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LOGIC PROGRAMMING WITH FUNCTIONS AND 
PREDICATES: THE LANGUAGE BABEL* 

JUAN JOSE MORENO-NAVARRO AND MARIO RODRIGUEZ-ARTALEJO+ 

D We investigate the experimental programming language BABEL, designed to 
achieve integration of functional programming (as embodied in HOPE, Stand- 
ard ML, or MIRANDA) and logic programming (as embodied in PROLOG) in a 
simple, flexible, and mathematically well-founded way. The language relies on 
a constructor discipline, well suited to accommodate PROLOG terms and 
HOPE-like patterns. From the syntactical point of view, BABEL combines pure 
PROLOG with a first order functional notation. On the other side, the language 
uses narrowing as the basis of a lazy reduction semantics which embodies both 
rewriting and SLD resolution and supports computation with potentially infinite 
data structures. There is also a declarative semantics, based on Scott domains, 
which provides a notion of least Herbrand model for BABEL programs. We 
develop both semantics and prove the existence of least Herbrand models, as 
well as a soundness result for the reduction semantics w.r.t. the declarative 
one. We also sketch a completeness result for the reduction semantics and 
illustrate the features of the language through some programming examples. a 

1. INTRODUCTION 

Interest, other than purely academic, in declarative (that is, functional and logical) 
programming languages has greatly increased since VLSI technology opened the 
realistic possibility of building parallel machines capable of executing declarative 
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programs efficiently. Current progress in the improvement of the implementation 
techniques on conventional machines has also helped to arouse interest. Moreover, 
there are several intrinsic reasons to favor declarative languages. Being closer to the 
abstraction level of specifications, they enable one to write more concise programs, 
thereby increasing software productivity. Having a very clean mathematical semantics, 
they enjoy referential transparency and support powerful formal methods, such as 
transformation rules, to assist in software design and maintenance. Finally, they are 
especially well suited for rapid prototyping and applications to such fields as symbolic 
computation, artificial intelligence, and knowledge based systems. 

Functional programming has an older tradition than logic programming. Its mathe- 
matical foundations (X-calculus, equational logic, rewriting) are well understood (see, 
Barendregt [2], Huet and Oppen [26]); powerful compilation and implementation 
techniques have already been developed (see Peyton-Jones [45]); and excellent pro- 
gramming environments exist, for Ltsp-usually not considered a functional language in 
the strict sense-and also for more modern functional languages. For a survey on 
functional programming, see Hudak [24]. 

Logic programming is most commonly understood in a restricted sense, namely, 
programming with Horn clauses and SLD resolution; see, Lloyd [37]. There is for 
practical purposes only one working programming language, PROLOG, that can be 
considered as a significant realization of the logic programming paradigm. Efficient 
implementation techniques for PROLOG have also been investigated; see Campbell 171, 
Warren [57]. 

Neither PROLOG nor the functional languages enjoy all the benefits of declarative 
programming. PROLOG lacks such programming facilities as evaluable functions, 
types, higher order programming, and lazy evaluation, while functional languages lack 
the computing power provided by logical variables, unification, and deductive infer- 
ence. During the last years, many attempts have been made to design declarative 
programming languages integrating the functional and logical paradigms. DeGroot and 
Lindstrom [I 1] collects significant papers on this field, while Bellia and Levi [3] 
analyzes and classifies the main existing approaches to the integration. 

The existing proposals for integrated logic plus functional programming languages 
differ in their degree of mathematical rigor and semantic clarity. Our view is that the 
integration should be founded on a clean declarative semantics, related to the opera- 
tional semantics through soundness and completeness results that allow one to interpret 
programs as theories, computations as deductions, and the whole programming lan- 
guage as a logical one which embodies the logic of functions, relations, and equality. 

A key role for a semantically and mathematically well-founded amalgamation of the 
functional and logical paradigms is played by equational logic and the related notion of 
rewriting (Huet and Oppen [26]), as well as by narrowing, a combination of unification 
(Robinson [50], Lassez et al. (341) and rewriting that originally arose in the context of 
theorem proving (Lankford [32], Slagle [55]), and that has been used to solve some 
problems of E-unification and matching (Fay [ 191, Hullot [27], Siekman and Szabo 
[54], Gallier and Snyder [21], Nutt et al. [43]) and is embedded in the operational 
semantics of several logic programming languages with an equational flavor (Dersho- 
witz and Josephson [ 131, Dershowitz [ 121, Dershowitz and Plaisted [ 141, Josephson and 
Dershowitz [28], Fribourg [20], Goguen and Meseguer [23], Subrahmanyam and You 
[56]). Some of these languages use conditional rewrite rules (Kaplan [29], Remy and 
Zhang [49], Kaplan and Jouannoud ]30]), while some others are based on equational 
Horn clauses. 
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Usually, languages of this kind use narrowing as a basis for E-unification algorithms 
(Giovannetti and Moiso [22], Dincbas and van Hentemryck [16]), which in turn support 
evaluable functions and equality. Some approaches exploit the fact that narrowing can 
be simulated by SLD resolution (van Emden and Yukawa [ 181, Bosco 
et al. [6]) to gain facility for the implementation of logic + functional programming 
languages which have a modified form of SLD resolution as their single computation 
mechanism (Levi et al. [35], Bosco and Giovannetti [5]). 

Other possible approaches to the integration of the functional and logical para- 
digms consist in enriching functional languages with logic variables and unification 

(Darlington et al. [8], Darlington and Guo [9, lo]) or in building so-called functional 
logic languages, which keep a functional syntax, but use narrowing as operational 
semantics (Reddy [46-481). 

The language BABEL that we present in this paper can be best described as a first 
order functional logic language in Reddy’s sense. It is based on a constructor discipline 
(O’Donnell [44]) and works with only two elementary types (constructed terms and 
boolean values). Predicates are identified with boolean functions; this provides two truth 
values and enables the use of propositional connectives. In particular, there is a boolean 
negation that is certainly not the logical one (because of the undefined boolean value) 
but comes closer to it than in PROLOG. The operational semantics of the language uses 
a lazy version of narrowing as the single computation mechanism. SLD resolution (and 
hence pure PROLOG computations) are simulated by lazy narrowing, which supports 
also computations with infinite data structures (built from constructors) and lazy 
evaluation as in lazy functional languages. BABEL is also equipped with a computable 
approximation to equality, since the true identity between possibly infinite data becomes 
uncomputable. The declarative semantics of the language uses interpretations based on 
Scott domains (Scott [52]) and allows to prove the existence of least Herbrand models, 
as well as soundness and completeness theorems for the operational semantics. This is 
related to similar results for Horn clause logic programs (van Emden and Kowalski 
[ 171, Apt and van Emden [ 11) as well as for other lazy logic + functional languages 
(Levi et al. [35]). 

The design of BABEL has been specially influenced by the view of the operational 
semantics in Reddy [47] and the view of the declarative semantics in Levi et al. [35]. 
The most distinctive feature of our approach is perhaps the decision to take narrowing 
as the single computation mechanism and to handle SLD resolution as a particular kind 
of narrowing. Other researchers have advocated the simulation of narrowing by means 
of SLD resolution, in order to capitalize on the extensive experience already available 
for PROLOG implementations (van Emden and Yukawa [18], Bosco et al. [6], Levi et 
al. [35]). We have chosen the opposite view for similar reasons, namely, in order to 
take advantage of the available experience in implementation techniques for functional 
languages. An extension of BABEL with higher order functions and polymorphic typing 
has been implemented using a graph narrowing abstract machine (Kuchen et al. [31]) 
which was designed as an extension of the sequential kernel of a purely functional, 
parallel (programmed) graph reduction machine (Loogen et al. [36]) by unification and 
backtracking mechanisms inspired by Warren’s abstract machine for PROLOG (Warren 
1571). A prototype emulator of the abstract BABEL machine has been programmed in 
OCCAM and runs on transputer systems.* Presently, the BABEL abstract machine supports 

*Currently, the emulator is programmed in C and rum on SUN workstations. 
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only sequential and eager evaluation. Our final aim is a parallel machine which works 
with lazy evaluation. Much work remains to be done, but our hope is that purely 
applicative programs will run on the BABEL machine almost as efficiently as in the 
original graph reduction machine, though some overhead due to the different parameter 
passing mechanism (unification instead of matching) cannot be avoided. 

The rest of the paper is organized in the following way: In Section 2 we introduce 
BABEL'S syntax for terms, expressions, rules, and programs. In Section 3 we illustrate 
the expressive power of the language by means of some simple examples, chosen to 
allow for comparison with other declarative languages. In Section 4 we define lazy 
narrowing, specify the operational semantics, and apply it to some computations related 
to the previous examples. In Section 5 we present BABEL'S declarative semantics 
(including the existence of least Herbrand models for BABEL programs), prove a 
soundness theorem for the operational semantics, and sketch a completeness theorem 
which has been proved in Moreno-Navarro [41]. Finally, Section 6 summarizes our 
conclusions and refers to future work planned for improving the design and implementa- 

tion of the language. 

