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Abstract

In this paper we present some comparison theorems between two general parallel mul-
tisplittings. These comparison theorems can be applied to many classical splittings, such as
Jacobi, Gauss–Seidel and AOR splittings. Some significant improvements and generaliza-
tions of the existing comparison results are obtained. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Consider the linear system

Ax = b, (1.1)

where A ∈ Rn×n is nonsingular. A multisplitting of A is a collection of matrices
(Ml,Nl, El), l = 1, . . . , k, so that A = Ml −Nl, l = 1, . . . , k, where each Ml is
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nonsingular and each El is nonnegative diagonal with
∑k

l=1 El = I. A so-called
(parallel) multisplitting iterative method is defined by

Given the initial vector x0.

For s = 1, 2 . . . until convergence.
For l = 1, . . . , k,
Mly

s,l = Nlx
s + b

xs+1 = ∑k
l=1 Ely

s,l = Hxs +Gb,

(1.2)

where

H =
k∑
l=1

ElM
−1
l Nl, G =

k∑
l=1

ElM
−1
l . (1.3)

This multisplitting method was first introduced by O’Leary and White [15] for
solving large scale linear systems. They proved that when A is an inverse positive
matrix and each of the splittings in (1.2) is weakly regular, the multisplitting method
converges to the solution of (1.1) for any x0, i.e.,

ρ

(
k∑
l=1

ElM
−1
l Nl

)
< 1,

where ρ(·) denotes the spectral radius. Kavanagh and Neumann [9] and Bru et al.
[4] extended the result to singular systems in which the coefficient matrix is an M-
matrix. Recently, the parallel multisplitting AOR methods have been discussed by
many authors; see e.g. [2,12,17–20].

Let A be an inverse positive matrix, i.e., A−1 � 0,

A = Ml −Nl = M̃l − Ñl, l = 1, . . . , k,

be weak regular splittings of A, and let

H =
k∑
l=1

ElM
−1
l Nl, H̃ =

k∑
l=1

ẼlM̃
−1
l Ñl (1.4)

be their iteration matrices, respectively. The question of interest raised in [14] (or see
[6]) is that if

Ml � M̃l, l = 1, . . . , k, (1.5)

is it true that

ρ(H) � ρ(H̃ ). (1.6)

Neumann and Plemmons [14] studied this problem and gave some sufficient con-
ditions (see [14, Theorem 2.1]). Their theorem strongly suggests that the rate of
convergence of a parallel multisplitting iteration is inherent in the splitting alone and
is independent of El . Usually, one can choose Ẽl = El . In [6] Elsner provided a
comparison theorem in the case M̃l = M̃ , l = 1, 2, . . . , k, i.e., between a multisplit-
ting and a single splitting, and gave a counterexample to illustrate that inequality
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(1.6) is not true in general. Later, Climent and Perea extended Elsner’s result; see [5,
Theorems 3.3 and 3.4]. Comparison results for some classical multisplittings were
obtained by many authors, such as Song for AOR multisplittings (see [18, Theorem
4.1]), Wang for AOR, Gauss–Seidel and Jacobi multisplittings (see [20, Theorems
2.1 and 2.2 and Theorem 3.1]), and Frommer and Pohl for block (non)overlapping
multisplittings (see [7, Theorem 2.2]). But all the comparison results were estab-
lished between a multisplitting and a single splitting.

The goal of this paper is to compare multisplittings. We shall give some sufficient
conditions for El such that (1.6) holds. When our comparison theorem is applied to
some classical splittings, e.g., AOR, Gauss–Seidel, and Jacobi, some improvements
and generalizations of existing results are obtained.

2. Definitions and notations

Let A ∈ Rn×n. A matrix A is said to be reducible if there is a permutation matrix
P such that

P TAP =
[
A11 A12

0 A22

]
,

where A11 and A22 are square. Otherwise A is called irreducible. It is well known
that for any matrix there is a permutation matrix P such that

P TAP =


A11 A12 . . . A1s

0 A22 . . . A2s
...

...
. . .

...

