(P1|X1|P2), where X1 represents a process provided by the environment. Note

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 85

that the instantiation of the process variable X1 with a process containing a free

name that belongs to the bound names in A is possible only α-converting the result-

ing process (νA)(P1|X1|P2) into a process that does not contain that name among

its bound names at top level.

The rule CoOpen instead models an environment that opens an ambient of the

process. The rule InAmb enables an ambient of the process to migrate into a sibling

ambient provided by the environment, while in the rule In both the ambients are

provided by the environment. In the rule CoIn an ambient provided by the envi-

ronment enters an ambient of the process. The rule OutAmb models an ambient

of the process exiting from an ambient provided by the environment, while in the

rule Out both ambients are provided by the environment.

Our LTS does not conform to the so-called SOS style: indeed, the premises

of the inference rules are just constraints over the structure of the process. This

depends on fact that the rules of our LTS are obtained from the borrowed minimal

transitions. Each rule corresponds to one minimal transition presented in Section

7.3 and it is obtained as described below.

(InTau)
P≡(νA) C[n[in m.P1|P2]|m[P3]]

P
−
−→(νA) C[m[n[P1|P2]|P3]]

(OutTau)
P≡(νA) C[m[n[out m.P1|P2]|P3]]

P
−
−→(νA) C[m[P3]|n[P1|P2]]

(OpenTau)
P≡(νA) C[n[P1]|open n.P2]

P
−
−→(νA) C[P1|P2]

Fig. 6. The internal transitions (for C[−] context containing only ambients and parallel operators).

(In) (OutAmb)
P≡(νA)(in m.P1|P2) m
∈A

P
x[−|X1]|m[X2]
−−−−−−−→(νA)m[x[P1|P2|X1]|X2]

P≡(νA)(n[out m.P1|P2]|P3) m
∈A

P
m[−|X1]
−−−−→(νA)(m[P3|X1]|n[P1|P2])

(InAmb) (Open)
P≡(νA)(n[in m.P1|P2]|P3) m
∈A

P
−|m[X1]
−−−−→(νA)(m[n[P1|P2]|X1]|P3)

P≡(νA)(open n.P1|P2) n
∈A

P
−|n[X1]
−−−→(νA)(P1|P2|X1)

(CoIn) (CoOpen)
P≡(νA)(m[P1]|P2) m
∈A

P
−|x[in m.X1|X2]
−−−−−−−−→(νA)(m[x[X1|X2]|P1]|P2)

P≡(νA)(n[P1]|P2) n
∈A

P
−|open n.X1−−−−−−→(νA)(P1|X1|P2)

(Out)
P≡(νA)(out m.P1|P2) m
∈A

P
m[x[−|X1]|X2]
−−−−−−−→(νA)(m[X2]|x[P1|P2|X1])

Fig. 7. The environmental transitions.

8.2 ...from the borrowed rules on graphs

Observe that a graph J � G representing a process P can perform a BC rewriting

step in Ramb if and only if there exist a mono D � G, for some D of a minimal

transition, and a morphism JD → J , such that square (2) in Figure 4 commutes.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9886

Moreover, the label and the resulting graph of the borrowed transition for G are

obtained from the label and the resulting state of the minimal transition of D,

respectively. Therefore, for each minimal transition we obtain an inference rule: the

conditions in the premise correspond to the necessary and sufficient conditions for

performing a transition from a graph G, while the label and the resulting process

are obtained from the label and the resulting state of the borrowed transition,

respectively. Since the labels of the LTS over graphs obtained by the BC mechanism

represent minimal graph contexts enabling a graph production, then also the labels

of our LTS over processes represent minimal process contexts enabling a reduction.

As the main example, in this section we closely look at the correspondence

between the rule Open and the first minimal transition in Figure 5.

Consider a graph J � G representing the encoding for a process P . If there

exist a mono Dopen1 � G and a morphism JDopen1
→ J , such that the square (2)

in Figure 4 commutes, the graph J � G can perform a BC rewriting step in Ramb

with label J � F � K, where J , F and K respectively consist of JDopen1
, FDopen1

and KDopen1
together with the free names of P . Now, note that Dopen1 can be

embedded in G and a morphism JDopen1
→ J (such that the square (2) in Figure 4

commutes) may exist if and only if P ≡ (νA)(open n.P1|P2). Moreover, since the

interface J contains all the nodes of JDopen1
, we conclude that n must belong to J ,

that is, n must be a free name of P . This represents the premise of the rule Open.

