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Abstract—The paper refers to the problem of diagnostic classification of mechanical objects using
vibroacoustic symptoms. A new approach based on the rough sets theory is applied to evaluate the
symptoms from the point of view of their diagnostic capacity, i.e., the quality of estimation of a
technical state of a mechanical object. The approach enables reduction of the set of symptoms to
a minimal subset ensuring a satisfactory estimation. The minimal subset is then used to create a
classifier of a technical state. Particular attention is paid to a comparison of different methods of
calculation of symptom limit values which divide domains of symptoms into intervals corresponding
to classes of technical states. The analysed set of data concerns the technical state of rolling bear-
ings installed in a laboratory stand. They are described by a set of symptoms which result from
measurements of noise and vibration of bearing housings. The bearings are in good or bad technical
states. The paper presents particular steps of the rough sets methodology and gives, as a final result,
a classifier of a technical state of bearings based on a minimal subset of symptoms with the greatest

diagnostic capacity.

1. INTRODUCTION

One of the main problems in technical diagnostics is evaluation of a technical state of controlled
objects (cf.[1-3]). The process of change of their technical state develops with different speed.
An attainment of a critical state can result in several secondary failures. So, in consequence the
cost of repair is much higher than it would be if potential dangers were detected earlier and an
object was repaired before attaining this critical state.

Impossibility of a direct measurement of the technical state for a working object is the main
difficulty in technical diagnostics. In fact, a lot of factors influence the technical state of a
working object and many of them are inaccessible for measurement during its work. As a result,
evaluation of the technical state can be performed only on a base of an indirect measurement of
physical quantities which are changing in accordance with the technical state of an object. These
quantities are called symptoms of the technical state.

Let us notice that values of symptoms usually change monotonically with deterioration of the
technical state (i.e., values of symptoms increase or decrease continuously). On the contrary,
the technical state is estimated in a qualitative way, i.e., by considering two-, three- or more
classes of technical states [4]. Owing to this fact, it is accepted to trend to determine such values
of symptoms which would separate considered classes of technical states. The values are called
symplom limit values and classes are called conventional classes of the technical state.

Evaluation of the technical state using only one symptom is the most desired in practice.
However, very often it is impossible to perform such evaluation in a reliable way. So, instead
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of a single symptom, a subset of symptoms with the best diagnostic capacity is used for this
purpose. Chosen symptoms can be used to create a classifier of the technical state. The classifier
deduces types and degree of failures from the values of symptoms. In simple cases, it enables
only gradation of the technical state on a scale from good to bad state. The classifier consists of
a chosen subset of symptoms together with their limit values ensuring the best evaluation of the
technical state.

According to their construction (mechanical, electrical, etc.) objects are diagnosed by means
of different methods enabling recognition of different types of failures. In this paper, we consider
methods of technical diagnostics concerning mechanical objects [5)].

The general aims of a majority of technical diagnostic investigations are the following:

- evaluation of capacity of particular symptoms to estimation of technical states of consid-
ered objects,

- reduction of a set of symptoms to a subset of symptoms ensuring the best evaluation of the
technical state; it should be noticed that results of the reduction can be non-unique, i.e.,
as a result of this reduction one may obtain several possible reduced subsets of symptoms;
in such cases, the choice of a specific subset is based on additional criteria, e.g., minimum
number of symptoms, cost of measurement,

- creation of a classifier of the technical state basing on a chosen subset of symptoms.

The quality of diagnostic investigations depends on an @ priori knowledge concerning:

- the kind of technical symptoms which are supposed to carry useful diagnostic information,
- the possibility of satisfactory estimation of symptom limit values which separate conven-
tional clagses of the technical state.

In [6] 2 new method based on the rough sets theory has been applied to analysis of newly
proposed aggregated symptom measures in vibroacoustic diagnostics of reducers. In this paper,
taking into account encouraging results of this application, we are going to use the rough sets
theory to determine the:

- evaluation of different methods of defining symptom limit values, proposed to use in so-
called badly conditioned diagnostic tasks [5,6],

- reduction of a set of symptoms to a minimal subset of symptoms ensuring the best evalu-
ation of the technical state,

- creation of classifiers of the technical state using the best method of defining symptom
limit values and the chosen subset of symptoms.

The above problems have not been solved in a satisfactory way until now. The first problem,
i.e., evaluation of different methods of defining symptom limit values, was so far undertaken
in [6] and was limited to analysis of simulation data. The second problem, i.e., a proper choice
of symptoms, has a great practical importance because it is closely connected with the cost of
diagnostics. However, only few attempts for solving it are known. For example, the algorithm
BEDNID, described in [7), is far from solving this problem in a satisfactory way. The research
reported in [8] and [9], shows that the rough sets theory provides a good tool for a proper choice
of symptoms to create the classifier.

In the present paper, we analyse data concerning a set of identically constructed mechanical
objects (i.e., rolling bearings) which are in one of two technical states (good or bad). The
considered symptoms are based on noise and vibration characteristics of objects. In addition,
two possible scales of noise symptoms are taken into account: logarithmic and linear ones.