0 0 . . . Ass

 , (2.1)

where Aii is irreducible or 1 × 1 zero, i = 1, . . . , s. Usually, the block upper trian-
gular form (2.1) is called Frobenius normal form. Notice that s = 1 if and only if A
is irreducible.

A matrix B is nonnegative or positive if each entry of B is nonnegative or positive,
respectively. We denote them byB � 0 orB > 0, respectively. A matrixA = (aij ) is
called a Z-matrix if for any i /= j, aij � 0, and an M-matrix if A = sI − B, B � 0
and s � ρ(B), where ρ(B) denotes the spectral radius of B. A is a nonsingular M-
matrix if and only if ρ(B) < s. A nonsingular matrix A is said to be inverse positive
if A−1 � 0. A matrix M is said to be a positive (nonnegative) diagonal matrix if M
is a diagonal matrix with positive (nonnegative) elements.

Definition 2.1. Let A be an n× n matrix. The splitting A = M −N is said to be:
• nontrivial if N /= 0,
• convergent if ρ(M−1N) < 1,
• regular if M−1 � 0 and N � 0,
• nonnegative [23] if M−1 � 0,M−1N � 0 and NM−1 � 0,
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• weakly nonnegative [23] of the first type (or weakly regular) if M−1 � 0 and
M−1N � 0,

• weakly nonnegative [23] of the second type if M−1 � 0 and NM−1 � 0,
• a weak splitting [23] of the first type if M−1N � 0; a weak splitting of the second

type if NM−1 � 0,
• an M-splitting [16] if M is a nonsingular M-matrix and N � 0,
• block upper triangular [10] if there is a permutation similarity bringing A into

Frobenius normal form as in (2.1) which also brings M into a block upper trian-
gular form when partitioned conformally to A.

In general,

M-splitting


⇒ regular ⇒ nonnegative

⇒ weakly nonnegative (regular) ⇒ weak,

⇒ block upper triangular (see [10]).

Definition 2.2. Let A be an n× n matrix and (Ml,Nl, El), l = 1, . . . , k, be multi-
splitting of A, i.e., El is a nonnegative diagonal matrix and

∑k
l=1 El = I and A =

Ml −Nl, l = 1, . . . , k. The multisplitting (Ml,Nl, El), l = 1, . . . , k, is called
• convergent if ρ(

∑k
l=1 ElM

−1
l Nl) < 1,

• nontrivial, (weakly) regular [9], nonnegative, weakly nonnegative [4] of the first
(second) type, weak [4] of the first (second) type [5], M-splitting [5] and block
upper triangular if each single splitting is nontrivial, (weakly) regular, nonnega-
tive, weakly nonnegative of the first (second) type, weak of the first (second) type,
M-multisplitting and block upper triangular, respectively.

3. Comparison results

Let (Ml,Nl, El), l = 1, . . . , k and (M̃l, Ñl, El), l = 1, . . . , k, be two multisplit-
tings of A, whose iteration matrices are denoted by H and H̃ throughout this paper,
respectively, i.e.,

H =
k∑
l=1

ElM
−1
l Nl (3.1)

and

H̃ =
k∑
l=1

ElM̃
−1
l Ñl . (3.2)

In this section, we compare spectral radii of iteration matrices for parallel mul-
tisplitting methods. Before we discuss our main theorem, the following lemmas are
needed. In the first lemma, the part (i) is Theorem 1.1 of O’Leary and White [15]
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and the part (ii) is (2.2) of Elsner [6]. The second lemma is Theorem 6.4 of Woźnicki
[23].

Lemma 3.1. Let (Ml,Nl, El), l = 1, . . . , k, be a multisplitting of A. Then

I −H =
(

k∑
l=1

ElM
−1
l

)
A. (3.3)

In addition, if A−1 � 0 and A = Ml −Nl, l = 1, . . . , k, are all weakly regular,
then
(i) ρ(H) < 1;
(ii)

∑k
l=1 ElM

−1
l is nonsingular, A = M −N is weakly regular and H = M−1N,

where M = (
∑k

l=1 ElM
−1
l )−1.