Starting from the label J � F � K of the BC transition we now obtain the

label of the process transition. By observing the shape of F , which contains all the

items of FDopen1
, we can say that the process context is composed of the ambient n.

Moreover, the context F is glued to G through J , which contains the free names of P

and the nodes of JDopen1
, i.e., the name n and the nodes representing the roots of the

graph G (which models P). Since these two nodes represent the roots of the graph

F (which models ambient n), we conclude that the label of the process transition

is a context with the ambient n in parallel with a hole representing process P .

The graph K represents the interface of both graphs F and H. It contains all the

nodes of KDopen1
, i.e., the roots of F and the roots of the process inside the ambient

n. The nodes of the interface K represent the “handles” of F and H for interacting

with an environment. Therefore, the process node of K that is not the root of F

can be thought of as a process variable inside the ambient n in the label of the

transition. Therefore, we conclude that the label of the transition with source the

process P can be represented as the minimal context −|n[X1], where − is a hole and

X1 is a process variable. The resulting process (νA)(P1|X1|P2) exactly corresponds

to the state H from the BC transition. Indeed, in the interface K of the graph

K → H also the node modeling the process variable X1 occurs, which represents

a process provided by the environment. In order to have a deeper intuition about

the correspondence between process variables and graphs, the interested reader is

referred to Appendix E. Instead, Appendix D shows the derivation of the rule Out.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 87

go

�3a

�1a

��

��

��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

������������ �� •4p

go

�3a

�1a

��

��

��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

������������ �� •4p

go

�3a

�1a

��

•2p •3p

◦n ◦m

•1p •4p

go

�1a
3a

��

��

�� amb ��

•
2p
3p

◦n ◦m

•1p �� amb

��������
�� •4p

��

D Lin Iin Rin

go

�3a

�1a

��

��
��

�� ��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

������������� �� •4p �� out

��

��

•5p

�5a

go

�3a

�1a

��

��
��

�� ��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

������������� �� •4p �� out

��

��

•5p

�5a

go

�3a

�1a

��

��

•2p •3p

◦n ◦m

•1p •4p �� out

��

��

•5p

�5a

go

�1a
3a

��

��

��

��

amb ��

•
2p
3p

◦n ◦m

•1p �� amb

������������� �� •4p

��

�� out

��

��

•5p

�5a

G G+ C H

�1a

◦m

•1p

�1a

◦m

•1p

�1a

◦m

•1p

J F K

Fig. 8. Ambient n enters ambient m. This corresponds to the transition (νn)(n[in m.0]|m[out m.0])
−
−→ (νn)(m[n[0]|out m.0]).

F.B
onchietal./E

lectronic
N

otes
in

T
heoreticalC

om
puter

Science
242

(2009)
73–98

88

go

�3a

�1a

��

�� amb ��

•2p �� in

��

��

•3p

•1p

��

◦n ◦m

go

�3a

�1a

��

��

��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

!!

�� •4p

go

�3a

�1a

��

•2p •3p

◦n ◦m

•1p •4p

go

�1a
3a

��

��

�� amb ��

•
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

��

D Lin Iin Rin

go

�3a

�1a

��

��
��

�� ��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb

������������� �� •5p �� out

��

��

•6p

�6a

go

�3a

�1a

��

��

""

��

�� ��

amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

##

�� amb

������������� �� •5p �� out

��

��

•6p

�6a

amb

!!

�� •4p

go

�3a

�1a

��

�� ��

•2p •3p

◦n ◦m

•1p �� amb

������������� �� •5p �� out

��

��

•6p

�6a

•4p

go

�1a
3a

��

$$

��

�� ��

amb ��

•
2p
3p

◦n ◦m

•1p

##

�� amb

������������� �� •5p �� out

��

��

•6p

�6a

amb

!!

