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Abstract 

Minimaxing has been very successful in game-playing practice, although a complete explanation 
of why it has been that successful has not yet been given. In particular, it has not been shown why 
it should be useful-as it is in practice-to use multivalued evaluation functions. Such functions 
have many distinct values as their result and can discriminate between positions according to the 
heuristic knowledge represented in these values. In this paper, we modify a basic pathological 

model by adding two assumptions regarding multivalued evaluation functions. These assumptions, 
non-uniformity of error distribution and dependency of heuristic values, directly relate to the 
properties of multivalued evaluation functions as used in practice. Simulation studies of our 
multivalued model have exhibited sharp error reductions for deeper searches using minimaxing. 
This behavior corresponds to observations in practice. The error reductions are primarily due to 
the impr0ve.d evaluation quality as search depth increases. This phenomenon of lower probability 
of static evaluation errors with increasing search depth is revealed through our model, although the 
same evaluation function is used at all levels of the tree, and although its general error probability 
is independent of the depth. Essentially, with increasing search depth, the evaluation function is 
more frequently used on such positions which can be more reliably evaluated by a multivalued 
function with the assumed properties. This effect together with the ability to discriminate between 
positions of different “goodness” leads to the benefits of using multivalued evaluation functions 
(of appropriate granularity) for minimaxing. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Commercial chess programs and computers are now widely available that defeat most 

of their human opponents. Recently, the special chess machine Deep Blue even defeated 
the highest-rated human chess player for the first time in a match consisting of several 
games under tournament conditions. Since 1994, the checkers program Chinook is even 
the official man-machine world champion [ 311. However, it is not completely known 

why these machines play that well-due to deep searches using minimaxing. After all, 
some theoretical studies have even shown to the contrary that minimaxing can result in 
pathological behavior, i.e., the deeper the minimax search the worse the result. Thus, 
there has not yet been a full explanation of the dramatic benefits of using minimaxing 

for deeper and deeper searches in game-playing programs as observed, e.g., in computer 

chess and checkers practice. 
We think that this lack of insight is because until now no one has seriously investi- 

gated the role of using multivalued functions for heuristic evaluation and back-up, i.e., 
functions with more heuristic values than “true” values in the sense of WIN or LOSS. 

While such functions have many distinct values as their result, most theoretical studies 
have restricted the investigated models to only two heuristic values. Other studies that 
have investigated multivalued functions have not assigned any special meaning to dif- 
ferent values. Therefore, no difference has been found in the behavior compared to the 

corresponding model with two values. 
It seems clear, however, that some important aspects observed in practice must have 

been lost in these models. In fact, we are unaware of any single chess, checkers, or 

kalah program that is confined to just two heuristic values (or three, including draws). 
For instance, how should such a program discriminate between a position with a slight 
advantage from one that is clearly won? Therefore, we performed an experiment using an 
adapted tournament chess program confined to three heuristic values (see the Appendix). 

The results of this experiment show that the benefits of searches using minimaxing are 
much more pronounced with multiple heuristic values. 

This is the first work showing the reason why the use of a multivalued evaluation 
function is important for minimaxing. Such functions are ubiquitous in practical applica- 

tions of minimaxing, and our model as introduced in this paper captures what is essential 
in using them in order to make minimaxing strongly beneficial. Both the assumptions 

of our model and the results from its application correspond quite closely to what is 
observed in practice. 

This paper is organized in the following manner. First, we sketch the background 
of this work in order to make this paper self-contained. Then we describe our multi- 
valued model. It contains two important assumptions that are motivated and described 
in detail. After that, we elaborate on the experiment design for examining the be- 
havior of this model. Based on this experiment design, we present the results of 
simulation studies that investigate the behavior of the static and dynamic evaluation 
errors as well as the errors of move decisions with increasing search depth. More- 
over, we show the influence of different granularity in the sense of the number of 
distinct values. Finally, we compare our approach with related work in the litera- 
ture. 
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2. Background 

Except in very rare cases, there is no practical way of determining the exact sta- 
tus (the true value) of non-goal nodes. Therefore, it is usually necessary to resort 

to heuristic estimates. These can simply be point values that range over an inter- 

val of integer numbers (or, for theoretical purposes, sometimes real numbers). Such 
heuristic values are assigned by a so-called static evaluation function f which incor- 
porates heuristic knowledge about the domain in question. In this paper it is suffi- 

cient to consider f(n) as some function that evaluates each node n with some er- 

ror. 
Given such an evaluator, the question remains how its values can be used for making 

reasonable decisions. When exactly one ply is searched, it seems clear that the choice 
is one of possibly several actions leading to the “best” value (maximum or minimum). 

But since the immediate application of f to the children of the given node usually 
does not lead to good decisions, it seems natural to look ahead by searching deeper 

and evaluating the resulting nodes. For such a procedure it remains to be specified how 
deep the various branches should be searched and, how the heuristic values should be 

backed up (i.e., propagated) towards the given node’s children. In two-person games 
with perjixt information the most successful approach for the back-up of values has 
been minimaxing, although there has been some theoretical doubt on its usefulness. In 

the following, we assume that f(n) assigns a value to a node n from the viewpoint of 

the moving side at n. 

Definition 1. A minima value MMf(n) of a node n can be computed recursively as 

follows (in the negumux formulation) : 
(1) If n is considered terminal: MMf(n) +- f(n) 
(2) else: MMf( n) t maxi( -MMf(ni) ) for all child nodes ni of n. 

Since the depth of such searches will be important for the purpose of this paper, we 
also define a special case of using this rule. 

Definition 2. MM;(n) is the minimax value of node n resulting from exactly d appli- 

cations of recursion (2) in Definition 1 in every branch of the search tree. 

In fact, MM;(n) is the minimax value from a full-width search of the subtree rooted 

at n to a uniform depth d. 