Lemma 3.2. Let A−1 � 0 and A = M1 − N1 = M2 −N2 be two convergent weak
splittings of different types. If M−1

1 � M−1
2 , then

ρ(M−1
1 N1) � ρ(M−1

2 N2) < 1.

Lemma 3.2 is a comparison result between two weak single-splittings where A is
an inverse positive matrix. The results for some weakly nonnegative and M-splittings
are given in the following lemmas.

Lemma 3.3. Let (Ml,Nl, El) and (M̃l, Ñl , El), l = 1, . . . , k, be two weakly reg-
ular multisplittings of A, and let M̃l be a positive diagonal matrix and M−1

l �
M̃−1

l , l = 1, . . . , k. If A is not an M-matrix, then ρ(H) � ρ(H̃ ) > 1, where H and
H̃ are defined in (3.1) and (3.2), respectively.

Proof. Let G = ∑k
l=1 ElM

−1
l and G̃ = ∑k

l=1 ElM̃
−1
l . Since M̃l is a positive diag-

onal matrix for any l, it is readily seen that G̃ is also a positive diagonal matrix, and
thus nonsingular. Let M̃ = G̃−1 and Ñ = M̃ − A. Then M̃ is a positive diagonal
matrix. We have M̃−1Ñ = I − (

∑k
l=1 ElM̃

−1
l )A = H̃ � 0 and therefore, Ñ � 0,

which implies that the splitting A = M̃ − Ñ is an M-splitting and A is a Z-matrix. It
follows from Lemma 4.2 of [11] that ρ(H̃ ) > 1. By the Perron–Frobenius theorem
(e.g., see [3]), there is nonzero nonnegative vector x such that M̃−1Ñx = ρ̃x, where
ρ̃ = ρ(M̃−1Ñ) = ρ(H̃ ). Hence M̃−1Ax = (1 − ρ̃)x, which implies that

Ax = (1 − ρ̃)M̃x. (3.4)

Since ρ̃ > 1 and M̃ is a positive diagonal matrix, we have Ax � 0 from (3.4). By the
assumption that M−1

l � M̃−1
l , l = 1, . . . , k, it is easy to see that G � M̃−1. Hence

GAx � M̃−1Ax. From (3.3) we have (I − H)x � (1 − ρ̃)x, i.e., Hx � ρ̃x. Since
each A = Ml −Nl is weakly regular, we have H = ∑k

l=1 ElM
−1
l Nl � 0. It follows

from Theorem 2.1.11 of [3] that ρ(H) � ρ̃. The proof is completed. �

The following lemma is similar to Theorem 3.2 of [5] but the condition ElA =
AEl for l = 1, . . . , k is changed to be ElMl = MlEl for l = 1, . . . , k.
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Lemma 3.4. Let A be inverse positive and (Ml,Nl, El), l = 1, . . . , k, be a weakly
nonnegative multisplitting of the second type with ElMl = MlEl for l = 1, . . . , k.
Then ρ(H) < 1, where H is defined in (3.1). Furthermore, the matrix
G = ∑k

l=1 ElM
−1
l is nonsingular andA = M −N is also weakly nonnegative split-

ting of the second type, where M = G−1 and N = M − A.

Proof. Let K = ∑k
l=1 NlM

−1
l El. Then AG = ∑k

l=1 AM
−1
l El = I −K. By the

same argument as Theorem 3.2 in [5] we obtain ρ(K) < 1, which implies that G is
nonsingular. Since GA = I −H and GA have the same eigenvalues as AG,ρ(H) <

1. It is easy to see thatNM−1 = I − AG = K � 0 andM−1 = G � 0,which proves
the lemma. �

Remark 3.1. Let (Ml,Nl, El) and (M̃l, Ñl, El), l = 1, . . . , k, be two weakly non-
negative multisplittings of the second type, and let ElMl = MlEl or AEl = ElA for
l = 1, . . . , k. Then one may deduce that Lemma 3.3 is also valid.

Lemma 3.5. Let A be an irreducible matrix and (Ml,Nl, El), l = 1, . . . , k, be a
nontrivial M-multisplitting of A . If ρ(H) = 1, then G = ∑k

l=1 ElM
−1
l is nonsingu-

lar, where H is defined in (3.1).