2. BABEL’S SYNTAX 

We start with five disjoint sets of symbols: 
Data variables X, Y, ZEDV 
Boolean variables X, Y, ZEBV 
Constructors c, d, e&S 
Function symbols f, g, hEFS 
Predicate symbols P, q, reps 

We assume that DV and BV are countably infinite and fixed. Notice that we use the 
same metavariables X, Y, Z to range over DV and BV. We shall denote DV U BV as 

VS. The set X = CS U FS U PS is called the signature and may change according to the 
program we consider. We assume that signatures are finite. Signature symbols are 
assumed to have associated arities. In concrete examples, we shall use identifiers 
starting with an uppercase (lowercase) letter for variables (signature symbols). 

Definition 2.1. Data C-terms (tEDTerm,), boolean C-terms (bEBTerm,), data 
X-expressions (EEDEx~~), and boolean C-expressions (B, CEBEX~,) are defined 
as follows: 

t:: =x 
Ic 
I c(t,, . . . , t,) 

b::=X 
) true 
1 false 

E::=t 

I;c$v.-,EJ 

,(&)- 
EJ 

I(C-‘E,DE,) 

% 
% 
% 

% 
% 
% 

% 
% 
% 
% 
% 

data variable 
constant, i.e. nullary constructor 
construction 

boolean variable 
tNth 

falsity 

data term 
constructor application 
function application 
guarded expression 
conditional expression 
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B::= b 

lP(E,,...,EJ E 
IE, =Ez % 

I-B % 

l(B,C) % 

l(B;C) % 

I(C+B) % 
Iw+B,O By) % 

boolean term 
predicate application 
weak equality 
negation 
conjunction 
disjunction 
guarded boolean expression 
conditional boolean expression 

The sets of C-terms and X-expressions are defined as Term I; = DTerm s U BTerm s and 
Exp, = DExp, U Bexp,, respectively. In the sequel, we reserve R, L, M, N for 
expressions and rely on the context to determine whether they are boolean or not. 

The distinction between data expressions and boolean expressions (and accordingly, 
between functions and predicates) is the only type discipline in BABEL. 

Constructors are well known in functional programming languages. They represent 

free functions and correspond to PROLOG’s functors. 

Expressions of the form C*M C+M,OM, 

are intended to mean if C then M if C then M, 
else undefined else M2 

respectively. A weak equality E, = E2 is intended to hold iff the values of E, and ET 
are finite, defined, and identical. Since the language allows for infinite values, this 
means that weak equality is only an approximation of identity. In particular, it is not 
reflexive. 

Definition 2.2. A BABEL rule has one of the two following forms; 

(P) f(tlv.. . , t,) := { C-+}E. % function rule 

(P) P(t,, . . . , t,) := {C-} B. % predicate rule 

where curly braces indicate that the presence of “C-+ ” is optional. 
We shall use the following terminology: 

(1) f(t,, . . . , t,) or dt,, . . . , tn) is the rule’s left hand side (lhs). 

(2) C+ E or C-+ B is the rule’s right hand side (rhs). 

(3) C is the rule’s guard. 

(4) E or B is the rule’s body. 

Any BABEL rule must satisfy two restrictions: 

Restriction 2.1. (Left linearity). No variable is allowed to have multiple occurrences 
in the lhs. 

Restriction 2.2. (Free variables). Any variable that occurs in a rhs and does not occur 
in the corresponding lhs is called free. Such free variables are allowed in guards, but 
not in bodies. 
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Assume a rule 

k(t, >. . . , t,):= {C-t}M. 

where k is either a function or a predicate symbol. Let X,, . . , X, be the variables in 
the lhs, and Y,, . . , Y, be the free variables. The intended logical meaning of the rule 
is then 

VX, **. vxr{ v Y, . . * vY,(C*}k(t,, . . .) t,) EM{)} 

or, equivalently, 

vx, .** vX,{(3Y, .4Y,C*jk(t I,‘.., tJ=M{)}, 

where = stands for semantical identity. A precise definition will be given in Section 5. 
Notice that any BABEL rule can be written as L := R, where L is the lhs and R is 

the rhs. We shall use this notation later. 
We also adopt a convention to present some special rules in a nicer form. 

Convention 2.1. (PROLOG-like rules). The following “sugarings” are allowed: 

Raw form Sugared form 

p(t,, . . ., t,) := true. P(C,, . . . > t,). 

p(t,, . . ., t,) := C-t true. p(tl,. . .) t,):- c. 

p(t,, . . . 3 t,) := false. -p(t,, . . , 7 t,). 

I?ct,, . . . > t,) := C+ false. ‘P(I,, . . ) f,) :- c. 

Some notational conventions in BABEL'S syntax have been chosen for compatibility 
with PROLOG. This is the reason that we use “ ” and “.” for conjunction and 

disjunction, respectively. The sign “ := ” between the lhs’and rhs of a rule was 

chosen because of its similarity with the neck sign “ :- ” in PROLOG clauses. 
Moreover, this sign emphasizes that a rule’s lhs gets, by definition, the value of the 
corresponding rhs. 

An important design decision is related to guarded expressions. In BABEL, guards 
are not intended to behave as in concurrent logic programming languages (Shapiro 
[53]). Their main role in the language is to allow for rules with conditional rhs. It is 
technically important that the guard in such a conditional rhs may have free variables 
which do not occur in the lhs. As shown in Convention 2.1 above, this facility may 
be used to mimic PROLOG clauses, whose body may have variables that do not 
occur in the head. 

Before we define programs, we still need some auxiliary notions on boolean 
expressions. 

Definition 2.3. The finite set PC(B) of the prime components of a given boolean 
expression is computed recursively: 

PC(true) =PC(false) = 0, 

PC(+?) = PC(B), 

PC(B,, BJ = PC(B,; Bz) = PC(&) UPC(&), 

PC(C+B) = PC(C) u PC(E), 

PC(C+B,UB,) =PC(C) UPC@,) UPC(&), 

PC(B) = {B} in any other case. 
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Definition 2.4. A boolean expression B is propositionally unsatisfiable iff the truth 
value of B with respect to any evaluation 

V : PC(B) + (true, false, I b} 

is either false or the undefined boolean value I b. The truth value w.r.t. V must 
be computed according to the truth tables for the propositional connectives, given in 
Section 5. Notice that propositional satisfiability is a decidable property. 

We are now in a position to define BABEL programs. 

Dejinition 2.5. A BABEL program is any recursively enumerable set II of BABEL rules 
that satisfies a nonambiguity restriction. 

Restriction 2.3. (Nonambiguity). Given any two rules in Il for the same symbol k: 

k(t,,... ) tJ:= {B+}M. 

k(s,,.. , s,,):= (C+}N. 

at least one of the following conditions must hold: 

(a> 

(b) 

cc> 

No superposition: k(t,, . . . , t,) and k(s,, . . . , s,) are not unifiable. 

Fusion of bodies: k( t ,, . . , t,) and k(s,, . . . , s,J have a m.g.u. 0 
MB and Nfl become identical. 

Incompatibility of guards: k( t,, . . . , t,) and k(s,, . . . , s,) have a m.g 
that (B, C)S is propositionally unsatisfiable. 

such that 

u. 0 such 

When necessary, we shall speak of C-rules and X-programs, to make explicit the 
signature they are built from. 

Our conditions on programs should be compared with those considered for rewriting 
systems by Huet and Levy [25]. These authors work with unconditional rewrite rules 
and impose linearity and nonoverlapping conditions on the left hand sides. They prove 
that such hypotheses ensure confluence even in the absence of termination. Our more 
liberal nonambiguity requirements will also allow us to obtain a kind of confluence 
result in Section 5. 

We also would like to mention that our condition on incompatibility of guards should 
be replaced in practice by a more flexible one which takes the semantics of weak 
equality into account. According to our present definition, the two guards E, = E2 and 
-( E2 = E,) are not regarded as incompatible (unless E, and E2 are syntactically 
identical). 

3. PROGRAMMING IN BABEL 

In this section we present some examples of simple BABEL programs in order to 
illustrate the expressive power of the language and to allow comparison with the 
programming style in PROLOG and in functional languages. The semantics and 
behavior of these programs will become more clear in the two following sections. 

We present the programs together with declarations of the different symbols in their 
signatures. We also allow ourselves to use the commonly accepted sugarings for the 
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syntax of natural numbers and lists, and write some function and predicate symbols in 
infix form, to improve legibility. 

