
* J. LOGIC PROGRAMMING 1992:12:191-223 191

LOGIC PROGRAMMING WITH FUNCTIONS AND
PREDICATES: THE LANGUAGE BABEL*

JUAN JOSE MORENO-NAVARRO AND MARIO RODRIGUEZ-ARTALEJO+

D We investigate the experimental programming language BABEL, designed to
achieve integration of functional programming (as embodied in HOPE, Stand-
ard ML, or MIRANDA) and logic programming (as embodied in PROLOG) in a
simple, flexible, and mathematically well-founded way. The language relies on
a constructor discipline, well suited to accommodate PROLOG terms and
HOPE-like patterns. From the syntactical point of view, BABEL combines pure
PROLOG with a first order functional notation. On the other side, the language
uses narrowing as the basis of a lazy reduction semantics which embodies both
rewriting and SLD resolution and supports computation with potentially infinite
data structures. There is also a declarative semantics, based on Scott domains,
which provides a notion of least Herbrand model for BABEL programs. We
develop both semantics and prove the existence of least Herbrand models, as
well as a soundness result for the reduction semantics w.r.t. the declarative
one. We also sketch a completeness result for the reduction semantics and
illustrate the features of the language through some programming examples. a

1. INTRODUCTION

Interest, other than purely academic, in declarative (that is, functional and logical)
programming languages has greatly increased since VLSI technology opened the
realistic possibility of building parallel machines capable of executing declarative

Address correspondence to Juan Jose Moreno-Navarro, Departamento de Ixnguajes y Sistemas
Informaticos e Ingenieria de Software, Facultad de Informatica, UPM, Campus de Montegancedo s/n,
E-28660 Madrid, Spain. E-mail: j jmorenoQf i. upm. es.

Pccepted 9 November 1990.
This work has been partially supported by “Action Integrada Hispano Alemana” No. 35B, granted by

“Direction General de Investigation Cientifica y Tecnica” and “Deutscher Akademischer Austauschdienst”,
and by the PRONTIC project TIC 89/0104.

‘Section Departamental de Informitica y Automatica, Facultad de C.C. Matematicas, UCM, Avenida
Complutense s/n, E 28040 Madrid. E-mail: W450QEMDUCMll .BITNET.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0143.1066/92/$3.50

192 J. J. MORENO-NAVARRO AND M. RODRIGUEZ-ART.ALEJO

programs efficiently. Current progress in the improvement of the implementation
techniques on conventional machines has also helped to arouse interest. Moreover,
there are several intrinsic reasons to favor declarative languages. Being closer to the
abstraction level of specifications, they enable one to write more concise programs,
thereby increasing software productivity. Having a very clean mathematical semantics,
they enjoy referential transparency and support powerful formal methods, such as
transformation rules, to assist in software design and maintenance. Finally, they are
especially well suited for rapid prototyping and applications to such fields as symbolic
computation, artificial intelligence, and knowledge based systems.

Functional programming has an older tradition than logic programming. Its mathe-
matical foundations (X-calculus, equational logic, rewriting) are well understood (see,
Barendregt [2], Huet and Oppen [26]); powerful compilation and implementation
techniques have already been developed (see Peyton-Jones [45]); and excellent pro-
gramming environments exist, for Ltsp-usually not considered a functional language in
the strict sense-and also for more modern functional languages. For a survey on
functional programming, see Hudak [24].

Logic programming is most commonly understood in a restricted sense, namely,
programming with Horn clauses and SLD resolution; see, Lloyd [37]. There is for
practical purposes only one working programming language, PROLOG, that can be
considered as a significant realization of the logic programming paradigm. Efficient
implementation techniques for PROLOG have also been investigated; see Campbell 171,
Warren [57].

Neither PROLOG nor the functional languages enjoy all the benefits of declarative
programming. PROLOG lacks such programming facilities as evaluable functions,
types, higher order programming, and lazy evaluation, while functional languages lack
the computing power provided by logical variables, unification, and deductive infer-
ence. During the last years, many attempts have been made to design declarative
programming languages integrating the functional and logical paradigms. DeGroot and
Lindstrom [I 1] collects significant papers on this field, while Bellia and Levi [3]
analyzes and classifies the main existing approaches to the integration.

The existing proposals for integrated logic plus functional programming languages
differ in their degree of mathematical rigor and semantic clarity. Our view is that the
integration should be founded on a clean declarative semantics, related to the opera-
tional semantics through soundness and completeness results that allow one to interpret
programs as theories, computations as deductions, and the whole programming lan-
guage as a logical one which embodies the logic of functions, relations, and equality.

A key role for a semantically and mathematically well-founded amalgamation of the
functional and logical paradigms is played by equational logic and the related notion of
rewriting (Huet and Oppen [26]), as well as by narrowing, a combination of unification
(Robinson [50], Lassez et al. (341) and rewriting that originally arose in the context of
theorem proving (Lankford [32], Slagle [55]), and that has been used to solve some
problems of E-unification and matching (Fay [191, Hullot [27], Siekman and Szabo
[54], Gallier and Snyder [21], Nutt et al. [43]) and is embedded in the operational
semantics of several logic programming languages with an equational flavor (Dersho-
witz and Josephson [131, Dershowitz [121, Dershowitz and Plaisted [141, Josephson and
Dershowitz [28], Fribourg [20], Goguen and Meseguer [23], Subrahmanyam and You
[56]). Some of these languages use conditional rewrite rules (Kaplan [29], Remy and
Zhang [49], Kaplan and Jouannoud]30]), while some others are based on equational
Horn clauses.

THE LANGUAGE BABEL 193

Usually, languages of this kind use narrowing as a basis for E-unification algorithms
(Giovannetti and Moiso [22], Dincbas and van Hentemryck [16]), which in turn support
evaluable functions and equality. Some approaches exploit the fact that narrowing can
be simulated by SLD resolution (van Emden and Yukawa [181, Bosco
et al. [6]) to gain facility for the implementation of logic + functional programming
languages which have a modified form of SLD resolution as their single computation
mechanism (Levi et al. [35], Bosco and Giovannetti [5]).

Other possible approaches to the integration of the functional and logical para-
digms consist in enriching functional languages with logic variables and unification

(Darlington et al. [8], Darlington and Guo [9, lo]) or in building so-called functional
logic languages, which keep a functional syntax, but use narrowing as operational
semantics (Reddy [46-481).

The language BABEL that we present in this paper can be best described as a first
order functional logic language in Reddy’s sense. It is based on a constructor discipline
(O’Donnell [44]) and works with only two elementary types (constructed terms and
boolean values). Predicates are identified with boolean functions; this provides two truth
values and enables the use of propositional connectives. In particular, there is a boolean
negation that is certainly not the logical one (because of the undefined boolean value)
but comes closer to it than in PROLOG. The operational semantics of the language uses
a lazy version of narrowing as the single computation mechanism. SLD resolution (and
hence pure PROLOG computations) are simulated by lazy narrowing, which supports
also computations with infinite data structures (built from constructors) and lazy
evaluation as in lazy functional languages. BABEL is also equipped with a computable
approximation to equality, since the true identity between possibly infinite data becomes
uncomputable. The declarative semantics of the language uses interpretations based on
Scott domains (Scott [52]) and allows to prove the existence of least Herbrand models,
as well as soundness and completeness theorems for the operational semantics. This is
related to similar results for Horn clause logic programs (van Emden and Kowalski
[171, Apt and van Emden [11) as well as for other lazy logic + functional languages
(Levi et al. [35]).

The design of BABEL has been specially influenced by the view of the operational
semantics in Reddy [47] and the view of the declarative semantics in Levi et al. [35].
The most distinctive feature of our approach is perhaps the decision to take narrowing
as the single computation mechanism and to handle SLD resolution as a particular kind
of narrowing. Other researchers have advocated the simulation of narrowing by means
of SLD resolution, in order to capitalize on the extensive experience already available
for PROLOG implementations (van Emden and Yukawa [18], Bosco et al. [6], Levi et
al. [35]). We have chosen the opposite view for similar reasons, namely, in order to
take advantage of the available experience in implementation techniques for functional
languages. An extension of BABEL with higher order functions and polymorphic typing
has been implemented using a graph narrowing abstract machine (Kuchen et al. [31])
which was designed as an extension of the sequential kernel of a purely functional,
parallel (programmed) graph reduction machine (Loogen et al. [36]) by unification and
backtracking mechanisms inspired by Warren’s abstract machine for PROLOG (Warren
1571). A prototype emulator of the abstract BABEL machine has been programmed in
OCCAM and runs on transputer systems.* Presently, the BABEL abstract machine supports

*Currently, the emulator is programmed in C and rum on SUN workstations.

194 J.J. MORENO-NAVARROANDM.RODRlGUEZ-ARTALEJO

only sequential and eager evaluation. Our final aim is a parallel machine which works
with lazy evaluation. Much work remains to be done, but our hope is that purely
applicative programs will run on the BABEL machine almost as efficiently as in the
original graph reduction machine, though some overhead due to the different parameter
passing mechanism (unification instead of matching) cannot be avoided.

The rest of the paper is organized in the following way: In Section 2 we introduce
BABEL'S syntax for terms, expressions, rules, and programs. In Section 3 we illustrate
the expressive power of the language by means of some simple examples, chosen to
allow for comparison with other declarative languages. In Section 4 we define lazy
narrowing, specify the operational semantics, and apply it to some computations related
to the previous examples. In Section 5 we present BABEL'S declarative semantics
(including the existence of least Herbrand models for BABEL programs), prove a
soundness theorem for the operational semantics, and sketch a completeness theorem
which has been proved in Moreno-Navarro [41]. Finally, Section 6 summarizes our
conclusions and refers to future work planned for improving the design and implementa-

tion of the language.