Proof. By Lemma 2.1 of [4] we may assume without loss of generality that the
iteration matrix of the multisplitting is as follows:

H =
[

0 H11
0 H22

]
,

where H22 is a nonzero irreducible matrix. Hence 1 is a simple eigenvalue of H by
the Perron–Frobenius theorem, which implies that the dimension of the eigenspace
associated with the zero eigenvalue of I −HT is equal to 1. Let x be a nonzero non-
negative eigenvector of (I −HT) corresponding to the zero eigenvalue. We partition
x into xT = [x1, x2], where x2 is a row vector whose dimension is the same as the
order of H22. By xT(I −H) = 0 one can deduce that x1 = 0 and x2 > 0. Now we
assume thatG = ∑k

l=1 ElM
−1
l is singular. Then there is a nonzero vector y such that

yTG = 0. Form (3.3) we have

yTGA = yT(I −H) = 0.

Because the dimension of the eigenspace associated with the zero eigenvalue of I −
HT is 1, x and y are dependent, i.e., there is a nonzero real number r such that y = rx,

and thus xTG = 0, i.e.,
∑k

l=1 x
TElM

−1
l = 0,which implies that xTElM

−1
l = 0, l =

1, . . . , k. Notice that
∑k

l=1 El = I and x2 is positive. Then there is an l for which
the last row of M−1

l is zero. This implies that M−1
l is singular, which contradicts that

Ml is nonsingular. Hence G is nonsingular. �
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Lemma 3.6. Let (Ml,Nl, El), l = 1, . . . , k, be an M-multisplitting of A. Then
ρ(H) = 1 if and only if A is a singular M-matrix, where H is defined in (3.1).

Proof. (⇐) By Lemma 3.1 and Corollary 3.4(i) of [9],GA = I − H is a singular
M-matrix, where G is the same as in Lemma 3.5. Thus ρ(H) = 1.

(⇒) Without loss of generality we may assume that A = (Aij ) is the block parti-
tion given as in (2.1). Since A = Ml −Nl is an M -splitting, it is block upper trian-
gular weakly regular, i.e., Ml = (M

(l)
ij ) and Nl = (N

(l)
ij ) are block upper triangular

matrices with the same partition as in (2.1), l = 1, . . . , k. Clearly Hij = 0 for i � j,

and Hii is an iteration matrix of the multisplitting (M
(l)
ii , N

(l)
ii , E

(l)
ii ), l = 1, . . . , k,

of Aii , where El = diag(E(l)
11 , . . . , E

(l)
ss ), i = 1, . . . , s, l = 1, . . . , k.

In order to show that A is a singular M-matrix, by (2.1) it suffices to show that
the block diagonal matrices Aii, i = 1, . . . , s, are all M-matrices. Since ρ(H) = 1,
ρ(Hii) � 1. It is noted that Hii is the iteration matrix of the parallel multisplitting
(M

(l)
ii , N

(l)
ii , E

(l)
ii ), l = 1, . . . , k, of Aii. In the case ρ(Hii) < 1, by Lemma 3.1 we

have

A−1
ii = (I −Hii)

−1
∑

E
(l)
ii M

(l)−1
ii � 0,

which implies thatAii is a nonsingular M-matrix; e.g. see [3]. In the case ρ(Hii)=1,
we let Gii = ∑

E
(l)
ii M

(l)−1
ii and assume that Aii is nonsingular. By (3.3) we have

Gii = (I −Hii)A
−1
ii , and hence there exists a nonzero nonnegative vector y such

that yTGii = 0. By the same proof as Lemma 3.5 one can conclude that M(l)−1
ii

has zero row for some l, which contradicts the nonsingularity of M(l)
ii . Therefore,

Aii is singular. Because M
(l)
ii is a nonsingular M-matrix, N(l)

ii is nonzero. Hence

(M
(l)
ii , N

(l)
ii , E

(l)
ii ), l = 1, . . . , k, is a nontrivial M-multisplitting of an irreducible

matrix Aii. By Lemma 3.5 Gii is nonsingular. Since ρ(Hii) = 1, there is a non-
zero nonnegative vector x for which Hiix = x. By (3.3) GiiAiix = 0 and by the
nonsingularity of Gii we have Aiix = 0. Because Aii is irreducible, by the Perron–
Frobenius theorem one can easily deduce that Aii is an M-matrix. The proof is
completed. �

We now provide two sufficient conditions for inequality (1.6) to hold.