3. A multivalued model 

For our multivalued model we assume that 
( 1) the tree structure has a uniform branching degree b, 

(2) true values of nodes (TV) are either WIN or LOSS, 
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true values have the game-theoretic relationship of two-person zero-sum games 
with perfect information, ’ and 

heuristic values h (assigned to a node n by a static evaluation function f(n)) 

are elements of the set {-h,,,,. . . , -l,+l,.. .,+hmax}.* 
These assumptions are derived from Pearl’s [ 291 basic pathological model. 
At all different depths we use the same evaluation function, and its general error is 

independent of the depth. In Pearl’s model of “improved visibility” [ 291, the accuracy 
of the evaluation function has to improve by at least 50 percent per move cycle in order 
to avoid pathological behavior. In chess, however, no such improvement of accuracy can 
be seen when considering the static evaluation functions of actual programs. Computer 
chess experts agree that the endgame evaluators are in general worse than those for the 
midgame, but this very slight increase of error is difficult to quantify. In fact, within the 

horizon of one search the quality of an evaluator remains nearly constant. 
In addition to these basic assumptions, we specify in the next two sections some 

very important characteristics of an evaluation function as observed in strong chess and 
checkers programs. The first characteristic-non-uniformity of error distribution-is re- 
sponsible that the different values of such a multivalued function have different meaning. 

The second characteristic-dependency of heuristic values-is utilized in practice for 
efficient incremental computation of such a heuristic evaluation function. 

3.1. Non-uniformity of error distribution 

First, we discuss the role of multivalued evaluation functions in practice and how it 
can be modeled using probabilities. More precisely, we define “probabilities to win/lose” 

and then error probabilities. We argue that the errors of the heuristic values from such 

a static evaluation function are not uniformly distributed in practice, so that we model 
them here through a non-uniform error distribution that is based on the distribution of 

the “probabilities to win/lose”. 
In practice, a multivalued evaluation function is used to express the degree of “good- 

ness” of a game situation in chess, checkers, or kalah for the moving player and to 
include domain-specific knowledge that measures factors such as material balance, mo- 
bility, etc. The values of these components are typically combined by a weighted sum, 
although non-linear combinations are sometimes also used. The resulting values induce 
a partial order on the various positions of a game according to their worth in the sense 
of “goodness” or “strength” for one side. High estimates (typically positive values) 
indicate a “strong” position, whereas low estimates (typically negative values) are used 
for “weak” positions. 

’ A nonterminal node is won if at least one of its child nodes is won. 

* In chess, a simple evaluation function which is based on the sum of the chess pieces’ material values gives 

rise to a value of 42 for hmax. Details regarding the calculation of this value can be found in [ 321. Evaluation 

functions used in successful programs have actually finer-grained evaluation functions since they additionally 

evaluate positional aspects. Using such additional knowledge allows to discriminate better between positions 

of different “goodness”, which will be discussed in more depth below. However, the qualitative effects are 

the same, and restricting to the material balance avoids that the reader must be very familiar with specifics of 

chess (or checkers). So, for showing the major effects in this paper we use hmxx = 42. 
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For modeling purposes, it is important to precisely define the meaning of these intuitive 

notions. R’hile the real meaning of the point values is not completely clear, probabilities 
can be used for modeling purposes. For instance, heuristic point values have sometimes 
been related to the notion of “probability to win”, i.e., the probability of winning 
the game from positions having a specific heuristic value [ 301. 3 Chess and checkers 
programs, for instance, assign large heuristic values to positions evaluated as clearly 
favorable. In practice, they win games more often when they achieve such positions on 

the board. The higher these values, the more likely the program is winning. Therefore, 
it is clearly reasonable to assume that small heuristic values have a low probability 
to win, which increases monotonically with increasing heuristic values. Furthermore, 

for positive heuristic values it is more likely to win than to lose. Pearl [30, p. 3601 
proposed such a function based on the arc tangent function in order to be able to use 

product propugatian with the common estimators. In a more practical approach, Horacek 

[7] informally used a function with similar shape in order to handle reasoning with 
uncertainty in a computer chess program. 

In our model, we want to have a more general function that relates values to probabil- 
ities. Pearl’s function based on the arc tangent cannot be parameterized, so we generalize 
it to a set of “probability to win” distributions w,(h) by introducing a parameter c.~ 
The parameter c allows us to specify the slope of the curve. For simplicity, we assume 

a continuous range of heuristic values at this point. 

‘+ 
1 h 

2 2arctan(c) 
arctan c- 

w,(h;l = ( > h 
if h = f(n) E i-h,,, h,,,l, 

mm (1) 
0 otherwise. 

In the experiments, we use the discrete set {-h,,, . . . , - 1, +l, . . . , +h,,} as given 
in the basic assumptions above. Analogously, a “probability to lose” can be defined by 
1 -w,(h). 

In the following, we are mainly interested in the errors made by such an evaluation 
function. E:rrors occur when a node with true value WIN (LOSS) is assigned a negative 

(positive) heuristic value. In order to define such errors more precisely, we need an 
auxiliary definition first for mapping heuristic values to true values. 

Definition 3. The utility function u(h) maps heuristic values to true values in the 
following way: 

u(h) := 
WIN, hg {l,...,hmw}, 

LOSS, h E {-hmax,.. . ,-1). 

Based on this definition, we characterize the error made by an evaluation function f 
as a probability of error. 

3 A general discussion of different meanings of “probability to win” can be found in [S] 

4 s-“, w,(h) dh = 1, see [ 321 for a proof. 
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Fig. I. Shape of ax&n-based error functions e, for c = I, 4, 16, and with h,,, = 42 for a heuristic evaluator 

of the material balance in chess counting the pieces’ material values only. 

Definition 4. The error probability e(n) of the static value h = f(n) of node it assigned 
by the evaluation function f is defined as 

e(n) = P(df(fi>> + Wn)). 