Example 3.1. (Appending lists). This program merely shows that pure PROLOG 
corresponds to a subset of BABEL. Notice that weak equality must be used to ensure left 
linearity, by adding equalities between variables to bodies of clauses (which are guards 
of BABEL rules in the raw form of the syntax): 

constructors 

r1/0 5% empty list 
[ * 1 * ]/2 % list constructor 

predicates 
append/3 

rules 
/* Al */ append([], Y,, ZJ :- Z, = Y,. 
/* A2 */ append([X ] X,1, Y,, [Z I Z,l) :- Z = X, append(X,, Y,, Z,) 

This appending program admits multiple use, as in PROLOG; i.e., the arguments of 

append have no directionality. 
Of course, append can also be programmed as a function in BABEL. The point is that 

the version just given behaves like the PROLOG append predicate. For this purpose, 
guards (with free variables) are necessary. 

Example 3.2. (Testing binary trees for equality of frontiers). This program 
illustrates the cooperation of functions and predicates: 

constructors 
[I/O, [- 1 *l/2 % as above 
tip/l % constructor of leaves 

node /2 % constructor of compound nodes 
functions 

frontier/ 1 
predicates 

equal-frontier/2 
equal-list/2 
equal-atom/2 

rules 
/* EF */ equal-frontier (A, B) := equal-list(frontier( A), frontier(B)). 
/* EL1 */ equal-list ([I, Y,) := Y, = [I. 
/* EL2 */ equal-list ([X ] X,], [Y ] Y,]) := 

equal-atom (X, Y), equal-list (X,, Y,). 
% Some rules for equal-atom should be added at this place 
/* FTl */ frontier (tip(X)) := [Xl. 
/* FT2 */ frontier (node(tip(X), B)) := [X ) frontier (B)]. 
/* FT3 */ frontier (node(node( A, B), C)) := frontier(node( A, node( II, C))). 
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When used to evaluate ground (i.e. variable free) expressions such as 

equal-frontier(node(node(tip( 1)) tip(2)), t@(3)), 

node(node(tip( 1) , t@(3)) ,tiP(2))) 

the program behaves essentially as a functional program; but it can also be used to solve 
such expressions as 

equal-frontier(node(tip( X) , A), nde( B,tip( Y))) 

yielding a boolean result and answers for the variables X, Y, A, B. 
Notice that we might change the first rule to 

/* EF’ */ equal-frontier(a, b) :- equal-list(frontier( A), frontier(B)). 

Without sugaring, this amounts to 

/* EF’ */ equal-frontier( A, B) :- equal-list(frontier( A), frontier(B)) -+ true. 

Now, equal-frontier is more akin to a PROLOG predicate; it can succeed (by computing 
the result true) or fail, but it is unable to compute the result false, because of the guard 
in the rhs. 

Example 3.3. (The Alpine Club puzzle). In Malachi et al. [38] we found the 
statement of the following puzzle, which was the subject of discussion of a few 
contributors to a PROLOG electronic mailing list: 

Tony, Mike, and John belong to the Alpine Club. Every member of the Alpine Club is either a 
skier or a mountain climber or both. No mountain climber likes rain, and all skiers like snow. 
Mike dislikes whatever Tony likes and likes whatever Tony dislikes. Tony likes rain and snow. Is 
there a member of the Alpine Club who is a mountain climber, but not a skier? 

The following BABEL solution to the puzzle illustrates the more liberal approach to 
negation allowed by BABEL than by PROLOG. 

constructors 
tony/O, mike/O, john/O, rain/O, snow/O 

predicates 
alpinist/l, climber/l, skier/l, likes/2 

rules 
/* AC1 */ 
/* AC2 */ 
/* AC3 */ 
/* SC */ 
/* LKl */ 
/* LK2 */ 
/* LK3 */ 
/* LK4 */ 
/* LK5 */ 
/* LK6 */ 

alpinist(tony). 
alpinist(mike). 
alpinisnjohn). 

climber(X) :- alpinist( X), lskier( X). 
llikes( X, rain) :- climber(X). 
lskier( X) :- llikes( X, snow). 
llikes(mike, X) :- likes(tony, X). 
likes(mike, X) :- Tlikes(tony, X). 
likes(tony , rain). 
likes(tony, snow). 
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To solve the puzzle, BABEL must solve the boolean expression 

G: (alpinist( X), climber( X), lskier( X)) --t true. 

obtaining true as result, and binding X to an answer. 
Some comments on the BABEL formalization of the puzzle’s clues may help to 

understand the limitations of BABEL with respect to predicate logic. Firstly, notice that 
rules LK3, LK4 do not violate nonambiguity, since the guards are incompatible. Next, 
notice that the knowledge embodied in rules SC, LKI, and LK2 could be alternatively 
expressed as follows: 

/* SC’ */ skier(X) :- alpinist( X), lclimber( X). 
/* LKl’ */ lclimber( X) :- likes( X, rain). 
/* LK2’ */ likes( X, snow) :- skier(X). 

In fact, LK2’ corresponds more closely to the English statement of one of the clues. 
From the viewpoint of knowledge representation, one could argue that it would be more 
fair to add both rules LK2 and LK2’ to the program. But then, for the same reason, we 
should add the rule LKl’ as an alternative expression of the knowledge contained in 
LKl, and then LKI’, SC would violate nonambiguity. The chosen formalization can 
perhaps be justified on the following grounds: the lhs of rules SC and LK2 match the 
signs of the conjuncts in the goal expression G, while rule LKI corresponds to the 
English statement of one of the clues. 

Example 3.4. (Computing Hamming numbers). Dijkstra [15] attributes to 
Hamming the problem of building the infinite ascending sequence of all positive 
numbers greater than 1 containing no prime factors other than 2, 3, and 5. The 
following solution illustrates again the cooperation of functions and predicates, as well 
as the use of conditional expressions and lazy lists: 

constructors 
[I/O, [- 1 .I/2 % lists again 

O/O % zero 

sue/l % successor 
functions 

hamming-seq/O 
merge-3/3, merge-2/2 
seq-prod/2 

+ 12, */2 
predicates 

nth-hamming/2 
nth-member/3 

< I2 
rules 

/* NH */ nth-hamming (N, M) :- nth-member (N, hamming-seq, M). 
/* NM1 */ nth-member(1, [X 1 X,], Y) :- Y = X. 
/* NM2 */ nth-member(suc(suc(N)), [X 1 X,], Y) :- 

nth-member(suc( N), X,, Y ). 

/* HS */ hamming-seq := merge-3(seq-prod(2, [ 1 ) hamming-seq]), 
seq-prod(3, [ 1 1 hamming-seq]) , 
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seq-prod@, [ 1 1 hamming-seq])). 

/* SP */ seq-prod( X, [ Y 1 Y,]) := [X* Y ) seq-prod(X, Y,)]. 
/* M3 */ merge-3(X,, Y,, Z,) := merge-2(X,, merge-2( Y,, Z,)). 
/* M2 */ merge-2([ X ) X,], [Y ( Y,]) := 

X< Y-t[X(merge-2(X,,[Y) Y,]>]O 
Y<X+[Y Imerge-2([XI X,], Y,>]O 

/* otherwise */ ]X Imerge-2(X,, Ql. 
/* +1 */ x+0 :=x. 
/* +2 */ x+ sue(Y) := suc(X+ Y). 

;: :: 
*/ x*0 :=o. 
*/ x*suc(Y) := (x*Y)+x. 

/* < 1 */ -x<o. 

/* <2 */ O<suc(Y). 
/* < 3 */ sue(X) < suc( Y) := x< Y. 

At first sight, &i-hamming looks like a PROLOG predicate. It may be used to solve 
goals in several modes: 

nth-hamming(5, M) % trueforM= 
nth-hamming( N, 10) % truefor N=8 
nth-hamming( N, M) % infinitely many answers 

However, solving these goals involves functions and requires lazy evaluation, as we 
shall see in the next section. 

4. BABEL’S OPERATIONAL SEMANTICS 

In this section we develop BABEL'S computation mechanism, which is based on a lazy 
version of narrowing and defines the operational semantics of the language. Our 
narrowing method is similar to the lazy narrowing strategy outlined by Reddy in [47]. It 
was designed aiming at soundness and completeness results with respect to the 
declarative semantics presented in the next section. 

Let us first give some preliminary definitions. We follow the usual notation and 
terminology in the term rewriting literature; cf. Huet and Oppen [26]. 

Definition 4.1. Let BS be the set of BABEL predefined symbols for weak equality, 
negation, conjunction, disjunction, guards, and conditionals. Let TV be the set 
{true, false). 

Any C-expression M is viewed as a finite labeled tree, also denoted by M. The 
labeled tree is a partial function from the set W*, of finite sequences of positive integers 
to VS U CS U FS U PS U BS U TV, whose finite domain O(M) satisfies: 

(i) O(M) is not empty and prefix closed. 

(ii) If UEO(M) and M[u] is a n-ary symbol, then u.iEO(M) iff 1 I is n. 