�� •4p

%%

G G+ C H

�1a

◦m

•1p

�1a

��
◦m

•1p �� amb

��

�� •4p

�1a

◦m

•1p •4p

J F K

Fig. 9. Ambient n enters ambient m (from environment). This corresponds to the transition (νn)(n[in m.0]|m[out m.0])
−|m[X]
−−−−→ (νn)(m[out m.0]|m[n[0]|X]).

F.B
onchietal./E

lectronic
N

otes
in

T
heoreticalC

om
puter

Science
242

(2009)
73–98

89

go

�1a

��

��
◦m

•1p �� amb

&&�������� �� •4p

go

�3a

�1a

��

��

��

amb ��

•2p �� in

��

��

•3p

◦w ◦m

•1p

��

�� amb

������������ �� •4p

go

�3a

�1a

��

•2p •3p

◦w ◦m

•1p •4p

go

�1a
3a

��

��

�� amb ��

•
2p
3p

◦w ◦m

•1p �� amb

��������
�� •4p

��

D Lin Iin Rin

go

�7a

�1a

��

��
��

�� ��

amb ��

•6p �� in

��

��

•7p

◦n ◦m

•1p

��

�� amb

������������� �� •4p �� out

��

��

•5p

�5a

go

�7a

�1a

��

��

'' ��

��

�� ��

amb ��

•6p �� in

��

��

•7p

◦n ◦m

•1p

��

((

�� amb

������������� �� •4p �� out

��

��

•5p

�5a

�3a

amb ��

•2p �� in ��

��

))

•3p

◦w

go

�7a

�1a

��

��
��

��

amb ��

•6p �� in

��

��

•7p

◦n ◦m

•1p

��

•4p �� out

��

��

•5p

�5a

�3a

•2p •3p

◦w

go

�7a

�1a
3a

��

��

''

��

�� ��

amb ��

•6p �� in

��

��

•7p

◦n ◦m

•1p

��

�� amb

������������� �� •4p ��

((

out

��

��

•5p

�5a

amb ��

•
2p
3p

◦w

G G+ C H

�1a

◦m

•1p

◦m

�3a

�1a

�� amb ��

•2p �� in

**

��

��

•3p

•1p

��

◦w

◦m

�3a

�1a •2p •3p

•1p ◦w

J F K

Fig. 10. Ambient w (from environment) enters ambient m. This corresponds to the transition

(νn)(n[in m.0]|m[out m.0])
−|w[in m.X2|X1]
−−−−−−−−−−−→ (νn)(n[in m.0]|m[out m.0|w[X2|X1]]).

F.B
onchietal./E

lectronic
N

otes
in

T
heoreticalC

om
puter

Science
242

(2009)
73–98

90

9 Conclusions, related and future work

In this paper we exploit the graphical encoding for MAs, proposed in [12], to distill a

LTS on (processes encoded as) graphs. We then use this LTS in order to infer a LTS

directly defined on the processes of the MAs calculus. For the sake of simplicity, we

considered a graphical encoding for MAs without communication primitives, as well

as without recursive expressions. A graphical encoding for the whole calculus could

be obtained by tackling both communication primitives and recursive processes

along the lines of the solution in [4]. Once the graphical encoding for the whole

calculus has been defined, the technique presented in this paper could be applied in

order to obtain a LTS for the whole MAs calculus.

In spite of the great interest received by MAs, there are relatively few works con-

cerning a labelled characterization of the calculus. After early attempts by Cardelli

and Gordon [14] and (via a graphical encoding) Ferrari, Montanari and Tuosto [11],

the only papers addressing this issue that we are aware of are [16] by Merro and

Zappa-Nardelli, [23] by Rathke and Sobociński. The LTS of the former work is

restricted to systems, i.e., those processes obtained by the parallel composition of

ambients. For this reason, our rules In, Open and Out have not a counterpart in

[16]. Instead, the rules InAmb, CoIn and OutAmb exactly correspond to the rules

(Enter), (Co-Enter), (Exit) in Table 6 of [16]. Moreover, our rule CoOpen roughly

corresponds to their (Open). Indeed the former inserts a process into the context

−|open n.X1, while the latter into k[−|open n.X1|X2] (again, this difference is due

to the fact that the LTS of [16] is restricted to systems).