In the next section, basic notions of the rough sets theory are recalled. Then, in Section 3, the
analysed data set is described together with the methods defining symptom limit values. Results
of analysis by means of the rough sets theory are presented in Section 4. Conclusions are drawn
in the last section.

2. BASIC CONCEPTS OF THE ROUGH SETS THEORY

In this section only a short reminder of basic notions of the rough sets theory created by
Pawlak is given. These concepts should be useful to understand the analysis of the considered
diagnostic problem performed in the next sections. More exhaustive presentation of the rough
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sets theory seems to be unnecessary because of existence of several papers devoted to this theory
(cf. e.g., [10-17]). Moreover, some information about applications of this method to medical data
analysis and medical diagnostics can be found in {18-22]. The case of medical diagnostics is
methodologically similar to the problems of technical diagnostics considered in this paper.

2.1. Introductory Remarks

The data analysed by the rough sets theory concern a set of objects (observations, individuals,
states, etc.) described by a set of multi-valued attributes (features, symptoms, variables, etc.).
For each pair (object, attribute) there is known a value called descriptor. Objects, attributes and
descriptors are three basic components of an information system which can be viewed as a table
with rows corresponding to objects and columns corresponding to attributes. Each row of the
table contains descriptors representing information about the corresponding object. Moreover,
the set of objects is classified into disjoint family of classes.

The observation that we cannot distinguish objects on the basis of imprecise information about
them is the starting point of the rough sets approach. In other words, imprecise information
causes indiscernibility of objects. Indiscernibility of objects prevents generally their precise clas-
sification. Given an equivalence relation viewed as an indiscernibility relation which thus induces
an approximation space made of equivalence classes, a rough set is a pair of lower and upper
approximation of a set in terms of these classes of indiscernible objects. Using lower and upper
approximation of a set (or a family of sets—classification) one can define an accuracy and a
quality of approximation. These are numbers from interval [0,1] which define how exactly one
can describe the examined set (or classification) of objects using available information.

The rough sets approach enables to solve two main problems in the analysis of information
systems:

- reduction of all redundant objects and attributes so as to get the minimum subset of

attributes ensuring a good approximation of classes and an acceptable quality of classifi-
cation,

- representation of all important relationships between the most significant attributes and
particular classes in a form of a set of decision rules.

2.2. Information System

By an information system we understand the 4-tuple S = (U, Q, V, p), where U is a finite set

of objects, Q is a finite set of attributes, V = |J V; and V, is a domain of the attribute g, and
9€Q

p:UxQ — V is a total function such that p(z,q) € V, for every ¢ € Q@ , z € U, called an

information function.

Let S = (U, Q, V, p) be an information system and let P C Q and z,y € U. We say that z
and y are indiscernible by the set of attributes P in S (denotation z Py) iff p(z,q) = p(y, ¢) for

every ¢ € P. Equivalence classes of relation P are called P-elementary sets in S. Q-elementary
sets are called atoms in S.

The family of all equivalence classes of relation P on U is denoted by P*.

2.3. Approrimation of Sels

Let PC Qand Y C U. The _P-lower approzimation of Y denoted by PY and the P-upper
approzimation of Y denoted by PY are defined as:

PY=JX:{X€P and XCY}
PY=|JX :{X €P* and XNY #0}

The P-boundary (doubtful region of classification) is defined as

Bnp(Y)=PY - PY.
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Set PY is the set of all elements of U which can be certainly classified as elements of Y,
employing the set of atiributes P; Set PY is the set of elements of U/ which can be possibly
classified as elements of Y, using the set of attributes P. The set Bnp(Y') is the set of elements
which cannot be certainly classified to Y using the set of attributes P.

With every subset Y C U, we can associate an accuracy of approrimation of set Y by P in S,
or in short, accuracy of Y, defined as:

card(PY)

ap(¥) = card(PY)’

2.4. Rough Classification
Let S be an information system, P C @, and let X = {1},Y5,...,Y,} be a classification of
n
U,ie., ;NY; = 0 for every i,j <n,i# jand |J Y = U. Y; are called classes of X. By

=1
£-lower _(P-ugpet) a.ppion'mation of X in S we n:ean sets PX = {PY;,PY,,...,PY,} and
PX={PY1,PY,,...,PY,}, respectively. The coefficient

_ Z?:l C&l‘d (—'BK)

P(X) = ==

is called the quality of approximation of classification X by set of attributes P, or in short, guality
of classification X. It expresses the ratio of all P-correctly classified objects to all objects in the
system.

2.5. Reduction of Atiributes

We say that the set of attributes R C Q depends on the set of attributes P C @ in S (denotation
P — R)iff P C R. Discovering dependencies between attributes enables the reduction of the set
of attributes. Subset P C Q is independent in S iff for every P’ C P, P’ D P; otherwise subset
P C Q is dependent in S. Subset P C Q is a reduct of Q in S iff P is the independent set in
S and P* = @Q* . If subset P C @ is the reduct of @ then attributes from subset @ — P are
redundant. The quality of classification X can be also used for a practical detection of redundant
attributes because the reduct gives the same quality as the whole set of attributes in the system.
Sometimes some attributes can be removed from the reduct without decreasing the quality of
classification. The least independent set which ensures the same quality of classification as the
reduct is called the minimal subset in S. Let us notice that an information system may have
more than one minimal subset or reduct. Intersection of all minimal sets is called the core. The
core is a collection of the most significant attributes for the classification in the system.