O(M) is the set of occurrences of M. The prefix ordering on O(M) is defined as 

UlV iff 3wu.w= u, 

u<v iff u<v and u#v. 
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For u~0(M), we have: 

M[u]: Symbol at occurrence u 
M/u: Subexpression at occurrence u 
M[u+N]: Result of replacing M/u by N in M 

var( M) denotes the set of variables occurring in M. M is called ground iff var( M) = 

0. 
The set of nonvariable occurrences of M is defined as 

O+(M) = {uEO(M)IM[ U] #VS}. 

Definition 4.2. A X-substitution is any mapping from variables to S-expressions, such 
that data and boolean variables are mapped to data and boolean expressions, 
respectively. Any substitution (T can be uniquely extended to a mapping from Exp, 
to Exp,, also denoted by C. We denote the application of (T to M as Ma. 

The domain of a substitution u is defined as 

dam(a) = {XEVSJXU#X}. 

u is called finite iff dam(u) is finite. 
u is called a d-substitution iff Xu is a term for all XEdom( a). 
u is called a ground substitution iff Xu has no variable occurrences, for all 

XEdom(u). 
The restriction of a substitution u to a set of variables VC VS is denoted as 

u t v. 
The composition of two substitutions u, 8 is denoted as a0 and satisfies M(d) 

= (Mu)~. 

In the sequel, we identify a finite substitution with an association list binding 
variables to expressions and denoted as u = [M, /X,, . . . , Mp /X,1, where 

ix,,..., X,} = dam(u). 
Next, we turn to unification. The notions of unifier and most general unifier (m.g.u.) 

are well known. To use narrowing as a computation mechanism for BABEL, we are 

interested in unifying expressions with left hand sides of rules. This gives rise to a 

particular kind of unification problems: 

Definition 4.3. Let k/n E FS U PS U BS. For the purposes of this definition, we apply 
k in prefix form even if it is a predefined BABEL symbol. A linear unification problem 
asks for the unification of two expressions without shared variables: 

k(M,,...,M,), k(tr,. . ., t,), 

where MeExp,, tEDTerm,, and k(t,, . . . , t2) is linear, i.e. has no multiple 
occurrences of variables. 

Linear unification problems can be solved by any version of Robinson’s unification 
algorithm [50]. However, in order to control the lazy behavior of narrowing, we must 
distinguish such cases where an attempted unification does not succeed because of a 
clash between a constructor c and a function, predicate, or predefined symbol k, since 
such a situation can be viewed as a demand for further evaluation of k. The following 
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is a straightforward adaptation of well-known unification algorithms (e.g. Lassez et al. 
[34]) which serves as a precise formulation of this idea. Notice that unification can now 
succeed, fail, or suspend. 

Definition 4.4. (Unification algorithm for linear unification problems). 

Input: k( M, , . . . , M,,), k( t, , . . . , t,) as in Definition 4.3. 

Stagel: BuildU,={M,l,t ,,..., M,l,t,}, u~=E. 

Stage 2: Don’t care nondeterministically rewrite the initial unification configura- 
tion (V,, a,,), using the rules which follow, until a nonreducible configuration 
(U, a) is reached, If U= 0, report “SUCCESS" and output u as m.g.u. If 

U= {FAILURE}, report “FAILURE". Otherwise, consider the set I of all integers i 
with 1 I i 5 n and such that U has some member of the form 

&N,, . . . ) Api c(s,, . . . , s,), where l/ueFS U PS U BS, C/UECS U TV, and 
u, v 10. Then, report “SUSPENDED" and output Z as the set of indexes of 

demanded arguments. 

The rules for reducing unification configurations are: 

(URl) ({c(N,, . . . ) N~)~~c(s,, . . . ) s,)} U U, U)~({N~lisl,. . . , N,liS,) U 
U, a), where C/UECS UTV, ur0. 

(UR2) ({ XJis} U U, a> + (U[s/Xl, u[s/XI>, w h ere the term s is not a variable. 

(UR3) ({ MJi X} U U, 0) + (U[M/Xl, u[M/XI). 
(UR4) ({ c(N,, . . . , iVu)li d(s,, . . . , s,)} U U, a) --* ({FAILURE), a), where 

c/u, d/v&S U TV, c # d, u, v L 0. 

Notice that our unification algorithm has no occur check. It is not needed, because of 
linearity. Moreover, the algorithm has three possible outcomes. The SUSPENDED one 
acts as a mechanism for detecting that the pattern of a rule is demanding further 
evaluation of some argument. This information will help us to achieve laziness. 

The behavior of the algorithm is explained by the following result, which can be 
proved by well-known techniques (Lassez et al. [34]). 

Theorem 4. I. The above unification algorithm, when given any linear unification 
problem 

Unify: k(M,, . . . , M,,), k(t,, . . . , t,) 

as input, always halts. Moreover, it reports SUCCESS 13 the two input expres- 
sions are unifiable. In this case, it outputs a m.g.u. u that can be presented as 
the union of two substitutions with disjoint domains: 

u = a,,, LJ Ui” ) 

where 

U O"t =urvar(k(M,,...,M,,)), 

uin = u lvar( k( t,, . . . , t,)) 

Moreover, uout is a d-substitution. 
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Notice that the part a,,, of a computed m.g.u. reflects the flow of data (constructed 
terms) from a rule to an expression, while the part uin represents the flow of 
information (expressions to be evaluated) from an expression to a rule. We show now 
three small examples to illustrate the possible outcomes of the unification algorithm. 

Example 4. I. (Successful uniJication) 

Input: f (X, cons( g( X), nil)), f (suc( X’), cons( Y’, Z’)). 

output: SUCCESS with 

uin = [ g(suc( X’))/ Y’, nil/Z’] , 

a,,“, = [M X’)/X] 

Example 4.2. (Failed unljication). 

Input: f (X, cons( X, nil)), f (suc( X’), cons(0, Y)). 

output: FAILURE 

Example 4.3. (Suspended unification). 

Input: f(g(X), Y,cons(g( Y),nil)), f(suc(X’),O,cons(suc( Y), Z’)). 

Output: SUSPENDED with I = ( 1,3}. 

The operational meaning of BABEL'S predefined symbols can be specified by the same 
kind of rules as for the user defined functions and predicates. Let us now introduce 
these rules. 

Definifion 4.5. Let C be any BABEL signature, with set of constructors CS. The 
implicit C-rules for BABEL primitives are as follows: 

Rules for guards and conditionals: 

(true -tX) := X. 
(true-+X0 Y) := X. (false +X 0 Y) := Y. 

Rules for propositional connectives: 

ltrue := false. 
Tfalse := true. 

(false, Y) := false. (false; Y) := Y. 
(true, Y) := Y. (true; Y) := true. 
(X, false) := false. (X; false) := X. 
(X, true) := X. (X; true) := true. 

Rules for weak equality: 

c=c :=true. for all c/OECS U TV. 

c(x ,‘..‘, x,) =c(Y ,,..., Y,):=X, = Y ,,..., X,= Y,. 

for all c/nECS, nz 1. 

c(X,,..., X,,) = d( Y,, . . , Y,) := false. 

forall c/n,d/mECS, c+d, n,mrrO. 
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Given a BABEL program II of signature C, we denote as fI the result of expanding II 
with all implicit C-rules. 

Notice that for any program II, fi is still a nonambiguous set of rules in BABEL'S 
sense. By contrast, the implicit rules of our parallel conjunction and disjunction violate 
Huet and Levy’s [25] nonambiguity. 

We are now in a position to define rule applicability and lazy narrowing. 

Definition 4.6. Let lI be a C-program and let N be a C-expression. 

(4 

(b) 

A rule of I? applies to, fails for, or suspends for N iff some variant of the rule 
standing apart from N (i.e., sharing no variables with N) applies to, fails for, 
or suspends for N, respectively. 

A rule L := R standing apart from N applies to, fails for, or suspends for N iff 
the unification of N, L yields a SUCCESS, FAILURE, or SUSPENDED outcome, 
respectively. If the unification succeeds with m.g.u. u, we say that L := R 
applies to N via u. If the unification yields a suspended outcome with the set Z 
of demanded argument indices, we say that L := R is suspended at i for any 
integer iE I. 

Lazy narrowing works by narrowing expressions through application of rules. 
Laziness is achieved by trying to select outer redexes first and going inner only when 
demanded by the lhs patterns in suspended rules. The following definitions capture this 

idea. 

Dejinition 4.7. Assume a C-program II and a C-expression M. We say that ME 
O+ (M) is a redex occurrence iff some rule in I? applies to M/ u. We also say that a 
redex occurrence u of M is lazy iff u belongs to the set LRn[M] defined by 
recursion on M’s structure as follows. In the following lines, k stands for a symbol 
belonging to FS U PS U BS, where FS and PS are given by C, and BS is as in 
Definition 4.1. For the purposes of this definition, we apply k in prefix form even if 
it belongs to BS: 

LR,[M] = 0 if M is a term. 