The probability of such an error is, however, not the same for all heuristic values. 
Experience with chess and checkers programs, for instance, has shown that very “strong” 
(“weak”) positions with extremely high (low) heuristic values seldom have the actual 
status LOSS (WZN). The smaller the absolute value, the larger is the probability of 
incorrect evaluation. This clearly indicates that the error distribution is non-uniform in 
practice. We model this by the following conditions: 

e(n)) < e(122) if ht = f(nt> > h2 = f(n2) > 0, 

e(nt) < e(n2) if ht = f(nl) < h2 = f(n2) < 0. 

These conditions represent monotony requirements for error distributions according to 
our approach. For defining concrete error distributions that satisfy them, we make use 

of the “probability to win” distributions as defined by w, in Eq. ( 1) . In fact, there is a 
strong relationship between the “probability to win” and the probability of error. Since 
such errors occur when a node with true value WIN (LOSS) is assigned a negative 
(positive) heuristic value, the probability of error e,(h) for negative heuristic values 
h is defined by the “probability to win” w,(h) . Analogously, the probability of error 
e,(h) for positive heuristic values h is defined by the “probability to lose” 1 - w,(h) . 

e,(h) = 
WC(h), h < 0, 

1 -w,(h), h > 0. 
(2) 

Since w, ( -h) = 1 - w,(h), e,(h) is symmetric. Fig. 1 shows the shape of three error 
functions e, parameterized by different values of c. The probability of error increases 
monotonically, reaches its maximum at h = 0, and decreases monotonically for positive 
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values. A lhigh value of c allows the specification of a “steep” error function (see Fig. 1). 
In such cases, even heuristic values of, e.g., -10 or +lO (out of the range -42 to +42) 
have a quite small probability of error. In fact, computer chess practice has shown that 
positions with such a material advantage of, e.g., two rooks (or similarly, a queen and 
a pawn) are very seldom lost. 

Pearl’s analysis [29] of his pathological model uses the assumption of independent 

and identically distributed (i.i.d.) true and heuristic values. Therefore, any specific 
distribution could be assumed for the heuristic values without changing the behavior of 

this model (as long as the identical distribution is used for each value independently). 
Consequently, the use of the described error function e, in this context does not change 
the pathological behavior of the model by Pearl. So, another assumption is yet needed 

to achieve the desired properties of our model. 

3.2. Dependency of heuristic values 

There is some agreement that the independence assumptions are the most critical ones 
in the pathological models. However, most of the previous work studied dependencies 

of the tmo values, and for these it is quite difficult to establish the correspondence to 
practice. But how do heuristic values depend on each other? In earlier work [ 151, we 
used quiescence to model such a dependency for two distinct heuristic values. In the 

context of many heuristic values, the assumption of independence of each other is even 
more unrealistic: it would imply that every value is possible at every node. However, in 
practice the changes in heuristic values are not completely random between successive 
positions. In particular, the values cannot change in one single step from one end of the 

scale to tbe other. 
In fact, Fuller et al. [6] proposed an incremental model that was used by Newborn 

[ 281 and Knuth and Moore [ 161 for investigations about the pruning efficiency of the 
alpha-beta algorithm. Fuller et al. and Newborn randomly assign a value from the set 

{1,2,... , IV} to the branches and define the score (heuristic value) of a terminal node 
as the sum of the values of the branches on the path to this terminal node. 

We adapt this dependency model slightly to better reflect the situation in practice. 
In the original model, values at different depths of the tree have a different meaning, 

since the values can only increase with increasing depth. We prefer to keep a constant 
limit point (i.e., 0) between “weak” and “strong” positions. Therefore, one should 
rather assign values from the set {-a, . . . , +a} to the branches (a can be regarded as 

an augmentative value). Our experiments with this approach gave essentially the same 
results as those reported below, but we tried to obtain an even more realistic model. 
In chess -programs, for instance, the static evaluation typically changes only in one 
direction according to which player is moving since, e.g., the capture of a piece changes 
the evaluation in favor of this player. Consequently, the static evaluation cannot decrease 
with MAX on move and increase with MIN on move.5 Non-capture moves may also 

’ In z.u~zwrwg situations, the search may well discover that the backed-up value decreases with MAX on 
move becaur,e of being forced to move, but this does not contradict our approach to model the incremental 

dependency of heuristic values as assigned by the static evaluation function. 
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Fig. 2. Distribution of heuristic values at depths d = 2,4,. , 14. (b = 2, h E (-42,. , +42}, a = 9.) 

leave the value unchanged. If 0 is the minimum change and a denotes the maximum 
change in the evaluation between position n and its child nodes ni, this constraint can 
be formally written as 

MAX: f(n) 6 f(ni) 6 f(n) + a, 

MIN: f(n) -a 6 f(nt) 6 f(n). 
(3) 

Now let us investigate how this dependency through incremental changes of values 
effects the distribution of the heuristic values at the search frontier. The incremental 

changes of the values are randomly assigned from the allowed range. Using this con- 
straint the distribution of the heuristic values in a game tree cannot be uniform. Since 
the minimax value MM~(n) is computed using the heuristic values at the search frontier 
of depth d, the distribution of the heuristic values at this search frontier has an impact 
on the minimax value. Let us assume that the minimax value of a position with a 
heuristic value is computed that does not clearly indicate which side is in favor. (We 

denote such positions as interesting below.) Starting, e.g., with 0 as the heuristic value 
for the root node, most of the heuristic values found in the searched game tree will 
vary little from the root’s value. A heuristic value of f42 can only occur after at least 
10 plies (using a = 9). 6 Assuming, for instance, 0 as the heuristic value of the root 
node, a branching degree b of 2, and possible heuristic values (-42,. . . , +42}, Fig. 2 
shows the distributions of heuristic values obtained in simulations at the search frontier 
ford = 2,4,..., 14. The “steepest” distribution is shown for d = 2, the “shallowest” 
for d = 14. On the whole, shallower distributions occur with increasing d. Since the 
heuristic value of the root node is 0, searches of depth d = 2 can only find heuristic 
values between -9 and +9 at the frontier. At depth d = 4, the range of the heuristic 
values is already - 18 to +18, etc. Therefore, the distribution of the heuristic values at 
the search frontier has to become shallower with increasing search depth d. 