2.6. Decision Tables

An information system can be seen as a decision table assuming that @ = CUD and CND = §,
where C are called condition atiributes, and D, decisson atiributes. Decision table S = (U, CU
D, V, p) is deterministic iff C — D; otherwise it is non-deterministic. The deterministic decision
table uniquely describes the decisions to be made when some conditions are satisfied. In the case
of a non-deterministic table, decisions are not uniquely determined by the conditions. Instead, a
subset of decisions is defined which could be taken under circumstances determined by conditions.

From the decision table a decision algorithm can be derived. The decision algorithm consists
of a set of decision rules which are logical statements (if ... then ... ). A general procedure for
the derivation of a decision algorithm from decision tables was presented in [23] or in [15].

Let us notice, however, that the rough sets analysis of information systems gives satisfactory
results when domains of attributes are finite sets of rather low cardinality. This requirement
is often met naturally when attributes have a qualitative character. If attributes take arbitrary
values from given intervals, i.e., have a quantitative character, they can be handled in the analysis
after translating of their values into some qualitative terms, e.g., low, medium or high levels. This
translation involves a division of the original domain into some subintervals and an assignment
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Table 1. Information system $1 (with noise symptoms represented in the logarithmic scale).

No. 8 32 83 84 85 8¢ 87 88 89 810 811 912 D
1 0.50 0.79 1.41 0.94 0.79 1.77 79.5 81.5 72.0 72.5 76.5 75.5 0
2 0.89 1.00 1.25 0.94 0.59 1.77 74.0 78.0 75.0 74.5 66.5 78.0 0
3 1.49 1.49 1.25 0.70 0.53 1.33 85.0 88.0 79.5 79.5 74.0 68.5 0
4 1.67 2.51 211 1.12 1.25 1.58 93.0 92.0 83.0 72.0 72.0 69.0 0
5 3.16 3.16 2.66 141 0.56 1.77 81.5 84.0 81.5 96.5 96.0 91.5 0
6 0.50 0.70 0.79 0.53 0.63 1.18 78.0 83.0 80.5 96.0 94.0 86.5 0
7 0.79 0.89 1.77 0.44 0.70 1.18 80.0 76.0 82.0 78.5 94.5 92.0 0
8 1.41 2.11 2.51 1.58 1.12 3.16 80.0 80.0 79.5 83.5 79.6 94.0 0
9 1.05 0.56 0.56 1.33 1.05 0.39 85.5 79.5 74.5 740 77.5 71.0 0

10 0.63 1.12 0.70 0.79 0.70 0.39 78.0 75.0 78.0 77.5 75.0 76.5 0
1 0.63 1.12 0.70 0.79 0.70 0.39 75.5 71.0 82.0 78.5 78.0 78.0 0
12 3.98 2.81 1.33 1.05 1.33 1.41 69.5 75.5 75.0 85.0 77.5 80.0 0
13 2.23 1.58 1.05 1.12 2.11 3.16 69.5 70.0 76.0 80.5 79.5 80.5 0
14 2.23 2.51 1.33 0.63 0.74 0.56 68.0 75.0 69.0 71.5 80.0 85.5 0
15 1.18 0.74 0.44 0.39 0.70 0.66 63.0 63.0 70.0 70.0 64.0 75.5 0
16 1.41 141 1.33 1.05 1.77 1.67 60.0 68.0 72.5 79.0 71.0 72.0 0
17 1.88 2.66 1.25 1.58 3.54 1.77 67.5 60.0 79.0 76.0 77.0 74.0 0
18 1.25 1.18 0.50 1.00 2.66 1.05 60.0 60.0 60.0 62.0 60.0 66.5 0
19 1.67 1.41 0.89 1.49 2.98 0.75 87.0 69.0 66.0 60.0 68.0 67.0 0
20 0.39 0.56 0.28 0.14 0.11 0.11 79.5 81.5 72.0 72.5 76.5 75.5 1
21 0.23 0.33 0.29 0.18 0.22 0.26 78.0 75.0 74.5 66.5 78.0 75.5 1
22 0.43 0.21 0.16 0.10 0.35 0.29 79.5 79.5 74.0 68.5 67.0 68.0 1
23 0.28 0.31 0.18 0.10 0.10 0.13 720 72.0 69.0 715 73.5 76.5 1
24 0.25 0.31 0.31 0.26 0.23 0.33 80.0 78.0 77.0 73.0 83.0 85.5 1
25 0.10 0.10 0.12 0.10 0.15 0.22 72.5 720 72.0 70.0 74.0 80.0 1
26 0.23 0.37 0.35 0.22 0.15 0.22 75.5 72.5 74.5 69.5 75.0 78.5 1
27 0.22 0.26 0.20 0.15 0.15 0.20 71.0 73.0 69.0 69.0 76.0 82.0 1
28 0.26 0.44 0.50 0.39 0.37 0.53 710 77.0 67.0 66.5 78.0 76.0 1
29 0.23 0.26 0.16 0.10 0.10 0.10 66.0 66.5 68.0 64.0 71.5 71.5 1
30 0.10 0.11 0.10 0.10 0.10 0.10 72.5 720 720 70.0 74.0 80.0 1
31 0.18 0.23 0.16 0.13 0.11 0.20 75.5 72.5 74.5 69.5 75.0 78.5 1
32 0.12 0.22 0.16 0.10 0.10 0.15 70.5 73.5 69.0 69.0 76.5 82.0 1
33 0.31 0.63 0.22 0.12 0.12 0.17 71.0 77.0 67.0 66.5 78.5 76.0 1
34 0.10 0.14 0.14 0.10 0.10 0.14 67.0 70.5 66.0 63.0 64.5 68.0 1
35 0.33 0.42 0.70 0.35 0.33 0.50 70.0 68.5 75.0 69.5 79.5 80.5 1
36 0.20 0.21 0.35 0.12 0.14 0.14 70.0 68.0 72.0 63.5 76.0 74.0 1
37 0.11 0.15 0.10 0.10 0.10 0.10 65.5 72.0 71.0 67.0 66.0 71.0 1
38 0.15 0.15 0.16 0.15 0.11 0.10 70.0 74.0 70.0 67.0 77.5 82.0 1