Proposition 3.1. Let A−1 � 0, and (Ml,Nl, El), l = 1, . . . , k, and (M̃l, Ñl , El),

l = 1, . . . , k, be two weakly nonnegative multisplittings of A of the first type and
the second type, respectively. If M−1

l � M̃−1
l , l = 1, . . . , k, then the inequalities

ρ(H) � ρ(H̃ ) < 1 hold provided the each weightingEl satisfies one of the following
conditions:
(i) AEl = ElA, l = 1, . . . , k.
(ii) M̃lEl = ElM̃l, l = 1, . . . , k,
where H and H̃ are defined in (3.1) and (3.2), respectively.
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Proof. Let G = ∑k
l=1 ElM

−1
l and G̃ = ∑k

l=1 ElM̃
−1
l . Assume that the condition

(i) or (ii) holds. From Lemma 3.1(ii), Lemma 3.4 and Theorem 3.2 of [5] it fol-
lows that G and G̃ are nonsingular and A = M −N = M̃ − Ñ are convergent
and weakly nonnegative splittings of the first type and the second type, respectively,
whereM = G−1, N = M − A, M̃ = G̃−1 and Ñ = M̃ − A.By the hypothesis that
M−1

l � M̃−1
l , l = 1, . . . , k, we have

M−1 =
k∑
l=1

ElM
−1
l �

k∑
l=1

ElM̃
−1
l = M̃−1. (3.5)

Hence the inequalities ρ(H) � ρ(H̃ ) < 1 are obtained by (3.5) and Lemma 3.2.

Remark 3.2. In fact, condition (ii) in Proposition 3.1 can be changed to be MlEl =
ElMl, l = 1, . . . , k, when the multisplittings (Ml,Nl, El), l = 1, . . . , k and
(M̃l, Ñl, El), l = 1, . . . , k, are two weakly nonnegative multisplittings of A of the
second type and the first type, respectively.

Remark 3.3. When each A = M̃l − Ñl is a block Jacobi-type splitting, i.e.,

M̃l = diag(M̃l1, M̃l2, . . . , M̃lq ) (3.6)

and the weighting is

El = diag(αl1I, αl2I, . . . , αlqI ), (3.7)

then condition (ii) in Proposition 3.1 is satisfied and therefore, the convergence of
any multisplitting with M−1

l � M̃−1
l is better than that of the Jacobi-type multisplit-

ting.

Corollary 3.1. Let A−1 � 0, and (Ml,Nl, El), l = 1, . . . , k, and (M̃l, Ñl , El),

l = 1, . . . , k, be nonnegative multisplittings withM−1
l � M̃−1

l , l = 1, . . . , k. If (3.6)
and (3.7) are satisfied, then ρ(H) � ρ(H̃ ) < 1,where H and H̃ are defined in (3.1)
and (3.2), respectively.

Remark 3.4. Elsner in [6] provided a counterexample to illustrate that (1.6) is not
true in general, in which

A =
[

1 −1
− 1

2 1

]
= M1 −N1 = M2 −N2

and

M1 =
[

1 + ε −1 + σ

− 1
2 1

]
, N1 =

[
ε σ

0 0

]
, M2 = A, N2 = 0

and each El is singular. It is noted that the inequality ρ(H) � ρ(H̃ ) is still not true
even for nonsingular weighting El . Elsner’s example can be used here to show that
the inequality (1.6) is not true by adding a small perturbation on the singular weight-
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ing matrices in [6]. It is also noted that Elsner’s example does not satisfy the condi-
tions (i) and (ii) in Proposition 3.1.