LR,[c(M,,.. . , M,,)] = h i.LR,[ Mi] 
i= I 

if c/neCS, n > 0, and some Mi is not a term. 

LR,[k(M,,. . .,M,)] ={&I someruleinfiappliestok(M,,...,M,)} 

U u i.LRn[ Mi], 
id 

where Z = { i ) 1 I i I n, some rule in I? is suspended at i} . 

Notice that k(M,, . . . , M,,) is regarded as having no redex occurrences if all rules 
fail for it, since in such a situation the expression cannot be reduced to an expression 
with a constructor at the outermost occurrence, and only constructed terms are accepted 
as evaluated values. 
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Definition 4.8. Let II, A4 be as above. If u EO+ (M) is a redex occurrence for a ^ 
(variant of a) rule L := R in H that applies to M/u via u = a,,, U a,, (remember 
Theorem 4. l), we say that M narrows in one step to the new expression M[ u + R]a 
and write 

If a,,, = E, we write 

M?M[u ] +R a,, 

and say that M rewrites in one step to M[ u + R] uin. 
Notice that a,,, records the part of u that has an effect on M. We also say that M 

narrows to N, or reduces to N via narrowing, and write 

iff there is some narrowing sequence 

with 12 0 and aout = uout , . * - a,,, i * - - a,,,, , t var( it4). Analogously, the notation 

M 1 “N 

indicates the existence of a rewriting sequence. 
Finally, we say that M reduces to N via lazy narrowing iff there is some 

narrowing sequence with the property that each narrowing step in it applies a rule at 
a lazy redex occurrence. To indicate this, we shall use the notation 

MN - 1 1, ;,,, N. 

In the case of lazy rewriting, we shall write 

n 
M-l-t*N. 

In practice, the program will be known by context and H will be omitted in the 

notation. 
We propose to adopt lazy narrowing as the operational (reduction) semantics of 

BABEL. By inspecting the implicit rules, we can see that BABEL primitives display the 
behavior that should be expected of them under demand driven evaluation. Notice, in 
particular, that guarded expressions and conditional expressions demand the evaluation 
of their conditions first, while our parallel conjunction and disjunction demand the 
evaluation of both arguments. 

As already said in the introduction, narrowing has been used to solve problems of 
E-unification (Fay [ 191, Hullot [27], Siekmann and Szabo [54], Giovannetti and Moiso 
[22], Dincbas and van Heternryck [ 161, Gallier and Snyder [21], Nutt et al. [43]) and is 
embedded in the operational semantics of several logic + functional programming 
languages (Dershowitz and Josephson [ 131, Dershowitz [ 121, Dershowitz and Plaisted 
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[14], Josephson and Dershowitz [28], Fribourg [20], Goguen and Meseguer [23], Levi 
et al. [35], Bosco and Giovannetti [5], Reddy [46-481, Subrahmanyam and You [56]). 
In BABEL, lazy narrowing can be used to solve a set of “equations” (in the sense of 
weak equality) by reducing a boolean expression 

(M, =N I,..., M,=N,)+true 

to true via lazy narrowing. The resulting extended unification algorithm behaves 
similarly to the “unification with lazy surderivation” in Dincbas and van Henteryck 

V61. 
BABEL, however, is intended for a more general use, which we explain now. 

Dejnition 4.9. Let C be a signature with set of constructors CS. The shell 1 N 1 of 
any given E-expression N is defined recursively: 

It;; ‘==:” 9 1 false ( = false, 

(cI=c b 

for any other boolean expression, 

for c/OECS, 

\$YL.i’ ’ N,,J(=cW,l,..., IN,0 for c/m&S, m >O, 
for any other data expression. 

The dedclarative meaning of the “undefined” symbols I, and I, will be 

formally defined in Section 5. 
Let II be a S-program. For any narrowing derivation 

(which does not need to be lazy), we define the outcome as the pair ( I N ) , a,,,). We 
also say that ) N I is the result of aout is the answer. Notice that the result can be 
partially defined, if ) N I has occurrences of I, or I, . 

Two special kinds of outcomes are important: functional outcomes, where ( N ( 
is a ground term and aout is E, and PROLOG-like outcomes, where ) N ) is true. 

Notice that, for any outcome, a,,, is a d-substitution, because of Theorem 4.1 and 
Definition 4.8. 

Now, we can imagine BABEL computations as lazy narrowing reductions that yield 
some outcome. This view includes functional and PROLOG-like computations as 
particular cases. Let us go back to the examples from Section 3 to provide concrete 
illustrations. 

Example 4.4. (Appending lists; see Example 3.1). The append predicate is 
frequently used in PROLOG to nondeterministically split a given list into two factors. 
We show how this can be done in BABEL: 

append(X,, K, [a, b, cl) 
N-1 % ,U,(a=X,,a~~nd(X,,,Y,,tb,cl))-*t~e 

% where uout , 
N-12 

, = I x,,1/x,1 

2 

~ouz K, [b, 

omJ ([II, = Y, true) + 

N-1 5 true %d 

where uout,2 [a/X,] 

% a,,,, = 

% where = [[b, Y,l 
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The outcome is (true, a,,,) with a,,, = [[al/X,, [b, cl/ Y,]. We have abbreviated some 
steps and used IR to indicate the application of implicit rules. 

Notice that SLD resolution has been simulated by lazy narrowing acting on 
PROLOG-like rules (cf. Convention 2.1). The role of guards in PROLOG-like rules is 
essential to achieve the simulation. 

Example 4.5. (Testing binary trees for equality of frontiers; see Example 3.2). 
When used to evaluate a ground expression of the form equal-frontier( t, , t2), the 
program behaves in a purely functional way. Assuming that the given trees t, , 1, have 

different frontiers, BABEL behaves as a lazy functional language and is able to detect 
inequality without having to evaluate the whole frontiers; e.g. 

_y+ 

_1+* 

-1-d* 

equal-frontier(node(tree(tip( l), tip(2)), tip(3)), 
node(tree(tip( l), tip(3)), tip(2))) 

equal-list(frontier(node(node(tip(l), tip(2)), tip(3))), 
frontier(node(node(tip( l), tip(3)), tip(2)))) 

equal-list([2 1 frontier(tip(3))], [3 ) frontier(tip(2))]) 
false 

We have omitted some intermediate steps. The computation illustrates lazy rewriting as 
a particular case of lazy narrowing. 

The same program can solve expressions including variables; e.g. 

equal-frontier(node(tip( X), A), node( B, tip( Y))) 

_“1”- equal-list(frontier(node(tip( X), A)), frontier(node( B, tip(l)))) 
FT2 

-1-r equal-list([ X 1 frontier( A)], frontier(node( B, tip( Y)))) 
FT2 

N-13 (royt,, equal-list([ X 1 frontier(A)], [Z ) frontier(tip( Y))]) 
% where a,,, , = [tip(Z)lBl , 

EL2 
-I-+* equal-atom( X, Z), equal-list(frontier( A), frontier(tip( Y))) 

etc.; there are infinitely many possible outcomes, each one with a result true or false 
and an answer for X, Y, A, and B. 

Example 4.6. (The Alpine Club puzzle; see example 3.3). A BABEL computation 
of the outcome (true, [mike/X]) to the Alpine Club puzzle is as follows: 

(alpinist( X), climber(X), ~skier( X)) -+ true 
ACZ,IR.+ 

N--l--+ 
,&t. I 

(climber(mike), lskier(mike)) + true % where a,,,, 1 = [mike/X] 

-1 Lz (climber(mike), l(llikes(mike, snow) + false)) -+ true 
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LK3 

-l+ (climber(mike), T(T(likes(tony, snow) -+ false) + false)) + true 
LK6 

-l+ (climber(mike), -, (-(true + false) -+ false)) + true 

_t”-t* climber(mike) + true 

?lc+ ((alpinist(mike), lskier(mike)) -+ true) + true 
AC2,IR* 

-l* (lskier(mike) + true) + true 
_1+* (true + true) --t true % same reduction as before 

-f”-t* true 

As in Example 4.4, this essentially mimics a PROLOG computation; but some 
(restricted) use of logical negation is possible. 

Example 4.7. (Computing Hamming numbers; see Example 3.4). In the context 
of this program, the presence of potentially infinite data structures (streams) makes lazy 
evaluation essential. A BABEL computation of the fifth Hamming number would behave 
essentially as in a lazy functional language and could start as follows: 

nth-hamming(5, M) 

-NIH + nth-member(5, hamming-seq, M) -+ true 

Now hamming-seq is demanded by the rules for nth-member; so other rules will be 
applied to partially evaluate it until its first member 2 is computed. At this moment, the 
state of the evaluation will be 

nth-member(5, [ 2 1 RHS] , M) -+ true 

(where RHS is an expression denoting the rest of the Hamming sequence), and the 
reduction will proceed lazily: 

NM2 

- I+ ( nth-member(4, RHS , A4) -+ true) -+ true 

and so on. In few words: The Hamming sequence will be produced lazily, until its fifth 
member is found. BABEL'S unification mechanism takes care of the detecting demanded 
arguments through SUSPENDED outcomes of the unification algorithm; remember 
Definition 4.4. 