of qualitative codes to these subintervals. Definition of boundary values of the subintervals can
influence considerably the quality of classification; it should take into account experience, habits
and conventions used by the experts and, possibly, an error of measurement (cf. [18,20,21]). In
technical diagnostics attributes are symptoms of the technical state. They are translated into
qualitative attributes using symptom limit values which divide an original domain of a symptom
into subintervals corresponding to conventional classes of the technical state.

3. THE PROBLEM DEFINITION

The analysed data set is composed of observations collected during a laboratory experiment
with a set of 38 rolling bearing. The set of examined bearings is divided into two subsets. The
first one consists of 19 bearings which were recognized to be good ones. At the end of their
production, they were checked by a product quality control which proved that they were made
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according to a technical documentation. Other 19 bearings had different elements artificially
damaged (rolling elements or one of the bearing races).

The investigated bearings were successively assembled on a laboratory stand. Measurements
of a chosen set of vibration and noise symptoms were collected in conditions of the simulated
working loads.

Vibration and noise level of bearing housing were taken as supposed symptoms of the technical
state. In each case, measuring quantities were obtained as a result of band filtering of a signal for
6 different frequency bands. The filters were 1/3-octave filters with standard middle frequencies
from range: 800-2500 Hz.

The data collected from the measurements set up the information system which is presented in
Table 1. It contains information about 38 bearings described by means of 12 symptoms s; — 8;3.
Symptoms s, — 8¢ are measured as accelerations of vibration [m/s?] while symptoms 87 — 813
correspond to levels of noise in decibels [dB]. The information about each object is additionally
extended by the two-valued decision attribute (denoted by D). This attribute characterizes the
real technical state of a bearing (0—bearings in a good technical state, 1—bearings in bad state).
The information system presented in Table 1 will be denoted by S1.

The symptom limit values can be defined in different ways (cf.[6,24-29]). We shall use four
methods described below:

A. the C-method:
b=5+¢0 '% (1)

where:
& - mean value of a symptom, calculated as:

M .
§= % (2)

=1

M - number of measurements of a symptom (number of observations);
S; - result of measurement of a symptom,
o - standard deviation of a symptom calculated as:

E .S'.'—E2
o= ELf; ) (3)

P - the fiability index of an object (a ratio of the work time to the work time increased
by the repair time),

A - the permissible probability of superfluous repairs performed in order to avoid break-
down;

B. the P-method:
b=(1-7) 5{/22 )

where:
v - Pareto’s shape coefficient calculated as:

y=1+ 1+(§f (5)

C. the W-method:

b = 8min + (8 — 8min) r-t (1 + k_l) */In (—PX-) (6)
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Table 2. Symptom limit values for system S1.

