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Abstract 

The crystal structure of bovine liver annexin VI has been determined to low resolution by molecular replacement. The first lobe 
(domains 1-4) is rotated about 90 ° relative to the second lobe (domains 5-8). Since the same crystal form (P43, 68 X 68 x 205 ,~) grew 
from (NH4)2SO4, polyethylene glycol, and sodium acetate with and without added calcium, this probably reflects the structure in 
solution. When bound to a lipid monolayer both lobes of annexin VI are coplanar. This implies a significant change in conformation upon 
binding to membranes. 
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1. Introduction 

Annexin VI is unique because it has eight domains. All 
other annexins have four domains, each of  which is about 
69 amino acids long and has five o~-helices. Each domain 
has two interheli× loops on the inferred membrane binding 
surface that may coordinate calcium jointly with phospho- 
lipid headgroups. This calcium-dependent binding to phos- 
pholipids and membrane surfaces is one of  the defining 
characteristics of  annexins. 

The four domains pack together to form a trapezoidal 
lobe about 60 by 40 A in .surface area. The lobe is about 
30 A thick and has an approximate two fold axis of  
rotation perpendicular to the membrane surface, as seen in 
the crystal structures of  annexin V [1], annexin I [2], 
annexin IV [3], and annexin III [4]. This local two fold axis 
relates domains 1 and 2 to domains 3 and 4. By homology 
[5] domains 5 and 6 of  ~mnexin VI are inferred to be 
related to domains 7 and 8 

We saw peanut-shaped projected densities in images 
reconstructed from electron micrographs of  microcrystals 
of  annexin VI [6]; however, we could not resolve individ- 
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ual molecules nor infer the orientations of  the two lobes. 
Electron micrographs of  annexin VI bound to phospholipid 
monolayers were interpreted [7] as indicating that both 
lobes are coplanar. However, the resolution of  the images 
of those negatively stained samples extends to only 50 A. 
Further, it remains unclear whether this conformation also 
exists in solution. 

In the present study we have determined the relative 
orientation of  the two lobes of bovine annexin VI in the 
crystal by molecular replacement using x-ray diffraction 
data to 3.0 ,~ resolution. The two lobes of annexin VI are 
perpendicular to each other, suggesting that a major change 
in conformation must occur when the molecule binds to a 
lipid monolayer. 

2. Materials and methods 

2. I. Preparation 

Annexin VI was isolated from bovine liver. An initial 
post-microsomal supernatant was prepared from fresh tis- 
sue as described by Zaks and Creutz [8] and calcium-de- 
pendent, lipid-binding proteins, including annexin VI, were 
extracted from this supernatant by binding to brain lipid 
vesicles [9]. The lipid-binding proteins were released from 
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Table 1 
Data reduction 
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4.0 ,~ set 3.5 ,~ set 3.0 A set 

x'tal size (mm) 0.13 x 0.13 x 0.40 0.17 × 0.17 x 0.50 0.17 × 0.17 × 0.50 
Temperature (°C) 20 - 173 - 173 
Unit cell (A) 68.6 × 68.6 × 208.2 68.1 × 68.1 X 205.2 67.4 X 67.4 × 200.1 
Resolution (A) 30-3.3 30-3.0 30-2.5 
< I/tr(1) > 7.0 9.1 20.7 
< Redundancy > 3.7 3.8 3.8 
Completeness (%) 81 100 99 
Rscal e (%) 19.4 14.7 6.6 

the vesicles with 10 mM EGTA and fractionated on a 
Poros Q anion-exchange column. The fractions that con- 
tained annexin VI were precipitated with 70% saturated 
(NH4)2SO 4, redissolved in 30 mM KC1, 25 mM Hepes 
(pH 7.3) and applied to a Pharmacia Superose 12 gel 
filtration column. The purity of  individual fractions was 
analyzed by SDS-PAGE, Fractions were 0.5 to 0.8 m g / m l  
in protein and were used directly, or after being concen- 
trated about four fold in a Centricon cell, in hanging drop 
crystallizations or after addition of  EGTA or addition of  
calcium. 

2.2. Crystallization 

Bovine annexin VI was crystall ized by the hanging drop 
method. Two /zl of  reservoir were added to 10 /xl of  
protein solution on the cover slip prior to inversion and 
placement over the well of  a Linbro microtiter plate. 

2.3. X-ray diffraction data measurement  

Three sets of native data were measured over twenty 
months, each from larger crystals that diffracted with 

Table 2 
Molecular replacement translation searches (3.0 A data set) 

greater intensity to higher resolution. These are referred to 
as the 4.0 A, the 3.5 A, and the 3.0 ,~ sets. The improve- 
ments in molecular  replacement calculations reflect the 
higher resolution and especially the intensity, or statistical 
significance, of  the later sets. Data were measured using 
Cu K~ radiation, h = 1.54 ,~ at 20°C (4.0 ]~ set), and 
twice at Brookhaven National Laboratory ° using syn- 
chrotron radiation h = 0.969 and h = 1.009 A at - 173°C, 
all three data sets were measured on image plate detectors. 
Data were reduced and scaled using DENZO and SCALEPACK 
[10,11]. 