2. BABEL’S SYNTAX

We start with five disjoint sets of symbols:
Data variables X, Y, ZEDV
Boolean variables X, Y, ZEBV
Constructors c, d, e&S
Function symbols f, g, hEFS
Predicate symbols P, q, reps

We assume that DV and BV are countably infinite and fixed. Notice that we use the
same metavariables X, Y, Z to range over DV and BV. We shall denote DV U BV as

VS. The set X = CS U FS U PS is called the signature and may change according to the
program we consider. We assume that signatures are finite. Signature symbols are
assumed to have associated arities. In concrete examples, we shall use identifiers
starting with an uppercase (lowercase) letter for variables (signature symbols).

Definition 2.1. Data C-terms (tEDTerm,), boolean C-terms (bEBTerm,), data
X-expressions (EEDEx~~), and boolean C-expressions (B, CEBEX~,) are defined
as follows:

t:: =x
Ic
I c(t,, . . . , t,)

b::=X
) true
1 false

E::=t

I;c$v.-,EJ

,(&)-
EJ

I(C-‘E,DE,)

%
%
%

%
%
%

%
%
%
%
%

data variable
constant, i.e. nullary constructor
construction

boolean variable
tNth

falsity

data term
constructor application
function application
guarded expression
conditional expression

THELANGUAGEBABEL 195

B::= b

lP(E,,...,EJ E
IE, =Ez %

I-B %

l(B,C) %

l(B;C) %

I(C+B) %
Iw+B,O By) %

boolean term
predicate application
weak equality
negation
conjunction
disjunction
guarded boolean expression
conditional boolean expression

The sets of C-terms and X-expressions are defined as Term I; = DTerm s U BTerm s and
Exp, = DExp, U Bexp,, respectively. In the sequel, we reserve R, L, M, N for
expressions and rely on the context to determine whether they are boolean or not.

The distinction between data expressions and boolean expressions (and accordingly,
between functions and predicates) is the only type discipline in BABEL.

Constructors are well known in functional programming languages. They represent

free functions and correspond to PROLOG’s functors.

Expressions of the form C*M C+M,OM,

are intended to mean if C then M if C then M,
else undefined else M2

respectively. A weak equality E, = E2 is intended to hold iff the values of E, and ET
are finite, defined, and identical. Since the language allows for infinite values, this
means that weak equality is only an approximation of identity. In particular, it is not
reflexive.

Definition 2.2. A BABEL rule has one of the two following forms;

(P) f(tlv.. . , t,) := { C-+}E. % function rule

(P) P(t,, . . . , t,) := {C-} B. % predicate rule

where curly braces indicate that the presence of “C-+ ” is optional.
We shall use the following terminology:

(1) f(t,, . . . , t,) or dt,, . . . , tn) is the rule’s left hand side (lhs).

(2) C+ E or C-+ B is the rule’s right hand side (rhs).

(3) C is the rule’s guard.

(4) E or B is the rule’s body.

Any BABEL rule must satisfy two restrictions:

Restriction 2.1. (Left linearity). No variable is allowed to have multiple occurrences
in the lhs.

Restriction 2.2. (Free variables). Any variable that occurs in a rhs and does not occur
in the corresponding lhs is called free. Such free variables are allowed in guards, but
not in bodies.

196 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

Assume a rule

k(t, >. . . , t,):= {C-t}M.

where k is either a function or a predicate symbol. Let X,, . . , X, be the variables in
the lhs, and Y,, . . , Y, be the free variables. The intended logical meaning of the rule
is then

VX, **. vxr{ v Y, . . * vY,(C*}k(t,, . . .) t,) EM{)}

or, equivalently,

vx, .** vX,{(3Y, .4Y,C*jk(t I,‘.., tJ=M{)},

where = stands for semantical identity. A precise definition will be given in Section 5.
Notice that any BABEL rule can be written as L := R, where L is the lhs and R is

the rhs. We shall use this notation later.
We also adopt a convention to present some special rules in a nicer form.

Convention 2.1. (PROLOG-like rules). The following “sugarings” are allowed:

Raw form Sugared form

p(t,, . . ., t,) := true. P(C,, . . . > t,).

p(t,, . . ., t,) := C-t true. p(tl,. . .) t,):- c.

p(t,, . . . 3 t,) := false. -p(t,, . . , 7 t,).

I?ct,, . . . > t,) := C+ false. ‘P(I,, . .) f,) :- c.

Some notational conventions in BABEL'S syntax have been chosen for compatibility
with PROLOG. This is the reason that we use “ ” and “.” for conjunction and

disjunction, respectively. The sign “ := ” between the lhs’and rhs of a rule was

chosen because of its similarity with the neck sign “ :- ” in PROLOG clauses.
Moreover, this sign emphasizes that a rule’s lhs gets, by definition, the value of the
corresponding rhs.

An important design decision is related to guarded expressions. In BABEL, guards
are not intended to behave as in concurrent logic programming languages (Shapiro
[53]). Their main role in the language is to allow for rules with conditional rhs. It is
technically important that the guard in such a conditional rhs may have free variables
which do not occur in the lhs. As shown in Convention 2.1 above, this facility may
be used to mimic PROLOG clauses, whose body may have variables that do not
occur in the head.

Before we define programs, we still need some auxiliary notions on boolean
expressions.

Definition 2.3. The finite set PC(B) of the prime components of a given boolean
expression is computed recursively:

PC(true) =PC(false) = 0,

PC(+?) = PC(B),

PC(B,, BJ = PC(B,; Bz) = PC(&) UPC(&),

PC(C+B) = PC(C) u PC(E),

PC(C+B,UB,) =PC(C) UPC@,) UPC(&),

PC(B) = {B} in any other case.

THELANGUAGEBABEL 197

Definition 2.4. A boolean expression B is propositionally unsatisfiable iff the truth
value of B with respect to any evaluation

V : PC(B) + (true, false, I b}

is either false or the undefined boolean value I b. The truth value w.r.t. V must
be computed according to the truth tables for the propositional connectives, given in
Section 5. Notice that propositional satisfiability is a decidable property.

We are now in a position to define BABEL programs.

Dejinition 2.5. A BABEL program is any recursively enumerable set II of BABEL rules
that satisfies a nonambiguity restriction.

Restriction 2.3. (Nonambiguity). Given any two rules in Il for the same symbol k:

k(t,,...) tJ:= {B+}M.

k(s,,.. , s,,):= (C+}N.

at least one of the following conditions must hold:

(a>

(b)

cc>

No superposition: k(t,, . . . , t,) and k(s,, . . . , s,) are not unifiable.

Fusion of bodies: k(t ,, . . , t,) and k(s,, . . . , s,J have a m.g.u. 0
MB and Nfl become identical.

Incompatibility of guards: k(t,, . . . , t,) and k(s,, . . . , s,) have a m.g
that (B, C)S is propositionally unsatisfiable.

such that

u. 0 such

When necessary, we shall speak of C-rules and X-programs, to make explicit the
signature they are built from.

Our conditions on programs should be compared with those considered for rewriting
systems by Huet and Levy [25]. These authors work with unconditional rewrite rules
and impose linearity and nonoverlapping conditions on the left hand sides. They prove
that such hypotheses ensure confluence even in the absence of termination. Our more
liberal nonambiguity requirements will also allow us to obtain a kind of confluence
result in Section 5.

We also would like to mention that our condition on incompatibility of guards should
be replaced in practice by a more flexible one which takes the semantics of weak
equality into account. According to our present definition, the two guards E, = E2 and
-(E2 = E,) are not regarded as incompatible (unless E, and E2 are syntactically
identical).

3. PROGRAMMING IN BABEL

In this section we present some examples of simple BABEL programs in order to
illustrate the expressive power of the language and to allow comparison with the
programming style in PROLOG and in functional languages. The semantics and
behavior of these programs will become more clear in the two following sections.

We present the programs together with declarations of the different symbols in their
signatures. We also allow ourselves to use the commonly accepted sugarings for the

198 J. J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

syntax of natural numbers and lists, and write some function and predicate symbols in
infix form, to improve legibility.

Example 3.1. (Appending lists). This program merely shows that pure PROLOG
corresponds to a subset of BABEL. Notice that weak equality must be used to ensure left
linearity, by adding equalities between variables to bodies of clauses (which are guards
of BABEL rules in the raw form of the syntax):

constructors

r1/0 5% empty list
[* 1 *]/2 % list constructor

predicates
append/3

rules
/* Al */ append([], Y,, ZJ :- Z, = Y,.
/* A2 */ append([X] X,1, Y,, [Z I Z,l) :- Z = X, append(X,, Y,, Z,)

This appending program admits multiple use, as in PROLOG; i.e., the arguments of

append have no directionality.
Of course, append can also be programmed as a function in BABEL. The point is that

the version just given behaves like the PROLOG append predicate. For this purpose,
guards (with free variables) are necessary.

Example 3.2. (Testing binary trees for equality of frontiers). This program
illustrates the cooperation of functions and predicates:

constructors
[I/O, [- 1 *l/2 % as above
tip/l % constructor of leaves

node /2 % constructor of compound nodes
functions

frontier/ 1
predicates

equal-frontier/2
equal-list/2
equal-atom/2

rules
/* EF */ equal-frontier (A, B) := equal-list(frontier(A), frontier(B)).
/* EL1 */ equal-list ([I, Y,) := Y, = [I.
/* EL2 */ equal-list ([X] X,], [Y] Y,]) :=

equal-atom (X, Y), equal-list (X,, Y,).
% Some rules for equal-atom should be added at this place
/* FTl */ frontier (tip(X)) := [Xl.
/* FT2 */ frontier (node(tip(X), B)) := [X) frontier (B)].
/* FT3 */ frontier (node(node(A, B), C)) := frontier(node(A, node(II, C))).

THELANGUAGEBABEL 199

When used to evaluate ground (i.e. variable free) expressions such as

equal-frontier(node(node(tip(1)) tip(2)), t@(3)),

node(node(tip(1) , t@(3)) ,tiP(2)))

the program behaves essentially as a functional program; but it can also be used to solve
such expressions as

equal-frontier(node(tip(X) , A), nde(B,tip(Y)))

yielding a boolean result and answers for the variables X, Y, A, B.
Notice that we might change the first rule to

/* EF’ */ equal-frontier(a, b) :- equal-list(frontier(A), frontier(B)).