Symptom | Method symptom limit values
b1 b2 b3 b

5 L 022 034 0.46 0.58
C 1.57 2.27 2.97 3.38

w 1.34 1.78 2.21 2.64

P 0.60 0.98 1.35 1.73

82 L 0.20 0.30 0.40 0.50
C 1.60 2.26 2.93 3.60

w 1.21 1.54 1.88 2.22

P 0.61 1.01 1.42 1.82

83 L 0.18 0.26 0.34 0.42
(o] 1.28 1.81 2.34 2.87

w 0.96 1.23 1.50 1.77

P 0.50 0.83 1.15 1.47

8 L 0.15 0.20 0.25 0.30
C 0.98 1.35 1.73 2.12

w 0.70 0.89 1.09 1.29

P 0.39 0.64 0.88 1.12

a5 L 0.21 0.32 0.43 0.54
c 1.39 2.05 2.70 3.36

w 1.35 1.86 2.36 2.86

P 0.53 0.85 1.16 1.48

3¢ L 0.20 0.30 0.40 0.50
(o 1.42 2.05 2.69 3.32

w 1.21 1.59 1.98 2.37

P 0.54 0.89 1.23 1.58

7 L 79.60 99.20 118.80 138.40
C 78.94 84.43 89.91 95.40

w 21.14 35.16 49.18 63.20

P 81.40 83.20 85.00 86.81

8s L 71.00 82.00 93.00 104.00
C 79.56 84.81 90.07 95.32

w 20.86 34.89 48.93 62.96

P 75.03 79.08 83.09 87.12

89 L 75.10 90.20 105.30 120.40
C 77.45 81.52 85.59 89.66

w 19.44 33.60 47.76 61.92

P 77.17 79.25 81.32 83.40

810 L 71.40 82.80 94.20 105.60
C 78.97 85.23 91.49 97.75

w 22.13 36.14 50.15 64.15

P 75.51 79.62 83.73 87.83

811 L 76.90 93.80 110.70 127.60
C 81.67 87.53 93.40 99.26

w 21.60 35.59 49.59 63.58

P 80.19 83.47 86.76 90.05

812 L 76.00 85.50 95.00 104.50
c 82.73 88.03 93.33 98.63

w 22.50 38.12 53.74 69.36

P 79.59 83.19 86.78 90.37

115
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Table 3. Information system $2 (with noise symptoms represented in the linear scale).

No. 8 82 83 84 8y 8¢ 87 8g 8g 810 811 312 D
1 /05 079 141 094 079 177 1888 237.7 796 843 1336 1191 | ©
2 |08 100 125 094 059 177 1002 1588 1124 106.1 422 1588 | O
3 | 149 149 125 070 053 1.33 3556 5023 188.8 1838  100.2 53.2 | 0
4 | 167 251 211 112 125 1.58 8933 7962 2825 79.6 79.6 563 | 0
5 | 316 316 266 141 056 1.77 237.7 3169 237.7 13366 12619 7516 | O
6 | 050 070 0.79 053 063 118 1588 282.5 211.8 12619 10023 4226 | O
7 |o79 089 177 044 070 118 2000 126.1 2517 1682 1061.7 7962 | O
8 | 141 211 251 158 1.2 316 2000 2000 1888 2992 1888 10023 | O
9 | 105 056 056 133 1.05 039 3767 188.8 1061 1002  149.9 709 | 0

100 | 063 112 070 079 0.70 039 1588 1124 1588 1499 1124 1336 | O

11 | 063 112 070 079 070 039 1191 709 2517 1682 1588 1588 [ 0

12 | 398 281 1.33 105 1.33 141 59.7 1191 1124 3556 1499 2000 | O

13 | 223 158 105 112 211 316 597 632 1261 2118 1888 211.8 | 0

14 | 223 25 133 063 074 056 502 1124 56.3 751 2000 3767 | O

15 | 118 0.74 044 039 070 066 282 282 632 63.2 316 1191 | o

16 | 141 141 133 105 177 167 200 50.2 84.3 1782 70.9 796 | 0

17 | 1.88 266 1.25 1.58 3.54 177 474 200 1782 1261 1415 1002 | O

18 | 125 118 050 1.00 266 1.05 200 200 200 25.1 20.0 2210

19 | 167 141 089 149 298 075 447 563 399 20.0 50.2 471]0

20 | 039 056 0.28 014 011 011 1888 237.7 79.6 843 1336 1191 | 1

21 | 023 033 029 018 022 026 1588 1124 106.1 422 1588 1191 | 1

22 | 043 021 016 0.0 035 029 1838 1888 100.2 53.2 44.7 502 | 1

23 | 028 031 018 010 0.10 013 796 796 563 75.1 946 1336 | 1

24 | 025 031 031 026 0.23 033 2000 1588 141.5 89.3 2825 376.7 | 1

25 | 010 010 012 010 015 022 843 796 796 63.2 100.2 2000 | 1

26 | 023 037 035 022 015 022 1191 843 106.1 59.7 1124 1682 | 1

27 | 022 02 020 015 015 020 709 893 563 563 1261 2517 | 1

28 | 026 044 050 039 037 053 709 141.5  44.7 422 1588 1261 | 1

29 {023 026 016 010 010 010 399 422  50.2 31.6 75.1 751 | 1

30 |010 011 010 010 010 010 843 796 79.6 632 100.2 2000 | 1

31 018 023 016 013 011 020 1191 843 106.1 59.7 1124 1682 | 1

32 {012 022 016 010 010 015 669 946 563 563 1336 2517 | 1

33 | 031 063 022 012 012 017 709 1415 4.7 422 1682 1261 | 1

34 | 010 o014 014 010 010 014 447 669 399 28.2 33.5 502 | 1

35 {033 042 070 035 033 050 632 532 1124 597 1888 211.8 | 1

36 | 020 021 035 012 014 014 632 502 796 299 1261 100.2 | 1

37 {011 015 010 0.0 010 010 376 796 709 44.7 39.9 709 | 1

38 [ 015 015 016 015 011 010 63.2 1002 63.2 447 1499 251.7 | 1

where:
Smin - minimal observed value of a symptom,
k - Weibul’s shape coefficient calculated as:
8§ = 8min
k — 9]
I'(n) - the gamma function of the (n) argument,
D. the L-method:
b=45sy — 3 8min (8)

where: sy is the mode value of an empirical distribution of results (of observations).
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Table 4. Symptom limit values for system S$2.