2.4. Se l f  rotation and molecular  replacement  calculations 

Self rotation function calculations were performed with 
ALMN and molecular  replacement calculations with AMORE, 
both in the CCP4 package [12]. Either human annexin V 
[1], or human annexin I [2], or bovine annexin IV [3] 
structures were used as probes. The most successful probes 
used full amino-acid side chains when the probe and 
bovine (where known, otherwise mouse) annexin VI se- 
quences are (near) identical and truncated (usually) to Ala  

(a) One search probe rotation orientation of search probe 

Search 1-4 

#3 
5.3 

15.6 
53.1 

Search 5-8 
6.2 

18.3 
52.4 

(b) One search probe, one fixed probe rotation orientation of search probe 

5.6 
17.0 
52.7 

13.5 13.0 
Search 5-8 30.2 27.7 
(1-4 fixed in other rotation) 48.8 49.6 

#1 
4.8 Peak height 

18.2 Correlation coefficient 
52.8 R-factor 

#3 #1 
11.1 13.8 

Search 1-4 26.2 30.2 
(5-8 fixed in other rotation) 49.8 48.8 
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when not identical. The percentage identities of the three 
probes to the two lobes are similar: 

annexin I IV V 
lobe 1-4 45% 54% 60% 
lobe 5 -8  46% 51% 49% 

peak (from the 3.0 ,~ set) at a = 0 °, /3 = 180 °, y = 80 °, is 
85 relative to an origin of 100. This indicates a noncrystal- 
lographic two-fold rotation axis. There is one molecule per 
asymmetric unit; this two-fold relates lobe 1-4 to lobe 
5-8.  

The three probe structures gave similar results; those from 
annexin IV are cited. 

3. Results 

3.1. Crystallization conditions 

From the growth of the first microcrystals in 1991 [6] 
we have tried to get larger crystals that diffract to higher 
resolution. We have grown (near) isomorphous crystals 
from 5% w / v  polyethylene glycol (PEG) 4000 (pH 7.2), 
8% saturated (NH4)2SO 4 (pH 7.2), and 1.2 M sodium 
acetate (pH 6.7); reservoir concentrations. This range of 
crystallization conditions strengthens the inference that the 
perpendicular conformation seen in the crystal is also the 
form that exists in a range of solution conditions. Further, 
recombinant mouse annexin VI forms micro-crystals in 
sodium acetate that are very similar to those of bovine 
annexin VI. 

Initially we obtained larger microcrystals in PEG and in 
(NH4) 2 SO 4 in the presence of EGTA; however, crystals of 
similar morphology also grew in the presence of added 
calcium. All three data sets were measured from crystals 
grown in 1.2 M sodium acetate. The 4.0 ,~ and the 3.5 A 
crystals had no added calcium; the 3.0 ,~, crystal was 
grown in the presence of 6.0 mM added calcium. This 
implies that the change(s) in conformation associated with 
calcium binding are small enough to accommodate crystal- 
lization in the same unit cell. 

3.2. Data analysis 

The data measurements and molecular replacement cal- 
culations provide precedents for others determining crystal 
structures by Patterson search methods. The details of 
these analyses will be published elsewhere; several results 
are of more general interest. Characterization of the three 
sets is briefly summarized in Table 1. To ap~proximation 
the first data set has information to nearly 4.0 A resolution, 

o o 

the second to 3.5 A, and the third beyond 3.0 A; hence 
their respective names. The 3.5 ,~ data set and even the 4.0 

set gave the correct translation function peaks. However, 
the significance of these peaks is much stronger with the 
3.0 A set; it has a higher < I / o r ( I )>  and much lower 

Rscale. 

3.3. Self rotation function 

The three data sets give similar maps with the radius of 
o 

integration over the range from 15 to 20 A. The highest 
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Fig. 1. Translation search with the fixed probe in one translation and 
rotation orientation and the search probe in the other rotation orientation. 
Panel a: search probe 5 -8  is in #1  rotation orientation; probe 1-4  is 
fixed and in #3.  Panel b: search probe 1-4  is in #1  rotation orientation; 
probe 5 -8  is fixed and in #3 .  



280 H. Kawasaki et al. / Biochimica et Biophysica Acta 1313 (1996) 277-282 

C 



H. Kawasaki et al. / Biochimica et Biophysica Acta 1313 (1996) 277-282 281 

3.4. Molecular replacement rotation functions 

Search peaks were listed in order of descending height. 
The highest and third highest peaks, referred to as # 1 and 
#3, which correspond to lobe 1-4 and lobe 5-8,  satisfy 
the constraint imposed by the self rotation function: [self] 
× [cross 1] = ? = [cross 2]. Several other pairs of high 
peaks also satisfied this condition and were evaluated. 
They do not yield peaks as high as the correct peaks in the 
subsequent translation searches. 

monolayer that is constrained to lie at an air, water inter- 
face. These two findings strongly imply flexibility in the 
linker joining lobe 1-4 and lobe 5-8. Although calcium is 
required for interaction with the monolayer, it appears that 
the perpendicular conformation of annexin VI in solution 
is little changed on binding calcium. 

It is reasonable to anticipate intermediate conformations 
of annexin VI in which a less constrained membrane might 
be somewhat distorted. 

3.5. Molecular replacement translation functions Acknowledgements 
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3.6. Packing 
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4. Discussion 

The planes of the two lobes of annexin VI are rotated 
about 90 ° relative to one another in the crystal structure 
and supposedly in solution. Driessen et al. [7] found that 
the two lobes of annexin VI are coplanar when bound to a 
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