Remark 3.5. In [5] Climent and Perea introduced the condition that AEl = ElA

to show the convergence of a weak nonnegative multisplitting of the second type.
In Lemma 3.4 we give another sufficient condition such that the weak nonnegative
multisplitting of the second type converges.

The following is a Stein–Rosenberg type theorem for a general parallel multisplit-
ting method and a Jacobi-type multisplitting method.

Theorem 3.1. Let (Ml,Nl, El), l = 1, . . . , k and (M̃l, Ñl , El), l = 1, . . . , k, be
both M -multisplittings of A with M−1

l � M̃−1
l , l = 1, . . . , k. If M̃l is a positive di-

agonal matrix, l = 1, . . . , k, then
(i) ρ(H) < 1 if and only if ρ(H̃ ) < 1, in which case ρ(H) � ρ(H̃ ) < 1;
(ii) ρ(H) = 1 if and only if ρ(H̃ ) = 1;
(iii) ρ(H) > 1 if and only if ρ(H̃ ) > 1, in which case ρ(H) � ρ(H̃ ) > 1.

Proof. (i) Assume that ρ(H) < 1. Then I −H is a nonsingular M-matrix. Hence
(I − H)−1 � 0. Let G = ∑k

l=1 ElM
−1
l . Then G � 0. By Lemma 3.1 we have GA

= I − H . Hence G and A are both nonsingular, and thus we have A−1 = (I −H)−1

G � 0. Since M̃l and El are diagonal, l = 1, . . . , k, it is easy to see that condition
(ii) of Proposition 3.1 is satisfied. Hence we have ρ(H) � ρ(H̃ ) < 1 from Proposi-
tion 3.1. Conversely, if ρ(H̃ ) < 1, then similarly to the case that ρ(H) < 1 one can
deduce ρ(H) � ρ(H̃ ) < 1.

(ii) If ρ(H) = 1, then A is a singular M-matrix by Lemma 3.6. Since (M̃, Ñ, El),

l = 1, . . . , k, is an M- multisplitting of A, it follows from Corollary 3.4 of [9] that
ρ(H̃ ) = 1. The proof of sufficiency is analogous.

(iii) From (i) and (ii) of this theorem we have ρ(H) > 1 if and only if ρ(H̃ ) > 1
and A is not an M-matrix. Then the inequalities in (iii) follow immediately from
Lemma 3.3. �

Corollary 3.2. Let (Ml,Nl, El), l = 1, . . . , k, and (M̃l, Ñl, El), l = 1, . . . , k,
both be M-multisplittings of A with M−1

l � M̃−1
l , l = 1, . . . , k. If M̃l is a positive

diagonal matrix, l = 1, . . . , k, then one and only one of the following mutually
exclusive results holds:
(i) ρ(H) � ρ(H̃ ) < 1;
(ii) ρ(H) = ρ(H̃ ) = 1;
(iii) ρ(H) � ρ(H̃ ) > 1.

Proof. Follows immediately from Theorem 3.1. �
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Remark 3.6. From Lemmas 3.3, Corollary 3.4 of [9] and Theorem 3.1, it is easy
to see that Corollary 3.2 is still true under the assumption that (Ml,Nl, El) is a
block upper triangular nonnegative multisplitting. Theorem 3.1 gives a Stein–
Rosenberg type theorem for a general parallel multisplitting method and a Jacobi-
type multisplitting method.

4. Parallel multisplitting AOR methods

In this section, we present a general comparison theorem and applications to some
Jacobi-type multisplittings. Here we consider some more classical parallel multisplit-
tings.