It is important to note that, differently from our LTS, the labels of the rules

(Enter) and (Exit) contain the name of the migrating ambient n. This requires

defining two extra rules (Enter Shh) and (Exit Shh) for the case when n is restricted.

Analogously to our work, Rathke and Sobociński employ a general systematic

procedure for deriving LTSs that they have previously introduced in [20]. The

detailed comparison is left as future work, but we conjecture that the two LTSs

exactly correspond. Indeed, the seven axioms in Figure 6 of [23] are in one to one

correspondence with our seven rules in Figure 7. The main difference concerns

the derivation procedures that have been employed and the presentations of the

resulting LTSs. Theirs is presented in a SOS style (as a result of their procedure),

while ours relies on the structural congruence (as a result of the BC mechanism

applied to the graphical encoding). Their style carries more information than ours,

since it describes the behaviour of each syntactic operator, but our presentation

seems more intuitive, since it employs fewer compact rules (10 instead of their 27).

Beside the presentation of a succinct LTS for mobile ambients, our work is

a relevant case study for the theory of reactive systems [15]. As already pointed

out in the introduction, BC rewriting and bigraphical reactive systems [19] are both

instances of this theory. This paper, together with [4], shows that the BCs approach

is quite effective in deriving LTS for process calculi.

In particular, this work confirms the advantage of BCs over graphs with inter-

faces with respect to bigraphs. In bigraphs, all the reduction rules must be ground

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 91

(i.e., they can not contain process variables). As a result, also the labels and the

arriving states of the derived transitions must be ground. Instead, rewriting with

BCs allows to employ few non ground rules (as shown in this paper) and thus the

resulting transitions have labels and arriving states containing (process and name)

variables. This feature was not relevant for calculi such as CCS and π, because the

variables in the labels always occur “outside” of the arriving state and thus can be

forgotten. As an example, consider the CCS transition a.b
−|ā.Y
−−→ b|Y derived from

the (non ground) reduction rule a.X|ā.Y −→ X|Y . The behaviour of the process

b|Y is trivially equivalent to b: their interaction is basically restricted to processes

offering a b̄ action, and we can thus avoid to consider Y . Instead, in the case of mo-

bile ambients, the ability of considering non ground states is fundamental, because

process variables may occur nested inside ambients in arriving states.

The relevance of this work for the theory of reactive systems is not limited to

the above observations. The first author has shown in [3] that in reactive systems

the bisimilarity on the derived LTS is usually too strict, while saturated bisimilarity

(i.e., the bisimilarity over the LTS having all contexts as labels and not just the

minimal ones) is often more adequate. This is the case of Logic Programming, open

π-calculus [5] and Petri nets [6]. The present work provides a further successful

test of the above claim. Indeed, it is easy to see that (the standard notion of)

bisimilarity over our LTS is too strict, because it allows to observe the ability of

an ambient to migrate, while it should be unobservable, as pointed out in [16].

For this reason, Rathke and Sobociński added two extra-rules to their LTS, while

Merro and Zappa Nardelli chose an asymmetric definition of bisimilarity. The latter

solution recalls us the semi-saturated bisimulation [5]. Instead of requiring that two

bisimilar processes must perform transitions with the same label, the definition of

semi-saturated bisimulation requires that

if P
C[−]
−→ P1 then C[Q] reduces to Q1 and P1 R Q1.

It is worth noting that second and third points of Definition 3.2 in [16] has exactly

this shape (the labels ∗.entern and ∗.exitn correspond to our contexts −|n[X1]

and n[−|X1]). We leave as future work to exploit this intuition and to check if

(semi-)saturated bisimulation on our LTS corresponds to the behavioral equivalence

proposed by Merro and Zappa Nardelli.

References

[1] Baldan, P., A. Corradini, H. Ehrig, M. Löwe, U. Montanari and F. Rossi, Concurrent semantics of
algebraic graph transformation, in: H. Ehrig, H.-J. Kreowski, U. Montanari and G. Rozenberg, editors,
Concurrency, Parallelism, and Distribution, Handbook of Graph Grammars and Computing by Graph
Transformation 3, World Scientific, 1999 pp. 107–187.

[2] Baldan, P., H. Ehrig and B. König, Composition and decomposition of DPO transformations with
borrowed context, in: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro and G. Rozemberg, editors,
Graph Transformation, Lect. Notes in Comp. Sci. 4178 (2006), pp. 153–167.