Without sugaring, this amounts to

/* EF’ */ equal-frontier(A, B) :- equal-list(frontier(A), frontier(B)) -+ true.

Now, equal-frontier is more akin to a PROLOG predicate; it can succeed (by computing
the result true) or fail, but it is unable to compute the result false, because of the guard
in the rhs.

Example 3.3. (The Alpine Club puzzle). In Malachi et al. [38] we found the
statement of the following puzzle, which was the subject of discussion of a few
contributors to a PROLOG electronic mailing list:

Tony, Mike, and John belong to the Alpine Club. Every member of the Alpine Club is either a
skier or a mountain climber or both. No mountain climber likes rain, and all skiers like snow.
Mike dislikes whatever Tony likes and likes whatever Tony dislikes. Tony likes rain and snow. Is
there a member of the Alpine Club who is a mountain climber, but not a skier?

The following BABEL solution to the puzzle illustrates the more liberal approach to
negation allowed by BABEL than by PROLOG.

constructors
tony/O, mike/O, john/O, rain/O, snow/O

predicates
alpinist/l, climber/l, skier/l, likes/2

rules
/* AC1 */
/* AC2 */
/* AC3 */
/* SC */
/* LKl */
/* LK2 */
/* LK3 */
/* LK4 */
/* LK5 */
/* LK6 */

alpinist(tony).
alpinist(mike).
alpinisnjohn).

climber(X) :- alpinist(X), lskier(X).
llikes(X, rain) :- climber(X).
lskier(X) :- llikes(X, snow).
llikes(mike, X) :- likes(tony, X).
likes(mike, X) :- Tlikes(tony, X).
likes(tony , rain).
likes(tony, snow).

200 .J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

To solve the puzzle, BABEL must solve the boolean expression

G: (alpinist(X), climber(X), lskier(X)) --t true.

obtaining true as result, and binding X to an answer.
Some comments on the BABEL formalization of the puzzle’s clues may help to

understand the limitations of BABEL with respect to predicate logic. Firstly, notice that
rules LK3, LK4 do not violate nonambiguity, since the guards are incompatible. Next,
notice that the knowledge embodied in rules SC, LKI, and LK2 could be alternatively
expressed as follows:

/* SC’ */ skier(X) :- alpinist(X), lclimber(X).
/* LKl’ */ lclimber(X) :- likes(X, rain).
/* LK2’ */ likes(X, snow) :- skier(X).

In fact, LK2’ corresponds more closely to the English statement of one of the clues.
From the viewpoint of knowledge representation, one could argue that it would be more
fair to add both rules LK2 and LK2’ to the program. But then, for the same reason, we
should add the rule LKl’ as an alternative expression of the knowledge contained in
LKl, and then LKI’, SC would violate nonambiguity. The chosen formalization can
perhaps be justified on the following grounds: the lhs of rules SC and LK2 match the
signs of the conjuncts in the goal expression G, while rule LKI corresponds to the
English statement of one of the clues.

Example 3.4. (Computing Hamming numbers). Dijkstra [15] attributes to
Hamming the problem of building the infinite ascending sequence of all positive
numbers greater than 1 containing no prime factors other than 2, 3, and 5. The
following solution illustrates again the cooperation of functions and predicates, as well
as the use of conditional expressions and lazy lists:

constructors
[I/O, [- 1 .I/2 % lists again

O/O % zero

sue/l % successor
functions

hamming-seq/O
merge-3/3, merge-2/2
seq-prod/2

+ 12, */2
predicates

nth-hamming/2
nth-member/3

< I2
rules

/* NH */ nth-hamming (N, M) :- nth-member (N, hamming-seq, M).
/* NM1 */ nth-member(1, [X 1 X,], Y) :- Y = X.
/* NM2 */ nth-member(suc(suc(N)), [X 1 X,], Y) :-

nth-member(suc(N), X,, Y).

/* HS */ hamming-seq := merge-3(seq-prod(2, [1) hamming-seq]),
seq-prod(3, [1 1 hamming-seq]) ,

THELANGUAGEBABEL 201

seq-prod@, [1 1 hamming-seq])).

/* SP */ seq-prod(X, [Y 1 Y,]) := [X* Y) seq-prod(X, Y,)].
/* M3 */ merge-3(X,, Y,, Z,) := merge-2(X,, merge-2(Y,, Z,)).
/* M2 */ merge-2([X) X,], [Y (Y,]) :=

X< Y-t[X(merge-2(X,,[Y) Y,]>]O
Y<X+[Y Imerge-2([XI X,], Y,>]O

/* otherwise */]X Imerge-2(X,, Ql.
/* +1 */ x+0 :=x.
/* +2 */ x+ sue(Y) := suc(X+ Y).

;: ::
*/ x*0 :=o.
*/ x*suc(Y) := (x*Y)+x.

/* < 1 */ -x<o.

/* <2 */ O<suc(Y).
/* < 3 */ sue(X) < suc(Y) := x< Y.

At first sight, &i-hamming looks like a PROLOG predicate. It may be used to solve
goals in several modes:

nth-hamming(5, M) % trueforM=
nth-hamming(N, 10) % truefor N=8
nth-hamming(N, M) % infinitely many answers

However, solving these goals involves functions and requires lazy evaluation, as we
shall see in the next section.

4. BABEL’S OPERATIONAL SEMANTICS

In this section we develop BABEL'S computation mechanism, which is based on a lazy
version of narrowing and defines the operational semantics of the language. Our
narrowing method is similar to the lazy narrowing strategy outlined by Reddy in [47]. It
was designed aiming at soundness and completeness results with respect to the
declarative semantics presented in the next section.

Let us first give some preliminary definitions. We follow the usual notation and
terminology in the term rewriting literature; cf. Huet and Oppen [26].

Definition 4.1. Let BS be the set of BABEL predefined symbols for weak equality,
negation, conjunction, disjunction, guards, and conditionals. Let TV be the set
{true, false).

Any C-expression M is viewed as a finite labeled tree, also denoted by M. The
labeled tree is a partial function from the set W*, of finite sequences of positive integers
to VS U CS U FS U PS U BS U TV, whose finite domain O(M) satisfies:

(i) O(M) is not empty and prefix closed.

(ii) If UEO(M) and M[u] is a n-ary symbol, then u.iEO(M) iff 1 I is n.

O(M) is the set of occurrences of M. The prefix ordering on O(M) is defined as

UlV iff 3wu.w= u,

u<v iff u<v and u#v.

202 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

For u~0(M), we have:

M[u]: Symbol at occurrence u
M/u: Subexpression at occurrence u
M[u+N]: Result of replacing M/u by N in M

var(M) denotes the set of variables occurring in M. M is called ground iff var(M) =

0.
The set of nonvariable occurrences of M is defined as

O+(M) = {uEO(M)IM[U] #VS}.

Definition 4.2. A X-substitution is any mapping from variables to S-expressions, such
that data and boolean variables are mapped to data and boolean expressions,
respectively. Any substitution (T can be uniquely extended to a mapping from Exp,
to Exp,, also denoted by C. We denote the application of (T to M as Ma.

The domain of a substitution u is defined as

dam(a) = {XEVSJXU#X}.

u is called finite iff dam(u) is finite.
u is called a d-substitution iff Xu is a term for all XEdom(a).
u is called a ground substitution iff Xu has no variable occurrences, for all

XEdom(u).
The restriction of a substitution u to a set of variables VC VS is denoted as

u t v.
The composition of two substitutions u, 8 is denoted as a0 and satisfies M(d)

= (Mu)~.

In the sequel, we identify a finite substitution with an association list binding
variables to expressions and denoted as u = [M, /X,, . . . , Mp /X,1, where

ix,,..., X,} = dam(u).
Next, we turn to unification. The notions of unifier and most general unifier (m.g.u.)

are well known. To use narrowing as a computation mechanism for BABEL, we are

interested in unifying expressions with left hand sides of rules. This gives rise to a

particular kind of unification problems:

Definition 4.3. Let k/n E FS U PS U BS. For the purposes of this definition, we apply
k in prefix form even if it is a predefined BABEL symbol. A linear unification problem
asks for the unification of two expressions without shared variables:

k(M,,...,M,), k(tr,. . ., t,),

where MeExp,, tEDTerm,, and k(t,, . . . , t2) is linear, i.e. has no multiple
occurrences of variables.

Linear unification problems can be solved by any version of Robinson’s unification
algorithm [50]. However, in order to control the lazy behavior of narrowing, we must
distinguish such cases where an attempted unification does not succeed because of a
clash between a constructor c and a function, predicate, or predefined symbol k, since
such a situation can be viewed as a demand for further evaluation of k. The following

THELANGUAGEBABEL 203

is a straightforward adaptation of well-known unification algorithms (e.g. Lassez et al.
[34]) which serves as a precise formulation of this idea. Notice that unification can now
succeed, fail, or suspend.

Definition 4.4. (Unification algorithm for linear unification problems).

Input: k(M, , . . . , M,,), k(t, , . . . , t,) as in Definition 4.3.

Stagel: BuildU,={M,l,t ,,..., M,l,t,}, u~=E.

Stage 2: Don’t care nondeterministically rewrite the initial unification configura-
tion (V,, a,,), using the rules which follow, until a nonreducible configuration
(U, a) is reached, If U= 0, report “SUCCESS" and output u as m.g.u. If

U= {FAILURE}, report “FAILURE". Otherwise, consider the set I of all integers i
with 1 I i 5 n and such that U has some member of the form

&N,, . . .) Api c(s,, . . . , s,), where l/ueFS U PS U BS, C/UECS U TV, and
u, v 10. Then, report “SUSPENDED" and output Z as the set of indexes of

demanded arguments.

The rules for reducing unification configurations are:

(URl) ({c(N,, . . .) N~)~~c(s,, . . .) s,)} U U, U)~({N~lisl,. . . , N,liS,) U
U, a), where C/UECS UTV, ur0.