6 In chess, the value of a queen is usually considered to be 9. The case of check-mate is ignored. 
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Chess and checkers programs, for instance, utilize such a dependency of heuristic 
values for saving time by incremental computation of such a heuristic function. A small 
chess example below illustrates this. Since this kind of dependency occurs in such 

programs, ,also its effect on the distribution of the heuristic values at the search frontier 

occurs, which we observed ourselves in traces of the search trees generated by our own 

computer chess program. 
Note, that this is the first use of such a dependency assumption that relates the 

heuristic values for the investigation of minimax pathology/benefits issues. Although 
the N-game model by Nau [ 271 was inspired by the same idea, it relates the true values 
during the construction of a specific game board. In our model, the true values are also 
dependent since they are related to the heuristic values by the error probabilities and 
since the heuristic values depend on each other. However, this dependency of the true 
values is only indirect, and in our model the errors are not uniformly distributed. We 

prefer to model the dependency of the heuristic values as described, since it is quite 

obvious in practice. 

4. Experiment design 

In order to examine the behavior of our model, we performed experiments in the form 
of simulation studies similar to those described in [ 151. Before we discuss the results, 

let us describe the experiment design. 
In essence, synthetic game trees satisfying the model assumptions were generated 

first. Then minimax searches of different depths were performed in the generated game 
trees. These searches computed minimax values MM!(n) for all the possible depths d 

in such a tree. ’ 

The goal of performing these searches was to gather data for the static and the 
dynamic evaluation errors as well as errors of move decisions. The emphasis of these 
simulation studies was on how the various errors change with increasing search depth. 

We restricted the searches to interesting situations at the root. Intuitively, we define 
a situation as interesting that is represented by a node with an inconclusive evaluation. 
The precise meaning of interesting depends on the error probability e as well as on the 
range of heuristic values and is given below for the respective experiments. 

The reason for restricting the searches is that deeper searches are really useful when 
the root and the nodes encountered during shallow searches have inconclusive evaluations 

with a high error probability. This can be observed in practice as well as explained 
according IO our model. In case of an e,-type error distribution (illustrated, e.g., in 
Fig. I), searches starting from a value in the vicinity of 0 encounter heuristic values 
with a relatively high probability of error at shallow search depths. The actual status 
of these nodes could very likely be WIN as well as LOSS. In order to clarify the 

7 The static evaluation function f is characterized in such a simulated tree search by the corresponding 

parameters. Backward pruning vm.s used to avoid unnecessary effott; see for instance [ 161 for a description of 
the alpha-beta algorithm. This pruning complicates the reproducibility of the trees, so that we stored them in 

memory. A more recent approach to random tree generation during the search is described in [ 19, Section 41. 
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Table I 
Overview of our proposed assumptions and the corresponding models 

Assumptions used Dependency of heuristic values 

yes “0 

Non-uniformity of error distribution yes our complete model Pearl’s basic model 

no “uniform” model Pearl’s basic model 

situation, deeper minimax searches can be used. In contrast, if a minimax search starts, 

for instance, at a node with a heuristic value of -42 (at the very left of the scale), then it 
is unlikely that the minimax value is going to be positive. Since such a negative heuristic 

value also has a low probability of error (according to the non-uniform distribution of 
errors), this node can reasonably be considered to be LOSS independent of the search 
depth d. In this case deeper minimax searches would just confirm the result of a shallow 

search. 
Primarily, we were interested in the results of those experiments with trees according 

to our complete model that includes both of our additional assumptions. Still, there 
was the important question whether both of these assumptions are necessary to achieve 
the results that compare favorably with the observations from practice. In order to 
answer this question, it may seem that experiments with either and both assumptions 

removed would have to be made. However, not all of these cases had to be dealt 
with in the experiments, since some of them are covered by already existing theoretical 
results. Table 1 provides an overview of our proposed assumptions and the corresponding 

models. Both cases with no dependency of heuristic values are covered by the basic 
(pathological) model of Pearl [29] due to its i.i.d. assumption as discussed above. So, 

we designed the experiments for our complete model, and for a “uniform” model with 
only the assumption of non-uniformity of error distribution removed. In the “uniform” 
model, all the heuristic values have the same error probability. 

4.1. Error definitions 

In order to examine the behavior of the model, we define how the behavior can 

be measured in terms of errors. The principal question is whether the probability of 
(static) error e made by the evaluation function (as already defined above) is increased 
or decreased by backing up the heuristic estimates through several levels of the tree 
via minimaxing. We characterize these dynamic errors made by the minimax value of a 
certain search depth in estimating the true value as follows. 8 

Definition 5. The error probability e”(n) of the minimax value M$( n) of node n 
from a search to depth d using the evaluation function f is defined as 

cd(n) = P(u(fV$(n)) f TV(n)). 

s This definition is a generalized version of Definition 4.2 in [ 331 
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In our model a closer look at the probability of sfutic error is also of interest, since 
it changes with the search depth although the same evaluation function f is used at all 
levels of the tree, and although its general error is independent of the depth. While e 
of Definition 4 characterizes this general error made by the evaluation function, we are 
also interested in the specific error of evaluating those nodes statically whose values are 
actually backed-up through minimaxing. 

Definition 6. The error probability et of the static value h = f(nd) (assigned by the 
evaluation function f) of node nd at the search frontier with depth d from node IZ is 

defined as 

ef( n) = P(u(f(nd)) f n/( nd) 1 nd is a successor of depth d of node n). 