[3] Bonchi, F., “Abstract Semantics by Observable Contexts,” Ph.D. thesis, Department of Informatics,
University of Pisa (2008).

[4] Bonchi, F., F. Gadducci and B. König, Process bisimulation via a graphical encoding, in: A. Corradini,

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9892

H. Ehrig, U. Montanari, L. Ribeiro and G. Rozemberg, editors, Graph Transformation, Lect. Notes in
Comp. Sci. 4178 (2006), pp. 168–183.

[5] Bonchi, F., B. König and U. Montanari, Saturated semantics for reactive systems, in: Logic in Computer
Science (2006), pp. 69–80.

[6] Bonchi, F. and U. Montanari, Coalgebraic models for reactive systems, in: L. Caires and V. Vasconcelos,
editors, Concurrency Theory, Lect. Notes in Comp. Sci. 4703 (2007), pp. 364–379.

[7] Cardelli, L. and A. Gordon, Mobile ambients, Theor. Comp. Sci. 240 (2000), pp. 177–213.

[8] Corradini, A. and F. Gadducci, An algebraic presentation of term graphs, via gs-monoidal categories,
Applied Categorical Structures 7 (1999), pp. 299–331.

[9] Corradini, A., U. Montanari and F. Rossi, Graph processes, Fundamenta Informaticae 26 (1996),
pp. 241–265.

[10] Ehrig, H. and B. König, Deriving bisimulation congruences in the DPO approach to graph rewriting
with borrowed contexts, Mathematical Structures in Computer Science 16 (2006), pp. 1133–1163.

[11] Ferrari, G., U. Montanari and E. Tuosto, A lts semantics of ambients via graph synchronization with
mobility, in: A. Restivo, S. Ronchi Della Rocca and L. Roversi, editors, Italian Conference on Theoretical
Computer Science, Lect. Notes in Comp. Sci. 2202 (2001), pp. 1–16.

[12] Gadducci, F. and G. V. Monreale, A decentralized implementation of mobile ambients, in: R. Heckel
and G. Taentzer, editors, Graph Transformation, Lect. Notes in Comp. Sci. forthcoming (2008).

[13] Gadducci, F. and U. Montanari, Observing reductions in nominal calculi via a graphical encoding of
processes, in: A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. de Vrijer, editors, Processes,
terms and cycles (Klop Festschrift), Lect. Notes in Comp. Sci. 3838 (2005), pp. 106–126.

[14] Gordon, A. D. and L. Cardelli, Equational properties of mobile ambients, Mathematical Structures in
Computer Science 13 (2003), pp. 371–408.

[15] Leifer, J. and R. Milner, Deriving bisimulation congruences for reactive systems, in: C. Palamidessi,
editor, Concurrency Theory, Lect. Notes in Comp. Sci. 1877 (2000), pp. 243–258.

[16] Merro, M. and F. Zappa Nardelli, Behavioral theory for mobile ambients, Journal of the ACM 52
(2005), pp. 961–1023.

[17] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[18] Milner, R., “Communicating and Mobile Systems: the π-Calculus,” Cambridge University Press, 1999.

[19] Milner, R., Pure bigraphs: Structure and dynamics, Information and Computation 204 (2006), pp. 60–
122.

[20] Rathke, J. and P. Sobociński, Deconstructing behavioural theories of mobility, in: G. Ausiello,
J. Karhumäki, G. Mauri and L. Ong, editors, Theoretical Computer Science, Lect. Notes in Comp.
Sci. forthcoming (2008).

[21] Regev, A., E. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: an abstraction for
biological compartments, Theor. Comp. Sci. 325 (2004), pp. 141–167.

[22] Sobociński, P., “Deriving bisimulation congruences from reduction systems,” Ph.D. thesis, BRICS,
Department of Computer Science, University of Aarhus (2004).

[23] Sobociński, P. and J. Rathke, Deriving structural labelled transitions for mobile ambients, in: F. van
Breugel and M. Chechik, editors, Concurrency Theory, Lect. Notes in Comp. Sci. 5201 (2008), pp.
462–476.