(UR2) ({ XJis} U U, a> + (U[s/Xl, u[s/XI>, w h ere the term s is not a variable.

(UR3) ({ MJi X} U U, 0) + (U[M/Xl, u[M/XI).
(UR4) ({ c(N,, . . . , iVu)li d(s,, . . . , s,)} U U, a) --* ({FAILURE), a), where

c/u, d/v&S U TV, c # d, u, v L 0.

Notice that our unification algorithm has no occur check. It is not needed, because of
linearity. Moreover, the algorithm has three possible outcomes. The SUSPENDED one
acts as a mechanism for detecting that the pattern of a rule is demanding further
evaluation of some argument. This information will help us to achieve laziness.

The behavior of the algorithm is explained by the following result, which can be
proved by well-known techniques (Lassez et al. [34]).

Theorem 4. I. The above unification algorithm, when given any linear unification
problem

Unify: k(M,, . . . , M,,), k(t,, . . . , t,)

as input, always halts. Moreover, it reports SUCCESS 13 the two input expres-
sions are unifiable. In this case, it outputs a m.g.u. u that can be presented as
the union of two substitutions with disjoint domains:

u = a,,, LJ Ui”)

where

U O"t =urvar(k(M,,...,M,,)),

uin = u lvar(k(t,, . . . , t,))

Moreover, uout is a d-substitution.

204 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

Notice that the part a,,, of a computed m.g.u. reflects the flow of data (constructed
terms) from a rule to an expression, while the part uin represents the flow of
information (expressions to be evaluated) from an expression to a rule. We show now
three small examples to illustrate the possible outcomes of the unification algorithm.

Example 4. I. (Successful uniJication)

Input: f (X, cons(g(X), nil)), f (suc(X’), cons(Y’, Z’)).

output: SUCCESS with

uin = [g(suc(X’))/ Y’, nil/Z’] ,

a,,“, = [M X’)/X]

Example 4.2. (Failed unljication).

Input: f (X, cons(X, nil)), f (suc(X’), cons(0, Y)).

output: FAILURE

Example 4.3. (Suspended unification).

Input: f(g(X), Y,cons(g(Y),nil)), f(suc(X’),O,cons(suc(Y), Z’)).

Output: SUSPENDED with I = (1,3}.

The operational meaning of BABEL'S predefined symbols can be specified by the same
kind of rules as for the user defined functions and predicates. Let us now introduce
these rules.

Definifion 4.5. Let C be any BABEL signature, with set of constructors CS. The
implicit C-rules for BABEL primitives are as follows:

Rules for guards and conditionals:

(true -tX) := X.
(true-+X0 Y) := X. (false +X 0 Y) := Y.

Rules for propositional connectives:

ltrue := false.
Tfalse := true.

(false, Y) := false. (false; Y) := Y.
(true, Y) := Y. (true; Y) := true.
(X, false) := false. (X; false) := X.
(X, true) := X. (X; true) := true.

Rules for weak equality:

c=c :=true. for all c/OECS U TV.

c(x ,‘..‘, x,) =c(Y ,,..., Y,):=X, = Y ,,..., X,= Y,.

for all c/nECS, nz 1.

c(X,,..., X,,) = d(Y,, . . , Y,) := false.

forall c/n,d/mECS, c+d, n,mrrO.

THELANGUAGEBABEL 205

Given a BABEL program II of signature C, we denote as fI the result of expanding II
with all implicit C-rules.

Notice that for any program II, fi is still a nonambiguous set of rules in BABEL'S
sense. By contrast, the implicit rules of our parallel conjunction and disjunction violate
Huet and Levy’s [25] nonambiguity.

We are now in a position to define rule applicability and lazy narrowing.

Definition 4.6. Let lI be a C-program and let N be a C-expression.

(4

(b)

A rule of I? applies to, fails for, or suspends for N iff some variant of the rule
standing apart from N (i.e., sharing no variables with N) applies to, fails for,
or suspends for N, respectively.

A rule L := R standing apart from N applies to, fails for, or suspends for N iff
the unification of N, L yields a SUCCESS, FAILURE, or SUSPENDED outcome,
respectively. If the unification succeeds with m.g.u. u, we say that L := R
applies to N via u. If the unification yields a suspended outcome with the set Z
of demanded argument indices, we say that L := R is suspended at i for any
integer iE I.

Lazy narrowing works by narrowing expressions through application of rules.
Laziness is achieved by trying to select outer redexes first and going inner only when
demanded by the lhs patterns in suspended rules. The following definitions capture this

idea.

Dejinition 4.7. Assume a C-program II and a C-expression M. We say that ME
O+ (M) is a redex occurrence iff some rule in I? applies to M/ u. We also say that a
redex occurrence u of M is lazy iff u belongs to the set LRn[M] defined by
recursion on M’s structure as follows. In the following lines, k stands for a symbol
belonging to FS U PS U BS, where FS and PS are given by C, and BS is as in
Definition 4.1. For the purposes of this definition, we apply k in prefix form even if
it belongs to BS:

LR,[M] = 0 if M is a term.

LR,[c(M,,.. . , M,,)] = h i.LR,[Mi]
i= I

if c/neCS, n > 0, and some Mi is not a term.

LR,[k(M,,. . .,M,)] ={&I someruleinfiappliestok(M,,...,M,)}

U u i.LRn[Mi],
id

where Z = { i) 1 I i I n, some rule in I? is suspended at i} .

Notice that k(M,, . . . , M,,) is regarded as having no redex occurrences if all rules
fail for it, since in such a situation the expression cannot be reduced to an expression
with a constructor at the outermost occurrence, and only constructed terms are accepted
as evaluated values.

206 J. J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

Definition 4.8. Let II, A4 be as above. If u EO+ (M) is a redex occurrence for a ^
(variant of a) rule L := R in H that applies to M/u via u = a,,, U a,, (remember
Theorem 4. l), we say that M narrows in one step to the new expression M[u + R]a
and write

If a,,, = E, we write

M?M[u] +R a,,

and say that M rewrites in one step to M[u + R] uin.
Notice that a,,, records the part of u that has an effect on M. We also say that M

narrows to N, or reduces to N via narrowing, and write

iff there is some narrowing sequence

with 12 0 and aout = uout , . * - a,,, i * - - a,,,, , t var(it4). Analogously, the notation

M 1 “N

indicates the existence of a rewriting sequence.
Finally, we say that M reduces to N via lazy narrowing iff there is some

narrowing sequence with the property that each narrowing step in it applies a rule at
a lazy redex occurrence. To indicate this, we shall use the notation

MN - 1 1, ;,,, N.

In the case of lazy rewriting, we shall write

n
M-l-t*N.

In practice, the program will be known by context and H will be omitted in the

notation.
We propose to adopt lazy narrowing as the operational (reduction) semantics of

BABEL. By inspecting the implicit rules, we can see that BABEL primitives display the
behavior that should be expected of them under demand driven evaluation. Notice, in
particular, that guarded expressions and conditional expressions demand the evaluation
of their conditions first, while our parallel conjunction and disjunction demand the
evaluation of both arguments.

As already said in the introduction, narrowing has been used to solve problems of
E-unification (Fay [191, Hullot [27], Siekmann and Szabo [54], Giovannetti and Moiso
[22], Dincbas and van Heternryck [161, Gallier and Snyder [21], Nutt et al. [43]) and is
embedded in the operational semantics of several logic + functional programming
languages (Dershowitz and Josephson [131, Dershowitz [121, Dershowitz and Plaisted

THELANGUAGEBABEL 207

[14], Josephson and Dershowitz [28], Fribourg [20], Goguen and Meseguer [23], Levi
et al. [35], Bosco and Giovannetti [5], Reddy [46-481, Subrahmanyam and You [56]).
In BABEL, lazy narrowing can be used to solve a set of “equations” (in the sense of
weak equality) by reducing a boolean expression

(M, =N I,..., M,=N,)+true

to true via lazy narrowing. The resulting extended unification algorithm behaves
similarly to the “unification with lazy surderivation” in Dincbas and van Henteryck

V61.
BABEL, however, is intended for a more general use, which we explain now.

Dejnition 4.9. Let C be a signature with set of constructors CS. The shell 1 N 1 of
any given E-expression N is defined recursively:

It;; ‘==:” 9 1 false (= false,

(cI=c b

for any other boolean expression,

for c/OECS,

\$YL.i’ ’ N,,J(=cW,l,..., IN,0 for c/m&S, m >O,
for any other data expression.

The dedclarative meaning of the “undefined” symbols I, and I, will be

formally defined in Section 5.
Let II be a S-program. For any narrowing derivation

(which does not need to be lazy), we define the outcome as the pair (I N) , a,,,). We
also say that) N I is the result of aout is the answer. Notice that the result can be
partially defined, if) N I has occurrences of I, or I, .

Two special kinds of outcomes are important: functional outcomes, where (N (
is a ground term and aout is E, and PROLOG-like outcomes, where) N) is true.

Notice that, for any outcome, a,,, is a d-substitution, because of Theorem 4.1 and
Definition 4.8.

Now, we can imagine BABEL computations as lazy narrowing reductions that yield
some outcome. This view includes functional and PROLOG-like computations as
particular cases. Let us go back to the examples from Section 3 to provide concrete
illustrations.

Example 4.4. (Appending lists; see Example 3.1). The append predicate is
frequently used in PROLOG to nondeterministically split a given list into two factors.
We show how this can be done in BABEL:

append(X,, K, [a, b, cl)
N-1 % ,U,(a=X,,a~~nd(X,,,Y,,tb,cl))-*t~e

% where uout ,
N-12

, = I x,,1/x,1

2

~ouz K, [b,

omJ ([II, = Y, true) +

N-1 5 true %d

where uout,2 [a/X,]

% a,,,, =

% where = [[b, Y,l

208 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

The outcome is (true, a,,,) with a,,, = [[al/X,, [b, cl/ Y,]. We have abbreviated some
steps and used IR to indicate the application of implicit rules.