Symptom | Method symptom limit values
b1 b2 b3 b
s L 0.22 0.34 0.46 0.58
C 1.57 2.27 2.97 3.36
w 1.34 1.78 2.21 2.64
P 0.60 0.98 1.35 1.73
82 L 0.20 0.30 0.40 0.50
C 1.60 2.26 2.93 3.60
w 1.21 1.54 1.88 2.22
P 0.61 1.01 1.42 1.82
83 L 0.18 0.26 0.34 0.42
C 1.28 1.81 2.34 2.87
w 0.96 1.23 1.50 1.77
P 0.50 0.83 1.15 1.47
84 L 0.15 0.20 0.25 0.30
C 0.96 1.35 1.73 2.12
w 0.70 0.89 1.09 1.29
P 0.39 0.64 0.88 1.12
85 L 0.21 0.32 0.43 0.54
C 1.39 2.05 2.70 3.36
w 1.35 1.86 2.36 2.86
P 0.53 0.85 1.16 1.48
L L 0.20 0.30 0.40 0.50
C 1.42 2.05 2.69 3.32
w 1.21 1.59 1.98 2.37
P 0.54 0.89 1.23 1.58
87 L 47.30 74.60 101.90 129.20
C 252.41 369.69 486.98 604.26
w 238.39 324.58 410.76 496.94
P 103.60 159.90 216.19 272.49
a8 L 92.80 165.60 238.40 311.20
C 253.91 364.98 476.05 587.12
w 211.54 278.94 346.34 413.74
P 140.52 188.25 235.97 283.70
39 L 77.50 135.00 192.50 250.00
C 163.45 215.71 267.97 320.23
w 86.25 104.68 123.12 141.55
P 108.23 138.95 169.68 200.40
810 L 61.20 102.40 143.60 184.80
C 376.27 593.96 811.65 1029.35
w 660.21 1037.91 1415.60 1793.30
P 129.37 197.54 265.71 333.87
811 L 136.40 252.80 369.20 485.60
C 411.16 625.32 839.48 1053.65
w 491.99 706.05 920.11 1134.17
P 204.12 271.85 339.57 407.30
812 L 70.70 121.40 172.10 222.80
C 373.96 538.71 703.46 868.20
w 307.63 401.46 495.29 589.12
P 157.10 243.50 329.90 416.31
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The value of b, calculated according to formulae (1), (4), (6) and (8) is treated as a threshold
value (i.e., an “alarm” value) which separates good and bad technical states. Three additional
limit values b1, 2 and b3 are uniformly distributed over the range of symptom variability and
are interpreted as “alert” values of symptom [24]. They are defined as follows:

bl = s* +0.25x(b—s*) (9A)
b2 = s* + 0.50 % (b — 5%) (9B)
b3 = 5" +0.75% (b —s") (9C)

where:
- in the case of the C-, P- and W-methods:

' =3
- in the case of the L-method:
8§ =8M.

Table 2 shows a list of the limit values for the data included in the Table 1.

It should be noticed, however that the L-method of defining symptom limit values is based on
the mode value of the probability density function of a symptom and requires that the skewness
of the distribution of observations is greater than a certain value. Let us notice that the noise
symptoms were measured in a decibel scale. The logarithm operation leads to normalization of
the shape of the distribution of observation and as consequence, the skewness of this distribution
decreases. So, we think that the presentation of measurements of noise signals in a decibel scale
may be disadvantageous. For this reason, we decided to make transformation of results and to
present them in a linear scale [mP].

Table 3 presents the set the transformed values of the noise symptom measurements. The
information system containing the transformed values is called information system $2. Table 4
shows the limit values for the symptoms from Table 3. These were calculated using the four
methods as in the case of information system $1. Both information systems S1 and §2, will be
examined next in the same way. The difference of results shows the possible influence of noise
measurement scales (linear or logarithmic) on the quality of diagnosis.

4. AN ANALYSIS OF INFORMATION SYSTEMS S§1 AND §2
USING THE ROUGH SETS THEORY

The information system $1 was analysed first. In this information systems results of measure-
ments of noise were presented in a logarithmic scale [dB]. Table 5 shows accuracies of approxima-
tions of each particular class and quality of classification (i.e., classification of the rolling bearings
from the viewpoint of the technical state) for all considered definitions of symptom limit values.