A Two binary operators

Definition A.1 (two composition operators) Let G = I
j
−→ G

k
← K and G′ = K

j′

−→ G′ k′

← J be
graphs with discrete interfaces. Then, their sequential composition is the graph with discrete interfaces

G ◦ G′ = I
j′′

−→ G′′ k′′

← J, for G′′ the disjoint union G � G′, modulo the equivalence on nodes induced by
k(x) = j′(x) for all x ∈ NK , and j′′, k′′ the uniquely induced arrows.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 93

Let G = J
j
−→ G

k
← K and H = J ′ j′

−→ H
k′

← K ′ be graphs with discrete, compatible interfaces. 5 Then,

their parallel composition is the graph with discrete interfaces G ⊗ H = (J ∪ J ′)
j′′

−→ V
k′′

← (K ∪ K ′), for V
the disjoint union G � H, modulo the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ∩ NJ′

and k(y) = k′(y) for all y ∈ NK ∩ NK′ , and j′′, k′′ the uniquely induced arrows.

The sequential composition G ◦ G′ is obtained by taking the disjoint union of the graphs underlying G

and G′, and gluing the outputs of G with the corresponding inputs of G′. Similarly, the parallel composition
G ⊗ H is obtained by taking the disjoint union of the graphs underlying G and H, and gluing the inputs
(outputs) of G with the corresponding inputs (outputs) of H. The operations are defined on “concrete”
graphs, even if the result is independent of the choice of representatives.

B Process encoding

Figures B.1 and B.2 depict a class of graphs such that all processes can be encoded into an expression
containing only those graphs as constants, and parallel and sequential composition as binary operators. We
assume p, a /∈ N and n ∈ N .

a �� �

� a��

p �� • �� act

��

��

• p��

◦ n��

a �� �

a��

p �� • �� amb ��

• p��

◦ n��

a �� � �� go

Fig. B.1. Graphs actn (with act ∈ {in, out, open}); ambn; and go (left to right).

In the following, we use 0a,p and ida,p as shorthands for 0a ⊗ 0p and ida ⊗ idp, respectively. Moreover,
for a set of names Γ, we use 0Γ and idΓ as shorthands for

N
n∈Γ 0n and

N
n∈Γ idn, respectively. Note that

the last expression is well defined, because the ⊗ operator is associative. The definition below introduces
the encoding of processes into graphs with interfaces, mapping a process into a graph expression. Note that
the encoding �M.P �Γ represents the encoding of in n.P , out n.P and open n.P , while actn represents the
inn, outn and openn graphs, respectively.

Definition B.1 (Encoding for processes) Let P be a pure process and let Γ be a set of names such
that fn(P) ⊆ Γ. The encoding of P , denoted by �P �Γ, is defined by structural induction according to the
following rules

�0�Γ = 0a,p ⊗ 0Γ �n[P]�Γ = (ambn ⊗ idΓ) ◦ �P �Γ
�M.P �Γ = (actn ⊗ idΓ) ◦ �P �Γ �P |Q�Γ = �P �Γ ⊗ �Q�Γ
�(νn)P �Γ = (newm ⊗ idΓ ⊗ ida,p) ◦ �P{m/n}�Γ∪{m} for m /∈ Γ

Given a pure process P and a set of names Γ such that fn(P) ⊆ Γ, its enriched encoding is the graph
�P �Γ ⊗ go. We denote it by �P �go

Γ .

C Initial Pushout
Here we briefly report the definition of initial pushout. Note that the category of (typed hyper-)graphs we
work in has initial pushouts for all arrows.

Definition C.1 (initial pushout) Let the square (1) below be a pushout. It is an initial pushout of
C → D if for every other pushout as in diagram (2) there exist two unique morphisms A → A′ and

5 That is, any node in NJ ∩ NJ′ has the same type in J and J ′ (similarly for NK ∩ NK′).

a �� �

p �� •

n �� ◦

◦ n��

a �� � a��

p �� • p��

n �� ◦ n��

Fig. B.2. Graphs 0a and 0p; 0n and newn; ida, idp and idn (top to bottom and left to right).

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9894

B → B′ such that diagram (2) commutes.