Notice that SLD resolution has been simulated by lazy narrowing acting on
PROLOG-like rules (cf. Convention 2.1). The role of guards in PROLOG-like rules is
essential to achieve the simulation.

Example 4.5. (Testing binary trees for equality of frontiers; see Example 3.2).
When used to evaluate a ground expression of the form equal-frontier(t, , t2), the
program behaves in a purely functional way. Assuming that the given trees t, , 1, have

different frontiers, BABEL behaves as a lazy functional language and is able to detect
inequality without having to evaluate the whole frontiers; e.g.

_y+

_1+*

-1-d*

equal-frontier(node(tree(tip(l), tip(2)), tip(3)),
node(tree(tip(l), tip(3)), tip(2)))

equal-list(frontier(node(node(tip(l), tip(2)), tip(3))),
frontier(node(node(tip(l), tip(3)), tip(2))))

equal-list([2 1 frontier(tip(3))], [3) frontier(tip(2))])
false

We have omitted some intermediate steps. The computation illustrates lazy rewriting as
a particular case of lazy narrowing.

The same program can solve expressions including variables; e.g.

equal-frontier(node(tip(X), A), node(B, tip(Y)))

_“1”- equal-list(frontier(node(tip(X), A)), frontier(node(B, tip(l))))
FT2

-1-r equal-list([X 1 frontier(A)], frontier(node(B, tip(Y))))
FT2

N-13 (royt,, equal-list([X 1 frontier(A)], [Z) frontier(tip(Y))])
% where a,,, , = [tip(Z)lBl ,

EL2
-I-+* equal-atom(X, Z), equal-list(frontier(A), frontier(tip(Y)))

etc.; there are infinitely many possible outcomes, each one with a result true or false
and an answer for X, Y, A, and B.

Example 4.6. (The Alpine Club puzzle; see example 3.3). A BABEL computation
of the outcome (true, [mike/X]) to the Alpine Club puzzle is as follows:

(alpinist(X), climber(X), ~skier(X)) -+ true
ACZ,IR.+

N--l--+
,&t. I

(climber(mike), lskier(mike)) + true % where a,,,, 1 = [mike/X]

-1 Lz (climber(mike), l(llikes(mike, snow) + false)) -+ true

THELANGUAGEBABEL 209

LK3

-l+ (climber(mike), T(T(likes(tony, snow) -+ false) + false)) + true
LK6

-l+ (climber(mike), -, (-(true + false) -+ false)) + true

_t”-t* climber(mike) + true

?lc+ ((alpinist(mike), lskier(mike)) -+ true) + true
AC2,IR*

-l* (lskier(mike) + true) + true
_1+* (true + true) --t true % same reduction as before

-f”-t* true

As in Example 4.4, this essentially mimics a PROLOG computation; but some
(restricted) use of logical negation is possible.

Example 4.7. (Computing Hamming numbers; see Example 3.4). In the context
of this program, the presence of potentially infinite data structures (streams) makes lazy
evaluation essential. A BABEL computation of the fifth Hamming number would behave
essentially as in a lazy functional language and could start as follows:

nth-hamming(5, M)

-NIH + nth-member(5, hamming-seq, M) -+ true

Now hamming-seq is demanded by the rules for nth-member; so other rules will be
applied to partially evaluate it until its first member 2 is computed. At this moment, the
state of the evaluation will be

nth-member(5, [2 1 RHS] , M) -+ true

(where RHS is an expression denoting the rest of the Hamming sequence), and the
reduction will proceed lazily:

NM2

- I+ (nth-member(4, RHS , A4) -+ true) -+ true

and so on. In few words: The Hamming sequence will be produced lazily, until its fifth
member is found. BABEL'S unification mechanism takes care of the detecting demanded
arguments through SUSPENDED outcomes of the unification algorithm; remember
Definition 4.4.

It is known that the computation of the first n Hamming numbers, using the
algorithm embodied in the present program and lazy evaluation, takes O(n) steps; see
Bird and Wadler [4].

The program also admits modes of use going beyond functional programming; e.g.

nth-hamming(N, 10) N - 1 5 G/N] true

nth-hamming(N, M) N - 1 3 $6/N,8,Ml true

Before closing this section, let us say that BABEL'S lazy evaluation is a clear and
simple way to specify a demand driven reduction mechanism; but it is not an “optimal
computation rule”. In fact, lazy narrowing (in the technical sense of Definition 4.8)

210 J. J. MORENO-NAVARRO AND M. RODRIGUEZ-ARTALEJO

allows narrowing sequences where some inner narrowing step does not contribute to
any later steps. Such derivations are, strictly speaking, not so lazy. They can arise in
cases where one has, at the same time, applicable rules and suspended rules. In such
cases, the search space for lazy narrowing (i.e., the tree whose root is the initial
expression and whose path correspond to all possible lazy narrowing sequences) usually
includes duplicate solutions.

The following example illustrates this. Incidentally, it serves to show that both
outermost and innermost narrowing can miss solutions that are computable via lazy
narrowing. Even infinitely many solutions can be lost.

Example 4.8. Let n be the following program:

constructors
o/o, sue/l

r IA r. I * l/2
% for natural numbers
% for lists

functions

f/2
rules

/* F, */
/* 4 */

:* “H *; * *

gv h/l

f(0, X) := h(X).

f(suc(W, [y I ysl) := [suc(Y) I _f-(N, YJI.
&T(N) := IN I mMW)l.
h([Y I r,l) := [Yl.

In Figure 1 we show a fragment of II’s search space for the initial expression
f(N, g(O)), using lazy narrowing.

Of the two lazy narrowing sequences NS,, NS’,, only the first is “really lazy”; the
second starts with a reduction that does not contribute to the second step and could have
been delayed until the third one (obtaining, in fact, NS,). There is an exact characteri-
zation of the “really lazy” derivations: They correspond to the outside-in derivations
introduced by Huet and Levy [25] to investigate left linear, nonambiguous, uncondi-

G % allowed because F, IF suspended

h(g(O))

IG

AN. KJ I g(l)])

W I g(l)])
~~yc(~,)

IH h(IO I s(l)l) 11 I f(iY,, s(l))1
101 IH

/*NS,*/ WI
/*NSl’*/ [l 1 h(g(l))]

IG
11 I h([l I g(-Dl)l

II I fW,, II I s@)l,l

THELANGUAGEBABEL 211

tional rewriting systems. Briefly speaking, the definition is obtained by forcing the later
use of the rule that demands evaluation of a suspended argument. Darlington and Guo
[9] have adapted this notion to a kind of lazy narrowing based on constructors, and You
[58-601 has used a very similar notion (outer narrowing derivation) to investigate
E-unification and E-matching problems for a class of constructor based unconditional
rewriting systems.

With innermost narrowing, the search space for the same program and initial
expression would consist of a single infinite branch, corresponding to the nonterminat-
ing evaluation of g(0). No solutions would be found. Finally, we show the search space
using outermost narrowing, which retains only one solution:

f(N, g(0))
N=OIFo

h(g(O))

IG

h([O I s(l)l)
IH

PI

5. BABEL’S DECLARATIVE SEMANTICS

In this section we present a declarative semantics for BABEL, which is based on Scott
domains. We introduce interpretations and define how to view a BABEL rule as a logical

statement that can hold or not hold in a given interpretation. We pay special attention to
Herbrand interpretations and prove that any BABEL program has a least Herbrand model.
This result generalizes the well-known corresponding one for Horn clause programs
(van Emden and Kowalski [17], Apt and van Emden [l]). A very similar approach has
been used for the language K-LEAF (Levi et al. [35]). With the help of our declarative
semantics, we are able to prove soundness, confluence, and completeness results.

We give first some preliminary definitions on Scott’s domains; cf. Scott [52] and
Mulmuley [42].

Definition 5.1. A partially ordered set, with order c , is called a complete partial
order (cpo) iff it has a least element J_ (usually called “bottom”) and any directed
subset S of D has a least upper bound (lub) U S in D.

Given a cpo D, an element z is called finite iff, for any directed subset S of D,
z c U S implies that there exists an element YES such that z c y. An element x is
called total iff the only upper bound of x in D is x itself. -

D is algebraic iff for all XED, the set

S,= {zIzCxand zistinite)

is directed and x = U S,. D is w-algebraic if, in addition, the set Fin, of its finite
elements is countable.

A subset S of D is consistent iff any finite subset S,, of S has some upper bound
in D. A cpo D is called consistently complete iff any consistent subset of D has a
lub in D.

In the rest of this section, by domain we mean a consistently complete o-algebraic
cpo. For a different characterization of domains, see Scott [52].

212 .I. I. MORENO-NAVARRO AND M. RODRIGUEZ-ARTALEJO

Definition 5.2. Let D be a domain. An enumeration of Fin, is any mapping e from $1
onto Fin, that maps 0 to I ; i.e.

e, = I and {e,(ieM) = Fin,.

Assume some fixed one to one mapping from Xl onto the set of all finite subsets of M
(cf. Rogers [51]). Let 1, be the finite set coded by n EM under this bijection. Then
we say that e is an effective presentation of D iff the two following predicates on
natural numbers are decidable (i.e. recursive):

con(n) bdef S, is consistent in D,

lub(n, j) @def U S, = ej in D

where, for n~G!l, S, = { ei 1 iel,} G Fin,.
A domain is called effectively presented iff it has some effective presentation.

Definition 5.3. Given two domains C and D, a mapping f from C to D is called
monotonic iff xc y implies f(x) c f(y) for all x, y EC.

A monotonic fu&tion f is called &tinuous iff, for any directed subset S of C,

“N-JcS) = u,f(s).
If C and D are domains, we shall denote by [C-D] the set of continuous

functions from C to D.

Definition 5.4. Let C, D be domains with effective presentations e and e’. A
continuous mapping f : C-r D is called computable iff its graph, defined as the
predicate on G!l given by

Gf(i,j) *def ejcf(ei),

is recursively enumerable. An element XED is called computable iff the set of
natural numbers

G, =dcf{iERl/ej c x}
is recursively enumerable.