4.2. Tree generation 

Generally, every stochastic event in the tree is simulated by a call to a pseudo-random 
number generator, parameterized independently of the relative frequencies achieved 
earlier in the tree generation process. 9 

The game trees of depth dg are generated top-down beginning at the root node 
by a recursive procedure. Heuristic and true values are assigned to the child nodes 
n; of a node n such that first Eq. (3) constraining the heuristic values and then the 
game-theoretic relationship constraining the true values are established. lo The heuristic 
values of the child nodes ~ti are randomly chosen according to Eq. (3). Once given the 
heuristic values, the true values can be assigned to the nodes ni with the probability 
of error e, (or uniform probability of error) under the constraint of the game-theoretic 

relationship. 

5. Results 

As indicated above, we gathered data about the static and dynamic evaluation errors, 
as well as the quality of move decisions. The emphasis was to see if and how they change 
with increasing search depth. In addition, we studied the influence of the number of 
distinct values-the granularity-on the results of minimaxing. 

5. I. Evaluation errors 

Fig. 3 shows the probability of static evaluation error e% for different search depths 

d (actually we only show the data for each move cycle, i.e., two plies) in our com- 

’ The ones used are nrand48 and erand48 available under UNIX. UNIX is a registered trademark of AT&T. 
lo Due to the shape of the function e, (see Eq. (2) ), heuristic values must be assigned to nodes ni before 

the true values, because it is impossible to achieve such an errOr distribution starting with the true values WIN 

and LOSS. 
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2 4 6 8 10 
d 

Fig. 3. Errors in our complete model. ((1, = 15, b = 2, h E (-42, , - 1, + I, , +42}, a= 9, e z 0.15.) 

plete model. The data were gathered during searches in interesting situations. To define 
interesting situations for these experiments with h,, = 42, we used for the values of 
root nodes the sets { -1, +l} and a general static evaluation error e % 0.15, alterna- 
tively { -5, . . . , +5} and e M 0.1, as well as (-9, . . . , +9} and e M 0.1. For Figs. 3 
and 4, the first of these definitions was used, but we found analogous behavior for the 
other ones. On the whole, the value of e,” decreases with increasing d-the quality of 
static evaluation improves with increasing search depth-although the same evaluation 
function is used at all levels, and although its general error is independent of the depth. 
We call this behavior improved evaluation quality. 

This improvement can be explained in the following way. Since searches start at 
interesting positions, large heuristic values can only be found at searches with a large d. 
Therefore, the relative frequency of large heuristic values increases with the search depth 

d (see also Fig. 2). Using e, according to our complete model, these heuristic values 
h have smaller error probabilities. Therefore, the probabifity of static evaluation error 
ef has to decrease with increasing d-deeper searches more often find larger heuristic 
values with smaller error probabilities. 

In contrast, assuming uniform distribution of the static error as in the “uniform” model 

according to Table 1, ef has to remain constant. Deeper minimax searches cannot find 
heuristic values with a lower error probability because all of them have the Same error 
probability. 

Figs. 3 and 4 show the impact of the different static error distributions (e, or uni- 
form, respectively) on the dynamic error e d. In the case of our complete model that 

uses e,, Fig. 3 shows a sharp absolute and relative reduction of ed in the beginning, 
which dampens with increasing d. The behavior of ed is clearly not pathological but 
strongly beneficial. This kind of behavior can be observed in practice as discussed be- 
low in regard to move decisions. Fig. 4 shows the behavior for ed in the case of the 
“uniform” model that uses a uniform static error distribution-starting at d = 8, ed even 
shows a slight tendency to increase (i.e., pathological behavior). The absolute values 
of Fig. 3 and Fig. 4 are not comparable. In interesting situations, searches with an 
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Fig. 4. Errors in the “uniform” model. (dg = 15, b = 2, h E { -42, , - 1, + 1, . . . , +42}, a = 9, e z 0.15.) 

e,-type error distribution (summarized, e.g., in Fig. 3) encounter heuristic values with 
a relatively high probability of error at shallow search depths, whereas for a uniform 
error distribution even heuristic values near 0 have a low probability of error. Therefore, 
ed of Fig. 3 has to be larger than e d of Fig. 4 for shallow search depths. In general, 
the improvement of the dynamic and static evaluation quality in our complete multival- 
ued model with both assumptions-non-uniformity of error distribution and dependency 
of heuristic values-is much more pronounced than in a model which disregards the 
assumption of non-uniformity of error distribution in favor of using a uniform error 

distribution. 
According to the assumptions in the model of Pearl [ 291 the quality of the evalua- 

tion function has to increase per move cycle by more than 50 percent just to combat 
pathology. In our model, the static evaluation quality e% of Fig. 3 increases between 10.4 
percent (comparing d = 8 to d = 10) and 23.5 percent (comparing d = 2 to d = 4) per 
move cycle and we achieve a significant improvement of the dynamic evaluation quality 

ed with increasing search depth d. Due to the incremental dependency of the heuristic 
values in our model, the assumptions of Pearl’s analysis are not valid here. Therefore, 
this behav:ior does not contradict Pearl’s results. 

Experiments with different values of h,, and a showed the same qualitative results. 

Therefore, our results are not specific to chess but are generalizable to situations in 
kalah and checkers by using appropriate values for h-, a and c. 

5.2. Move decisions 

Now let us see how the errors characterized by ed influence the move decisions. 

A “player” based on minimaxing chooses one of possibly several moves leading to the 
maximum of those values that are backed-up from all the subtrees rooted in the successor 
positions. So, the errors of dynamically evaluating positions using minimaxing induce 
errors of move decisions. 
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Fig. 5. Quality of move decisions in our complete model. (d, = 15, h = 2, h E { -42, , - 1, + 1, . , +42}, 

a=9, E N 0.15.) 

Analogously to Pearl [ 29, p. 4311, we are interested in the probability of error of 
such move decisions. Assuming a game position with two successors, a WIN and a 
LOSS, an error is induced when the WIN position obtains a lower (dynamic) eval- 
uation than its LOSS sibling. In case of equal evaluations of WIN and LOSS and 
arbitrary tie-breaking (as usual), there is a 50 percent chance of inducing a decision 
error. 