A ��

��
PO

B

��
C �� D

A ��

��

��

B

��

++

A′

++��
��

��

PO

B′

��	
		

	

C �� D
(1) (2)

D Minimal transitions
In Section 8 we explained how the rules of Figures 6 and 7 are derived from the minimal transitions of
Figures 5, E.1 and E.2. Roughly, each rules corresponds to a minimal transition for a certain D. The
premise of the rule for a process P corresponds to the existence of the monos D � G and JD � J such
that square (2) in Figure 4 commutes (for J � G = �P �). The conclusion of the rule states that P can
perform a transition with a certain context, that is the label JD � FD � KD of the minimal transition,
and then arrives in a process (over the extended syntax) that is the arriving state KD → R of the minimal
transition.

The reader should notice that while there are 13 minimal transitions, only 10 rules occur in Figures
6,7. This is due to the fact that each of the rules In, CoIn and Out is actually derived by two minimal
transitions. The rule In is generated by the minimal transitions Din1

and D′
in1

, CoIn by Din3
and D′

in3
,

while Out is generated by Dout1 and D′
out1

. We show the latter, since the others are analogous.

In the minimal transition Dout1 two ambients are borrowed from the environment. The first one has
name m (i.e., the name from which the process want to exit), while the second has a fresh name n. This
transition corresponds to the rule

P ≡ (νA)(out m.P1|P2) m
∈ A n
∈ A ∪ fnP

P
m[n[−|X1]|X2]
−−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

In the minimal transition D′
out1

the name n belongs to the process (it occurs inside the graph Dout′
1

)

but, since the node n occur in JD′

out1

, it should appear in the interface J , i.e., it must be free. Thus, this

transition corresponds to the rule

P ≡ (νA)(out m.P1|P2) m
∈ A n ∈ fnP

P
m[n[−|X1]|X2]
−−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

Now, notice that the conclusions of the two rules are identical. Thus we can put together the premises
of the two rules above, and we get that n is a name variable. This is exactly the rule Out of Figure 7.

E Process variables, graphically

In the proposed LTS we heavily relied on process variables. These are derived directly from the arriving
states of the minimal transitions. Here we explain the intuition underlying the use of process variables.
Consider the graph K � H depicted below. This represents the (extended) process (νn)(m[X1]|n[0]).

go

◦m

�1a

��

��

�� amb ��

��

•2p

•1p

��

��

◦n

amb ��

��

•

◦m

�1a •2p

•1p

◦m �

�1a •2p �� in

��

�� •

•1p ◦k

◦m

�1a

•1p ◦k

H K I J

Indeed, the node •2p is in the interface (it corresponds to the process variable X1) and this allows to
instantiate X1. As an example, the substitution {in k.0/X1

} can be represented by the graph with interfaces
K � I � J depicted above. The process obtained by applying such substitution to (νn)(m[X1]|n[0]) is
(νn)(m[in k.0]|n[0]), corresponding to the graph H′

� J (depicted below) that is obtained by composing

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 95

the graph H � K with K � I � J (i.e., by pushing out H � K � I).

go

◦m �

�1a

��

��

�� amb ��

��

• �� in

��

�� •

•1p

��

��

◦n
◦k

amb ��

��

•

◦m

�1a

•1p ◦k

H′ J

Analogously to the substitution of process variables, our composition does do not capture bound names.
Consider e.g. the bound name n of H � K. It does not appear in the interface K and thus, for all graph
with interfaces K � I′ � J ′ (representing possible substitutions), it can not be identified with any name
of I′.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–9896