The following results are well known; cf. Scott [52] and Larsen and Winskel [33].

Theorem 5. I. Let C, D be domains. Then [C + D] , under the pointwise ordering,
and C x D, under the componentwise ordering, are again domains. They are
eflectively presentable if C and D are.

Moreover, domains as objects with continuous mappings as morphisms
constitute a Cartesian closed category.

Theorem 5.2. Let D be a domain. Any continuous mapping f : D -+ D has a least
fixpointxeDwhichsatisJiesf(x)=xandxcyforanyyEDsuch thatf(y)
In fact, this least Jixpoint is the lub of the chain

Moreover, the mapping fix : [D --f D] --*D which assigns to any f E [D -+ D] its
least jixpoint is itself continuous; i. e., fix E [[D + D] -+ D].

THELANGUAGEBABEL 213

If D is eflectively presentable, then fix is computable, and fix(f) is COM-
putable for any computable f E [D + D].

We now define two special domains related to a given BABEL signature.

Definition 5.5. Let C be a BABEL signature with set of constructors CS.
The Herbrand domain H, has as elements all (finite or infinite) trees with nodes

labeled by ranked symbols from CS U { I, } , where I, is a new symbol of arity 0.
Such trees can be viewed as functions from RI*,; remember Definition 4.1.

Elements s, t EHZ: are called C-constructs. In particular, all ground data C-terms
are C-constructs. By a partial data C-term we shall understand a finite C-construct.

The ordering c on H, is defined as follows:

s c t iff t can be obtained from s by substituting some constructs for occurrences of -
‘d .

The boolean domain BOOL is the

true V fa1se

flat cpo given by the diagram

where I, is a new symbol of arity 0, and true, false are BABEL'S boolean constants. By
partial C-term we understand the partial data C-terms together with true, false, and

lb .

Simply by checking the corresponding definitions, we obtain:

Theorem 5.3. H, and BOOL are domains. Moreover, H, has the following
properties :

(i) The finite elements coincide with the finite constructs, i.e., those having a
finite number of nodes.

(ii) The total elements are the constructs without any occurrence of I, .

(iii) H, is eflectively presentable.

We are now in a position to define interpretations and models for BABEL programs.

Definition 5.6. Let C be a signature with CS, FS, PS. A C-interpretation is any
algebra

where D is a domain and the following conditions hold:

CIED for c/OECS,

c+[D”+D] for c/nECS, n>O,

f+D for f /OEFS,

.Q[D”-D] for f/nczFS, n>O,

prE BOOL for p/OEPS,

POE [D” + BOOL] for p/ni5PS, n >O.

214 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALWO

I is called a computable interpretation iff D is effectively presentable and cl, f,, p,
are computable mappings.

Z is called a Herbrand interpretation iff D is H, and the interpretation of
constructors is free, i.e.,

Cl = c for c/OECS,

for c/nECS, n > 0, and t;EH,.
n

In any given interpretation, BABEL expressions denote domain elements.

Definition 5.7. Let Z be a C-interpretation. An environment over Z is any mapping p

from VS = DV U BV to D U BOOL such that p(X)ED for all XEDV and p(Y)E
BOOL for all YEBV.

For any BABEL C-expression M, the valuation [M],(p) of A4 in Z under p is
defined by recursion on M’s syntactical structure. It belongs to BOOL if M is a
boolean expression; otherwise, it belongs to D:

[true],(p) = true,

[false] , (p) = false,

PWP) =4-v for XEVS,

M(P) = c1 for c/OECS,

1c(%, . . 3 wJn1b) = cr(w,l,b)~~. . f B~nlllb))

for c/n&S, n >O,

Iklh) = k, for k/OEFS UPS,

[k(M,, . . . , WBh) = kl(vfIILbL~~~ I U%Jl(P))

for k/nEFSUPS, n>O,

~IJ%=WI~(P) =eq(IEIBI(~)~IIE2BI(~))’

W%(P) =~~~(PI,(P)L

o:(& 4)lMP) = anw4m,(& P211(&

I(% MLb) = O’(~~III(P)~ ru(P))~

II(B+M)l,(p) = if-then (fWi,(~)~ [W,(P))>

[(B+M,OW)II,(P) = if-then-else (14,(p), ~M,I,(P)~ IMJI~(P))~

where the semantic functions eq, not, and, or, if-then, and if-then-else are continu-
ous and computable and are defined as follows:

if d, = d, is a finite and total element in D,

if { d, , d2} is inconsistent in D,

otherwise

THELANGUAGEBABEL 215

(the fact that D is consistently complete is needed to ensure the continuity of eq),

b not(b)

true

false

‘b

false
true

‘b

and(b,, b2)

true false I,

tNe

false

lb

true false I,
false false false

‘b false I,

or(b,, b2)

true false I,

true tNe true true

false true false I,

‘b true I, ‘b

if_then(b, m) = [y ~he~w?~~7

ml if b=true,

if_then_else(b, m,, m2) = m2 if b = false,

I otherwise,
where m, m, , m2 may belong to D or BOOL, and l. stands for I, or 1,

Knowing how to evaluate expressions, any BABEL rule can be interpreted as the
statement that the lhs value is always at least as well defined as the rhs value:

Definition 5.8. Let II, Z be a C-program and a C-interpretation. Remember I? from
Definition 4.5 .

Z is a model of II (in symbols: Z E II) iff Z is a model of every rule in l?.
Z is a model of a rule L := R (in symbols: II= L := R) iff [LB I(p) J [R] I(p)

for all environments p over I. Here, 2 stands for the partial ordering over BOOL if
R is boolean; otherwise, it stands for the ordering over D.

We are now going to prove the existence of a least Herbrand model for any given
BABEL program. This generalizes the well-known result of van Emden and Kowalski
[171 for Horn clause programs, and is related to a similar result that holds for the
logic + functional language K-LEAF (Levi et al. [35]). Intuitively, the least Herbrand
model of II is the “most economic model”: It has no data objects but the constructs,
and it defines functions and predicates only as much as demanded by the program’s
rules (including the implicit ones). Similar intuitions lay behind initial models for
algebraic specifications; cf. Goguen and Meseguer [23].

As in Apt and van Emden [l], we are going to obtain minimal models as least
fixpoints of continuous interpretation transformers. First, we show that C-interpreta-
tions are the members of a domain.

216 J. J. MORENO-NAVARRO AND M. RODRKXJEZ-ARTALEJO

Theorem 5.4. For any BABEL signature C, the set H-INTO of all the Herbrand
C-interpretations, equipped with the partial ordering

I c J l$f k, c kJ (in the corresponding domain) for all k E FS U PS,

is an eflectively presentable domain.

PROOF. Remember that BABEL signatures are finite. According to Definition 5.6, any

Herbrand C-interpretation can be identified with the finite tuple

((&FS 3 (P&S))

where FS, PS are given by C. Therefore, H-INTO can be viewed as the Cartesian product

&s [D” ‘4 x JEPS [D” -+ BOOLI ’

where D is H,, and where [D” + D] and [D” -+ BOOL] are understood as D and
BOOL, respectively, whenever n is 0. By Theorem 5.3, H, is an effectively presentable
domain. We can then conclude that H-INTO is an effectively presentable domain, by
Theorem 5.1. 0

Next, we define interpretation transformers:

Definition 5.9. Let II be a BABEL program of signature C.
A ground infinitary C-substitution is any mapping u from VS to H, U BOOL

mapping boolean variables to BOOL and data variables to H,. Ground infinitary
substitutions generalize ground substitutions (cf. Definition 4.2) and have unique
extensions to mappings from Exp, to H, U BOOL. For any MeExp,, Ma is called
a ground instance of M. Notice that the evaluation of kt, in a given Herbrand
interpretation I, denoted by [Ma] [, can be defined as IM],(a), since u is an
environment over 1.

The interpretation transformer associated to II is the mapping

cFn : H-INTx + H-INTx

defined as follows: For any ZEH-INTO, .Yn(l) is the Herbrand interpretation J such

that, for any k/neFS U PS and t,, . , t,eH,,

k,(t,, . . , t,) = max T,

where T= {IR’], 1 k(t,, . . , t,) := R’ is a ground instance of some rule in II}

Theorem 5.5. For any C-program n, Yi is well defined, continuous, and
computable. Moreover, for any IEH-INTO, one has I L II @Y,,(Z) 1 I. -

PROOF. To prove that ,Tn is well defined, we must show that the set T from Definition
5.8 has a maximum element. Let 1 R; I,, I R; 1, be any two members of T. We claim
that they must be identical, unless one of the two is bottom. In fact, by construction of
T, there are two ground instances of rules in H:

k(t,,.. , tn):= {B; ->A4;,

k(t,, . . . , tJ:= {B;+}M;,

where { Bl} -+ M,! is R: (i = 1,2). Since rules are left linear, this means that the left

THELANGUAGEBABEL 217

hand sides of the two rules are unifiable (we could not conclude this without left
linearity, since the constructs ti may be infinite). Because of the nonambiguity
restriction for BABEL programs (remember Definition 2.5), M; and M; must be
identical, unless (B; , B;) is propositionally unsatisfiable. If M; and iVf; are identical,
then [R;Q,= [R;], unless one or both are bottom. Otherwise, l[R;jl and l[B;l,

cannot be both true, and at least one of the two values [R;] ,, [R;] I must be bottom.
It can be checked that each k, is continuous. This essentially reduces to the

continuity of the functions in Z and the semantic functions.
We now argue that &, is continuous. Monotonicity is obvious from the definition.