AOR iterative methods were first introduced by Hadjidimos [8] to solve nonsym-
metric systems. The iteration matrix can be written in general

(D − γL)−1[(1 − ω)D + (ω − γ )L+ ωU ]
with two parameters γ and ω, where A = D − L− U , D is nonsingular and diag-
onal, and L and U are strictly lower triangular and strictly upper triangular, respec-
tively. Parallel multisplitting AOR methods were proposed by Wang [19] and later,
studied by many authors. For example, a generalized AOR method (GAOR) was
considered in [18] and the iteration matrix is given by

L(γ, ω) =
k∑
l=1

El(Dl − γlLl)
−1[(1 − ωl)Dl + (ωl − γl)Ll + ωlUl],

where A = Dl − Ll − Ul , Dl = diag(d(l)1 , . . . , d
(l)
n ) is nonsingular and γ = (γ1,

γ2, . . . , γk) and ω = (ω1, ω2, . . . , ωk) are parameters. In [20] the author only con-
sidered the case that Dl = I for any l. Let

d = min
1�l�k,1�i�n

{d(l)i }.
By using Theorem 3.2, we can obtain a comparison result for the spectral radii of
iteration matrices of parallel multisplitting methods.

Theorem 4.1. Let A = Dl − Ll − Ul, where Dl = diag(d(l)1 , . . . , d
(l)
n ) is a posi-

tive diagonal matrix, Ll and Ul are nonnegative, l = 1, . . . , k. Let ρ(Ll) < d and
0 � γl � ωl � 1, ωl /= 0, l = 1, . . . , k. Then for any given weighting El we have:
(i) ρ(L(γ, ω)) < 1 if and only if ρ(L(0, ω)) < 1, in which case, ρ(L(γ, ω)) �

ρ(L(0, ω)) < 1,
(ii) ρ(L(γ, ω)) = 1 if and only if ρ(L(0, ω)) = 1,
(iii) ρ(L(γ, ω)) > 1 if and only if ρ(L(0, ω)) > 1, in which case ρ(L(γ, ω)) �

ρ(L(0, ω)) > 1,
where 0 denotes the zero vector.
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Proof. Since ρ(Ll) < d,Dl − Ll is a nonsingular M-matrix and Ul � 0, which im-
plies that A = (Dl − Ll) − Ul is an M-splitting, and hence is block upper triangular
regular (see Section 2). Let

Ml = 1

ωl
(Dl − γlLl), Nl = 1

ωl
[(1 − ωl)Dl + (ωl − γl)Ll + ωlUl],

M̃l = 1

ωl
Dl Ñl = 1

ωl
[(1 − ωl)Dl + ωlLl + ωlUl].

Then M̃l is diagonal and Ml � M̃l, l = 1, . . . , k. Clearly, A = Ml −Nl = M̃l − Ñl

are all M-splittings since 0 � γl � ωl � 1. Because

H = L(γ, ω) and H̃ =
k∑
l=1

ElM̃
−1
l Ñl = L(0, ω),

the result follows from Theorem 3.1. �

If the conditions that γl � ωl, l = 1, . . . , k, are omitted, then we have:

Theorem 4.2. Let A = Dl − Ll − Ul, where Dl = diag(d(l)1 , . . . , d
(l)
n ) is a positive

diagonal matrix, Ll and Ul are nonnegative, l = 1, . . . , k. Let ρ(Ll) < d and 0 �
γl � 0, 0 < ωl � 1, l = 1, . . . , k. Then one and only one of the following mutually
exclusive results holds for any given weighting El :
(i) ρ(L(γ, ω)) � ρ(L(0, ω)) < 1,
(ii) ρ(L(γ, ω)) = ρ(L(0, ω)) = 1,
(iii) ρ(L(γ, ω)) � ρ(L(0, ω)) > 1.

Proof. Let Ml , Nl, M̃l and Ñl be as in the proof of Theorem 4.1. Then M̃l is a
diagonal and Ml � M̃l, l = 1, . . . , k. Clearly, A = Ml −Nl = M̃l − Ñl are block
upper triangular, and the second splitting is an M-splitting. Now we need to show
that the first splitting is nonnegative. It is easy to check that Ml is a nonsingular
M-matrix and

M−1
l Nl=(1 − ωl)I + ωl(Dl − γlLl)

−1[(1 − γl)Ll + Ul],
NlM

−1
l =(1 − ωl)I + ωl[(1 − γl)Ll + Ul](Dl − γlLl)

−1.