D � JD � FD � KD→ R

go �3a

�1a ��

��

in

��

�� •3p

•2p

��

◦m

�1a

•2p ◦m

�1a ��

��

amb

�� •2p

◦n ◦m

•1p ��

��

amb

��

�� •4p

�1a •2p

◦n ◦m

•1p •4p

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

Din1 � JDin1
� FDin1

� KDin1
→ Rin

go �3a

�1a ��

��

in

��

�� •3p

•2p

��

◦n ◦m

�1a

•2p ◦n ◦m

�1a ��

��

amb

�� •2p

◦n ◦m

•1p ��

��

amb

��

�� •4p

�1a •2p

◦n ◦m

•1p •4p

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

D′
in1

� JD′
in1

� FD′
in1

� KD′
in1

→ Rin

go

�3a

�1a

��

��
�� amb ��

•2p �� in

��

��

•3p

•1p

��

◦n ◦m

�1a

•1p ◦m

�1a

◦m

•1p �� amb

��

�� •4p

�1a ◦m

•1p •4p

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

Din2 � JDin2
� FDin2

� KDin2
→ Rin

go

�1a

��

◦m

•1p �� amb

��

�� •4p

�1a ◦m

•1p

�3a

�1a
��

�� amb ��

•2p �� in

��

��

•3p

•1p

��

◦n ◦m

�3a

�1a •2p •3p

•1p ◦n ◦m

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

Din3 � JDin3
� FDin3

� KDin3
→ Rin

go

�1a

��

◦n ◦m

•1p �� amb

��

�� •4p

�1a ◦n ◦m

•1p

�3a

�1a
��

�� amb ��

•2p �� in

��

��

•3p

•1p

��

◦n ◦m

�3a

�1a •2p •3p

•1p ◦n ◦m

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

D′
in3

� JD′
in3

� FD′
in3

� KD′
in3

→ Rin

go

�3a

�1a

��

��

��
�� amb ��

•2p �� in

��

��

•3p

◦n ◦m

•1p

��

�� amb ��

��

•4p

go

�1a
3a

��

��

��

amb

�� •
2p
3p

◦n ◦m

•1p �� amb

��

�� •4p

,,

Din4 � ∅ � ∅ � ∅ → Rin

Fig. E.1. The minimal transitions generated by the rule pin.

F. Bonchi et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 73–98 97

D � JD � FD � KD→ R

go

�4a

�1a

��

•3p �� out

��

�� •4p

◦m

�1a •3p

◦m
�1a

��
�� amb ��

��

•2p �� amb ��

•3p

•1p

��

◦n ◦m

�1a •2p •3p

•1p ◦n ◦m

go

�1a
3a

��

��

�� amb ��

--

•2p amb ��

•
3p
4p

•1p

�� ��

◦n ◦m

Dout1 � JDout1
� FDout1

� KDout1
→ Rout

go

�4a

�1a

��

•3p �� out

��

�� •4p

◦n ◦m

�1a •3p

◦n ◦m
�1a

��
�� amb ��

��

•2p �� amb ��

•3p

•1p

��

◦n ◦m

�1a •2p •3p

•1p ◦n ◦m

go

�1a
4a

��

��

�� amb ��

--

•2p amb ��

•
3p
4p

•1p

�� ��

◦n ◦m

D′
out1 � JD′

out1
� FD′

out1
� KD′

out1
→ Rout

go

�4a

�1a

��

 ��
•2p �� amb

�� •3p �� out

��

�� •4p

◦n ◦m

�1a •2p

◦m

�1a �� amb ��

..

•2p

•1p

��

◦m

�1a •2p

•1p ◦m

go

�1a
4a

��

��

�� amb ��

��

•2p amb ��

•
3p
4p

•1p

�� 		

◦n ◦m

Dout2 � JDout2
� FDout2

� KDout2
→ Rout

go

�4a

�1a

��

��
�� amb

//

�� •2p �� amb

�� •3p �� out

��

�� •4p

•1p

��

◦n ◦m

go

�1a
4a

��

��

�� amb ��

��

•2p amb ��

•
3p
4p

•1p

�� 		

◦n ◦m

Dout3 � ∅ � ∅ � ∅ → Rout

Fig. E.2. The minimal transitions generated by the rule pout.

F.B
onchietal./E

lectronic
N

otes
in

T
heoreticalC

om
puter

Science
242

(2009)
73–98

98

	Introduction
	Mobile Ambients
	Graphs and Their Extension with Interfaces
	On Graphs with Interfaces and Borrowed Contexts
	Graphical Encoding for Processes
	Graph Transformation for Mobile Ambients
	The Synthesized Transition System
	Examples of borrowed transitions
	Reducing the borrowing
	Minimal transitions

	A New LTS for Mobile Ambients
	The labelled rules on processes...
	...from the borrowed rules on graphs

	Conclusions, related and future work
	References
	Two binary operators
	Process encoding
	Initial Pushout
	Minimal transitions
	Process variables, graphically