As would be expected from the results presented above, in our model the quality 
of move decisions made by using minimaxing improves with increasing search depth. 
Fig. 5 illustrates this for the same experiments as shown above in Fig. 3. Much as 
the error probability ed of dynamic evaluation is reduced with increasing search depth, 
the probability of wrong move decisions is reduced. Similarly to the improvement 
of ed with increasing search depth, the improvements in minimaxing’s move deci- 
sions also dampen. While this phenomenon is qualitatively consistent with computer 
chess and checkers practice, our data cannot be compared quantitatively with that in 
a specific game, since for chess and checkers the true values are mostly unknown. 
Still, we can compare our results with those from experiments on the relative play- 
ing strength. For instance, Condon and Thompson [5] performed an experiment on 
the influence of search depth on the playing strength of full-width searching chess 
programs. The results gained indicate that increasing the search depth by an addi- 
tional ply of search (with an identical static evaluation function) leads to a significant 
increase in the score achieved against the shallower searching program. This improve- 
ment also dampened for larger search depths. More precisely, the performance rating 
improved by 335 points through increasing the full-width search depth from 4 to 5, 
and this improvement dampened strictly monotonically to 120 from depth 8 to 9 [5, 
Fig. 9.51. Junghanns and Schaeffer [9] report on recent investigations that show this 
phenomenon in a new way for real programs in games like chess, checkers and Oth- 
ello. 
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Fig. 6. A chess example illustrating a problem related to granularity. 

5.3. Granul!arity 

Since the main difference of our model proposed in this paper to other models is the 

particular use of multivalued evaluation functions, the question may arise, how many 
distinct values should be used. In other words, the relation of granularity to performance 
is of interest. Intuitively, it may seem the finer-grained the evaluations the better. In the 

following, we investigate this issue based on our experiments with our model and its 
relation to real programs for games like chess. 

We performed experiments with different numbers of distinct values. In order not to 

change anything else, we kept the same proportions between h,,, a and the parameter 
for “intereaingness”, and used proportionally adapted error distributions. For instance, 
in chess a rook is usually evaluated as 5 pawn units. So, assuming the value of a pawn 
is 1 point, the value of a rook is 5 points. Assuming, however, that the value of a 
pawn is 100 points, the value of a rook must be 500 points, so that no change about 
this “knowledge” is introduced. The value of 500 points must also have the same error 
probability n these experiments as the value of 5 points in the other. 

The results of these experiments with different numbers of distinct values were the 

same as those illustrated and explained above. At first, these results may be quite 
surprising, :since they may seem to contradict the intuition stated above. So, let us 

have a closer look at the reasons for these experimental results. As explained above, the 
important effect according to our model is improved evaluation qualify. It arises because 
the relative frequency of (relatively) large heuristic values increases with the search 
depth d (see again Fig. 2), and because these values have smaller error probabilities 
assigned than smaller heuristic values (see again Fig. 1). Since in these experiments 
the relevant proportions were constant, the same effect arises for different granularities, 
both qualitatively and quantitatively. 

Still, the question may arise what happens when there are too few distinct values, 
so that the proportions cannot be constant. For the illustration of this intricate case we 
prefer to use a simple chess example. For its understanding, no special knowledge about 
chess is required beside the relative values of knight and rook, which are usually 3 and 
5 pawn units, respectively. Fig. 6(a) shows two capture moves from a position with 



202 A. Scheucher, H. Kaindl/Arh$cial intelligence 99 (1998) 187-208 

some static value U. Let us assume that only the material values are considered here, so 
that the move to the left leads to a position with a static value u + 3, since it captures 

a knight. I1 Analogously, the move to the right leads to a position with a static value 

u + 5, since it captures a rook. Obviously, the values of the resulting positions can be 
distinguished, so that apart from the given error probabilities the “right” move will be 

chosen (either for minimax back-up or for being played). In contrast, Fig. 6(b) shows 
the situation when the values of both a knight and a rook are the same, e.g., x = 2. 
In this case, the capturing moves have the same incremental value. Consequently, also 
the values of the resulting positions are the same and therefore indistinguishable. When 
such a value is backed up, it does not reflect the difference between these moves and 
their resulting positions. A move decision in such cases is usually made arbitrarily (see 
also above), i.e., an additional error is introduced into such a move decision. 

This example shows what can happen when too few values are used compared to 
the knowledge available-in this case knowledge about relative values of chess pieces. 

Since the values determine a partial order of positions, using too few values reduces 
the ability to discriminate between positions and leads to a higher rate of random move 
decisions. The lower the granularity, the more likely such cases (as in the example) 

occur. For games with two true values, the extreme is to use just two heuristic values. 
Compare this also with the results of Adapted-Merlin given in the Appendix. Because 

of having a third true value--DRAW-in chess, there are also three heuristic values. In 
our model, we achieve such cases by mapping to fewer values, which leads to identical 
values of a node’s children (much as in the chess example above) and therefore to 
a higher rate of random move decisions. Once the model reduces to the case of only 
two heuristic values, the effect of improved evaluation quality cannot be achieved any 
more. 

In theory, the use of infinitely many distinct values or even real numbers could 
resolve the issue of random move decisions. In practice, however, there seems to be a 

certain limit for the usefulness of a larger numbers of values. In computer chess, for 

instance, typically a grain size around l/ 100 (or for technical reasons l/ 128) pawn unit 
appears to be used, and the checkers program Chinook uses a grain size of l/lOOth of a 
pawn. I2 This grain size is related to the available knowledge. While the best chess and 
checkers programs have knowledge about certain positional aspects, their evaluations are 
dominated by the material balance. A larger number of distinct values than needed to 
express the available knowledge is of no use. Our experiments with different numbers 
of distinct values confirm this. 

When more distinct values arise during search than useful relative to the given knowl- 
edge, this is even (slightly) harmful. More distinct values also mean less alpha-beta 
pruning, since a cutoff is normally achieved also for equal values: if more often dif- 
ferent values arise, fewer cutoffs occur and therefore more nodes have to be searched. 
Although this is only a second-order effect in our context, it suggests not to use more 
distinct values than useful to express the knowledge available. 