It is known that the computation of the first n Hamming numbers, using the 
algorithm embodied in the present program and lazy evaluation, takes O(n) steps; see 
Bird and Wadler [4]. 

The program also admits modes of use going beyond functional programming; e.g. 

nth-hamming( N, 10) N - 1 5 G/N] true 

nth-hamming( N, M) N - 1 3 $6/N,8,Ml true 

Before closing this section, let us say that BABEL'S lazy evaluation is a clear and 
simple way to specify a demand driven reduction mechanism; but it is not an “optimal 
computation rule”. In fact, lazy narrowing (in the technical sense of Definition 4.8) 
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allows narrowing sequences where some inner narrowing step does not contribute to 
any later steps. Such derivations are, strictly speaking, not so lazy. They can arise in 
cases where one has, at the same time, applicable rules and suspended rules. In such 
cases, the search space for lazy narrowing (i.e., the tree whose root is the initial 
expression and whose path correspond to all possible lazy narrowing sequences) usually 
includes duplicate solutions. 

The following example illustrates this. Incidentally, it serves to show that both 
outermost and innermost narrowing can miss solutions that are computable via lazy 
narrowing. Even infinitely many solutions can be lost. 

Example 4.8. Let n be the following program: 

constructors 
o/o, sue/l 

r IA r. I * l/2 
% for natural numbers 
% for lists 

functions 

f/2 
rules 

/* F, */ 
/* 4 */ 

:* “H *; * * 

gv h/l 

f(0, X) := h(X). 

f(suc(W, [ y I ysl) := [suc( Y) I _f-(N, YJI. 
&T(N) := IN I mMW)l. 
h([ Y I r,l) := [ Yl. 

In Figure 1 we show a fragment of II’s search space for the initial expression 
f( N, g(O)), using lazy narrowing. 

Of the two lazy narrowing sequences NS,, NS’,, only the first is “really lazy”; the 
second starts with a reduction that does not contribute to the second step and could have 
been delayed until the third one (obtaining, in fact, NS,). There is an exact characteri- 
zation of the “really lazy” derivations: They correspond to the outside-in derivations 
introduced by Huet and Levy [25] to investigate left linear, nonambiguous, uncondi- 

G % allowed because F, IF suspended 

h( g(O)) 

IG 

AN. KJ I g(l)]) 

W I g(l)]) 
~~yc(~,) 

IH h(IO I s(l)l) 11 I f(iY,, s(l))1 
101 IH 

/*NS,*/ WI 
/*NSl’*/ [l 1 h(g(l))] 

IG 
11 I h([l I g(-Dl)l 

II I fW,, II I s@)l,l 
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tional rewriting systems. Briefly speaking, the definition is obtained by forcing the later 
use of the rule that demands evaluation of a suspended argument. Darlington and Guo 
[9] have adapted this notion to a kind of lazy narrowing based on constructors, and You 
[58-601 has used a very similar notion (outer narrowing derivation) to investigate 
E-unification and E-matching problems for a class of constructor based unconditional 
rewriting systems. 

With innermost narrowing, the search space for the same program and initial 
expression would consist of a single infinite branch, corresponding to the nonterminat- 
ing evaluation of g(0). No solutions would be found. Finally, we show the search space 
using outermost narrowing, which retains only one solution: 

f(N, g(0)) 
N=OIFo 

h(g(O)) 

IG 

h([O I s(l)l) 
IH 

PI 

5. BABEL’S DECLARATIVE SEMANTICS 

In this section we present a declarative semantics for BABEL, which is based on Scott 
domains. We introduce interpretations and define how to view a BABEL rule as a logical 

statement that can hold or not hold in a given interpretation. We pay special attention to 
Herbrand interpretations and prove that any BABEL program has a least Herbrand model. 
This result generalizes the well-known corresponding one for Horn clause programs 
(van Emden and Kowalski [17], Apt and van Emden [l]). A very similar approach has 
been used for the language K-LEAF (Levi et al. [35]). With the help of our declarative 
semantics, we are able to prove soundness, confluence, and completeness results. 

We give first some preliminary definitions on Scott’s domains; cf. Scott [52] and 
Mulmuley [42]. 

Definition 5.1. A partially ordered set, with order c , is called a complete partial 
order (cpo) iff it has a least element J_ (usually called “bottom”) and any directed 
subset S of D has a least upper bound (lub) U S in D. 

Given a cpo D, an element z is called finite iff, for any directed subset S of D, 
z c U S implies that there exists an element YES such that z c y. An element x is 
called total iff the only upper bound of x in D is x itself. - 

D is algebraic iff for all XED, the set 

S,= {zIzCxand zistinite) 

is directed and x = U S,. D is w-algebraic if, in addition, the set Fin, of its finite 
elements is countable. 

A subset S of D is consistent iff any finite subset S,, of S has some upper bound 
in D. A cpo D is called consistently complete iff any consistent subset of D has a 
lub in D. 

In the rest of this section, by domain we mean a consistently complete o-algebraic 
cpo. For a different characterization of domains, see Scott [52]. 
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Definition 5.2. Let D be a domain. An enumeration of Fin, is any mapping e from $1 
onto Fin, that maps 0 to I ; i.e. 

e, = I and {e,(ieM) = Fin,. 

Assume some fixed one to one mapping from Xl onto the set of all finite subsets of M 
(cf. Rogers [51]). Let 1, be the finite set coded by n EM under this bijection. Then 
we say that e is an effective presentation of D iff the two following predicates on 
natural numbers are decidable (i.e. recursive): 

con(n) bdef S, is consistent in D, 

lub(n, j) @def U S, = ej in D 

where, for n~G!l, S, = { ei 1 iel,} G Fin,. 
A domain is called effectively presented iff it has some effective presentation. 

Definition 5.3. Given two domains C and D, a mapping f from C to D is called 
monotonic iff xc y implies f(x) c f(y) for all x, y EC. 

A monotonic fu&tion f is called &tinuous iff, for any directed subset S of C, 

“N-JcS) = u,f(s). 
If C and D are domains, we shall denote by [C-D] the set of continuous 

functions from C to D. 

Definition 5.4. Let C, D be domains with effective presentations e and e’. A 
continuous mapping f : C-r D is called computable iff its graph, defined as the 
predicate on G!l given by 

Gf(i,j) *def ejcf(ei), 

is recursively enumerable. An element XED is called computable iff the set of 
natural numbers 

G, =dcf{iERl/ej c x} 
is recursively enumerable. 

The following results are well known; cf. Scott [52] and Larsen and Winskel [33]. 

Theorem 5. I. Let C, D be domains. Then [C + D] , under the pointwise ordering, 
and C x D, under the componentwise ordering, are again domains. They are 
eflectively presentable if C and D are. 

Moreover, domains as objects with continuous mappings as morphisms 
constitute a Cartesian closed category. 

Theorem 5.2. Let D be a domain. Any continuous mapping f : D -+ D has a least 
fixpointxeDwhichsatisJiesf(x)=xandxcyforanyyEDsuch thatf(y) 
In fact, this least Jixpoint is the lub of the chain 

Moreover, the mapping fix : [D --f D] --*D which assigns to any f E [ D -+ D] its 
least jixpoint is itself continuous; i. e., fix E [[ D + D] -+ D]. 
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If D is eflectively presentable, then fix is computable, and fix(f) is COM- 
putable for any computable f E [ D + D]. 

We now define two special domains related to a given BABEL signature. 

Definition 5.5. Let C be a BABEL signature with set of constructors CS. 
The Herbrand domain H, has as elements all (finite or infinite) trees with nodes 

labeled by ranked symbols from CS U { I, } , where I, is a new symbol of arity 0. 
Such trees can be viewed as functions from RI*,; remember Definition 4.1. 

Elements s, t EHZ: are called C-constructs. In particular, all ground data C-terms 
are C-constructs. By a partial data C-term we shall understand a finite C-construct. 

The ordering c on H, is defined as follows: 

s c t iff t can be obtained from s by substituting some constructs for occurrences of - 
‘d . 

The boolean domain BOOL is the 

true V fa1se 

flat cpo given by the diagram 

where I, is a new symbol of arity 0, and true, false are BABEL'S boolean constants. By 
partial C-term we understand the partial data C-terms together with true, false, and 

lb . 