Let {ZAaeA be a directed set of Herbrand interpretations. Let Z = U
LYEA

z,. Put

J = Fn(I), J, = Kn(I,). We must show that J = U
,ZEA

J,. But U CIE A J, c J follows

from monotonicity. To show Jc U J,,considerany k/neFSUPSand t,,...,tn

eHZ. Let 9?‘be the set of all R’ s&?rAthat k(t,, . . . , t,) := R’ is a ground instance of

some rule in ll. Then

kJ(tl,...,t,)=max{[R’],IR’E2’}

=max(e~[R’~,~~R’e’A’}

(
by Z = u Z, and continuity of evaluation

WEA 1

= u max{[R’j,,IR’Eg’}
C&A

(
since this is an upper bound of u I R’] ,n for any fixed R’ E 3’ ’

CYEA 1

= U k.,(t,, . . . > t,,).
old

Let us now show that Yrn is computable. By the proof of Theorem 5.4 and known

results from domain theory (see e.g. Larsen and Winskel [33]) we can assume that any
finite Herbrand C-interpretation Z is presented as a finite tuple ((kl)keFSU &, where
each k, is presented in turn as a partial E-term s (if k’s arity is 0) or as a finite set of
pairs (S, s), where s is a partial C-term, and 3 is a tuple of finite C-constructs. This set
of pairs is called the graph of k, and determines k,‘s effect as a mapping, by requiring

k,(t) = u {s\(S,s)~graph(k,), 2~ I}

to hold for all tuples i of C-constructs.
By appealing to Church’s thesis and Definition 5.4, we may restrict ourselves to give

an informal proof showing that

{ (I, J) 1 I, JE H-INTO are finite and such that J rz Tn (I) }

is a r.e. set. Indeed, for finite I, JEH-INTO we have:

Jc G(Z)
iff k,C k, for all kEFS U PS

iff for all ke FS U PS and for all (z, s) Egraph(k,) s 5 k,,n,,,(S) (here S can
be omitted if k is nullary)

iff for all keFS U PS and for all (S, s)~graph(k,) there is some finite ground

instance k(S) := R’ of a rule in lI such that s c [R’ 1 I.

218 J. J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

In view of Definition 5.9, we have to justify the restriction to finite ground instances in
the last step above. Since 3 is finite and local variables in BABEL rules occur only in the
guards, the ground instance R’ under consideration cannot have any occurrences of

infinite constructs outside the guard. On the other side, the denotation of a guard in I
depends continuously on the valuation of its variables. If some ground instance of the
guard denotes true, the same happens already for some finite ground instance. Hence, if
s c [R’l] I for some ground instance R’, then this is also the case for some finite ground
instance.

We note that we have obtained a definition of a r.e. set, because FS U PS is finite,
each k, has a finite graph, II is r.e., and each 1 R’] I is finite and effectively
computable from R’ and Z.

Finally, assume that .&(Z) = J. The condition Jc I means that kl(t,, . , t,) 2
k,(t,, . . , t,) must hold for all k/neFS U PS &id all t,, . . , t, EHc. By the
definition of C”i_, this amounts to saying that I[L'] ,z [R’] I must hold for any ground
instance of any rule in II. This happens exactly when Z is a model of all rules in Il,
because building all ground instances is the same as considering all possible environ-
ments. Since all implicit rules hold in all Herbrand models, we may conclude that
.q(Z)c Z iff ZFII. Cl -

We are now in a position to prove the main result of this section:

Theorem 5.6. Any BABEL program Kl of signature C has a least Herbrand model
In. Moreover, In is a computable element of the domain H-INTO.

PROOF. Let In be the least fixpoint of ,Yy,. By Theorems 5.2 and 5.5, I,, is a
computable element of H-INTO and can be described as

I” = u z&
je,vJ

where

Zi = I (bottom of H-INTO) and Ii” = &(Z/r).

Theorem 5.5 also guarantees that In is a model of II. Let Z be any other Herbrand
model of II. By Theorem 5.5 again, we know that .Y<,(Z) L I. Since <Yy, is monotonic,
it follows by induction on j that I{, c Z for all Jo W. We conclude that In & Z because
In’s characterization as a lub. Hence, Zn is the least Herbrand model. 0

We can prove that BABEL'S reduction semantics always computes logically sound
outcomes.

Theorem 5.7. (Soundness of the reduction semantics). Let n be a C-program.
Any (not necessarily lazy) narrowing sequence

computes a sound outcome in the sense that

holds for a/l models ZE n and all environments p over I.

THE LA,NGUAGE BABEL 219

PROOF. Assume that the length of the reduction is 1. Consider any model Z b II and
any environment p over I. It is easy to check that IN] ,(p) 2 [) N)]I ,. Hence, we
may replace] N) by N in our thesis. We use induction on 1. The case I= 0 is trivial.
For I > 0, we may assume

11
MN -+ g<,“{, , Ml N z L. re\t NY

where, for some u EO+ (M) and some variant L := R of a rule in II, IQ/ u and L are
unifiable with m.g.u. e, = aout,, kJ uin, ,, and M, is M[u + R]a,. Now we can reason
as follows, knowing that uoUt = a,,,, , a,,,, reSt r var(M):

IM%U,lI(4 = ~M~~“t.l~~“t.TeStll(P)

= rMaO”,.,n,(P)

[where p is such that p(X) = 1 Xu,,,, ,,,,I I(p> for all XEVS]

7 WV-Rl~JIh-4
(because Z t= II, L := R is a rule in II, and the context of Mu,,,,. , at occurrence u
behaves monotonically in any interpretation)

= IM,R1cc

=[M laOout,restj t(a> (by construction of

? tNnI(P> (by induction hypothesis) .

This completes the proof. 0

CL)

This result has a reciprocal one. It says that any logically sound outcome is
subsumed by some other outcome that can be computed via lazy narrowing.

Theorem 5.8. (Completeness of the reduction semantics). Let n be a C-program.
Assume a E-expression M, a partial C-term s, and apnite d-substitution 0 with
dam(0) c var(M) such that [MO] ,(a) 2 [SD, holds for any Z E II and any
environment p over I. Then there exists a lazy narrowing sequence

M N - 1 2, :“., N

and a finite d-substitution h, such that 0 = u,,,,h lvar(M) and 1 Nx 1 2 s.

SKETCH OF PROOF. Remember that the least Herbrand model In of II is the lub of a
chain of approximations Zf; (Theorem 5.6). By the hypothesis and the continuity of
evaluation, there is some jeW such that the inequality [Men t(p) I [sn t holds for
Z = ZA. Using induction on j, it is possible to prove that MB -&*N’ for some
expression N’ such that 1 N’) J s. Notice that N’ is obtained by lazy rewriting,
binding no variables in MB. The lazy narrowing derivation M N - 1 + *N needed to

prove the theorem is then produced by a lifting construction, similar to those known for
SLD resolution (Lloyd [37]) and classical narrowing (Hullot [27]). A full proof of this
completeness result can be found in Moreno-Navarro [41]. 0

To finish, we present a kind of confluence result that can be derived from the
correctness theorem.

220

Corollary 5. I. (“Confluence” of rewriting). Let II be a C-program. Assume
ground C-expressions M, N], N2 such that

M -% *N, and A4 3 *N2.
Then N, and N, cannot have dlflerent constructors at any common occurrence;

i.e., WW, IN2ll is consistent in H, (or in BOOL, if M is boolean).

PROOF. By applying Theorem 5.7 to the least Herbrand model of II, we can conclude
that [M] ,1, is a common upper bound of 1 N, 1 and 1 N2 1 0

6. CONCLUSIONS

We believe we have provided a semantic framework which allows us to amalgamate
functional and logic programming in a conceptually simple and semantically coherent
way. We have chosen to design a functional logic language with an essentially
functional syntax, a lazy form of constructor based conditional narrowing as operational
semantics, and a declarative semantics that is based on Scott domains and provides least
Herbrand models. Our approach reduces SLD resolution to narrowing, by viewing
definite clauses as a particular kind of conditional rewrite rules, and extends to
functional programs the declarative semantics typically used for Horn clause logic
programs.

In contrast with other approaches that have advocated the reduction of narrowing to
SLD resolution in order to exploit the extensive experience on efficient PROLOG
implementations (van Emden and Yukawa [181, Bosco et al. [6], Levi et al. [35]), our
aim has been to capitalize on the available experience in efficient implementation
techniques for functional languages. The sequential kernel of a parallel (programmed)
graph reduction machine (Loogen et al. [36]) has been extended with unification and
backtracking mechanisms inspired by Warren’s abstract machine for PROLOG (Warren
[57]), yielding an abstract machine BAM for BABEL (Kuchen et al. [31]). A prototype
emulator of BAM has been programmed in C and runs on SUN workstations. Early
experiences with the prototype let us hope that purely applicative programs will run in
the BABEL machine almost as efficiently as in the original graph reduction machine,
though some overhead due to the different parameter passing mechanisms (unification
instead of matching) cannot be avoided.

We are presently working on improving the design and implementation of BABEL
along several lines. The BAM implementation actually supports a higher order exten-
sion of BABEL with a polymorphic type system (Milner [40], Martins-Damas [39]),
where narrowing is kept as the evaluation mechanism, but with the restriction that
higher order logic variables are not allowed; that is, higher order variables are never
affected by narrowing, but used only for rewriting.

REFERENCES

1. Apt, K. R. and van Emden, M. H., Contributions to the Theory of Logic Programming, J.
Assoc. Comput. Mach. 29:841-862 (1982).

2. Barendregt, H. P., The Lambda Calculus: Its Synta,x and Semantics, North Holland,
1981.

3. Bellia, M. and Levi, G., The Relation between Logic and Functional Languages: A Survey,
J. Logic Programming 3:217-236 (1986).

THEL+NGUAGEBABEL 221

4.

5.

Bird, R. and Wadler, P., Introduction to Functional Programming, Prentice-Hall, 1988.

Bosco, P. G. and Giovannetti, E., IDEAL: An Ideal Deductive Applicative Language, in:
Proceedings of the IEEE International Symposium on Logic Programming 1986, IEEE
Computer Sot. Press, pp. 89-94.

Bosco, P. G., Giovannetti, E., and Moiso, C., Narrowing vs. SLD-Resolution, Theoret.
Comput. Sci. 59:3-23 (1988).
Campbell, J. (ed.), Implementations of PROLOG, Ellis Horwood, 1984.