Since 0 � γl, ωl � 1,M−1
l Nl and NlM

−1
l are nonnegative, which proves our as-

sertion. Because H = L(γ, ω) and H̃ = L(0, ω), the result follows from Remark
3.6. �

When γ = 0, the parallel GAOR method (L(0, ω)) corresponds to the extrapo-
lated Jacobi-type multisplitting and the iterative matrix is L(0, ω). When γ = ω =
1 := (1, 1, . . . , 1)T, L(1, 1) denotes Gauss–Seidel-type multisplitting. Applying the
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Theorem 4.1 for this case gives a Stein–Rosenberg type theorem for Gauss–Seidel-
type multisplittings and Jacobi-type multisplittings for any weighting El:
(i) ρ(L(1, 1)) < 1 if and only if ρ(L(0, 1)) < 1, in which case, ρ(L(1, 1)) �

ρ(L(0, 1)) < 1,
(ii) ρ(L(1, 1)) = 1 if and only if ρ(L(0, 1)) = 1,
(iii) ρ(L(1, 1)) > 1 if and only if ρ(L(0, 1)) > 1, in which case, ρ(L(1, 1)) �

ρ(L(0, 1)) > 1.

Remark 4.1. Theorems 4.1 and 4.2 give a general comparison theorem between
a GAOR multisplitting and an extrapolated Jacobi-type multisplitting, from which
many previous results can be obtained.
• Applying Theorem 4.2 for the case Dl = I gives the Theorem 2.1 of [20].
• If we take k = 1, we obtain the Stein–Rosenberg type theorem for generalized
single Jacobi and generalized single Gauss–Seidel iterations (also see [21, Theorem
3.1] or [11, Corollary 2.1]).

• If we assume that A is a nonsingular M-matrix, (Ml,Nl, El) and (M̃l, Ñl, Ẽl),
l = 1, . . . , k, are overlapping Jacobi multisplitting and nonoverlapping Jacobi mul-
tisplitting, respectively, then (1.6) follows immediately from Theorem 3.1, which
is Theorem 2.2 of [7].

• Since SOR iteration is a special case of AOR iterations with γ = ω, applying
Theorem 4.1 and letting γ = ω give the comparison result for the SOR-type multi-
splitting and extrapolated Jacobi multisplitting.

It is also noted that Theorem 4.1 can be extended to block Jacobi-type multi-
splittings. In the following corollary, we obtain a generalization of [18, Theorem
4.1].

Corollary 4.1. Let A be a nonsingular M-matrix and A = D − Ll − Ul, where D
is a nonsingular Z-matrix, Ll and Ul are nonnegative, l = 1, . . . , k. Let

0 � L � Ll � L � D − A.

and A = D − L− U = D − L− U. Then

ρ(L(γ , ω)) � ρ(L(γ, ω)) � ρ(L(γ , ω)) < 1, (4.1)

where γ = min{γl},ω = min{ωl}, γ = max{γl} andω = max{ωl}, andL(γ , ω) and
ρ(L(γ , ω)) denote the classical AOR methods with the parameters (γ , ω) and (γ , ω),
respectively.

Proof. Taking

Ml = 1

ωl
(D − γlLl), Nl = 1

ωl
[(1 − ωl)D + (ωl − γl)Ll + ωlUl],

M = 1

ω
(D − γL), N = 1

ω
[(1 − ω)D + (ω − γ )L+ ωU ],

and
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M = 1

ω
(D − γL), N = 1

ω
[(1 − ω)D + (ω − γ )L+ ωU ],

then A = M −N = M −N with M � Ml � M, l = 1, . . . , k. Since D � D − L

� D − Ll � D − L � A and A is a nonsingular M-matrix, D,D − L,D − Ll and

D − L are all nonsingular M-matrices, which implies that M−1 � 0 and M
−1 � 0.

By taking the approach similar to the proof of Theorem 4.1 it is easy to show that

M
−1
N � 0 and NM

−1 � 0. Hence A = M − N is a nonnegative splitting. A =
M −N is also a nonnegative splitting. Then (4.1) follows from Theorem 3.4 of [5]
immediately. �

Remark 4.2. In [18], the author proved (4.1) only for γ � ω, γ � ω and under the
assumption that D is an M-matrix. These conditions are not necessary in Corollary
4.1.
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