Simply by checking the corresponding definitions, we obtain: 

Theorem 5.3. H, and BOOL are domains. Moreover, H, has the following 
properties : 

(i) The finite elements coincide with the finite constructs, i.e., those having a 
finite number of nodes. 

(ii) The total elements are the constructs without any occurrence of I, . 

(iii) H, is eflectively presentable. 

We are now in a position to define interpretations and models for BABEL programs. 

Definition 5.6. Let C be a signature with CS, FS, PS. A C-interpretation is any 
algebra 

where D is a domain and the following conditions hold: 

CIED for c/OECS, 

c+[D”+D] for c/nECS, n>O, 

f+D for f /OEFS, 

.Q[D”-D] for f/nczFS, n>O, 

prE BOOL for p/OEPS, 

POE [ D” + BOOL] for p/ni5PS, n >O. 
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I is called a computable interpretation iff D is effectively presentable and cl, f,, p, 
are computable mappings. 

Z is called a Herbrand interpretation iff D is H, and the interpretation of 
constructors is free, i.e., 

Cl = c for c/OECS, 

for c/nECS, n > 0, and t;EH,. 
n 

In any given interpretation, BABEL expressions denote domain elements. 

Definition 5.7. Let Z be a C-interpretation. An environment over Z is any mapping p 

from VS = DV U BV to D U BOOL such that p( X)ED for all XEDV and p( Y)E 
BOOL for all YEBV. 

For any BABEL C-expression M, the valuation [M],(p) of A4 in Z under p is 
defined by recursion on M’s syntactical structure. It belongs to BOOL if M is a 
boolean expression; otherwise, it belongs to D: 

[true],(p) = true, 

[false] , ( p) = false, 

PWP) =4-v for XEVS, 

M(P) = c1 for c/OECS, 

1c(%, . . 3 wJn1b) = cr(w,l,b)~~. . f B~nlllb)) 

for c/n&S, n >O, 

Iklh) = k, for k/OEFS UPS, 

[k(M,, . . . , WBh) = kl(vfIILbL~~~ I U%Jl(P)) 

for k/nEFSUPS, n>O, 

~IJ%=WI~(P) =eq(IEIBI(~)~IIE2BI(~))’ 

W%(P) =~~~(PI,(P)L 

o:(& 4)lMP) = anw4m,(& P211(& 

I(% MLb) = O’(~~III(P)~ ru(P))~ 

II(B+M)l,(p) = if-then (fWi,(~)~ [W,(P))> 

[(B+M,OW)II,(P) = if-then-else (14,(p), ~M,I,(P)~ IMJI~(P))~ 

where the semantic functions eq, not, and, or, if-then, and if-then-else are continu- 
ous and computable and are defined as follows: 

if d, = d, is a finite and total element in D, 

if { d, , d2} is inconsistent in D, 

otherwise 
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(the fact that D is consistently complete is needed to ensure the continuity of eq), 

b not(b) 

true 

false 

‘b 

false 
true 

‘b 

and(b,, b2) 

true false I, 

tNe 

false 

lb 

true false I, 
false false false 

‘b false I, 

or(b,, b2) 

true false I, 

true tNe true true 

false true false I, 

‘b true I, ‘b 

if_then( b, m) = [ y ~he~w?~~7 

ml if b=true, 

if_then_else( b, m,, m2) = m2 if b = false, 

I otherwise, 
where m, m, , m2 may belong to D or BOOL, and l. stands for I, or 1, 

Knowing how to evaluate expressions, any BABEL rule can be interpreted as the 
statement that the lhs value is always at least as well defined as the rhs value: 

Definition 5.8. Let II, Z be a C-program and a C-interpretation. Remember I? from 
Definition 4.5 . 

Z is a model of II (in symbols: Z E II) iff Z is a model of every rule in l?. 
Z is a model of a rule L := R (in symbols: II= L := R) iff [LB I(p) J [R] I(p) 

for all environments p over I. Here, 2 stands for the partial ordering over BOOL if 
R is boolean; otherwise, it stands for the ordering over D. 

We are now going to prove the existence of a least Herbrand model for any given 
BABEL program. This generalizes the well-known result of van Emden and Kowalski 
[ 171 for Horn clause programs, and is related to a similar result that holds for the 
logic + functional language K-LEAF (Levi et al. [35]). Intuitively, the least Herbrand 
model of II is the “most economic model”: It has no data objects but the constructs, 
and it defines functions and predicates only as much as demanded by the program’s 
rules (including the implicit ones). Similar intuitions lay behind initial models for 
algebraic specifications; cf. Goguen and Meseguer [23]. 

As in Apt and van Emden [l], we are going to obtain minimal models as least 
fixpoints of continuous interpretation transformers. First, we show that C-interpreta- 
tions are the members of a domain. 
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Theorem 5.4. For any BABEL signature C, the set H-INTO of all the Herbrand 
C-interpretations, equipped with the partial ordering 

I c J l$f k, c kJ (in the corresponding domain) for all k E FS U PS, 

is an eflectively presentable domain. 

PROOF. Remember that BABEL signatures are finite. According to Definition 5.6, any 

Herbrand C-interpretation can be identified with the finite tuple 

((&FS 3 (P&S) ) 

where FS, PS are given by C. Therefore, H-INTO can be viewed as the Cartesian product 

&s [ D” ‘4 x JEPS [ D” -+ BOOLI ’ 

where D is H,, and where [D” + D] and [D” -+ BOOL] are understood as D and 
BOOL, respectively, whenever n is 0. By Theorem 5.3, H, is an effectively presentable 
domain. We can then conclude that H-INTO is an effectively presentable domain, by 
Theorem 5.1. 0 

Next, we define interpretation transformers: 

Definition 5.9. Let II be a BABEL program of signature C. 
A ground infinitary C-substitution is any mapping u from VS to H, U BOOL 

mapping boolean variables to BOOL and data variables to H,. Ground infinitary 
substitutions generalize ground substitutions (cf. Definition 4.2) and have unique 
extensions to mappings from Exp, to H, U BOOL. For any MeExp,, Ma is called 
a ground instance of M. Notice that the evaluation of kt, in a given Herbrand 
interpretation I, denoted by [Ma] [, can be defined as IM],(a), since u is an 
environment over 1. 

The interpretation transformer associated to II is the mapping 

cFn : H-INTx + H-INTx 

defined as follows: For any ZEH-INTO, .Yn(l) is the Herbrand interpretation J such 

that, for any k/neFS U PS and t,, . , t,eH,, 

k,(t,, . . , t,) = max T, 

where T= {IR’], 1 k(t,, . . , t,) := R’ is a ground instance of some rule in II} 

Theorem 5.5. For any C-program n, Yi is well defined, continuous, and 
computable. Moreover, for any IEH-INTO, one has I L II @Y,,(Z) 1 I. - 

PROOF. To prove that ,Tn is well defined, we must show that the set T from Definition 
5.8 has a maximum element. Let 1 R; I,, I R; 1, be any two members of T. We claim 
that they must be identical, unless one of the two is bottom. In fact, by construction of 
T, there are two ground instances of rules in H: 

k(t,,.. , tn):= {B; ->A4;, 

k(t,, . . . , tJ:= {B;+}M;, 

where { Bl} -+ M,! is R: (i = 1,2). Since rules are left linear, this means that the left 
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hand sides of the two rules are unifiable (we could not conclude this without left 
linearity, since the constructs ti may be infinite). Because of the nonambiguity 
restriction for BABEL programs (remember Definition 2.5), M; and M; must be 
identical, unless (B; , B;) is propositionally unsatisfiable. If M; and iVf; are identical, 
then [R;Q,= [R;], unless one or both are bottom. Otherwise, l[R;jl and l[B;l, 

cannot be both true, and at least one of the two values [R;] ,, [R;] I must be bottom. 
It can be checked that each k, is continuous. This essentially reduces to the 

continuity of the functions in Z and the semantic functions. 
We now argue that &, is continuous. Monotonicity is obvious from the definition. 