Darlington, J., Field, A. J., and Pull, H., The Unification of Functional and Logic
Languages, in: [ll], pp. 37-70.
Darlington, J. and Guo, Y., Narrowing and Unification in Functional Programming-an
Evaluation Mechanism for Absolute Set Abstraction, Technical Report, Working Draft,
Imperial College, Nov. 1988.

10. Darlington, J. and Guo, Y., The Unification of Functional and Logic Languages, towards
Constraint Functional Programming, Technical Report, Imperial College, Working Draft,
Sept. 1989.

11.

12.

Y.

DeGroot, D. and Lindstrom, G. (eds.), Logic Programming: Functions, Relations and
Equations, Prentice-Hall, 1986.

Dershowitz, N., Computing with Rewrite Systems, Inform. and Control 651122-157
(1985).
Dershowitz, N. and Josephson, A., Logic Programming by Completion, in: Proceedings of
the 2nd International Conference on Logic Programming, Uppsala, Sweden, July 1984,
pp. 313-320.

14.

15.

16.

Dershowitz, N. and Plaisted, D. A., Logic Programming cum Applicative Programming, in:
Proceedings of the IEEE International Symposium on Logic Programming, Boston,
July 1985, IEEE Computer Sot. Press, pp. 54-66.

Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, 1976.

Dincbas, M. and van Henternryck, P., Extended Unification Algorithms for the Integration
of Functional Programming into Logic Programming, J. Logic Programming 4:197-227
(1987).

17.

18.

van Emden, M. H. and Kowalski, R., Semantics of Predicate Logic as a Programming
Language, J. Assoc. Comput. Much. 23:733-742 (Oct. 1976).

van Emden, M. H. and Yukawa, K., Logic Programming with Equations, J. Logic
Programming 4:256-288 (1987).

19.

20.

21

Fay, M., First-Order Unification in an Equational Theory, in: Proceedings of the 4th
Workshop on Automated Deduction, Austin, Tex., Feb. 1979, pp. 161-167.

Fribourg, L., SLOG: A Logic Programming Language Interpreter Based on Clausal Superpo-
sition and Rewriting, in: Proceedings of the IEEE International Symposium on Logic
Programming, Boston, July 1985, IEEE Computer Sot. Press, pp. 172-184.

Gallier, J. H. and Snyder, W., Complete Set of Transformations for General E-unification,
Theoret. Comput. Sci. 67:203-260 (1989).

22 Giovannetti, E. and Moiso, C., A completeness result for E-unification algorithms based on
conditional narrowing, in: Proceedings Workshop on Foundations of Logic and Func-
tional Programming, Trento, Italy, Dec. 1986, Lecture Notes in Comput. Sci. 306,
Springer-Verlag, 1986, pp. 157-167.

23

24

25

26.

Goguen, J. A. and Meseguer, J., EQLOG: Equality, Types and Generic Modules for Logic
Programming, in: [ll], p. 295-363.

Hudak, P., Conception, Evolution and Application of Functional Programming Languages,
ACM Comput. Surveys 21(3):359-411 (1989).

Huet, G. and Levy, J. J., Computations in Nonambiguous Linear Rewriting Systems,
Technical Report 359, INRIA Le Chesnay, France, 1979.

Huet, G. and Oppen, D. C., Equations and Rewrite Rules: A Survey, in: R. V. Book (ed.),
Formal Language Theory: Perspectives and Open Problems, Academic, 1980, pp.
349-405.

27. Hullot, J. M., Canonical Forms and Unification, in: Proceedings of the 5th Conference on

222 J.J.MORENO-NAVARROANDM.RODRIGUEZ-ARTALEJO

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

4.5.

46.

47.

48.

Automated Deduction, July 1980, Lecture Notes in Comput. Sci. 87, Springer-Verlag,
1980, pp. 318-334.

Josephson, A. and Dershowitz, N., An Implementation of Narrowing: The RITE Way, in:
Proceedings Conference on Logic Programming 1986, IEEE Computer Sot. Press, 1986,
pp. 187-197.

Kaplan, S., Conditional Rewrite Rules, Theoret. Comput. Sci. 33:175-193 (1984).

Kaplan, S. and Jouannoud, J. P. (eds.), Conditional Term Rewriting Systems, Proceed-
ings, Lecture Notes in Comput. Sci. 308, Springer-Verlag, 1988.

Kuchen, H., Loogen, R., Moreno-Navarro, J. J., and Rodriguez Artalejo, M., Graph-Based
Implementation of a Functional Logic Language, in: Proceedings of the European Sympo-
sium on Programming (ESOP) 1990, Copenhagen, Lecture Notes in Comput. Sci. 432,
Springer-Verlag, 1990, pp. 271-290.

Lankford, D. S., Canonical Inference, Tech. Report ATP-32, Dept. of Mathematics and
Computer Science, Univ. of Texas at Austin.

Larsen, K. G. and Winskel, G., Using Information Systems to Solve Recursive Equations
Effectively, in: Lecture Notes in Comput. Sci. 173, Springer-Verlag, 1984, pp. 109- 129.

Lassez, J. L., Maher, M. J., and Marriott, K., Unification Revisited, in: M. Boscarol, L.
Carducci Aiello, and G. Levi (eds.), Foundations of Logic and Functional Program-
ming, Workshop, Trento, Italy, Dec. 1986, Lecture Notes in Comput. Sci. 306, Springer-
Verlag, 1987, pp. 67-113.

Levi, G., Bosco, P. G., Giovannetti, E., Moiso, C., and Palamidesi, C., A Complete
Semantic Characterization of K-LEAF, a Logic Language with Partial Functions, in: Proceed-
ings 4th Symposium on Logic Programming, San Francisco, 1987, pp. l-27.

Loogen, R., Kuchen, H., Indermark, K., and Damm, W., Distributed Implementation of
Programmed Graph Reduction, in: Proceedings Conference on Parallel Architectures and
Languages Europe (PARLE) 1989, Lecture Notes in Comput. Sci. 365, Springer-Verlag,
1989.

Lloyd, J. W., Foundations of Logic Programming, 2nd ed., Springer-Verlag, 1987.

Malachi, Y., Manna, Z. and Waldinger, R., TABLOG: A New Approach to Logic Program-
ming, in: [11], pp. 365394.

Martins-Damas, L. M., Type Assignment in Programming Languages, Ph.D. Thesis, Univ.
of Edinburgh, 1985.

Milner, R., A Theory of Type Polymorphism in Programming, J. Comput. System Sci.
17(3):348-375 (1978).

Moreno-Navarro, J. J., BABEL: Diseilo, Semantica e Implementation de un Lenguaje que
Integra la Programacion Functional y Logica (in Spanish), Ph.D. Thesis, Facultad de
Informkica de Madrid, July 1989.

Mulmuley, K., Full Abstraction and Semantic Equivalence, ACM Doctoral Dissertation
Award, 1986, MIT Press, 1987.

Nutt, W., R&y, P., and Smolka, G., Basic Narrowing Revisited, J. Symbolic Comput.
7:295-317 (1988).
O’Donnell, M. J., Equational Logic as a Programming Language, MIT Press, 1985.

Peyton-Jones, S., The Implementation of Functional Programming Languages,
Prentice-Hall, 1987.

Reddy, U. S., Transformation of Logic Programs into Functional Programs, in: Proceed-
ings of the IEEE International Symposium on Logic Programming, IEEE Computer
Sot. Press, 1984, pp. 187- 197.

Reddy, U. S., Narrowing as the Operational Semantics of Functional Languages, in:
Proceedings of the IEEE International Symposium on Logic Programming, IEEE
Computer Sot. Press, July 1985, pp. 138- 151.

Reddy, U. S., Functional Logic Languages, Part I, in: J. H. Fasel and R. M. Keller (eds.),
Proceedings of a Workshop on Graph Reduction, Lecture Notes in Comput. Sci. 279,
Springer-Verlag, 1987, pp. 401-425.

THELANGUAGEBABEL 223
. . 5

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Remy, J. L. and Zhang, H., Contextual Rewriting, in: Proceedings of the Conference on
Rewriting Techniques and Applications, Dijon, 1985.

Robinson, J. A., A Machine Oriented Logic Based on the Resolution Principle, J. Assoc.
Comput. Mach. 12:23-41 (1965):
Rogers, H., Theory of Recursive Functions and Efictive Computability, McGraw-Hill,
1967.

Scott, D. S., Domains for Denotational Semantics, in: Proceedings ICALP’82, Lectures
Notes in Comput. Sci. 140, Springer-Verlag, 1982, pp. 577-613.

Shapiro, E., The Family of Concurrent Logic Programming Languages, ACM Comput.
Surveys 21:413-510 (1989).
Siekmann, J. and Szabo, P., Universal Unification and a Classification of Equational
Theories, in: Proceedings 6th Conference on Automated Deduction, New York, June
1982, Lecture Notes in Comput. Sci. 13, Springer-Verlag, 1982, pp. 369-389.

Slagle, J. R., Automated Theorem Proving with Theories with Simplifiers, Commutativity
and Associativity, J. Assoc. Comput. Mach. 21:622-642 (1974).

Subrahmanyam, P. A. and You, J. H., FUNLOC: A Computational Model Integrating Logic
Programming and Functional Programming, in: [ll], pp. 157-198.

Warren, D. H. D., An Abstract PROLOG Instruction Set, Technical Note 309, SRI
International, Menlo Park, Calif., Oct. 1983.

You, J. H., Outer Narrowing for Equational Theories Based on Constructors, in: T. Lepisto
and A. Salomaa (eds.), Proceedings ICALP’88, Lecture Notes in Comput. Sci. 317,
Springer-Verlag, 1988, pp. 727-741.

You, J. H., Solving Equations in an Equational Language, in: J. Grabowski, P. Lescanne,
and W. Wechler (eds.), Proceedings Algebraic and Logic Programming 1988, Lecture
Notes in Comput. Sci. 343, Springer-Verlag, 1989, pp. 245-254.
You, J., Enumerating Outer Narrowing Derivations for Constructor-Based Term Rewriting
Systems, J. Symbolic Comput. 7:319-341 (1989).