” Compare this incremental computation with the approach chosen for modeling the dependency of heuristic 

values. 

‘* According to private communication with Monty Newborn and Jonathun Schaeffer. 
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6. Related work 

A fair bit of attention has been focused on the theoretical problem of the effects of 
minimaxing under various conditions. Since critical overviews can be found in [ 13,151, 
our summary can be rather cursory. Nau [22,23,25] showed that for certain classes 
of game trees the decision quality is degraded by searching deeper and backing up 
heuristic values using the minimax propagation rule. He called such behavior patholog- 

ical. Schrtifer [ 34, Section 11 modified Nau’s model, distinguishing two different error 
parameters for “overestimating” and “underestimating”, respectively. 

In later work Nau [ 241 investigated a class of “real” games, called Pearl’s games or 
P-games, in which pathology actually occurs. Similar classes of games, called N-games 
and G-games, were shown not to be pathological [ 26,271. Essentially the same findings 
were reported independently by Beal [ 2,3] and Bratko and Gams [4]. A model of 
Schrtifer [34, Section 21 also relates the effects of deeper minimaxing more generally 

to the distribution of the true values. Michon [ 211 found non-pathological behavior for 
games with “inert” structure, despite the assumption of independent terminal values. 

While all this work provided some insight into minimax pathology, there was no 
success in explaining the strong improvements with increasing search depth observed in 
practice. A common argument investigated by Pearl [29] is “the avoidance of traps”. 
The model is oversimplified, considering only actual terminal nodes (i.e., check-mates 

and stalemates) at all levels of the game tree as “traps”. Instead of such traps-but with 
the same consequences-Abramson [l] postulates that the evaluation function must 

be able to recognize more and more forced wins (evaluated without error) as search 

deepens, to avoid pathology. 
In [ 13,15,33] we described and studied a rather complicated class of models based 

on the concept of quiescence (i.e., evaluations of stable positions are more reliable). 
Although we used only a binary evaluation function, results corresponding to,practice 
could be obtained. However, no explanation for the benefits of using a multivalued 

evaluation function was given. 
Another argument in attempting to explain the practical observations is that of “im- 

proved visibility”, which was simply interpreted and modeled by Pearl [ 291 in the sense 
that the accuracy of the static evaluation function improves as the game proceeds. Math- 
ematical analysis of this model shows that a very strong improvement (>50 percent 
per move cycle) is necessary to combat pathology, but this is based on the unrealistic 
assumption of independence of values. In the game of chess, no such improvement of 
accuracy can be seen when considering the static evaluation functions used in actual 
programs. On the contrary, there is consensus among computer chess experts that the 
endgame evaluators are in general worse than those for the midgame-but within the 
horizon of one search the quality of an evaluator remains nearly constant. Hence, at 
least in this domain (where minimaxing is very successful) improved visibility should 

be interpreted differently. 
While this idea of improved visibility is the one closest to our notion of improved 

evaluation quality, these should be clearly distinguished. Pearl assumed that the accu- 
racy of the static evaluation function itself improves very strongly as the game proceeds. 
In contrast, we assume an evaluation function with an error independent of the depth. 



204 A. Scheucher, H. Kaindl/ArtiJcial Intelligence 99 (1998) 187-208 

However, the evaluation quality indirectly improves during the search, based on the 

assumptions of non-uniformity of error distribution and dependency of heuristic val- 
ues. Due to this dependency, it is not necessary in our model to have such strong 

improvements in the static evaluation quality. 

As discussed above, the N-game model by Nau [27] was also inspired by the idea of 
incremental dependencies. However, in contrast to our approach it relates the true values 
during the construction of a specific game board. Our model focuses on dependencies 
between heuristic values, analogous to the models of Fuller et al. [ 61, Knuth and Moore 
[ 161 and Newborn [ 281 as used in a different context. (In fact, our model is the first 
use of this approach for investigating minimax pathology/benefits issues.) Of course, in 
our model a dependency of the true values is induced indirectly via the (non-uniformly 
distributed) error probabilities. We prefer to model the dependency of the heuristic 

values as described, since it is quite obvious in practice. 
Moreover, many of the other theoretical analyses were based on models with only 

two heuristic values. Those with multivalued evaluation functions did not have any 

additional assumptions regarding the error distribution or dependency of the heuristic 
values, Studies by Bratko and Gams [ 41 and by Pearl [ 291 even compared multivalued 
to corresponding binary models and yielded the same results. In fact, the additional 
values did not carry any semantic content in these models. In contrast, our model 
reflects the very reason for using multiple values in practice: they serve as a means for 
representing more fine-grained differences among positions, where the higher-rated ones 
are typically better and have a higher probability to win associated with them. This is 
directly related to having a smaller error of incorrect evaluation. 

The results shown by our new model correspond well to the observations in practice, 

and we are not aware of any unrealistic (or even pathological) effect. Therefore, we 
claim that our new model is better than previous ones at explaining real phenomena. 
Both its assumptions and its results are closer to minimaxing practice. 

7. Conclusion 

Until now, the dramatic benefits of using minimaxing for deeper and deeper searches 
in game-playing programs (as observed, e.g., in computer chess and checkers practice) 
have not yet been fully explained. Partly, the reason appears to be that binary evaluation 
functions were primarily used in the models. The role of multivalued functions was not 
fully investigated yet, i.e., no special meaning was assigned to the various values. 

Our approach uses two fundamental assumptions regarding multivalued evaluation 
functions-non-uniformity of error distribution and dependency of heuristic values. We 
explained the observed correspondence of these assumptions to practice. Moreover, their 
basic characteristics already existed in the literature, but in different contexts and for 
different purposes. 