Let {ZAaeA be a directed set of Herbrand interpretations. Let Z = U 
LYEA 

z,. Put 

J = Fn( I), J, = Kn( I,). We must show that J = U 
,ZEA 

J,. But U CIE A J, c J follows 

from monotonicity. To show Jc U J,,considerany k/neFSUPSand t,,...,tn 

eHZ. Let 9?‘be the set of all R’ s&?rAthat k(t,, . . . , t,) := R’ is a ground instance of 

some rule in ll. Then 

kJ(tl,...,t,)=max{[R’],IR’E2’} 

=max( e~[R’~,~~R’e’A’} 

( 
by Z = u Z, and continuity of evaluation 

WEA 1 

= u max{[R’j,,IR’Eg’} 
C&A 

( 
since this is an upper bound of u I R’] ,n for any fixed R’ E 3’ ’ 

CYEA 1 

= U k.,(t,, . . . > t,,). 
old 

Let us now show that Yrn is computable. By the proof of Theorem 5.4 and known 

results from domain theory (see e.g. Larsen and Winskel [33]) we can assume that any 
finite Herbrand C-interpretation Z is presented as a finite tuple ((kl)keFSU &, where 
each k, is presented in turn as a partial E-term s (if k’s arity is 0) or as a finite set of 
pairs (S, s), where s is a partial C-term, and 3 is a tuple of finite C-constructs. This set 
of pairs is called the graph of k, and determines k,‘s effect as a mapping, by requiring 

k,(t) = u {s\(S,s)~graph(k,), 2~ I} 

to hold for all tuples i of C-constructs. 
By appealing to Church’s thesis and Definition 5.4, we may restrict ourselves to give 

an informal proof showing that 

{ ( I, J) 1 I, JE H-INTO are finite and such that J rz Tn ( I) } 

is a r.e. set. Indeed, for finite I, JEH-INTO we have: 

Jc G(Z) 
iff k,C k, for all kEFS U PS 

iff for all ke FS U PS and for all (z, s) Egraph( k,) s 5 k,,n,,,(S) (here S can 
be omitted if k is nullary) 

iff for all keFS U PS and for all (S, s)~graph( k,) there is some finite ground 

instance k(S) := R’ of a rule in lI such that s c [R’ 1 I. 
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In view of Definition 5.9, we have to justify the restriction to finite ground instances in 
the last step above. Since 3 is finite and local variables in BABEL rules occur only in the 
guards, the ground instance R’ under consideration cannot have any occurrences of 

infinite constructs outside the guard. On the other side, the denotation of a guard in I 
depends continuously on the valuation of its variables. If some ground instance of the 
guard denotes true, the same happens already for some finite ground instance. Hence, if 
s c [ R’l] I for some ground instance R’, then this is also the case for some finite ground 
instance. 

We note that we have obtained a definition of a r.e. set, because FS U PS is finite, 
each k, has a finite graph, II is r.e., and each 1 R’] I is finite and effectively 
computable from R’ and Z. 

Finally, assume that .&(Z) = J. The condition Jc I means that kl(t,, . , t,) 2 
k,( t,, . . , t,) must hold for all k/neFS U PS &id all t,, . . , t, EHc. By the 
definition of C”i_, this amounts to saying that I[ L'] ,z [R’] I must hold for any ground 
instance of any rule in II. This happens exactly when Z is a model of all rules in Il, 
because building all ground instances is the same as considering all possible environ- 
ments. Since all implicit rules hold in all Herbrand models, we may conclude that 
.q(Z)c Z iff ZFII. Cl - 

We are now in a position to prove the main result of this section: 

Theorem 5.6. Any BABEL program Kl of signature C has a least Herbrand model 
In. Moreover, In is a computable element of the domain H-INTO. 

PROOF. Let In be the least fixpoint of ,Yy,. By Theorems 5.2 and 5.5, I,, is a 
computable element of H-INTO and can be described as 

I” = u z& 
je,vJ 

where 

Zi = I (bottom of H-INTO) and Ii” = &( Z/r). 

Theorem 5.5 also guarantees that In is a model of II. Let Z be any other Herbrand 
model of II. By Theorem 5.5 again, we know that .Y<,(Z) L I. Since <Yy, is monotonic, 
it follows by induction on j that I{, c Z for all Jo W. We conclude that In & Z because 
In’s characterization as a lub. Hence, Zn is the least Herbrand model. 0 

We can prove that BABEL'S reduction semantics always computes logically sound 
outcomes. 

Theorem 5.7. (Soundness of the reduction semantics). Let n be a C-program. 
Any (not necessarily lazy) narrowing sequence 

computes a sound outcome in the sense that 

holds for a/l models ZE n and all environments p over I. 
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PROOF. Assume that the length of the reduction is 1. Consider any model Z b II and 
any environment p over I. It is easy to check that IN] ,( p) 2 [ ) N ) ]I ,. Hence, we 
may replace ] N ) by N in our thesis. We use induction on 1. The case I= 0 is trivial. 
For I > 0, we may assume 

11 
MN -+ g<,“{, , Ml N z L. re\t NY 

where, for some u EO+ (M) and some variant L := R of a rule in II, IQ/ u and L are 
unifiable with m.g.u. e, = aout,, kJ uin, ,, and M, is M[u + R]a,. Now we can reason 
as follows, knowing that uoUt = a,,,, , a,,,, reSt r var( M): 

IM%U,lI(4 = ~M~~“t.l~~“t.TeStll(P) 

= rMaO”,.,n,(P) 

[where p is such that p(X) = 1 Xu,,,, ,,,,I I(p> for all XEVS] 

7 WV-Rl~JIh-4 
(because Z t= II, L := R is a rule in II, and the context of Mu,,,,. , at occurrence u 
behaves monotonically in any interpretation) 

= IM,R1cc 

=[M laOout,restj t( a> (by construction of 

? tNnI(P> (by induction hypothesis) . 

This completes the proof. 0 

CL) 

This result has a reciprocal one. It says that any logically sound outcome is 
subsumed by some other outcome that can be computed via lazy narrowing. 

Theorem 5.8. (Completeness of the reduction semantics). Let n be a C-program. 
Assume a E-expression M, a partial C-term s, and apnite d-substitution 0 with 
dam(0) c var(M) such that [MO] ,(a) 2 [SD, holds for any Z E II and any 
environment p over I. Then there exists a lazy narrowing sequence 

M N - 1 2, :“., N 

and a finite d-substitution h, such that 0 = u,,,,h lvar( M) and 1 Nx 1 2 s. 

SKETCH OF PROOF. Remember that the least Herbrand model In of II is the lub of a 
chain of approximations Zf; (Theorem 5.6). By the hypothesis and the continuity of 
evaluation, there is some jeW such that the inequality [Men t( p) I [sn t holds for 
Z = ZA. Using induction on j, it is possible to prove that MB -&*N’ for some 
expression N’ such that 1 N’ ) J s. Notice that N’ is obtained by lazy rewriting, 
binding no variables in MB. The lazy narrowing derivation M N - 1 + *N needed to 

prove the theorem is then produced by a lifting construction, similar to those known for 
SLD resolution (Lloyd [37]) and classical narrowing (Hullot [27]). A full proof of this 
completeness result can be found in Moreno-Navarro [41]. 0 

To finish, we present a kind of confluence result that can be derived from the 
correctness theorem. 
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Corollary 5. I. (“Confluence” of rewriting). Let II be a C-program. Assume 
ground C-expressions M, N], N2 such that 

M -% *N, and A4 3 *N2. 
Then N, and N, cannot have dlflerent constructors at any common occurrence; 

i.e., WW, IN2ll is consistent in H, (or in BOOL, if M is boolean). 

PROOF. By applying Theorem 5.7 to the least Herbrand model of II, we can conclude 
that [M] ,1, is a common upper bound of 1 N, 1 and 1 N2 1 0 

6. CONCLUSIONS 

We believe we have provided a semantic framework which allows us to amalgamate 
functional and logic programming in a conceptually simple and semantically coherent 
way. We have chosen to design a functional logic language with an essentially 
functional syntax, a lazy form of constructor based conditional narrowing as operational 
semantics, and a declarative semantics that is based on Scott domains and provides least 
Herbrand models. Our approach reduces SLD resolution to narrowing, by viewing 
definite clauses as a particular kind of conditional rewrite rules, and extends to 
functional programs the declarative semantics typically used for Horn clause logic 
programs. 

In contrast with other approaches that have advocated the reduction of narrowing to 
SLD resolution in order to exploit the extensive experience on efficient PROLOG 
implementations (van Emden and Yukawa [ 181, Bosco et al. [6], Levi et al. [35]), our 
aim has been to capitalize on the available experience in efficient implementation 
techniques for functional languages. The sequential kernel of a parallel (programmed) 
graph reduction machine (Loogen et al. [36]) has been extended with unification and 
backtracking mechanisms inspired by Warren’s abstract machine for PROLOG (Warren 
[57]), yielding an abstract machine BAM for BABEL (Kuchen et al. [31]). A prototype 
emulator of BAM has been programmed in C and runs on SUN workstations. Early 
experiences with the prototype let us hope that purely applicative programs will run in 
the BABEL machine almost as efficiently as in the original graph reduction machine, 
though some overhead due to the different parameter passing mechanisms (unification 
instead of matching) cannot be avoided. 

We are presently working on improving the design and implementation of BABEL 
along several lines. The BAM implementation actually supports a higher order exten- 
sion of BABEL with a polymorphic type system (Milner [40], Martins-Damas [39]), 
where narrowing is kept as the evaluation mechanism, but with the restriction that 
higher order logic variables are not allowed; that is, higher order variables are never 
affected by narrowing, but used only for rewriting. 
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