Then, the information system $2 was analysed. In this system, results of measurements of
noise symptoms were presented in a linear scale [mP]. Accuracies of approximations and quality
of classification are presented in Table 6.

Let us notice that according to the criterion of the quality of classification, the ranking of
the methods of defining limit values is the same for information systems §1 and $2. For both
information systems, the highest value of quality of classification (equal to 1.0) is obtained for
methods L, W and P. However, the L-method gives higher number of atoms than other meth-
ods. So, this method enables better differentiation of considered objects using their available
description. Most of the created atoms consist of one object only. In system S1, the P-method
is the second best from the viewpoint of the number of atoms and the W-method is the third
one. In system S$2, the ranking of methods is just opposite. Anyway, in both information systems
the C-method is according to the number of atoms the worst. It gives unsatisfactory quality of
classification (less then 0.55) and multiobject-atoms consisting of objects belonging to different
classes of technical states.

In the next step of the analysis we checked the quality of classification (i.e., evaluation of tech-
nical state) using single symptoms. Resuits for both information systems and for all considered
methods L, C, P and W are given in Table 7.
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Table 5. Accuracies of approximations and quality of classification for information system S1.

Methods
L C w P
Number of atoms 35 22 22 26

Class 0
Lower approximation 19 18 19 19
Upper approximation 19 35 19 19

Accuracy of approx. 1.0 0.51 1.0 1.0
Class 1

Lower approximation 19 3 19 19
Upper approximation 19 20 19 19
Accuracy of approx. 1.0 015 10 1.0
Accuracy of

classification 10 038 10 1.0
Quality of

classification 1.0 0.55 1.0 1.0

Table 6. Accuracies of approximations and quality of classification for information system $2.

Methods
L (o] w P
Number of atoms 37 19 32 23

Class 0
Lower approximation 19 17 19 19
Upper approximation 19 37 19 19

Accuracy of approx. 1.0 046 1.0 1.0
Class 1

Lower approximation 19 1 19 19
Upper approximation 19 21 19 19
Accuracy of approx. 1.0 0.05 10 1.0
Accuracy of

classification 1.0 0.31 1.0 1.0
Quality of

classification 1.0 047 10 1.0

Table 7. Quality of classification using single symptoms.

infor. Symptoms

system 81 82 83 84 85 38 87 a8 89 810 a1 812
L 1.0 0.45 0.45 0.45 1.0 0.42 0.0 0.11 0.0 0.11 0.08 0.11
L | C 0.18 0.16 0.21 0.26 0.13 0.21 0.08 0.05 0.24 0.18 0.11 0.08
P 0.32 0.29 0.32 0.37 0.24 0.34 0.11 0.08 0.21 0.26 0.11 0.16

w 0.45 0.47 0.32 0.47 1.0 0.34 0.03 0.0 0.0 0.16 0.0 0.0

L 1.0 0.45 0.45 0.45 1.0 0.42 0.0 0.11 0.13 0.32 0.11 0.0
$2 c 0.18 0.16 0.21 0.26 0.13 0.21 0.08 0.11 0.21 0.05 0.08 0.08
P 0.32 0.29 0.32 0.37 0.24 0.34 0.11 0.11 0.26 0.13 0.11 0.11
w 0.45 0.47 0.32 0.47 1.0 0.34 0.08 0.11 0.11 0.29 0.11 0.18

These results demonstrate that single symptoms ensuring satisfactory quality of classification
(equal to 1) are the following: symptoms s; and sg for the L-method or for a symptom sg for the
W-method. For other single symptoms, the quality of clagsification is much lower. Moreover the
comparison of results obtained for noise and vibration symptoms shows that vibration symptoms
are considerably better.

CAMA 24:7-1
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Then, we searched for minimal subsets of symptoms for both information systems and all
methods of defining symptom limit values. Let us remark that this step of analysis is very
important because it enables reducing a number of symptoms. Results obtained for methods
L and W, P are presented below. We do not give results for the C-method because they are
inadmissible from the viewpoint of the quality of classification. Results obtained for information
system S1 are the following:

- the L-method

- the core is empty,
- 17 minimal subsets:

{ss, 87, 88, 89, 811, 813}, {84, 87, 88, 89, 511, 813},
{6, s, 810, 811, 812}, {86, 87, 810, 811, 812},

{86, 8s, 89, 811, 812}, {86, 87, 88, 810, 812},

{36, 88, 89, 810, 811}, {86, 87, 89, 810, 811},

{84, 88, 810, 812}, {83, 88, 810, 812},

{83, 810, 811}, {84, 810, 511},

{52, s6}, {82, 84}, {52, 83}, {85}, {81},

- the W-method
- the core is empty,
- 31 minimal subsets: the minimal subsets have the following structure: one is a sin-
gleton (symptom s; ); 5 subsets consist of two elements, 15 subsets of three elements,
7 subsets of four elements and other subsets of five elements,
- the P-method
- the core is symptom s,,
- 10 minimal subsets: four of them are composed of three elements and other subsets
of four elements.