Also in correspondence with practice, our multivalued model exhibits strong beneficial 
effects of minimaxing. This is primarily based on improved evaluation quality with 
increasing search depth although the same evaluation function is used at all levels of 
the tree, and although its general error is independent of the depth. Essentially, with 
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increasing search depth the evaluation function is more frequently used on positions 
that a multivalued function with the assumed properties can more reliably evaluate. This 
effect together with their ability to discriminate between positions leads to the benefits 
of using a multivalued evaluation function for minimaxing. Still, a larger number of 
distinct values than needed to express the available knowledge is of no use. 

In summary, this is the first work showing the reason why the use of a multivalued 
evaluation function is important. Its assumptions as well as its results correspond very 
closely to practice. Since it shows why the results of deeper searches become much more 
reliable, this work also provides an explanation why searching deeper using minimaxing 

has been that successful in practice. While the starting point for our approach was the 
modeling of chess and checkers practice, our models simply exploit certain properties 
of the evaluation function. Therefore, we believe that the model is relevant for all games 

where the evaluation functions have these properties. Consequently, our approach may 
be the solution to the long-standing problem of explaining the strong benefits of deeper 

and deeper search using minimaxing. 
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Appendix .A. Merlin experiment 

In the context of this research, we were interested to see how much a real tournament 
program degrades when it can only use the same number of heuristic values as true 

values in the game of question, i.e., three in the case of WIN, LOSS, and DRAW. Since 

we had the former chess tournament program Merlin l3 at our disposal, we decided to 
adapt it accordingly (more precisely, the 1989 World Championship version). 

For back.ing-up according to the minimax rule, the heuristic values h of Merlin’s 
evaluation function were mapped as follows: 

h<O -+ - 1, estimating LOSS 

h=O + 0, estimating DRAW 

h>O + +l, estimating WIN 

I3 Merlin is a collaborate effort of the second author together with Helmut Horacek and Marcus Wagner. It 

played some major computer tournaments; for instance, it tied for tenth out of 22 participants at the World 

Computer Chess Championship in 1983 and for sixth out of 24 participants at the same tournament in 1989. 



206 A. Scheucher. H. Kaindl/Arti&ial Intelligence 99 (1998) 187-208 

It is important to note, however, that the original heuristic values were still used for 
guiding the search to variable depth [ 121, and in particular for Merlin’s elaborate qui- 
escence search [ IO,11 1. That is, the available knowledge about fine-grained evaluations 
was still partly used, but not for minimaxing. In this paper, we refer to this version as 

Adapted-Merlin. 
Essentially, there were two possibilities to measure the difference in the programs’ 

strength: having Merlin play a match against Adapted-Merlin, or using a benchmark test. 

However, the cost of complete tournament games would have exhausted our resources 
(CPU time on a fast mainframe computer). Moreover, the data on a widely used set of 

positions (the Bratko-Kopec test l4 [ 171) are available for all the participants of the 

World Computer Chess Championship in 1989 (including Merlin) [20]. Therefore, we 
decided to run Adapted-Merlin on this set, providing the same amount of resources as 
used by Merlin in producing the result reported in the literature [ 201. 

The summarized data of this run are as follows: Adapted-Merlin scores 5 points out 
of 12 on the T set and 1 point out of 12 on the L set, resulting in an overall score 
of 6 out of 24 possible points. In comparison, the worst result of the Championship 
participants in 1989 was 10. However, Merlin achieved a score of 16 (10 + 6). In 
fact, Adapted-Merlin performed clearly worse, which is highly statistically significant 

according to the sign test. 
In order to derive more insights from this experiment, let us sketch some observations: 

Even in the positions where Merlin did not find the correct move, it selected a 
reasonable move. In contrast, Adapted-Merlin has a tendency to blunder. This can 
be explained as follows: if this program “thinks” it loses (i.e., it can only achieve 
a score of -l), every move is acceptable to the program, and the first one is 

selected. 
There were many failures of Adapted-Merlin in T positions, although the search 
depth was clearly sufficient for having all the critical variations included in the tree 

searched. The reason is symmetric to the one above: if the program “thinks” it wins 
(i.e., it achieves a score of + 1 ), every move leading to this value is considered to 
be as good as the others, and therefore the first one found is selected. 

The main variation / principal continuation (i.e., the sequence of moves along 
which the minimax value is backed up) contains many blunders in Adapted-Merlin. 
This means that the reasons for bad move selections given above apply all over the 
search tree. 
Adapted-Merlin has of course no special problem in positions where check-mate 
can be found (the first position of the T set is of this type). 

We could not find any indication of pathological behavior even in the adapted 
version. That is, at least in this test set there was no single case where the deeper 
search iterations I5 selected a worse move than the shallower ones. 

I4 There are 24 positions: 12 tacticaL denoted by T, and 12 “levers” denoted by L. The latter contain positional 

(or “strategic”) themes related to critical pawn moves. 

Is Like most tournament programs, Merlin uses iterative deepening. The usefulness of this paradigm in 

minimax search is reviewed in [ 141, and a well-known heuristic search procedure based on iterative deepening 
can be found in [la]. 
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l Adapted-Merlin searched fewer nodes in each iteration than Merlin. Of course, 

cutoffs can be achieved more often with this reduced set of heuristic values. 
l While the result on the L positions was particularly bad, good positional moves 

can also be found by the adapted version under certain circumstances: apart from 
“lucky” move ordering, such a move should have a different heuristic value than the 
remaining moves. This occurred in the one L position that Adapted-Merlin solved 

to our surprise. 
In summary, even if sufficient knowledge is available in a program for selecting the 

right move, the adaptation to use just three distinct heuristic values can lead to the 
loss of this knowledge in the course of back-up. Due to the significant result on the 
benchmark and the described observations, it is obvious that Adapted-Merlin would be 
decisively defeated in a match by Merlin. The tendency to blunder in the way observed 
has very bad consequences in playing games like chess. Therefore, we conclude that 
the benefit!; of searches using minimaxing are much more pronounced with multiple 

heuristic values. 
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