Results obtained for information system $2 are the following:
- the L-method

- the core is empty,

- 18 minimal subsets:
{s6, 83, 89, 810}, {84, 88, 89, 810}, {83, 35, 89, 810},
{86, 87, 89, 810}, {86, 87, 8, 810},
{86, 810, 812}, {84, 810, 813}, {83, 810, 812}, {36, 810, 811},
{84, 810, 811}, {83, 810, 811}, {84, 87, 810}, {8s, 87, 810},

{52, 86}, {82, 84}, {83, 83}, {85}, {81}

- the W-methods
- the core is empty,
- 7 minimal subsets: minimal subsets have the following structure: one is a singleton
(symptom s, ); 4 subsets consist of two elements and 2 subsets of three elements,
- the P-method
- the core is symptom s,
- 21 minimal subsets: four of them are composed of three elements, five of four elements
and other subsets of five elements.

Let us notice that in most cases the number of minimal subsets is rather high, cores are empty
or one-element. These results seem to be typical for data sets in which some attributes are
mutually interchangeable. This case occurs in the analysed problem because the measurements
of vibroacoustic symptoms concern similar quantities.

Using any of minimal subsets one can create a classifier of the technical state. One of them
should be chosen to be a base of evaluation of the technical state. As a great number of minimal
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subsets was obtained, we decided to use other criteria than the quality of classification alone. The
minimum cardinality of a minimal subset was chosen as a secondary criterion (in practice it may
be interesting to take into account also such criteria as facility, cost and time of measurement). It
can be noticed that the L-method gives minimal subsets composed of one element only, i.e., {81}
and {s5}. Similarly the W-method gives {s5}. So, these subsets can be used to create classifiers
in first order.

Then, we can see two-element and three-element subsets. Two-element subsets are the follow-
ing:

S1—L : {s2,s3}, {s2, 54}, {52, 86},
S1—-W : {sa2, s7}, {s1, 56}, {51, s2}, {s2, 84}, {51, 54},
$2—L : {so, s3}, {s2, 84}, {52, s6},
$2—-W : {si1, s6}, {s2, 54}, {51, 52}

Let us notice that the P-method does not give any two-element subsets. Taking into consideration
the structure of three-element subsets it can be noticed that vibration symptoms dominate over
noise ones. For instance, for system S1 and the W-method one can generate 15 three-element
subsets; they all consist of two vibration symptoms and one noise one. A similar result was
noticed for the same W-method and system $2.

When the choice of one minimal subset to be a classifier of the technical state is done, one
can derive a decision algorithm from the reduced information system. It consists of decision
rules which determine the assignment of an object to the real technical state basing on values of
symptoms belonging to the chosen minimal subset.

The two examples of decision algorithms are given below. The first algorithm is created using
one-symptom minimal subset {s;} and the second one is built using two symptom minimal subset
{82, 84}.

EXAMPLE 1. System S1, the L-method and the classifier {s}:

if (81 = 5) then (class= 1), the rule confirmed by 2 objects;
if (81 = 4) then (class= 1), the rule confirmed by 17 objects;
if (81 = 3) then (class= 0), the rule confirmed by 2 objects;
if (s1 = 2) then (class= 0), the rule confirmed by 9 objects;
if (81 = 1) then (class= 0), the rule confirmed by 8 objects;

where:

(class 1) - denotes bad technical state and

(class 0) - denotes good technical state.

EXAMPLE 2. System $2, the L-method, classifier {s3, s4}. The decision algorithm is presented
graphically in Figure 1.

5. CONCLUSIONS

The analysis of the diagnostic problem by means of the rough sets theory leads to the following
conclusions:

A) The four considered methods of defining symptom limit values give different quality of
classification of the rolling bearings from the viewpoint of the technical state. For both
information systems $1 and $2, the C-method led to considerably worse results than L-,
W- and P-methods.

B) The definition of the noise scale (i.e., logarithmic or linear) does not influence significantly
the quality of classification of the rolling bearings.

C) A significant superiority of the vibration symptoms was noticed over the noise symptoms
for both systems S1 and §2. It can result from influence of a reflexion of acoustic field and
acoustic property of the laboratory room.

D) A majority of possible classifiers of the technical state (minimal subsets) are composed of
one or two symptoms. The results point out that the choice of vibration measurement
bands has been done correctly from the viewpoint of diagnostic information.
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3 4 5

Figure 1. Graphical representation of the decision algorithm for system $3, classifier
{#2, 84} and the L-method;

ZZZZ - denotes bad technical state (class 1)

X0 - denotes good technical state (class 0)
(numbers in boxes get information about the number of objects which match the
given combination of values of symptoms s and s3).

The three best methods of defining the symptom limit values (L, W, P) can be ranked as
follows from the viewpoint of the minimal cardinality of the obtained minimal subset:

L - two singletons ({81}, {s5}),
W - one singleton ({ss}),
P - no singletons.

The above results have been obtained using the data collected in a laboratory, so in such
conditions the widely-understood measurement noise should be relatively weak. Therefore, it is
desirable to verify the obtained results for a similar set of objects working in a real environment.
The research which lead to such verification is presently in progress [30).
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